
 

 

 

 

Human Digital Twin: Automated Cell Type Distance Computation and 3D Atlas Construction in 

Multiplexed Skin Biopsies  

 

 

 

Authors: Soumya Ghose
1,2

, Yingnan Ju
1,3

, Elizabeth McDonough
2
,
 
Jonhan Ho

4
, Arivarasan Karunamurthy

4
, 

Chrystal Chadwick
2
, Sanghee Cho

2
, Rachel Rose

 2
, Alex Corwin

2
, Christine Surrette

2
, Jessica Martinez

2
, 

Eric Williams
2
, Anup Sood

2
, Yousef Al-Kofahi

2
, Louis D. Falo, Jr

4
, Katy Börner

3,5
, Fiona Ginty

2,5
; 

1
Joint first-

authors; 
5
Joint corresponding authors; 

2
 GE Research Center; 

3 
Indiana University; 

4 
University of 

Pittsburgh School of Medicine 

 

 

 

Grant: NIH Award No. 3UH3CA246594-02S1, OT2OD026671 

Correspondence contact: Fiona Ginty PhD, fiona.ginty@ge.com; Katy Börner, katy@indiana.edu  

Institution: General Electric Research Center, Indiana University 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2022. ; https://doi.org/10.1101/2022.03.30.486438doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.30.486438
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Abstract 

 

Mapping the human body at single cell resolution in three-dimensions (3D) is an important step toward 

a “digital twin” model that captures important structure and dynamics of cell-cell interactions. Current 

3D imaging methods suffer from low resolution and are limited in their ability to distinguish cell types 

and their spatial relationships. We present a novel 3D workflow: MATRICS-A (Multiplexed Image Three-D 

Reconstruction and Integrated Cell Spatial - Analysis) that generates a 3D map of cells from multiplexed 

images and calculates cell type distance from endothelial cells and other features of interest.  We 

applied this workflow to multiplexed data from sequential skin sections from younger and older donors 

(n=10; 33-72 years) with biopsies from ten anatomical regions with different sun exposure effects (mild, 

moderate-marked).  Up to 26 sequential sections from each sample underwent multiplexed imaging 

with 18 biomarkers covering 12 cell types (keratinocytes (granular, spinous, basal), epithelial and 

myoepithelial cells, fibroblasts, macrophages, T helpers, T killers, T regs, neurons and endothelial cells, 

markers of DNA damage and repair (p53, DDB2) and cell proliferation (Ki67). Following cell classification, 

the tissue and classified cells were reconstructed into 3D volumes. A significant inverse correlation 

between DDB2 positive cells and age was found (corr= -0.78, adj. p=0.047). This suggests reduced 

capacity for repair in non-cancer older sun-exposed individuals. While absolute immune cell count did 

not differ by age or sun exposure, the ratio of T Helper/T Killer cells was positively correlated with age 

(corr=0.82, adj. p=0.048) This is the first such 3D study in skin and paves the way for cataloging more cell 

types and spatial relationships in aging and disease in skin and other organs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2022. ; https://doi.org/10.1101/2022.03.30.486438doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.30.486438
http://creativecommons.org/licenses/by-nc/4.0/


 

 

Introduction 

The National Institutes of Health’s (NIH) Human Biomolecular Atlas Program (HuBMAP) aims to create a 

comprehensive high-resolution atlas of all cells in the healthy human body using data from multiple 

laboratories across the US and Europe
1
. Integrating and harmonizing the data derived from these 

samples and “mapping” them into a common three-dimensional (3D) space is a major challenge.  

HuBMAP, in close collaboration with 16 other international consortia and projects, is systematically 

constructing a Human Reference Atlas
2
.  At the core of this Atlas is a common coordinate framework 

(CCF) that supports spatially and semantically explicit human tissue registration and exploration. The 

completed Atlas will support the design of a “digital twin” for healthy men and women that can be 

parameterized in support of precision health and medicine. The CCF has two key components: (1) 

anatomical structures, cell types, and biomarkers (ASCT+B) tables that name key entities and link them 

to existing ontologies (e.g., Uberon multi-species anatomy ontology, Foundational Model of Anatomy 

Ontology [FMA], Cell Ontology [CL], or HUGO Gene Nomenclature [HGNC]) and (2) a 3D reference object 

library that spatially defines the 2D and 3D structures of anatomical structures and cell types, and 

characterizes their spatial relationships.  Specifically, this paper computes distance distributions for 

immune and other cell types to the nearest blood vessel in three dimensions for 3D digital skin biopsy 

data. 

Skin is the largest organ and is composed of at least 36 different cell types (documented in 

version 1.1 of ASCT+B
3
) and a vast microenvironment of over 16 anatomical structures—including 

glandular structures, hair follicles, vasculature, and immune system components. At least 70 protein 

biomarkers are needed to identify these cell types and anatomical structures
3
, and even more if 

increased cellular granularity and functionality are needed.  While several single cell studies or atlases of 

human skin have been conducted in recent years
4,5

, these have focused on single cell RNAseq analysis 

and do not focus on 2D in situ or 3D spatial analysis of cell types and proteins. To that end, we have 

developed a new workflow for 3D reconstruction of multiplexed skin cell types and cell distance 

distributions (MATRICS-A). The workflow enabled 3D evaluation of aging and sun exposure effects on 

the epidermis and dermis, including epidermal localization of ultraviolet (UV) radiation damaged cells 

(e.g., p53 mutations), DNA repair (DDB2), proliferation (Ki67), and immune cell counts and spatial 

distances to endothelial cells.  While much work has been done on characterizing precancerous and 

cancerous skin, there is less understanding of cellular changes in otherwise healthy individuals across 

the lifecycle. UV is a major environmental stressor, with the risk of developing disease substantially 

increasing with age and exposure 
6–8

. 

The novelty of our approach lies in the reconstruction of a 3D volume using multiplexed images 

and multiple cell types and calculation of spatial distances. Compared to previous reconstruction 

methods
9–12

, our approach allows more precise and biologically relevant analysis of cellular relationships 

and has broad applications in a disease context where immune response, angiogenesis and 

microenvironment interrelationships provide important mechanistic insights into disease progression 

and tumor heterogeneity
10

 . Figure 1: illustrates the end-to-end process undertaken for this analysis. Fig 

1A: Healthy skin biopsies were embedded into a single formalin-fixed and paraffin-embedded (FFPE) 

tissue block. We used the human male and female skin 3D reference organ to spatially register and 

semantically annotate the biopsies via the HuBMAP Registration User Interface
13

; Fig. 1B: Skin 

biomarkers were identified using the skin ASCT+B tables and corresponding antibodies were validated
3
; 

Fig. 1C: A block with 12 samples underwent micro CT imaging and was then sectioned into 26 serial 
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sections for highly multiplexed immunofluorescence imaging using 18 protein and cell type markers. Fig. 

