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Abstract: 29 
In cereals with hollow internodes, lodging resistance is influenced by morphological characteristics such as 30 

internode diameter and culm wall thickness. Despite their relevance, knowledge of the genetic control of these 31 

traits and their relationship with lodging is lacking in temperate cereals such as barley. To fill this gap, we 32 

developed an image-analysis based protocol to accurately phenotype culm diameter and culm wall thickness 33 

across 261 barley accessions. Analysis of culm trait data collected from field trials in 7 different environments 34 

revealed genetic control as supported by high heritability values, as well as genotype-by-environment 35 

interactions. The collection was structured mainly according to row-type, which had a confounding effect on 36 

culm traits as evidenced by phenotypic correlations. In addition, culm traits showed strong negative 37 

correlations with lodging but weak correlations with plant height across row-types, indicating the possibility 38 

of improving lodging resistance independent of plant height. Using 50k iSelect SNP genotyping data, we 39 

conducted multi-environment genome-wide association studies using mixed model approach across the whole 40 

panel and row-type subsets: we identified a total of 192 QTLs for the studied traits, including subpopulation-41 

specific QTLs and several main effect loci for culm traits showing negative effects on lodging without 42 

impacting plant height. Providing first insights into the genetic architecture of culm morphology in barley and 43 

the possible role of candidate genes involved in hormone and cell wall related pathways, this work supports 44 

the potential of loci underpinning culm features to improve lodging resistance and increase barley yield 45 

stability under changing environments.    46 

 47 
 48 
Introduction 49 
 50 
Selection of desired plant architecture traits has represented a driving force in crop domestication and breeding. 51 

In cereals, one of the most paradigmatic examples is offered by the widespread introduction of semi-dwarfing 52 

genes in the modern varieties of the Green Revolution. When high fertilizer inputs were applied, traditional 53 

varieties elongated and lodged, i.e. fell over leading to major losses in grain yields (Islam et al., 2007; Berry, 54 

2013; Piñera-Chavez et al., 2016). To avoid this problem, breeders developed new semi-dwarf varieties with 55 

reduced plant height and sturdy stems, improving lodging resistance and crop production (Khush, 2001; 56 

Chandler and Harding, 2013). Several semi-dwarfing genes are involved in the pathways of gibberellins (GA) 57 

and brassinosteroids (BR), phytohormones which play a major role in stem elongation (Sasaki et al., 2002; 58 

Kuczyńska et al., 2013). Examples of alleles deployed in breeding include loss-of-function mutations of the 59 

rice (Oryza Sativa) semidwarf (SD1) locus encoding a OsGA20ox2 involved in GA biosynthesis (Sasaki et al., 60 

2002). In wheat (Triticum aestivum L), mutants of Reduced Height-1 (Rht) genes are responsible for the 61 

expression of mutated forms of DELLA GA signalling repressor proteins (Peng et al., 1999). In barley 62 

(Hordeum vulgare), semi-dwarf 1 (sdw1) and semi-brachytic 1 (uzu1) mutant alleles were widely used in 63 

breeding programs (Kuczyńska et al., 2013; Xu et al., 2017). Barley  Sdw1 encodes a GA 20-oxidase (like rice 64 

SD1), while a missense mutation in the BR receptor gene HvBRI1 causes the uzu phenotype (Chono et al., 65 

2003; Kuczynska and Wyka, 2011). Despite providing yield gains, some semi-dwarfing alleles have been 66 
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associated to negative pleiotropic effects such as temperature sensitivity, late flowering and reduced grain 67 

quality (Rajkumara, 2008; Okuno et al., 2014). 68 

Changes in climatic conditions are predicted to increase intensity and frequency of storms, hail and heavy rains 69 

(Lobell et al., 2011), the major causes of lodging impacting crop productivity (Berry and Spink, 2012; Berry, 70 

2013). In cereals such as rice, wheat and barley, the stem or culm consists of alternating solid nodes and hollow 71 

internodes. Three different types of lodging are known: culm bending, culm breaking and root lodging (Hirano 72 

et al., 2017a). Breaking-type lodging is more serious than bending type because bent culms are still able to 73 

transport photosynthetic assimilates from the leaves to the panicles, which is necessary for plant recovery and 74 

grain filling. Since cereal height cannot be reduced below a certain point, improvement of lodging resistance 75 

and therefore yield requires identification and use of other important traits (Dawson et al., 2015; Hirano et al., 76 

