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Abstract

Mapping the human body at single cell resolution in three-dimensions (3D) is an important step toward
a “digital twin” model that captures important structure and dynamics of cell-cell interactions. Current
3D imaging methods suffer from low resolution and are limited in their ability to distinguish cell types
and their spatial relationships. We present a novel 3D workflow: MATRICS-A (Multiplexed Image Three-D
Reconstruction and Integrated Cell Spatial - Analysis) that generates a 3D map of cells from multiplexed
images and calculates cell type distance from endothelial cells and other features of interest. We
applied this workflow to multiplexed data from sequential skin sections from younger and older donors
(n=10; 33-72 years) with biopsies from ten anatomical regions with different sun exposure effects (mild,
moderate-marked). Up to 26 sequential sections from each sample underwent multiplexed imaging
with 18 biomarkers covering 12 cell types (keratinocytes (granular, spinous, basal), epithelial and
myoepithelial cells, fibroblasts, macrophages, T helpers, T killers, T regs, neurons and endothelial cells,
markers of DNA damage and repair (p53, DDB2) and cell proliferation (Ki67). Following cell classification,
the tissue and classified cells were reconstructed into 3D volumes. A significant inverse correlation
between DDB2 positive cells and age was found (corr= -0.78, adj. p=0.047). This suggests reduced
capacity for repair in non-cancer older sun-exposed individuals. While absolute immune cell count did
not differ by age or sun exposure, the ratio of T Helper/T Killer cells was positively correlated with age
(corr=0.82, adj. p=0.048) This is the first such 3D study in skin and paves the way for cataloging more cell
types and spatial relationships in aging and disease in skin and other organs.
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Introduction

The National Institutes of Health’s (NIH) Human Biomolecular Atlas Program (HUBMAP) aims to create a
comprehensive high-resolution atlas of all cells in the healthy human body using data from multiple
laboratories across the US and Europe’. Integrating and harmonizing the data derived from these
samples and “mapping” them into a common three-dimensional (3D) space is a major challenge.
HUBMAP, in close collaboration with 16 other international consortia and projects, is systematically
constructing a Human Reference Atlas®. At the core of this Atlas is a common coordinate framework
(CCF) that supports spatially and semantically explicit human tissue registration and exploration. The
completed Atlas will support the design of a “digital twin” for healthy men and women that can be
parameterized in support of precision health and medicine. The CCF has two key components: (1)
anatomical structures, cell types, and biomarkers (ASCT+B) tables that name key entities and link them
to existing ontologies (e.g., Uberon multi-species anatomy ontology, Foundational Model of Anatomy
Ontology [FMA], Cell Ontology [CL], or HUGO Gene Nomenclature [HGNC]) and (2) a 3D reference object
library that spatially defines the 2D and 3D structures of anatomical structures and cell types, and
characterizes their spatial relationships. Specifically, this paper computes distance distributions for
immune and other cell types to the nearest blood vessel in three dimensions for 3D digital skin biopsy
data.

Skin is the largest organ and is composed of at least 36 different cell types (documented in
version 1.1 of ASCT+B%) and a vast microenvironment of over 16 anatomical structures—including
glandular structures, hair follicles, vasculature, and immune system components. At least 70 protein
biomarkers are needed to identify these cell types and anatomical structures’, and even more if
increased cellular granularity and functionality are needed. While several single cell studies or atlases of
human skin have been conducted in recent years*®, these have focused on single cell RNAseq analysis
and do not focus on 2D in situ or 3D spatial analysis of cell types and proteins. To that end, we have
developed a new workflow for 3D reconstruction of multiplexed skin cell types and cell distance
distributions (MATRICS-A). The workflow enabled 3D evaluation of aging and sun exposure effects on
the epidermis and dermis, including epidermal localization of ultraviolet (UV) radiation damaged cells
(e.g., p53 mutations), DNA repair (DDB2), proliferation (Ki67), and immune cell counts and spatial
distances to endothelial cells. While much work has been done on characterizing precancerous and
cancerous skin, there is less understanding of cellular changes in otherwise healthy individuals across
the lifecycle. UV is a major environmental stressor, with the risk of developing disease substantially
increasing with age and exposure *%,