1D: Cell classification was conducted for each section using a hybrid supervised (deep learning-based) 

and unsupervised (probability-based) workflow. Serial sections and cell types then underwent 3D 

reconstruction. Next, the 3D spatial location of immune cells was used to compute cell distance 

distributions from endothelial cells for each age group and sun exposure effect. Differences in epithelial 

composition of p53, Ki67, and DDB2 positive cells and their distance from the skin surface were 

evaluated to assess the effects of sun exposure on skin cells.  

 

Results 

 

Skin Anatomical Structure and Cell Type + Biomarker (ASCT+B) Table and 3D Reference Organs  

For this work, an ASCT+B table as well as a male and female 3D reference organ were constructed for 

skin.  

The 3D skin reference organs
14,15

 are shown in Fig. 1A and Supplementary Fig. S2. They were derived 

from the National Library of Medicine (NLM) Visible Human project
16

 data. The male and female 

reference organs were added to the HuBMAP Registration User Interface 
13

  making it possible to 

formally register all biopsy tissue samples into the evolving Human Reference Atlas (HRA). The result is 

metadata for each tissue block that documents the size, spatial location, and rotation in 3D. All 

registered tissue blocks used in this study can be interactively explored in the HuBMAP portal’s CCF 

Exploration User Interface (CCF-EUI)
17

. The version 1.1 skin ASCT+B master table
3
 achieves three critical 

elements: (1) capturing the part_of relationships between 15 anatomical structures that are linked to 

their respective Uberon IDs, (2) featuring the 36 skin cell types (linked to CL) that are located_in one or 

more of these anatomical structures, and (3) identifying 70 protein biomarkers (linked to HGNC 

ontology) that are commonly used to characterize the 36 cell types. This paper focuses on a subset of 

the entities in the skin master table, namely 18 biomarkers (including the functional markers Ki67, p53 

and DDB2) and 12 cell types.  A sample of the skin ASCT+B reporter is shown Fig. 1B and Supp. Fig. S4 

and a complete view of all 36 cell types and 70 biomarkers is accessible at our Companion Website
18

.  

 

Hybrid supervised and unsupervised approach for precise cell classification  

To address specific questions around aging and UV damage, we focused on segmentation of epithelial, 

immune, and endothelial cells using an automated, hybrid unsupervised and supervised framework (See 

Methods and Supp. Figs. S6 and S7). Given the amount of data required for 3D reconstruction of 

multiplexed images, it would have been a cumbersome and time-consuming exercise to design this 

study with only deep learning (DL) models. Typically, a large number of manually annotated cells are 

required to develop a deep learning-based segmentation model and manual annotation introduces inter 

and intra-rater variabilities.  To achieve our goal, we adopted a hybrid supervised and unsupervised 

model where a supervised DL model was used for DAPI segmentation and unsupervised Gaussian 

mixture models (GMM) were used for probabilistic segmentation of individual biomarkers.  The union of 

probabilistic biomarker segmentation with DL based nuclei segmentation resulted in a robust cell 

classification model with high sensitivity, specificity, and accuracy for all markers from significantly less 

manually annotated data than traditional deep learning models
19

 (Figure 2B-E). Gaussian mixture 

models (GMM) were used for probabilistic segmentation of epithelium (cytokeratin) and cells 

undergoing DNA damage (p53), repair (DDB2), and proliferation (Ki67). A similar probabilistic 

segmentation workflow was used for endothelial and immune cell classification.   

 

3D skin volume and cell reconstruction provide a novel framework for spatial analysis 

Our 3D reconstruction framework allowed us to create 3D volumes from autofluorescence (AF) images 

of multiplexed serial sections and spatially map cell types in 3D for further analysis (See Fig. 3 and 
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Methods).  We achieved a mean dice similarity coefficient (DSC)
21

 or overlap accuracy of 0.95+/-0.04 for 

24 serial sections for 10 volumes after registration (the last 2 sections were used for deep learning 

training and excluded). An overlap DSC of 0.90 is classified as high quality in the 3D registration or 

reconstruction community
9
. We further computed normalized cross correlation between the serial 

sections for all samples to quantify registration quality and found 0.6+/-0.07 for all AF serial sections, 

which is comparable to established 3D reconstruction methods
9
 in the community considering large 

scale deformation and tissue damage during the course of cyclic multiplexing. Compared to traditional 

registration approaches
23

 used for 3D reconstruction, we automatically segment out the AF image to 

create a mask, which focuses registration in the region of interest (ROI) and filters out background noise 

that may interfere with the registration process. This approach improves our inter-slice registration 

accuracy and speed. Further, compared to landmark-constrained 3D histological imaging
24

, minimal 

manual intervention is required for an accurate registration and reconstruction of the 3D volume . 

Within this workflow, a single slide from the entire volume is identified manually based on tissue quality 

as the reference image; the rest of the process for registration and 3D reconstruction is completely 

automatic.  Compared to image similarity-based alignment
9,22

, automatic block correspondences are 

used for initial affine alignment. This approach improves registration accuracy especially in scenarios 

where there is tissue damage, tissue deformation, imaging artifacts and noise. Use of block 

correspondences improves registration speed compared to image similarity-based alignment 

methods
22,23

. To the best of our knowledge, this is the first time a 3D reconstruction method has been 

applied to whole slide multiplexed images - allowing spatial mapping of distributions of multiple cell 

types in 3D without sacrificing image resolution and the number of biomarkers that could be targeted, 

compared to other 3D or reconstruction methods. Registering the 3D reconstructed volumes to micro 

CT images during registration is valuable when there is deformation and/or wear and tear in the tissue 

samples during the cyclic staining process. The co-registration also allows us to map microfeatures (e.g., 

cell types) to macro imaging features and opens future possibilities for application to other organs and 

their disease states and progression. We recognize that there may be instances where CT is not available 

and as such, we designed our 3D reconstruction model to be flexible and able to perform reconstruction 

in the absence of the CT images.    