2017a; Shah et al., 2019).   77 

Barley is one of the most important crops worldwide. Due to its intrinsic plasticity and adaptability, barley can 78 

be cultivated in areas not suited to maize and wheat, especially where the climatic conditions are cool and/or 79 

dry. Barley varieties can be divided into two-row and six-row types. In two-row barley, the central spikelet of 80 

each triplet on the rachis is fertile, while the other two are reduced and do not develop.  Mutations of the VRS1 81 

gene determine the fertility of these lateral spikelets to produce six-row barleys (Komatsuda et al., 2007), and 82 

have pleiotropic effects on a number of morphological traits (Liller et al., 2015).  83 

Barley production can be lowered from 4 to 65% by lodging (Jedel and Helm, 1991; Sameri et al., 2009).  84 

While agricultural practices play an important role (Cai et al., 2019), the occurrence of culm bending/breaking 85 

lodging events is determined mainly by two factors: 1) the force exerted on the culm (e.g. wind-induced forces 86 

or panicle weight) (Pinthus, 1974) and 2) the mechanical resistance of the stem determined by composition 87 

and morphology (Samadi et al., 2019). 88 

For example, in cereals with hollow internodes such as barley and rice, lodging resistance is influenced by 89 

morphological characteristics such as internode diameter and culm wall thickness (Samadi et al., 2019; Zhang 90 

et al., 2020). Wider culm diameter and thickness were shown to improve lodging resistance e.g. in wheat 91 

(Zuber et al., 1999). Also a stronger culm may help to improve yield by allowing increased nutritional inputs. 92 

Despite the relevance of these traits, knowledge of the genetic control of culm diameter and culm wall 93 

thickness is limited to few studies in rice. A rice mutant with larger stem diameter and thickness called smos1 94 

(small organ size) exhibits altered cell wall composition and is less prone to lodging (Hirano et al., 2014). The 95 

SMOS1 gene encodes an APETALA2 (AP2)-type transcription factor (Aya et al., 2014; Hirano et al., 2014) 96 

that interacts with a GRAS transcription factor encoded by SMOS2/DLT to mediate cross-talk between auxin 97 

and BR signalling and regulate various culm morphology features (Hirano et al., 2017b). In rice cultivar 98 

Habataki, a variety with improved yield and large culms, two QTLs associated with culm architecture: 99 

STRONG CULM1 (SCM1) and SCM2/APO1 (ABERRANT PANICLE ORGANIZATION1) were respectively 100 

identified on chromosome 1 and chromosome 6 (Ookawa et al., 2010). Two additional SCM loci were 101 

identified from the high yielding and lodging resistant cultivar Chugoku 117, including SCM3 which was 102 

shown to be allelic to the rice TEOSINTE BRANCHED1 (OsTB1)/FINE CULM1 (FC1) gene (Minakuchi et 103 
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al., 2010; Yano et al., 2015; Cui et al., 2020). Recently, the mediator subunit gene OsMED14_1 was uncovered 104 

as a new player in culm and lateral organ development through NARROW LEAF1 (NAL1) gene regulation 105 

(Malik et al., 2020).  106 

The lack of efficient and accurate phenotyping protocols has been a limiting factor in further genetic dissection 107 

of culm architecture for example through exploration of wider genetic diversity in germplasm collections. In 108 

this context, different solutions emerged in recent years relying on high-throughput phenotyping methods 109 

based on the use of new image analysis tools with advanced software and special platforms (Agnew et al., 110 

2017). 111 

So far little is known about the genetic architecture underlying barley culm development and morphology. 112 

Aims of this work were to explore natural genetic diversity for culm architecture traits in barley, analyze their 113 

correlations with plant height, lodging and phenology, and identify associated genomic regions and candidate 114 

genes through multi-environment genome-wide association studies (GWAS) on a collection of 261 European 115 

accessions. To these ends, we developed an image-analyses based protocol to accurately phenotype culm 116 

diameter and culm wall thickness and integrated the resulting data with genome-wide marker data from 50k 117 