The novelty of our approach lies in the reconstruction of a 3D volume using multiplexed images
and multiple cell types and calculation of spatial distances. Compared to previous reconstruction
methods®?, our approach allows more precise and biologically relevant analysis of cellular relationships
and has broad applications in a disease context where immune response, angiogenesis and
microenvironment interrelationships provide important mechanistic insights into disease progression
and tumor heterogeneity'® . Figure 1: illustrates the end-to-end process undertaken for this analysis. Fig
1A: Healthy skin biopsies were embedded into a single formalin-fixed and paraffin-embedded (FFPE)
tissue block. We used the human male and female skin 3D reference organ to spatially register and
semantically annotate the biopsies via the HuBMAP Registration User Interface™; Fig. 1B: Skin
biomarkers were identified using the skin ASCT+B tables and corresponding antibodies were validated®;
Fig. 1C: A block with 12 samples underwent micro CT imaging and was then sectioned into 26 serial
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sections for highly multiplexed immunofluorescence imaging using 18 protein and cell type markers. Fig.
1D: Cell classification was conducted for each section using a hybrid supervised (deep learning-based)
and unsupervised (probability-based) workflow. Serial sections and cell types then underwent 3D
reconstruction. Next, the 3D spatial location of immune cells was used to compute cell distance
distributions from endothelial cells for each age group and sun exposure effect. Differences in epithelial
composition of p53, Ki67, and DDB2 positive cells and their distance from the skin surface were
evaluated to assess the effects of sun exposure on skin cells.

Results

Skin Anatomical Structure and Cell Type + Biomarker (ASCT+B) Table and 3D Reference Organs

For this work, an ASCT+B table as well as a male and female 3D reference organ were constructed for
skin.

The 3D skin reference organs are shown in Fig. 1A and Supplementary Fig. S2. They were derived
from the National Library of Medicine (NLM) Visible Human project' data. The male and female
reference organs were added to the HUBMAP Registration User Interface ™ making it possible to
formally register all biopsy tissue samples into the evolving Human Reference Atlas (HRA). The result is
metadata for each tissue block that documents the size, spatial location, and rotation in 3D. All
registered tissue blocks used in this study can be interactively explored in the HUBMAP portal’s CCF
Exploration User Interface (CCF-EUI)’. The version 1.1 skin ASCT+B master table® achieves three critical
elements: (1) capturing the part_of relationships between 15 anatomical structures that are linked to
their respective Uberon IDs, (2) featuring the 36 skin cell types (linked to CL) that are located_in one or
more of these anatomical structures, and (3) identifying 70 protein biomarkers (linked to HGNC
ontology) that are commonly used to characterize the 36 cell types. This paper focuses on a subset of
the entities in the skin master table, namely 18 biomarkers (including the functional markers Ki67, p53
and DDB2) and 12 cell types. A sample of the skin ASCT+B reporter is shown Fig. 1B and Supp. Fig. S4
and a complete view of all 36 cell types and 70 biomarkers is accessible at our Companion Website'®.

14,15

Hybrid supervised and unsupervised approach for precise cell classification

To address specific questions around aging and UV damage, we focused on segmentation of epithelial,
immune, and endothelial cells using an automated, hybrid unsupervised and supervised framework (See
Methods and Supp. Figs. S6 and S7). Given the amount of data required for 3D reconstruction of
multiplexed images, it would have been a cumbersome and time-consuming exercise to design this
study with only deep learning (DL) models. Typically, a large number of manually annotated cells are
required to develop a deep learning-based segmentation model and manual annotation introduces inter
and intra-rater variabilities. To achieve our goal, we adopted a hybrid supervised and unsupervised
model where a supervised DL model was used for DAPI segmentation and unsupervised Gaussian
mixture models (GMM) were used for probabilistic segmentation of individual biomarkers. The union of
probabilistic biomarker segmentation with DL based nuclei segmentation resulted in a robust cell
classification model with high sensitivity, specificity, and accuracy for all markers from significantly less
manually annotated data than traditional deep learning models'® (Figure 2B-E). Gaussian mixture
models (GMM) were used for probabilistic segmentation of epithelium (cytokeratin) and cells
undergoing DNA damage (p53), repair (DDB2), and proliferation (Ki67). A similar probabilistic
segmentation workflow was used for endothelial and immune cell classification.

3D skin volume and cell reconstruction provide a novel framework for spatial analysis
Our 3D reconstruction framework allowed us to create 3D volumes from autofluorescence (AF) images
of multiplexed serial sections and spatially map cell types in 3D for further analysis (See Fig. 3 and
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Methods). We achieved a mean dice similarity coefficient (DSC)** or overlap accuracy of 0.95+/-0.04 for
24 serial sections for 10 volumes after registration (the last 2 sections were used for deep learning
training and excluded). An overlap DSC of 0.90 is classified as high quality in the 3D registration or
reconstruction community’. We further computed normalized cross correlation between the serial
sections for all samples to quantify registration quality and found 0.6+/-0.07 for all AF serial sections,
which is comparable to established 3D reconstruction methods® in the community considering large
scale deformation and tissue damage during the course of cyclic multiplexing. Compared to traditional
registration approaches® used for 3D reconstruction, we automatically segment out the AF image to
create a mask, which focuses registration in the region of interest (ROI) and filters out background noise
that may interfere with the registration process. This approach improves our inter-slice registration
accuracy and speed. Further, compared to landmark-constrained 3D histological imaging®*, minimal
manual intervention is required for an accurate registration and reconstruction of the 3D volume .
Within this workflow, a single slide from the entire volume is identified manually based on tissue quality
as the reference image; the rest of the process for registration and 3D reconstruction is completely
automatic. Compared to image similarity-based alignment®?’, automatic block correspondences are
used for initial affine alignment. This approach improves registration accuracy especially in scenarios
where there is tissue damage, tissue deformation, imaging artifacts and noise. Use of block
correspondences improves registration speed compared to image similarity-based alignment
methods*>?, To the best of our knowledge, this is the first time a 3D reconstruction method has been
applied to whole slide multiplexed images - allowing spatial mapping of distributions of multiple cell
types in 3D without sacrificing image resolution and the number of biomarkers that could be targeted,
compared to other 3D or reconstruction methods. Registering the 3D reconstructed volumes to micro
CT images during registration is valuable when there is deformation and/or wear and tear in the tissue
samples during the cyclic staining process. The co-registration also allows us to map microfeatures (e.g.,
cell types) to macro imaging features and opens future possibilities for application to other organs and
their disease states and progression. We recognize that there may be instances where CT is not available
and as such, we designed our 3D reconstruction model to be flexible and able to perform reconstruction
in the absence of the CT images.