 

Evidence for reduced DNA repair capacity with aging  

DDB2 (damage specific DNA binding protein 2) is the smaller subunit of a heterodimeric protein complex 

(DDB1 and DDB2) that participates in nucleotide excision repair (NER), which is the principal pathway for 

countering cytotoxic and mutagenic effects of UV-R
25

. Cell levels of DDB2 are essential for stabilizing 

DDB1 on damaged DNA
26 

and mutations in the DDB gene lead to xeroderma pigmentosum (XP) 

complementation group E, which is characterized by increased sensitivity to UV light and a high 

predisposition for skin cancer
27

. Tumor protein P53 (p53) is activated to counter the DNA damage arising 

from UV irradiation and a steady low level of UV exposure could lead to continuous
28

 and over 

expression of wild type or mutant p53, resulting in its accumulation in the nucleus
29

. Positive p53 

staining in younger patients has been shown to be limited to the epidermis, increasing progressively 

with age where it extends deeper into the hair follicles and glands in older patients
28

. While a significant 

relationship between p53 positive cells and age and sun exposure was not found (Supp. Fig. S8B), there 

was a significant inverse relationship between DDB2 and age (corr= -0.78, adjusted p-value (adj. p) 

=0.05). This suggests decreased capacity for DNA repair with aging. Although a significant difference was 

not found with sun exposure, the high correlation between age and sun exposure effects does not rule 

out further effects of sun damage on DNA repair capacity. The ratio of DDB2/p53 positive cells showed a 

similar inverse trend with age (corr = -0.59, adj. p=0.16), suggesting lower repair/higher mutation rate in 

older donors. Ki67 cell count in epidermis region was not significantly correlated with age or sun 

exposure. This agrees with other studies that have shown that Ki67 expression levels vary in different 
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anatomical locations of skin and do not increase until actinic keratosis (damage to keratinocytes in the 

lower third of the epidermal layer) or a pre-cancerous/cancerous (full epidermis thickness) in situ state 

is reached
30–32

. Distance to the cell surface was also measured for p53 and Ki67 (higher counts closer to 

the skin surface is an indicator for early pre-cancerous lesions) and DDB2 (Figure 4A). No significant 

differences were found in relation to aging or sun exposure and distance of these cells to the skin 

surface. In three cases (region 2, 4 and 9), there was a very wide distribution of values (0-1500 μm from 

the skin surface), which was due to the presence of a hair follicle in each case (Figure 54A). In all other 

cases, the distance ranged between 0-500 μm.  

 

No change in counts of immune and endothelial cells with age and sun exposure effects  

Skin is a huge reservoir of immune cells, with approximately 20 billion T cells across its entire surface 

area, as estimated by Clark et al
33

. It has been demonstrated that in normal skin, more than 95% of 

those T cells are memory or helper T cells
34

 with T reg cells estimated to be 10% of total population
35

. 

We found very similar profile in our cohort (T helper: 89 ± 5%; T killer: 2 ± 5%; T reg: 9 ± 5%). Clark et al. 

quantified 590 T cells in a 1 cm (width) × 5-μm section of normal sun-exposed skin (SD = 105, n = 25) and 

a mean of 520 T cells in normal sun-protected skin (SD = 245, n = 11) with no difference found between 

sun exposed/protected skin. Based on their estimation of T cells per cm
2, 

(equivalent to 2 × 10
3
 sections 

that are 1 cm wide × 5 μm thick), they estimated ∼1 million T cells resident in each cm
2
 of normal skin. 

Using the entire surface area for a typical 70 kg male (1.8 m
2
), they estimated 1.96 × 10

10
 to 2.12 × 

10
10

 total skin resident T cells. Replicating this calculation, we selected a representative whole image for 

each of the 10 donors and used the median of T cell counts for all images to derive a representative 

number.  We quantified 712 T cells in a 1 cm (width) x 5-μm section (SD=329, n=10) with 685 T cells in 

mild sun-exposed skin (SD=321, n=5) and 739 T cells in moderate-marked sun exposed skin (SD=337, 

n=5), with no significant difference between the two groups. Similar to Clark et al., we calculated ∼1.4 

million T cells in 1 cm2Pof normal skin and 2.5 × 10
10

Ptotal skin resident T cells across the entire surface 

area of 1.8 cm
2
. Using the 3D reconstructed volumes from the serial sections of whole slide images, we 

calculated T cell count after normalizing for sample volume. Average T cells/cm
3
 skin was 33,545,428 (SD 

15,636,210) with 28,673,399 (SD=10,670,368) in mild sun exposure samples and 38,417,457 (SD= 

19,414,079) with marked exposure (NS). Overall, there were no significant differences in normalized 

counts (adjusted for tissue volume) in macrophages, T killer cells, T helper cells, or T reg cells by age or 

in donors with mild vs. moderate-marked sun exposure. A significant positive relationship between T 

helper/T killer ratio and age was found (corr=0.82, adj. p=0.048). Notably, one donor with marked sun 

exposure and rheumatoid arthritis (region 1, age 72 years) had the lowest T helper and T killer cell count 

(Supp. Fig. S9) compared to other donors.   

 

Immune cells and distance from endothelial cells in the dermis 

Constructing a vasculature-based coordinate system makes sense biologically as almost every living cell 

must be within a small distance to a blood vessel (100 µm to 1 mm, depending on the tissue) in order to 

receive oxygen
36

. The skin’s vasculature, found in its dermal layer, is responsible for temperature 

regulation, the diffusion of immune cells and nutrient-rich plasma, and barrier loss of body fluid
37

. Aging 

has been shown to reduce the size and density of blood and lymphatic vessels in the skin as well as 

disrupt its structure
38

.  Chung et al observed an inverse relationship of dermal blood vessel numbers and 

size with age in sun-damaged, but not in sun-protected skin
39

, with intrinsically aged skin characterized 

by a reduction in vessel size alone. In this study, we found no significant differences in endothelial cell 

numbers, regardless of age or sun exposure, however since we did not measure vessel size, we cannot 

rule out the possibility that there were changes in vessel size.  Using the 3D reconstructed data, we also 

computed the distance of T reg cells, T helper cells, T killer cells and macrophages to nearest endothelial 

cells.  Distance distributions to vasculature cells grouped by age and sun exposure are shown as violin 
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plots in Fig. 4B and Supp. Fig S10. An inverse correlation with weak significance between T killer cell 

count within 100 µm of endothelial cells (normalized by total endothelial cell counts) and age was found 

(corr= -0.73, adjusted p=0.08). The implications of this are unclear without further validation in a larger 

group of subjects.  

 

 

Interactive visualization of 3D reconstructed skin volumes  

Understanding and communicating the 3D spatial location and distance relationships of multiple cell 

types and supporting the comparison of cell type distance distributions across donors and conditions is 

non-trivial. For this study, two interactive visualizations were developed to serve this need: (1) a 3D 

vasculature CCF visualization (VCCF) and (2) interactive cell type distance distribution violin plots. The 3D 

VCCF Visualization tool makes it possible to examine one 3D reconstructed tissue block at a time. Users 

can view one or more serial sections; they can view one or more cell types/markers in these sections; 

they can review the automatically updated distance distribution plots below the 3D skin visualization; 

plus, they can access the virtual H&E dataset for histological context. Two views are provided: (1) 

distance to skin surface, focusing on the composition of p53, DDB2 and Ki67 positive cells in the 

epidermis and distance to the skin surface (Figure 5A and 5B); and (2) distance to nearest blood vessel—

showing the distance of immune cells to the nearest endothelial cell in the dermis region (Figure 5C and 