SNP iSelect genotyping (Bayer et al., 2017). 118 

 119 
Results 120 
 121 
Diversity, population structure and linkage disequilibrium of the barley panel  122 
 123 
The barley panel considered in the present study is a collection representing the diversity of European barley 124 

from the 20th century and was chosen based on previous geographic and genetic diversity analysis (Tondelli 125 

et al., 2013). This panel was supplemented with 57 six-row and five two-row Spanish landraces representing 126 

the ecogeographic diversity of barley cultivation in the Iberian Peninsula. Eight of the 269 genotypes did not 127 

match with their phenotypes and were discarded from the analyses resulting in a total of 261 barley cultivars 128 

and landraces comprising 165 two-row and 96 six-row barleys being considered in this study (Supplemental 129 

Table S1). The 50k SNP iSelect genotyping of the collection yielded a set of 33342, 26262, and 27583 130 

polymorphic markers for the whole, two-row, and six-row panel, respectively (Supplemental Table S2; 131 

Supplemental Figure S1). 132 

Genetic structure of the panel was investigated using Principal Component Analysis (PCA) on a pruned subset 133 

of markers to reduce the effect of linkage disequilibrium (LD) on population structure. PCA indicated the first 134 

two PC scores explained, respectively, 13% and 8.5% of total variation (Supplemental Figure S2 A). The first 135 

PC could distinguish six-row from two-row barleys, while the second PC axis was attributed to separation of 136 

landraces from cultivars within six-row barleys. In addition, PCA revealed the wider level of genetic variation 137 

within six-row barleys, although the proportion of two-row barleys was higher in the panel.  138 

As a prerequisite for GWAS, LD was calculated for each chromosome using the squared correlation coefficient 139 

between marker pairs, r2, after correcting for genomic relatedness. The LD decay was visualized by plotting r2 140 
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values against the physical distance in Mb. Considerable variation was observed across the genome among 141 

whole panel and row-type subsets, reflecting breeding history and effect of selection (Supplemental Figure S2 142 

B-D). The level of LD decay in the two-row panel at the critical r2 threshold was higher (LD = 1.4 Mb) 143 

compared to LD decay observed within the six-row panel (LD = 0.6 Mb), with slightly higher LD in the whole 144 

panel (LD = 0.8 Mb).  145 

 146 
Phenotypic variation, trait heritability and correlations 147 

 148 

The barley collection was grown under field conditions in seven environments including four locations and 149 

two years, 2016 and 2017 (Supplemental Table S3). Field sites were chosen to represent contrasting 150 

environments in southern Europe (Italy, CREA; Spain, CSIC) and northern Europe (Scotland, JHI; Finland, 151 

LUKE). Regarding culm traits, we focused on culm features reported in the literature as critical for lodging 152 

resistance in hollow cereals (Ookawa et al., 2010).  Because of the great plasticity of the first internode, we 153 

decided to focus on the second basal internode as a critical point for lodging resistance and a good descriptor 154 

of culm characteristics (Pinthus, 1974; Berry et al., 2004). For all trials outer culm diameter (OD), inner culm 155 

diameter (ID), culm thickness (TH) were quantified using a newly developed image analysis-based protocol 156 

(Figure 1; Supplemental Methods S1). In order to investigate the correlations between culm traits and some 157 

agronomic traits, we also included heading (HD), plant height (PH), and lodging (LG) (Supplemental Table 158 

S4). We further derived section modulus (SM), the ratio between OD and TH (herewith designated as stiffness, 159 

ST) and the ratio between OD and PH (stem index, SI) as indexes reflecting physical strength of the culm 160 

(Supplemental Table S4; Mulsanti et al., 2018; Sowadan et al., 2018).  For trial CSIC16 it was not possible to 161 

collect lodging data. The best linear unbiased predictions (BLUEs) were calculated for the downstream 162 

analyses. 163 

The single and across environment means, standard deviations (SDs), ranges, minimum, and maximum values 164 

are indicated in Supplemental Table S5. Considerable phenotypic variation was present both within and across 165 

environments. In general, for all traits higher mean values were observed for Southern environments. CSIC16 166 

had the highest values for almost all culm traits in the whole panel, and both two-row and six-row panels. 167 