Evidence for reduced DNA repair capacity with aging

DDB2 (damage specific DNA binding protein 2) is the smaller subunit of a heterodimeric protein complex
(DDB1 and DDB2) that participates in nucleotide excision repair (NER), which is the principal pathway for
countering cytotoxic and mutagenic effects of UV-R*®. Cell levels of DDB2 are essential for stabilizing
DDB1 on damaged DNA” and mutations in the DDB gene lead to xeroderma pigmentosum (XP)
complementation group E, which is characterized by increased sensitivity to UV light and a high
predisposition for skin cancer®’. Tumor protein P53 (p53) is activated to counter the DNA damage arising
from UV irradiation and a steady low level of UV exposure could lead to continuous®® and over
expression of wild type or mutant p53, resulting in its accumulation in the nucleus®’. Positive p53
staining in younger patients has been shown to be limited to the epidermis, increasing progressively
with age where it extends deeper into the hair follicles and glands in older patients*®. While a significant
relationship between p53 positive cells and age and sun exposure was not found (Supp. Fig. S8B), there
was a significant inverse relationship between DDB2 and age (corr= -0.78, adjusted p-value (adj. p)
=0.05). This suggests decreased capacity for DNA repair with aging. Although a significant difference was
not found with sun exposure, the high correlation between age and sun exposure effects does not rule
out further effects of sun damage on DNA repair capacity. The ratio of DDB2/p53 positive cells showed a
similar inverse trend with age (corr = -0.59, adj. p=0.16), suggesting lower repair/higher mutation rate in
older donors. Ki67 cell count in epidermis region was not significantly correlated with age or sun
exposure. This agrees with other studies that have shown that Ki67 expression levels vary in different
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anatomical locations of skin and do not increase until actinic keratosis (damage to keratinocytes in the
lower third of the epidermal layer) or a pre-cancerous/cancerous (full epidermis thickness) in situ state
is reached®®*. Distance to the cell surface was also measured for p53 and Ki67 (higher counts closer to
the skin surface is an indicator for early pre-cancerous lesions) and DDB2 (Figure 4A). No significant
differences were found in relation to aging or sun exposure and distance of these cells to the skin
surface. In three cases (region 2, 4 and 9), there was a very wide distribution of values (0-1500 um from
the skin surface), which was due to the presence of a hair follicle in each case (Figure 54A). In all other
cases, the distance ranged between 0-500 pm.

No change in counts of immune and endothelial cells with age and sun exposure effects

Skin is a huge reservoir of immune cells, with approximately 20 billion T cells across its entire surface
area, as estimated by Clark et al®. It has been demonstrated that in normal skin, more than 95% of
those T cells are memory or helper T cells*® with T reg cells estimated to be 10% of total population®”.
We found very similar profile in our cohort (T helper: 89 £ 5%; T killer: 2 £ 5%; T reg: 9 + 5%). Clark et al.
quantified 590 T cells in a 1 cm (width) x 5-um section of normal sun-exposed skin (SD = 105, n = 25) and
a mean of 520 T cells in normal sun-protected skin (SD = 245, n = 11) with no difference found between
sun exposed/protected skin. Based on their estimation of T cells per cm” (equivalent to 2 x 10° sections
that are 1 cm wide x 5 pm thick), they estimated ~1 million T cells resident in each cm? of normal skin.
Using the entire surface area for a typical 70 kg male (1.8 m?), they estimated 1.96 x 10'°to 2.12 x
10" total skin resident T cells. Replicating this calculation, we selected a representative whole image for
each of the 10 donors and used the median of T cell counts for all images to derive a representative
number. We quantified 712 T cells in a 1 cm (width) x 5-um section (SD=329, n=10) with 685 T cells in
mild sun-exposed skin (SD=321, n=5) and 739 T cells in moderate-marked sun exposed skin (SD=337,
n=5), with no significant difference between the two groups. Similar to Clark et al., we calculated ~1.4
million T cells in 1 cm2@of normal skin and 2.5 x 10'%@total skin resident T cells across the entire surface
area of 1.8 cm®. Using the 3D reconstructed volumes from the serial sections of whole slide images, we
calculated T cell count after normalizing for sample volume. Average T cells/cm® skin was 33,545,428 (SD
15,636,210) with 28,673,399 (SD=10,670,368) in mild sun exposure samples and 38,417,457 (SD=
19,414,079) with marked exposure (NS). Overall, there were no significant differences in normalized
counts (adjusted for tissue volume) in macrophages, T killer cells, T helper cells, or T reg cells by age or
in donors with mild vs. moderate-marked sun exposure. A significant positive relationship between T
helper/T killer ratio and age was found (corr=0.82, adj. p=0.048). Notably, one donor with marked sun
exposure and rheumatoid arthritis (region 1, age 72 years) had the lowest T helper and T killer cell count
(Supp. Fig. $9) compared to other donors.