5D).  For illustration purposes, two cases of mild and marked sun exposure are shown in Fig. 5A-D:  

Region 11 (HuBMAP ID: HBM875.KTPB.893) is from the upper arm of a 41-year-old female with mild sun 

exposure effects (determined from H&E evaluation);  

https://juyingnan.github.io/vccf_visualization.io/html/region_11.html and Region 7 (HuBMAP ID: 

HBM384.NNQH.676) is a biopsy from the lower forearm of a 69-year-old male with marked sun exposure 

effects ttps://juyingnan.github.io/vccf_visualization.io/html/region_7.html.  Noteworthy visible differences 

between the two donors include markedly higher DDB2 positive cells distributed through 0-200 µm of the 

epidermis and relatively low counts of p53 and Ki67 positive cells in the mild exposure/younger donor. In 

contrast, the marked exposure/older donor had more p53 and Ki67 positive cells, and markedly lower DDB2 

positive cells distributed more within 100-200 µm of the epidermis. There were similar distribution of 

immune cell counts within 100 µm of the nearest endothelial cell in both donors. Example multiplexed 

regions of interest and distance overlay for both donors are shown in Supp. Fig. S11.  
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Discussion  

 

We have presented novel methods for spatially registering data in three dimensions using the HuBMAP 

registration user interface
13

; selecting antibodies aligned with the anatomical structures, cell types, and 

biomarker (ASCT+B) tables in support of high quality, ontology aligned data generation; generating 3D 

volumes of digital skin biopsy data using multiplexed imaging of sequential sections; computing distance 

distributions of cell damage and proliferation markers to the skin surface; and compiling distance 

distributions of major immune cells to the nearest blood vessel in support of a vasculature-based human 

common coordinate framework
36

. Interactive data visualizations allow users to explore spatial patterns 

of cell type distance distributions in relation to vasculature and position within the epidermis. This 3D 

workflow is extendable to other cell types (and organs) and will provide a powerful approach for cellular 

resolution 3D spatial analysis and for constructing a human reference system. All datasets and code are 

freely available at GitHub - hubmapconsortium/MATRICS-A: Multiplexed Image Three-D Reconstruction 

and Integrated Cell Spatial -Analysis and via a HuBMAP collection at Samples | HuBMAP 

(hubmapconsortium.org) 

Although 3D reconstruction of multiplexed serial sections is a relatively time-consuming process, 

it has a significant advantage of generating significantly more cellular data per sample with high 

resolution. A number of other methods have been used to investigate 3D volumes of organs
12

, however, 

challenges include antibody penetration (requiring long incubation times), preservation of antigens, 

tissue architecture distortion, and limitations in the delineation of cell-to-cell relationships on structures 

spanning several millimeters. Wang et al.
40

 used confocal microscopy to demonstrate lymphatic and 

blood vessel networks in the human dermis using immunostaining for CD31, Podoplanin, and LYVE-1. 

Light-sheet microscopy has been used to image skin structure in 3D
41

, but the use of low NA objectives 

and low magnification to provide a wide field of view results in poor spatial resolution at cellular level. 

Three-dimensional  reconstruction of serially sectioned H&E-stained skin samples has shown the 

variation in dermis structure and other macro features using the CODA method
42

. Although we did not 

incorporate reconstruction of H&E histological images, this workflow would be possible using the virtual 

H&E images generated from the autofluorescence images acquired in this study and would be another 

informative way to visualize the cellular data. The addition of this dataset is planned for future work. 

This study included a small sample of skin specimens sampled across various body locations to 

account for diversity in anatomical organization and degrees of UV exposure. Acute UV exposure 

dampens aspects of the immune response, which has positive effects for autoimmune disease, but can 

impair the response to neoplastic cells
43

. The long-term effects of chronic UV exposure on immune 

composition have not been well studied and one study has shown restoration of most immune markers 

to baseline after 14 days
44

. In our study, aging and sun exposure effects were highly correlated, with 

younger donors more likely to have mild sun exposure effects. While significant differences were not 

found in immune cell counts by age and sun exposure, more T killer cells were found within 100 μm of 

endothelial cells in younger patients and this warrants further exploration.  An additional consideration 

when studying skin and interpreting changes in cell counts is anatomical location, which significantly 

influences the thickness of keratin layer, epidermis and dermis, as well as the distribution and density of 
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adnexal structures such as hair follicles, sebaceous, apocrine and sweat glands etc. 
45,46

. Skin from the 

face, neck, scalp, and back of hand are significantly exposed to the sun when compared to sites such as 

trunk, medial aspect of extremities (inner thigh, arm etc.,) and plantar foot (sole), leading to marked 

differences in the amount of cumulative UV radiation exposure. Partially addressing this, our samples 

were collected from across the anatomy, including arms, legs, abdomen, and scalp and normalized for 

total volume, epidermis volume and endothelial cell count to account for sample-to-sample differences.  

Although we did not find significant differences in p53, our results suggest that DNA repair is more 

effective in younger/mild sun exposed patients and decreases with age and/or sun exposure. Pilkington 

et al.
47

 have reported that senescent phenotypes in aged skin can result in reduced skin barrier function 

and promote a chronic low-level inflammation or “inflammaging” in response to stresses such as 

repeated UV exposure over the course of chronological aging.  Related to this, future areas of research 

should incorporate more donors and expand racial diversity. Additional insights would be gleaned from 

incorporation of more aging, senescence, immune (e.g. Langheran cells) and functional immune markers 

(e.g., exhaustion or activation
48

).  It would also be of tremendous value to combine spatial 

transcriptomic data to further interrogate underlying biology. Importantly, this 3D reconstruction 

workflow can be applied to any tissue or organ type using any multiplexing technology using sequential 

section imaging for elucidation of spatial relationships between cell types and vasculature.   
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Methods 

Patient samples  

Skin biopsies were collected from 12 donors ranging from 32-72 years with a mix of typically UV-

exposed and non-exposed anatomical regions (Supplementary (Supp.) Table S1). The biopsies were 

trimmed to size, ranging from 14x12 mm to 47x21 mm in dimension, and embedded in a single block 

that underwent micro CT imaging. The blocks were then sectioned into 100 5-micron serial sections, 

numbered in sequence, of which up to 26 of the highest quality in serial succession were selected for 

further analysis (slide layout shown with virtual H&Es –comprised of pseudo-colored autofluorescence 

and DAPI
49 

 in Supp. Fig. S2). All 12 biopsies were spatially registered using the HuBMAP Registration 

User Interface, and submission of corresponding metadata (donor information, including health status 

and sample processing) for each sample (https://hubmapconsortium.github.io/ccf-ui/rui/ - Supp. Fig. 