Highest values for HD were recorded in the CREA17 trial, while CREA16 had the highest mean value for PH 168 

in the whole panel and also two-row and six-row panels. 169 

Heritability values were calculated both in single and combined environments in the whole panel and both 170 

two-row and six-row subsets (Table 1; Supplemental Methods S3). In most environments, analysis of variance 171 

correcting for field trends i.e. the correlation between residuals from neighboring plots using the first-order 172 

autoregressive model (AR1), improved the precision compared to base model fitting. High heritability values 173 

(>50%) were obtained for most traits except for TH and ST, although these traits showed improved heritability 174 

in the combined environment analysis compared to single environment. Heritability estimates varied among 175 

environments indicating the presence of heterogeneity of genotype variance due to genotype x environment 176 

interactions. This was especially evident for TH and ST due to their relatively low heritability values. 177 
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We further compared phenotypic means according to row-type and germplasm source as these were important 178 

factors shaping population structure within the panel (Supplemental Figures S2 A, S3). Results showed that 179 

two-row landraces and six-row cultivars had latest and earliest heading, respectively, in southern trials, while 180 

two-row cultivars were latest heading in northern trials. In these comparisons however, it should be noted that 181 

only 6 two-row landraces were included in our collection, all from Spain, providing limited representation of 182 

this category. PH was highly variable across environments and was mainly highest for six-row landraces in 183 

southern trials, but this was highest for mainly two-row landraces in northern locations. LG was lowest in all 184 

environments in two-row cultivars and highest in six-rowed landraces. For culm morphology, six-row cultivars 185 

showed highest values of OD, ID, SM, SI, and TH, whereas two-row landraces were lowest almost in all 186 

environments. ST was however highly variable both within and between northern and southern trials. Based 187 

on phenotypic values obtained from combined analysis of environments, higher values were observed for culm 188 

morphological traits in the cultivar gene pool, especially in six-row cultivars, but two-row cultivars were on 189 

average less susceptible to lodging. Generally, landraces showed higher values for PH and HD. 190 

Together, these analyses show that our germplasm panel harbors significant genetic variation for culm-related 191 

traits and suggest the existence of complex genotype x environment interactions. The obtained datasets provide 192 

and ideal starting point for investigating the genetic architecture of barley culm morphology under contrasting 193 

environmental conditions. 194 

 195 
In order to gain insight into the relationships among different traits, pairwise correlations were calculated based 196 

on phenotype values estimated both within single and combined analysis of environments (Fig.2 A, 197 

Supplemental Figures S4-S6). Germplasm source and row-type were also considered to study their relationship 198 

with the different traits. These values were also calculated within two-row and six-row panels to control for 199 

row-type. In the whole panel, row-type showed positive correlations with LG, PH and culm morphological 200 

traits, but negatively correlated with ST, SI, and HD. Germplasm source (cultivars coded as presence) had 201 

negative correlations with PH, TH, and LG and positive correlations with OD, ID, SI, and ST, meaning that 202 

cultivars were shorter and less prone to lodging with larger culm diameter compared to landraces. However, 203 

correlation between germplasm source and HD was dependent on region with positive values in northern 204 

environments and negative values in southern sites. Results show that in the whole panel strong correlations 205 

were present between culm morphological traits. Similar results were also obtained in single environments 206 

(Supplemental Figures S4-S6). Except for TH, culm traits were negatively correlated with LG and HD, but 207 

positively correlated with PH. As expected, LG was positively correlated with PH. Taken together, correlation 208 

analyses on the whole panel show that in our collection six-row lines tended to have wider and thicker culms 209 

and were overall more prone to lodging compared to two-row. While a confounding effect of row-type may 210 

account for the relatively weak correlations between LG and culm diameter and thickness, it should be also 211 

noted that in our germplasm collection landraces are more represented in the six-row subset compared to the 212 

two-row subset: this may be a confounding factor contributing to observed differences between the row-type 213 

subsets. 214 
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In order to explore the relationships between culm traits and lodging, excluding the effect of row-type, further 215 

analyses were conducted within row-type subsets. 216 

In the two-row panel, correlations between culm traits were generally maintained and stronger negative 217 

correlations were observed between culm morphological traits and lodging. Some discrepancies were also 218 

observed compared to the whole panel, e.g. the negative relationship between TH and lodging in contrast to 219 

the positive correlation between these traits in the whole panel, which was possibly due to confounding effects 220 

from six-row landraces (thick culms and more prone to lodging). Furthermore, while positively correlated with 221 

lodging, PH was environment-dependent and did not show strong correlations with culm morphology, e.g. in 222 

southern environments the relationship was mainly weakly negative and in northern weakly positive 223 