Immune cells and distance from endothelial cells in the dermis

Constructing a vasculature-based coordinate system makes sense biologically as almost every living cell
must be within a small distance to a blood vessel (100 um to 1 mm, depending on the tissue) in order to
receive oxygen’®. The skin’s vasculature, found in its dermal layer, is responsible for temperature
regulation, the diffusion of immune cells and nutrient-rich plasma, and barrier loss of body fluid®’. Aging
has been shown to reduce the size and density of blood and lymphatic vessels in the skin as well as
disrupt its structure®®. Chung et al observed an inverse relationship of dermal blood vessel numbers and
size with age in sun-damaged, but not in sun-protected skin’®, with intrinsically aged skin characterized
by a reduction in vessel size alone. In this study, we found no significant differences in endothelial cell
numbers, regardless of age or sun exposure, however since we did not measure vessel size, we cannot
rule out the possibility that there were changes in vessel size. Using the 3D reconstructed data, we also
computed the distance of T reg cells, T helper cells, T killer cells and macrophages to nearest endothelial
cells. Distance distributions to vasculature cells grouped by age and sun exposure are shown as violin
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plots in Fig. 4B and Supp. Fig $10. An inverse correlation with weak significance between T killer cell
count within 100 um of endothelial cells (normalized by total endothelial cell counts) and age was found
(corr=-0.73, adjusted p=0.08). The implications of this are unclear without further validation in a larger
group of subjects.

Interactive visualization of 3D reconstructed skin volumes

Understanding and communicating the 3D spatial location and distance relationships of multiple cell
types and supporting the comparison of cell type distance distributions across donors and conditions is
non-trivial. For this study, two interactive visualizations were developed to serve this need: (1) a 3D
vasculature CCF visualization (VCCF) and (2) interactive cell type distance distribution violin plots. The 3D
VCCF Visualization tool makes it possible to examine one 3D reconstructed tissue block at a time. Users
can view one or more serial sections; they can view one or more cell types/markers in these sections;
they can review the automatically updated distance distribution plots below the 3D skin visualization;
plus, they can access the virtual H&E dataset for histological context. Two views are provided: (1)
distance to skin surface, focusing on the composition of p53, DDB2 and Ki67 positive cells in the
epidermis and distance to the skin surface (Figure 5A and 5B); and (2) distance to nearest blood vessel—
showing the distance of immune cells to the nearest endothelial cell in the dermis region (Figure 5C and
5D). For illustration purposes, two cases of mild and marked sun exposure are shown in Fig. 5A-D:
Region 11 (HUBMAP ID: HBM875.KTPB.893) is from the upper arm of a 41-year-old female with mild sun
exposure effects (determined from H&E evaluation);
https://juyingnan.github.io/vccf visualization.io/html/region 11.html and Region 7 (HuBMAP ID:
HBM384.NNQH.676) is a biopsy from the lower forearm of a 69-year-old male with marked sun exposure
effects ttps://juyingnan.github.io/vccf visualization.io/html/region 7.html. Noteworthy visible differences
between the two donors include markedly higher DDB2 positive cells distributed through 0-200 um of the
epidermis and relatively low counts of p53 and Ki67 positive cells in the mild exposure/younger donor. In
contrast, the marked exposure/older donor had more p53 and Ki67 positive cells, and markedly lower DDB2
positive cells distributed more within 100-200 um of the epidermis. There were similar distribution of
immune cell counts within 100 um of the nearest endothelial cell in both donors. Example multiplexed
regions of interest and distance overlay for both donors are shown in Supp. Fig. $11.
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Discussion