S3). Of the 12 samples, 10 were down selected for further analysis. The two excluded samples included 

a donor with a benign cyst, but with extensive inflammation and immune cell infiltration compared to 

other samples. The second sample had a scar which also altered the normal organization of the 

epidermis and dermis layers. All donors were in good health and cancer free at the time of sample 

collection, with two donors having chronic diseases (RA and HIV), which is noted in the patient summary 

table.  

 

Pathologist review 

Virtual H&E images (which are pseudo colored autofluorescence and DAPI images
49

) from each donor 

were assessed by a pathologist for histopathological changes related to chronic sun exposure such as 

keratinocytic atypia in the epidermis and solar elastosis changes in the dermis. Accordingly, the 

specimens were categorized into groups of skin with mild, moderate, and marked sun exposure effects 

(Supp. Table S1). Donors in the mild sun exposure were significantly younger than the moderate-marked 

exposure donors (42.4 vs. 62.2 years, p = 0.008). All virtual H&E images are located at: vccf-visualization-

release/vheimages at main · hubmapconsortium/vccf-visualization-release · GitHub 

 

Micro CT imaging of skin blocks 

A Phoenix micro CT system (GE, Wunstorf, Germany) with up to 300 kV/500W was used to generate high 

resolution CT images of the skin samples. Phoenix micro CT scanners have a high dynamic DXR digital 

detector array and can produce isotropic images of 1 μm and are frequently used for industrial process 

control as well as for scientific research applications.  Due   to   its   dual   tube   configuration, detailed 

3D information for an extremely wide sample range can be provided.  For our purpose a current of 200 

kV was found to be optimum in terms of signal-to-noise ratio to generate high quality volumetric 

isotropic images of 0.016 mm resolution for the embedded skin samples and this also allowed imaging 

of 12 samples in one block within 30 minutes. Example images for micro CT with corresponding 

histological section are shown in Supp. Fig. S3. The DICOM header with imaging settings is shown in 

Supp. Table S2.  
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Antibody validation and multiplexed analysis  

All antibodies used in this study were subjected to a standardized characterization process using a tissue 

microarray (TMA) and appropriate controls to evaluate the specificity and sensitivity of the primary 

antibody and its dye-conjugated derivative, including the cyclic testing of the dye inactivation treatment 

compared to single staining
50

.  Supp. Table S3 shows the antibody clones and conjugates used in the 

study. The 18-marker panel provided coverage for 9 cell types: epithelial, fibroblast, immune cells 

(macrophage, T helper, T killer, T reg), nerve, myoepithelial, and endothelial cells. These are also 

highlighted using the HuBMAP Anatomical Structures Cell Type and Biomarkers (ASCT+B) reporter 

comparison feature https://hubmapconsortium.github.io/ccf-releases/v1.0/docs/asct-b/skin.html. An 

example sample region of the skin ASCT+B reporter is shown in Supp. Fig. S4. Multiplexed 

immunofluorescence (MxIF) staining of the skin samples was performed as previously described 
49

 using 

Cell DIVE™ technology (Leica Microsystems, Issaquah, WA). After de-paraffinization and a two-step 

antigen retrieval, the FFPE slides were stained with DAPI and imaged in all channels of interest to 

acquire background autofluorescence (AF) of the tissue. This was followed by primary/secondary and/or 

direct conjugate antibody staining of up to 3 markers per round plus DAPI, dye deactivation, and repeat 

staining to collect images of all planned biomarkers. Multiplexed images were automatically registered 

and processed for illumination correction and autofluorescence subtraction. Each sample was 

comprised of ~40 20x fields of view and 20-26 sections were imaged for 3D reconstruction.  Example 

virtual H&E and multiplexed images for two contrasting regions (mild vs. marked sun exposure) are 

shown in Supp. Fig. S5.  

  

Cell Segmentation and Classification  

Figure 2 and Supp. Fig. S6 summarize our segmentation model framework. First, an encoder-decoder 

based deep learning (DL) model
4 

was trained on a small sample (194 DAPI image patches) of manually 

annotated nuclei from the DAPI images. Multiscale Laplacian of Gaussian (LOG) was introduced along 

with DAPI images as separate channels to our encoder-decoder based DL model. The LOG feature 

detects blob like structures in the DAPI images corresponding to the nuclei shape and boundary, thereby 

providing contextual information to our DL model. Use of multiple channels allows us to train an 

accurate DL model from a small sample of manually annotated DAPI images. Depth of our encoder-

decoder DL model was set to 4 and binary cross entropy was used as a loss function.  An unsupervised 

GMM
5
 was used on cell biomarkers for an automatic probabilistic segmentation of immune cell types (T 

killer (CD8), T reg (FOXP3), T helper (CD4), macrophages (CD68), endothelial cells (CD31), as well as 

markers of proliferation (Ki67) and DNA damage (p53) and DNA repair (DDB2) (Supp. Fig. S7). Union of 

probabilities obtained from the GMM model and nuclei segmentation of our DL model was then fused 

for cell segmentation. Probability values were used to automatically scale (between 0-1) and quantify 

cells with high expression and determine percentage overlap for a single cell with segmented nuclei. 

Low percentage overlap was further used to remove imaging artifacts, debris, and cells with low 

expression.  DAPI images were normalized to zero mean unit variance values inside our deep learning 

framework prior to nuclei segmentation. Secondly, the individual whole slides were normalized between 

zero mean and unit standard deviation before estimation of biomarker probabilities. Whole slide image 

specific normalization ensures all images were scaled relative to their intensity distribution and reduces 

intensity variability often observed between serial whole slide images. The combination of these two 

normalizations ensured a single cell was segmented based on relative intensity difference between the 

biomarker and the background and not on absolute intensity distribution that may vary from one slide 

to another adversely affecting segmentation accuracy. The same GMM was used to automatically 

segment contiguous structures, independent of nuclei, such as blood vessels (based on CD31 staining) 

and epithelial masks (based on cytokeratin staining). In such a scenario, we depend on probabilities as 

obtained from our GMM and automatically threshold our probability using Otsu filters
51

 on the 
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probability map of the biomarkers. Fig. 2A shows examples of a multiplexed region of interest from 

donor 9; epidermis (Fig. 2B); cell classification (in this example, p53 positive cells) (Fig. 2C); and (Fig. 2D) 

endothelial cells. For validation, a total of 2722 positive and negative cell markers were manually 

annotated using the annotation function in QuPATH
52

  as follows: CD3: 408; CD4: 281; CD8: 347; FOXP3: 

360; CD68: 391, CD31: 352; Ki67: 150; p53: 164; DDB2: 162 and these were used to calculate cell 

classification sensitivity, specificity and accuracy (Fig. 2E). Code can be found at:  GitHub - 

hubmapconsortium/MATRICS-A: Multiplexed Image Three-D Reconstruction and Integrated Cell Spatial -

Analysis 

 