(Supplemental Figure S5).  HD was also mainly positively correlated with culm morphology.  224 

In the six-row panel, culm morphological traits had the strongest interrelationships. HD was also in agreement 225 

with whole panel with stronger negative correlations with culm morphology, and in contrast to the two-row 226 

panel, it was positively correlated with lodging. PH had negatively weak relationship with culm traits with 227 

stronger positive correlations in northern trials and negative correlations in southern trials (Supplemental 228 

Figure S6). 229 

Together, these results highlight the potential of culm morphological traits as interesting targets for 230 

improvement of lodging resistance in barley. In particular, the general lack of correlation within row-type 231 

subsets suggests that culm diameter is largely controlled by distinct genetic factors with respect to PH. 232 

 233 
 234 
Multi-environment genome-wide association mapping 235 
 236 
We performed GWAS using multi-trait mixed model (MTMM) proposed for multi‐trait or multi‐environment 237 

association mapping to detect quantitative trait loci (QTLs) underlying culm morphological traits, 238 

incorporating kinship estimated from marker data and population structure using principal components (Korte 239 

et al., 2012). This method allows to identify five types of marker-trait associations: markers with main effects 240 

stable across environments (QM), markers with main but also significant interaction effects (QF), marker-by-241 

environment interaction effects (QE), marker-by-location interaction effect (QL), and marker-by-year 242 

interaction effect (QY) (see Supplemental Methods S4 for more details).  GWAS of multi-environment trials 243 

were performed for the whole panel and also for two-row and six-row subsets separately. The experiment-wise 244 

GWAS significance threshold was determined according to the actual number of independent SNP tests as 245 

estimated in Haploview software using the tagger function and the r2 threshold estimated from LD decay 246 

analysis. These threshold values were found to be -log10 (P) ≥ 4.94, -log10 (P) ≥ 4.75, and -log10 (P) ≥ 5.02 for 247 

the whole panel, two-row, and six-row panels, respectively. However, the p-values with -log10 (P) ≥ 4 were 248 

also retained as suggestive QTLs.  249 

A total of 732 marker-trait associations were detected, and the associated SNPs with -log10 (P) ≥ 4 in close 250 

vicinity were grouped into a single QTL based on the average LD decay, due to variable LD blocks for 251 

individual chromosomes and thus a variable decay across the chromosomes (Supplemental Figure S2 B-D). 252 
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This allowed us to converge marker-trait associations into 192 QTLs (93 single SNPs and 99 SNP clusters) 253 

across the whole, two-row and six-row panels (Supplemental Table S6). From these loci, 109 were trait-254 

specific and the remaining were co-associated to at least two traits (Fig. 2B). PH with 36 QTLs and OD with 255 

four QTLs were the traits with the maximum and minimum number of specific QTLs. Most QTLs were co-256 

associated between culm morphological traits. Among the highest number of co-associated QTLs, 13 QTLs 257 

were common between SM and OD, 9 QTLs between PH and SI, 9 QTLs between ID, OD and SM, and 6 258 

QTLs were commonly associated with ID and OD. In agreement with a largely independent genetic control, 259 

the lowest number of co-associated QTLs were identified between PH and culm morphological traits. In 260 

addition, 66, 24, and 45 QTLs were specific to the whole panel, two-row, and six-row panels, respectively 261 