We have presented novel methods for spatially registering data in three dimensions using the HuBMAP
registration user interface®®; selecting antibodies aligned with the anatomical structures, cell types, and
biomarker (ASCT+B) tables in support of high quality, ontology aligned data generation; generating 3D
volumes of digital skin biopsy data using multiplexed imaging of sequential sections; computing distance
distributions of cell damage and proliferation markers to the skin surface; and compiling distance
distributions of major immune cells to the nearest blood vessel in support of a vasculature-based human
common coordinate framework®. Interactive data visualizations allow users to explore spatial patterns
of cell type distance distributions in relation to vasculature and position within the epidermis. This 3D
workflow is extendable to other cell types (and organs) and will provide a powerful approach for cellular
resolution 3D spatial analysis and for constructing a human reference system. All datasets and code are
freely available at GitHub - hubmapconsortium/MATRICS-A: Multiplexed Image Three-D Reconstruction
and Integrated Cell Spatial -Analysis and via a HuBMAP collection at Samples | HuBMAP
(hubmapconsortium.org)

Although 3D reconstruction of multiplexed serial sections is a relatively time-consuming process,
it has a significant advantage of generating significantly more cellular data per sample with high
resolution. A number of other methods have been used to investigate 3D volumes of organs®?, however,
challenges include antibody penetration (requiring long incubation times), preservation of antigens,
tissue architecture distortion, and limitations in the delineation of cell-to-cell relationships on structures
spanning several millimeters. Wang et al.** used confocal microscopy to demonstrate lymphatic and
blood vessel networks in the human dermis using immunostaining for CD31, Podoplanin, and LYVE-1.
Light-sheet microscopy has been used to image skin structure in 3D*, but the use of low NA objectives
and low magnification to provide a wide field of view results in poor spatial resolution at cellular level.
Three-dimensional reconstruction of serially sectioned H&E-stained skin samples has shown the
variation in dermis structure and other macro features using the CODA method*. Although we did not
incorporate reconstruction of H&E histological images, this workflow would be possible using the virtual
H&E images generated from the autofluorescence images acquired in this study and would be another
informative way to visualize the cellular data. The addition of this dataset is planned for future work.

This study included a small sample of skin specimens sampled across various body locations to
account for diversity in anatomical organization and degrees of UV exposure. Acute UV exposure
dampens aspects of the immune response, which has positive effects for autoimmune disease, but can
impair the response to neoplastic cells**. The long-term effects of chronic UV exposure on immune
composition have not been well studied and one study has shown restoration of most immune markers
to baseline after 14 days*. In our study, aging and sun exposure effects were highly correlated, with
younger donors more likely to have mild sun exposure effects. While significant differences were not
found in immune cell counts by age and sun exposure, more T killer cells were found within 100 um of
endothelial cells in younger patients and this warrants further exploration. An additional consideration
when studying skin and interpreting changes in cell counts is anatomical location, which significantly
influences the thickness of keratin layer, epidermis and dermis, as well as the distribution and density of
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adnexal structures such as hair follicles, sebaceous, apocrine and sweat glands etc. 4548 Skin from the
face, neck, scalp, and back of hand are significantly exposed to the sun when compared to sites such as
trunk, medial aspect of extremities (inner thigh, arm etc.,) and plantar foot (sole), leading to marked
differences in the amount of cumulative UV radiation exposure. Partially addressing this, our samples
were collected from across the anatomy, including arms, legs, abdomen, and scalp and normalized for
total volume, epidermis volume and endothelial cell count to account for sample-to-sample differences.
Although we did not find significant differences in p53, our results suggest that DNA repair is more
effective in younger/mild sun exposed patients and decreases with age and/or sun exposure. Pilkington
et al.*’ have reported that senescent phenotypes in aged skin can result in reduced skin barrier function
and promote a chronic low-level inflammation or “inflammaging” in response to stresses such as
repeated UV exposure over the course of chronological aging. Related to this, future areas of research
should incorporate more donors and expand racial diversity. Additional insights would be gleaned from
incorporation of more aging, senescence, immune (e.g. Langheran cells) and functional immune markers
(e.g., exhaustion or activation®®). It would also be of tremendous value to combine spatial
transcriptomic data to further interrogate underlying biology. Importantly, this 3D reconstruction
workflow can be applied to any tissue or organ type using any multiplexing technology using sequential
section imaging for elucidation of spatial relationships between cell types and vasculature.
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Methods

Patient samples

Skin biopsies were collected from 12 donors ranging from 32-72 years with a mix of typically UV-
exposed and non-exposed anatomical regions (Supplementary (Supp.) Table S1). The biopsies were
trimmed to size, ranging from 14x12 mm to 47x21 mm in dimension, and embedded in a single block
that underwent micro CT imaging. The blocks were then sectioned into 100 5-micron serial sections,
numbered in sequence, of which up to 26 of the highest quality in serial succession were selected for
further analysis (slide layout shown with virtual H&Es —comprised of pseudo-colored autofluorescence
and DAPI*® in Supp. Fig. S2). All 12 biopsies were spatially registered using the HUBMAP Registration
User Interface, and submission of corresponding metadata (donor information, including health status
and sample processing) for each sample (https://hubmapconsortium.github.io/ccf-ui/rui/ - Supp. Fig.
$3). Of the 12 samples, 10 were down selected for further analysis. The two excluded samples included
a donor with a benign cyst, but with extensive inflammation and immune cell infiltration compared to
other samples. The second sample had a scar which also altered the normal organization of the
epidermis and dermis layers. All donors were in good health and cancer free at the time of sample
collection, with two donors having chronic diseases (RA and HIV), which is noted in the patient summary
table.