3D Reconstruction  

For 3D volume reconstruction of the autofluorescence (AF) images, a reference AF image was selected 

for registration of all remaining serial section slides and generation of a 3D tissue block (Figure 3 A and 

B). AF images were automatically segmented using Otsu thresholding, morphological closing, and 

retaining largest component. AF images were masked prior to affine, and B-spline based deformable 

registration between the reference image and the serial sections to improve registration accuracy. A 

block matching strategy was adopted to determine the transformation parameters for the affine 

registration from masked AF images (Figure 3C). The similarity between a block from the reference AF 

was computed relative to the AF serial sections. The best corresponding block defined the displacement 

vector for the affine transformation
53

. Normalized cross-correlation similarity was used to determine the 

block correspondences. Initial affine registration on block correspondences was followed by deformable 

B-spline based registration
54

 between the reference AF image and the serial section to account for 

deformation of the serial section during the staining process (Figure 3C).  Normalized mutual 

information was chosen as the similarity matrix and maximized to achieve the registration. The 

transformation map obtained from the registration of the AF images was applied to individual 

biomarkers for all serial sections to create a 3D volume of endothelial, T killer, T reg, T helper cells and 

macrophages (Figure 3D) and overlaid on 3D AF volume as shown in Figure 3E.  Slides were randomly 

picked from each of the skin volumes and segmented biomarkers were overlaid on the biomarker 

images for a visual validation. Further, density of cell types was verified from one slide to another in the 

3D volume using the visualization generated from the 3D VCCF model. To resolve any issues dealing with 

higher or lower signal intensity for a slide, any discrepancies in cell density of a biomarker were 

identified and a higher or lower probability threshold was used on the probabilistic segmentation to 

achieve a better segmentation. Such manual biomarker probability adjustments were necessary in less 

than 2% of the whole slide images.  Code can be found at: GitHub - hubmapconsortium/MATRICS-A: 

Multiplexed Image Three-D Reconstruction and Integrated Cell Spatial -Analysis 

 

Cell data aggregation and analytics 

For patient level comparison, cell counts within the regions of interest (either entire sample or the 

epidermis region in 3D reconstructed data) were aggregated at patient level by each cell type. Then the 

quantities were normalized by the volume of the region of interest. To create the epidermis volume, 

epidermis segmented from each whole slide image was given the same transformation as the AF volume 

to create a 3D reconstructed volume of the epidermis. Number of voxels of the 3D volume were 

automatically determined using the Insight Toolkit (ITK) software
22

. Based on the quantities aggregated 

at donor level, statistical hypothesis tests were performed to understand the correlation between the 

normalized cell count vs. age/UV-exposure. To measure the correlation with age, Spearman’s correlation 

was quantified and tested. For UV exposure (mild vs. moderate-marked), Wilcoxon-test was performed. 

For both statistical tests, Benjamini & Hochberg’s multiple testing correction was applied
55

.  
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Distance metrics  

Two types of distances were computed based on the segmentation result: (1) the distance between the 

centroid of the nucleus for immune cells (macrophage, T helper, T killer, T reg) and the edge of the 

nearest blood vessel (endothelial cells) and (2) the distance between the centroid of cells with UV 

damage markers (DDB2, p53) and proliferation markers (KI67) to the edge of the skin surface. To speed 

up distance calculations for the 13,489 immune cells and 12,407 damage/proliferation markers across 

the ten 3D regions, a filter was applied to calculate the square root of the distance for only those 

cells/markers that fell within the range of the current minimum value of the distance (i.e., cells/markers 

whose distance on either the x, y, or z axis is greater than the current minimum distance are not 

included in the distance computation). This approach considerably reduced run time and memory load. 

Code can be found at:  

 

Violin plots of cell counts and distance from endothelial cells or from cell surface 

Violin plots in Fig. 4 combine a box plot and a density plot to display the probability density of the data 

at different values. The interquartile range is represented by the box in the center, and the extended 

line above/below the box shows the upper (max) and lower (min) adjacent values. In the online 

interactive version, a kernel density estimation is shown on each side of the box to show the distribution 

shape of the distance from the cell to the nearest blood vessel. The median value of the distance is 

represented by the line dot in the middle of the box, and the mean value is represented by the dash line. 

This was used to depict the distribution of immune cells (macrophages (CD68+), T helper (CD3+, CD4+), 

and regulatory T reg cells (CD3+, CD4+, FOXP3+) and T killer cells (CD3+, CD8+), as well as the sum of all 

four) and distances from endothelial cells in regions with marked sun exposure and mild sun exposure 

for all donors https://juyingnan.github.io/vccf_visualization.io/html/violin_cell_all_region.html and 

spanning the age range of donors https://juyingnan.github.io/vccf_visualization.io/html/violin_cell.html. 

Similar plots were generated for distance of epithelial cells positive for Ki67, p53 and DDB2 across the 

entire sample area and within the epidermis, for all donors and separated by age 

https://juyingnan.github.io/vccf_visualization.io/html/epidermis/violin_damage_all_region_epidermis.h

tml; https://juyingnan.github.io/vccf_visualization.io/html/epidermis/violin_damage_epidermis.html  

 

Interactive visualization of cell and marker distances  

Interactive 3D visualizations of cell and biomarker distances were implemented using the Plotly 3D 

visualization package. For Ki67, p53 and DDB2 markers within the epidermis and distance to skin 

surface: https://juyingnan.github.io/vccf_visualization.io/html/epidermis; for immune cell distances to 

blood vessels in the dermis: https://juyingnan.github.io/vccf_visualization.io. The distance calculation 

result was visualized in two ways: (1) a 3D view projecting all immune cell nuclei, damage/proliferation 

markers, blood vessels, and their shortest distances (lines) in tissue space and (2) 2D histograms 

showing the distribution of distances between nuclei and blood vessels, and between 

damage/proliferation markers and the skin surface. The visualization of distance links has been 

optimized by adding invisible links that unite all of the existing links into a single polyline which 

significantly reduces the size of the vector data and memory usage, allowing for responsive online 

interaction with about 20,000 nodes in a web browser. In the 3D view, each cell nucleus is rendered as a 

small circle in the 3D visualization, whereas each UV damage/proliferation marker is rendered as a cross 

(see legend for cell and biomarker type colors). Blood vessels and epithelial masks (based on positive 

cytokeratin staining) are rendered as a collection of red circles. The slider in the top-right corner of each 

3D view allows the user to view each tissue layer separately. The histogram views provide information 

about the distribution of distances for further analysis. The short lines beneath the histograms indicate 

the relationship between all the samples and the histogram bars. The histogram can be displayed in 

three different layouts: Overlaid (by default), Stacked, or Grouped, see selection button on lower left. 
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The visualizations can be exported as an HTML file for online presentation and exploration, or as a 

vector image for static viewing.  

 

 

 

 

 

 

References 

1. Snyder, M. P. et al. The human body at cellular resolution: the NIH Human Biomolecular Atlas 

Program. Nature 574, 187–192 (2019). 

2. Börner, K. et al. Anatomical structures, cell types and biomarkers of the Human Reference Atlas. 

Nat Cell Biol 23, 1117–1128 (2021). 

3. Ginty, F., Ho, J. & Sunshine, J. Anatomical Structures, Cell Types, plus Biomarkers (ASCT+B) table 

for Skin v1.0. (2021) doi:10.48539/HBM227.WHPG.367. 

4. Solé-Boldo, L. et al. Single-cell transcriptomes of the human skin reveal age-related loss of 

fibroblast priming. Commun Biol 3, 188 (2020). 

5. Zou, Z. et al. A Single-Cell Transcriptomic Atlas of Human Skin Aging. Developmental Cell 56, 383-

397.e8 (2021). 

6. Garbe, C. & Leiter, U. Melanoma epidemiology and trends. Clin Dermatol 27, 3–9 (2009). 

7. Amaro-Ortiz, A., Yan, B. & D’Orazio, J. A. Ultraviolet radiation, aging and the skin: prevention of 

damage by topical cAMP manipulation. Molecules 19, 6202–6219 (2014). 

8. Chambers, E. S. & Vukmanovic-Stejic, M. Skin barrier immunity and ageing. Immunology 160, 

116–125 (2020). 

9. Pichat, J., Iglesias, J. E., Yousry, T., Ourselin, S. & Modat, M. A Survey of Methods for 3D 

Histology Reconstruction. Med Image Anal 46, 73–105 (2018). 

10. Ruusuvuori, P. et al. Spatial analysis of histology in 3D: quantification and visualization of organ 

and tumor level tissue environment. Heliyon 8, (2022). 

11. Kugler, M. et al. Robust 3D image reconstruction of pancreatic cancer tumors from 

histopathological images with different stains and its quantitative performance evaluation. Int J 

Comput Assist Radiol Surg 14, 2047–2055 (2019). 

12. Mancini, M. et al. A multimodal computational pipeline for 3D histology of the human brain. Sci 

Rep 10, 13839 (2020). 

13. HuBMAP CCF Registration User Interface (CCF-RUI). https://hubmapconsortium.github.io/ccf-

ui/rui/. 

14. 3D Reference Organ for Skin, Female v1.1. https://hubmapconsortium.github.io/ccf-

releases/v1.1/docs/ref-organs/skin-female.html. 

15. 3D Reference Organ for Skin, Male v1.1. https://hubmapconsortium.github.io/ccf-

releases/v1.1/docs/ref-organs/skin-male.html. 

16. Download Visible Human Project Data. 

https://www.nlm.nih.gov/databases/download/vhp.html. 

17. HuBMAP CCF Exploration User Interface (CCF-EUI). https://portal.hubmapconsortium.org/ccf-

eui. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2022. ; https://doi.org/10.1101/2022.03.30.486438doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.30.486438
http://creativecommons.org/licenses/by-nc/4.0/


 

 

18. Skin-Companion Website. Google Docs 

https://docs.google.com/document/d/1e3TZmWZNRCFsnJCu9SKxdzLD4wSvEwjcsUqYm7QPS_U

/edit?usp=embed_facebook. 

19. CellProfiler 3.0: Next-generation image processing for biology - PubMed. 

https://pubmed.ncbi.nlm.nih.gov/29969450/. 

20. Haralick, R. & Shapiro, L. Computer and Robot Vision. vol. 1 (Addison-Wesley Publishing 

Company, 1992). 

21. Sørensen, T., Sørensen, T., Biering-Sørensen, T., Sørensen, T. & Sorensen, J. T. A method of 

establishing group of equal amplitude in plant sociobiology based on similarity of species 

content and its application to analyses of the vegetation on Danish commons. undefined (1948). 

22. Yoo, T. S. et al. Engineering and algorithm design for an image processing Api: a technical report 

on ITK--the Insight Toolkit. Stud Health Technol Inform 85, 586–592 (2002). 

23. Klein, S., Staring, M., Murphy, K., Viergever, M. A. & Pluim, J. P. W. elastix: A Toolbox for 

Intensity-Based Medical Image Registration. IEEE Transactions on Medical Imaging 29, 196–205 

(2010). 

24. Gaffling, S., Daum, V. & Hornegger, J. Landmark-constrained 3-D Histological Imaging: A 

Morphology-preserving Approach. (The Eurographics Association, 2011). 

doi:10.2312/PE/VMV/VMV11/309-316. 

25. Scrima, A. et al. Structural Basis of UV DNA-Damage Recognition by the DDB1–DDB2 Complex. 

Cell 135, 1213–1223 (2008). 

26. Alekseev, S. et al. Cellular Concentrations of DDB2 Regulate Dynamic Binding of DDB1 at UV-

Induced DNA Damage. Molecular and Cellular Biology (2008) doi:10.1128/MCB.01108-08. 

27. Nichols, A. F. et al. Human damage-specific DNA-binding protein p48. Characterization of XPE 

mutations and regulation following UV irradiation. J Biol Chem 275, 21422–21428 (2000). 

28. Bellah El-Domyati, M. et al. Expression of p53 in Normal Sun-exposed and Protected Skin (Type 

IV-V) in Different Decades of Age. Acta Dermato-Venereologica 83, 98–104 (2003). 

29. Shimizu, T., Oga, A., Murakami, T. & Muto, M. Overexpression of p53 protein associated with 

proliferative activity and histological degree of malignancy in solar keratosis. Dermatology 199, 

113–118 (1999). 

30. Ressler, S. et al. p16INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging 

Cell 5, 379–389 (2006). 

31. Ohsie, S. J., Sarantopoulos, G. P., Cochran, A. J. & Binder, S. W. Immunohistochemical 

characteristics of melanoma. J Cutan Pathol 35, 433–444 (2008). 

32. Kawashima, K. et al. Evaluation of cell death and proliferation in psoriatic epidermis. J Dermatol 

Sci 35, 207–214 (2004). 

33. Clark, R. A. et al. The vast majority of CLA+ T cells are resident in normal skin. J Immunol 176, 

4431–4439 (2006). 

34. Clark, R. A. Skin resident T cells: the ups and downs of on site immunity. J Invest Dermatol 130, 

362–370 (2010). 

35. Clark, R. A. & Kupper, T. S. IL-15 and dermal fibroblasts induce proliferation of natural regulatory 

T cells isolated from human skin. Blood 109, 194–202 (2007). 

36. Weber, G. M., Ju, Y. & Börner, K. Considerations for Using the Vasculature as a Coordinate 

System to Map All the Cells in the Human Body. Frontiers in Cardiovascular Medicine 7, (2020). 