Pathologist review

Virtual H&E images (which are pseudo colored autofluorescence and DAPI images*®) from each donor
were assessed by a pathologist for histopathological changes related to chronic sun exposure such as
keratinocytic atypia in the epidermis and solar elastosis changes in the dermis. Accordingly, the
specimens were categorized into groups of skin with mild, moderate, and marked sun exposure effects
(Supp. Table S1). Donors in the mild sun exposure were significantly younger than the moderate-marked
exposure donors (42.4 vs. 62.2 years, p = 0.008). All virtual H&E images are located at: vccf-visualization-
release/vheimages at main - hubmapconsortium/vccf-visualization-release - GitHub

Micro CT imaging of skin blocks

A Phoenix micro CT system (GE, Wunstorf, Germany) with up to 300 kV/500W was used to generate high
resolution CT images of the skin samples. Phoenix micro CT scanners have a high dynamic DXR digital
detector array and can produce isotropic images of 1 um and are frequently used for industrial process
control as well as for scientific research applications. Due to its dual tube configuration, detailed
3D information for an extremely wide sample range can be provided. For our purpose a current of 200
kV was found to be optimum in terms of signal-to-noise ratio to generate high quality volumetric
isotropic images of 0.016 mm resolution for the embedded skin samples and this also allowed imaging
of 12 samples in one block within 30 minutes. Example images for micro CT with corresponding
histological section are shown in Supp. Fig. $3. The DICOM header with imaging settings is shown in
Supp. Table S2.
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Antibody validation and multiplexed analysis

All antibodies used in this study were subjected to a standardized characterization process using a tissue
microarray (TMA) and appropriate controls to evaluate the specificity and sensitivity of the primary
antibody and its dye-conjugated derivative, including the cyclic testing of the dye inactivation treatment
compared to single staining™®. Supp. Table S3 shows the antibody clones and conjugates used in the
study. The 18-marker panel provided coverage for 9 cell types: epithelial, fibroblast, immune cells
(macrophage, T helper, T killer, T reg), nerve, myoepithelial, and endothelial cells. These are also
highlighted using the HuBMAP Anatomical Structures Cell Type and Biomarkers (ASCT+B) reporter
comparison feature https://hubmapconsortium.github.io/ccf-releases/v1.0/docs/asct-b/skin.html. An
example sample region of the skin ASCT+B reporter is shown in Supp. Fig. S4. Multiplexed
immunofluorescence (MxIF) staining of the skin samples was performed as previously described * using
Cell DIVE™ technology (Leica Microsystems, Issaquah, WA). After de-paraffinization and a two-step
antigen retrieval, the FFPE slides were stained with DAPI and imaged in all channels of interest to
acquire background autofluorescence (AF) of the tissue. This was followed by primary/secondary and/or
direct conjugate antibody staining of up to 3 markers per round plus DAPI, dye deactivation, and repeat
staining to collect images of all planned biomarkers. Multiplexed images were automatically registered
and processed for illumination correction and autofluorescence subtraction. Each sample was
comprised of ~40 20x fields of view and 20-26 sections were imaged for 3D reconstruction. Example
virtual H&E and multiplexed images for two contrasting regions (mild vs. marked sun exposure) are
shown in Supp. Fig. S5.

Cell Segmentation and Classification

Figure 2 and Supp. Fig. S6 summarize our segmentation model framework. First, an encoder-decoder
based deep learning (DL) model® was trained on a small sample (194 DAPI image patches) of manually
annotated nuclei from the DAPI images. Multiscale Laplacian of Gaussian (LOG) was introduced along
with DAPI images as separate channels to our encoder-decoder based DL model. The LOG feature
detects blob like structures in the DAPI images corresponding to the nuclei shape and boundary, thereby
providing contextual information to our DL model. Use of multiple channels allows us to train an
accurate DL model from a small sample of manually annotated DAPI images. Depth of our encoder-
decoder DL model was set to 4 and binary cross entropy was used as a loss function. An unsupervised
GMM” was used on cell biomarkers for an automatic probabilistic segmentation of immune cell types (T
killer (CD8), T reg (FOXP3), T helper (CD4), macrophages (CD68), endothelial cells (CD31), as well as
markers of proliferation (Ki67) and DNA damage (p53) and DNA repair (DDB2) (Supp. Fig. $7). Union of
probabilities obtained from the GMM model and nuclei segmentation of our DL model was then fused
for cell segmentation. Probability values were used to automatically scale (between 0-1) and quantify
cells with high expression and determine percentage overlap for a single cell with segmented nuclei.
Low percentage overlap was further used to remove imaging artifacts, debris, and cells with low
expression. DAPI images were normalized to zero mean unit variance values inside our deep learning
framework prior to nuclei segmentation. Secondly, the individual whole slides were normalized between
zero mean and unit standard deviation before estimation of biomarker probabilities. Whole slide image
specific normalization ensures all images were scaled relative to their intensity distribution and reduces
intensity variability often observed between serial whole slide images. The combination of these two
normalizations ensured a single cell was segmented based on relative intensity difference between the
biomarker and the background and not on absolute intensity distribution that may vary from one slide
to another adversely affecting segmentation accuracy. The same GMM was used to automatically
segment contiguous structures, independent of nuclei, such as blood vessels (based on CD31 staining)
and epithelial masks (based on cytokeratin staining). In such a scenario, we depend on probabilities as
obtained from our GMM and automatically threshold our probability using Otsu filters™ on the
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probability map of the biomarkers. Fig. 2A shows examples of a multiplexed region of interest from
donor 9; epidermis (Fig. 2B); cell classification (in this example, p53 positive cells) (Fig. 2C); and (Fig. 2D)
endothelial cells. For validation, a total of 2722 positive and negative cell markers were manually
annotated using the annotation function in QUPATH>* as follows: CD3: 408; CD4: 281; CD8: 347; FOXP3:
360; CD68: 391, CD31: 352; Ki67: 150; p53: 164; DDB2: 162 and these were used to calculate cell
classification sensitivity, specificity and accuracy (Fig. 2E). Code can be found at: GitHub -
hubmapconsortium/MATRICS-A: Multiplexed Image Three-D Reconstruction and Integrated Cell Spatial -

Analysis

3D Reconstruction

For 3D volume reconstruction of the autofluorescence (AF) images, a reference AF image was selected
for registration of all remaining serial section slides and generation of a 3D tissue block (Figure 3 A and
B). AF images were automatically segmented using Otsu thresholding, morphological closing, and
retaining largest component. AF images were masked prior to affine, and B-spline based deformable
registration between the reference image and the serial sections to improve registration accuracy. A
block matching strategy was adopted to determine the transformation parameters for the affine
registration from masked AF images (Figure 3C). The similarity between a block from the reference AF
was computed relative to the AF serial sections. The best corresponding block defined the displacement
vector for the affine transformation®. Normalized cross-correlation similarity was used to determine the
block correspondences. Initial affine registration on block correspondences was followed by deformable
B-spline based registration®® between the reference AF image and the serial section to account for
deformation of the serial section during the staining process (Figure 3C). Normalized mutual
information was chosen as the similarity matrix and maximized to achieve the registration. The
transformation map obtained from the registration of the AF images was applied to individual
biomarkers for all serial sections to create a 3D volume of endothelial, T killer, T reg, T helper cells and
macrophages (Figure 3D) and overlaid on 3D AF volume as shown in Figure 3E. Slides were randomly
picked from each of the skin volumes and segmented biomarkers were overlaid on the biomarker
images for a visual validation. Further, density of cell types was verified from one slide to another in the
3D volume using the visualization generated from the 3D VCCF model. To resolve any issues dealing with
higher or lower signal intensity for a slide, any discrepancies in cell density of a biomarker were
identified and a higher or lower probability threshold was used on the probabilistic segmentation to
achieve a better segmentation. Such manual biomarker probability adjustments were necessary in less
than 2% of the whole slide images. Code can be found at: GitHub - hubmapconsortium/MATRICS-A:
Multiplexed Image Three-D Reconstruction and Integrated Cell Spatial -Analysis

Cell data aggregation and analytics

For patient level comparison, cell counts within the regions of interest (either entire sample or the
epidermis region in 3D reconstructed data) were aggregated at patient level by each cell type. Then the
guantities were normalized by the volume of the region of interest. To create the epidermis volume,
epidermis segmented from each whole slide image was given the same transformation as the AF volume
to create a 3D reconstructed volume of the epidermis. Number of voxels of the 3D volume were
automatically determined using the Insight Toolkit (ITK) software®’. Based on the quantities aggregated
at donor level, statistical hypothesis tests were performed to understand the correlation between the
normalized cell count vs. age/UV-exposure. To measure the correlation with age, Spearman’s correlation
was quantified and tested. For UV exposure (mild vs. moderate-marked), Wilcoxon-test was performed.
For both statistical tests, Benjamini & Hochberg’s multiple testing correction was applied™.
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Distance metrics