37. Yousef, H., Alhajj, M. & Sharma, S. Anatomy, Skin (Integument), Epidermis. in StatPearls 

(StatPearls Publishing, 2022). 

38. Rittié, L. & Fisher, G. J. Natural and Sun-Induced Aging of Human Skin. Cold Spring Harb Perspect 

Med 5, a015370 (2015). 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2022. ; https://doi.org/10.1101/2022.03.30.486438doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.30.486438
http://creativecommons.org/licenses/by-nc/4.0/


 

 

39. Differential Effects of Photoaging vs Intrinsic Aging on the Vascularization of Human Skin | JAMA 

Dermatology | JAMA Network. 

https://jamanetwork.com/journals/jamadermatology/fullarticle/479067. 

40. Wang, X.-N. et al. A three-dimensional atlas of human dermal leukocytes, lymphatics, and blood 

vessels. J Invest Dermatol 134, 965–974 (2014). 

41. Abadie, S. et al. 3D imaging of cleared human skin biopsies using light-sheet microscopy: A new 

way to visualize in-depth skin structure. Skin Res Technol 24, 294–303 (2018). 

42. Chen, Y. et al. Three-dimensional imaging and quantitative analysis in CLARITY processed breast 

cancer tissues. Sci Rep 9, 5624 (2019). 

43. Bernard, J. J., Gallo, R. L. & Krutmann, J. Photoimmunology: how ultraviolet radiation affects the 

immune system. Nat Rev Immunol 19, 688–701 (2019). 

44. Hawkshaw, N. J. et al. UV radiation recruits CD4+GATA3+ and CD8+GATA3+ T cells while altering 

the lipid microenvironment following inflammatory resolution in human skin in vivo. Clin Transl 

Immunology 9, e01104 (2020). 

45. Fernandez-Flores, A. Regional Variations in the Histology of the Skin. Am J Dermatopathol 37, 

737–754 (2015). 

46. Lindsø Andersen, P. et al. Vascular morphology in normal skin studied with dynamic optical 

coherence tomography. Experimental Dermatology 27, 966–972 (2018). 

47. Pilkington, S. M., Bulfone-Paus, S., Griffiths, C. E. M. & Watson, R. E. B. Inflammaging and the 

Skin. J Invest Dermatol 141, 1087–1095 (2021). 

48. Verdon, D. J., Mulazzani, M. & Jenkins, M. R. Cellular and Molecular Mechanisms of CD8+ T Cell 

Differentiation, Dysfunction and Exhaustion. Int J Mol Sci 21, 7357 (2020). 

49. Gerdes, M. J. et al. Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded 

cancer tissue. PNAS 110, 11982–11987 (2013). 

50. Sood, A., Williams, E. & McDonough, L. Cell DIVE
TM

 Platform | Ab Conjugation: Initial 

Conjugation & Scale up Conjugation. protocols.io https://www.protocols.io/view/cell-dive-

platform-ab-conjugation-initial-conjugat-bp55mq86 (2021). 

51. Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on 

Systems, Man, and Cybernetics 9, 62–66 (1979). 

52. Annotating images — QuPath 0.3.0 documentation. 

https://qupath.readthedocs.io/en/stable/docs/starting/annotating.html. 

53. Berger, M. Geometry I. (Springer Science & Business Media, 2009). 

54. Rueckert, D. et al. Nonrigid registration using free-form deformations: application to breast MR 

images. IEEE Transactions on Medical Imaging 18, 712–721 (1999). 

55. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing - 

Benjamini - 1995 - Journal of the Royal Statistical Society: Series B (Methodological) - Wiley 

Online Library. https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-

6161.1995.tb02031.x. 

 

 

 
 
 

 

 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 30, 2022. ; https://doi.org/10.1101/2022.03.30.486438doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.30.486438
http://creativecommons.org/licenses/by-nc/4.0/


Main Figures

Ghose, Ju et al Human Digital Twin: Automated Cell Type Distance Computation and 3D 
Atlas Construction in Multiplexed Skin Biopsies

.
C

C
-B

Y
-N

C
 4.0 International license

available under a
(w

hich w
as not certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade 

T
he copyright holder for this preprint

this version posted M
arch 30, 2022. 

; 
https://doi.org/10.1101/2022.03.30.486438

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/2022.03.30.486438
http://creativecommons.org/licenses/by-nc/4.0/


B. Skin Marker Selection 

ASCT+B Skin Table 

Antibody Validation  

A. Sample Collection 

Anatomical Registration

Sample Metadata
• 3D Position, Size
• 3D Rotation
• Sample Preservation
• Donor Health status
• Gender, Age

C. Sample Analysis D. 3D Spatial Analysis: 

MATRICS-AMicro CT imaging

Serial Sections

MxIF Analysis of 18 biomarkers

3D Volume Reconstruction

Cell Classification  

Distance Analysis 

HuBMAP HIVE

Figure 1: End-to-end workflow for generation of a 3D skin map of cell types and distances
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Figure 2: Skin cell classification and performance B. Epidermis cells 

D. Endothelial Cells

C. Cells (cell type and function) 
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Soumya – color 
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CD3/etc
Liz – image 
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DAPI
AE1
CD3

CD31
Ki67
p53

Cell marker Sensitivity Specificity Accuracy

CD3 0.93 0.95 0.94

CD4 0.94 0.95 0.95

CD8 1 0.85 0.93

FOXP3 1 0.98 0.98

CD68 1 1 1

CD31 1 0.99 0.99

Ki67 1 0.97 0.98

DDB2 0.97 0.92 0.95

p53 0.96 0.9 0.93
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Figure 3: 3D Skin Volume Reconstruction Workflow. 3A and 3B – A reference autofluorescence image from the sequentially imaged sections is used to initiate

registration; C) A patch-based local correspondences in 2D serial sections was used for affine registration followed by deformable registration to account for tissue

deformation; D) 3D reconstruction of the biomarkers are achieved by mapping of the biomarkers in 3D using the affine and deformable transformation map

and refinement is achieved by registration to micro CT image; E) 3D volumes of biomarkers are overlaid on AF volume and 3D mesh of individual biomarkers

generated.
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Figure 4A : Violin plots of epidermis cells positive for DDB2, p53 and Ki67 and distance to skin surface
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Figure 4B:  Violin plots of distance of immune cells from nearest endothelial cell by age and exposure
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Figure 5A and 5B: Markers 

of UV damage, repair and 

proliferation in epidermis 

and distance to skin surface 

represented as 3D distance 

plots from the skin surface 

and histogram distribution.

Figure 5C and D Immune 

cells and endothelial cells  

distance to skin surface 

represented as 3D distance 

plots from nearest 

endothelial cells and 

histogram distribution
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Region 11 (upper arm, mild sun exposure, 41 years) Region 7 (lower forearm, marked sun exposure, 69 years)
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