Two types of distances were computed based on the segmentation result: (1) the distance between the
centroid of the nucleus for immune cells (macrophage, T helper, T killer, T reg) and the edge of the
nearest blood vessel (endothelial cells) and (2) the distance between the centroid of cells with UV
damage markers (DDB2, p53) and proliferation markers (KI67) to the edge of the skin surface. To speed
up distance calculations for the 13,489 immune cells and 12,407 damage/proliferation markers across
the ten 3D regions, a filter was applied to calculate the square root of the distance for only those
cells/markers that fell within the range of the current minimum value of the distance (i.e., cells/markers
whose distance on either the x, y, or z axis is greater than the current minimum distance are not
included in the distance computation). This approach considerably reduced run time and memory load.
Code can be found at:

Violin plots of cell counts and distance from endothelial cells or from cell surface

Violin plots in Fig. 4 combine a box plot and a density plot to display the probability density of the data
at different values. The interquartile range is represented by the box in the center, and the extended
line above/below the box shows the upper (max) and lower (min) adjacent values. In the online
interactive version, a kernel density estimation is shown on each side of the box to show the distribution
shape of the distance from the cell to the nearest blood vessel. The median value of the distance is
represented by the line dot in the middle of the box, and the mean value is represented by the dash line.
This was used to depict the distribution of immune cells (macrophages (CD68+), T helper (CD3+, CD4+),
and regulatory T reg cells (CD3+, CD4+, FOXP3+) and T killer cells (CD3+, CD8+), as well as the sum of all
four) and distances from endothelial cells in regions with marked sun exposure and mild sun exposure
for all donors https://juyingnan.github.io/vccf visualization.io/html/violin_cell all region.html and
spanning the age range of donors https://juyingnan.github.io/vccf visualization.io/html/violin cell.html.
Similar plots were generated for distance of epithelial cells positive for Ki67, p53 and DDB2 across the
entire sample area and within the epidermis, for all donors and separated by age
https://juyingnan.github.io/vccf visualization.io/html/epidermis/violin damage all region epidermis.h
tml; https://juyingnan.github.io/vccf visualization.io/html/epidermis/violin_damage epidermis.htm|

Interactive visualization of cell and marker distances

Interactive 3D visualizations of cell and biomarker distances were implemented using the Plotly 3D
visualization package. For Ki67, p53 and DDB2 markers within the epidermis and distance to skin
surface: https://juyingnan.github.io/vccf visualization.io/html/epidermis; for immune cell distances to
blood vessels in the dermis: https://juyingnan.github.io/vccf visualization.io. The distance calculation
result was visualized in two ways: (1) a 3D view projecting all immune cell nuclei, damage/proliferation
markers, blood vessels, and their shortest distances (lines) in tissue space and (2) 2D histograms
showing the distribution of distances between nuclei and blood vessels, and between
damage/proliferation markers and the skin surface. The visualization of distance links has been
optimized by adding invisible links that unite all of the existing links into a single polyline which
significantly reduces the size of the vector data and memory usage, allowing for responsive online
interaction with about 20,000 nodes in a web browser. In the 3D view, each cell nucleus is rendered as a
small circle in the 3D visualization, whereas each UV damage/proliferation marker is rendered as a cross
(see legend for cell and biomarker type colors). Blood vessels and epithelial masks (based on positive
cytokeratin staining) are rendered as a collection of red circles. The slider in the top-right corner of each
3D view allows the user to view each tissue layer separately. The histogram views provide information
about the distribution of distances for further analysis. The short lines beneath the histograms indicate
the relationship between all the samples and the histogram bars. The histogram can be displayed in
three different layouts: Overlaid (by default), Stacked, or Grouped, see selection button on lower left.
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The visualizations can be exported as an HTML file for online presentation and exploration, or as a
vector image for static viewing.
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Figure 1: End-to-end workflow for generation of a 3D skin map of cell types and distances
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Figure 3: 3D Skin Volume Reconstruction Workflow. 3A and 3B — A reference autofluorescence image from the sequentially imaged sections is used to initiate
registration; C) A patch-based local correspondences in 2D serial sections was used for affine registration followed by deformable registration to account for tissue
deformation; D) 3D reconstruction of the biomarkers are achieved by mapping of the biomarkers in 3D using the affine and deformable transformation map
and refinement is achieved by registration to micro CT image; E) 3D volumes of biomarkers are overlaid on AF volume and 3D mesh of individual biomarkers
generated.

C. Registration Framework
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Figure 4B: Violin plots of distance of immune cells from nearest endothelial cell by age and exposure
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Figure 5A and 5B: Markers
of UV damage, repair and
proliferation in epidermis
and distance to skin surface
represented as 3D distance
plots from the skin surface
and histogram distribution.

Figure 5C and D Immune
cells and endothelial cells
distance to skin surface
represented as 3D distance
plots from nearest
endothelial cells and
histogram distribution
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