(Fig. 2C). Other QTLs were in common between at least two panels. 262 

 263 

Co-association network analysis for the 192 QTLs revealed many co-association modules across the whole 264 

panel and the row-type sub-panels, each of which contained loci from one or more genomic regions distributed 265 

on different chromosomes (Fig. 3).  The co-association module is a cluster of one or more loci that are 266 

connected by edges. The edges connecting two loci have similar associations with the phenotype with a 267 

distance below the threshold. Loci in different clusters are more dissimilar than to those in the same group and 268 

would not be connected by edges in a co-association module. In other words, associated nodes with edges 269 

appeared in close proximity, while weakly associated nodes appear far apart. One common feature that can be 270 

clearly derived from this visualization was that PH and SI were in closer proximity across all panels and nodes 271 

for culm morphological traits were closer together and far apart from PH. There were however some exceptions 272 

especially for ST and TH that exhibited higher dispersion. Another interesting observation is that loci with the 273 

same type of QTL effect appeared closer. 274 

Collectively, multi-environment GWAS results identified loci controlling culm morphology independent of 275 

plant height, with some QTLs showing stable effects across environments. 276 

 277 
Identification of QTLs with main and full effects and putative candidate gene 278 
exploration 279 
 280 
 In Table 2, we listed the most significant QTLs associated with the studied traits with QM or QF effects and 281 

potential candidate genes. The list of all 192 QTLs with complete details can be found in Supplemental Table 282 

S6 and synthetic view of genomic positions of QTLs along with the circular heatmap can be found in Figure 283 

4 and Supplemental Figure S7. Promising candidate genes were selected based on literature searches, after 284 

excluding hypothetical genes and transposable elements. Marker-trait associations were listed with progressive 285 

numbering along chromosomes: as an example of the 93 loci detected by single SNPs, SNP1-1H is the first 286 

associated locus on chromosome 1H. The 99 QTLs detected by SNP clusters are designated as QTLs, e.g. 287 

QTL10-1H. 288 

Out of a total of 31 QTLs on chromosome 1H, the most significant were SNP4-1H, SNP5-1H, SNP7-1H, 289 

SNP8-1H, and QTL11-1H. SNP7-1H (pos: 262.13 Mb) was associated with both OD and SM in the whole 290 
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panel and located in close proximity with candidate gene HvCesA4/HvClsF4, encoding a cellulose synthase 291 

protein previously associated to culm strength in barley (Burton et al., 2010). 292 

For chromosome 2H, 19 QTLs were detected. QTL1-2H associated with TH (six-row panel) explained a high 293 

proportion of phenotypic variance. We found that QTL1-2H (pos: 1.51 – 1.74 Mb) harbors the ortholog of rice 294 

OsSDG725 encoding a histone H3K36 methyltransferase and playing an important role in rice plant growth 295 

and development (Sui et al., 2012).  296 

For chromosome 3H, 27 QTLs were identified including QTL19-3H (pos: 570.92 - 571.97 Mb) which is 297 

associated with both PH and SI across all panels and spans the well-known plant height gene Sdw1 (Xu et al., 298 

2017) found in many elite European 2-row spring barley cultivars. 299 

On chromosome 4H, a total of 23 QTLs were identified. A particularly interesting region with QM effect was 300 

QTL17-4H (pos: 586.24 -586.29 Mb) associated with ID, OD, and SM in the two-row panel and explaining at 301 

least 6% of the phenotypic variance. This QTL was found to harbor a homolog of rice CCD8-d (carotenoid 302 

cleavage dioxygenase). QTL18-4H was detected in both the whole panel (ID, OD, SM, TH) and two-row panel 303 

(ID, OD, SM), explaining between 2.74% to 7.1% of variance (pos: 589.66 Mb – 590.52 Mb). SNP10-4H was 304 

associated with SM and located within a pseudo-response regulator gene (470.68 Mb). Also, about 0.8 Mb 305 

from this marker we noted a homolog of TRANSTHYRETIN-LIKE PROTEIN (TTL), a gene that was previously 306 

associated with stem circumference in sorghum (Mantilla Perez et al., 2014). OD and ID were associated with 307 

SNP16-4H (481.27 Mb), 0.5 Mb from a homolog of rice BIG GRAIN1 (Liu et al., 2015). 308 

On chromosome 5H, 34 QTLs were detected, including three loci with promising associations. QTL1-5H was 309 

identified in two-row panel as associated with ID, OD, SM, SI (pos: 0.87 - 2.21 Mb) and contained the rice 310 

homolog of OsCCD1 (Ilg et al., 2009). QTL2-5H predominantly associated in the six-row panel with PH, ST, 311 

TH and in the whole panel for TH (pos: 3.33 – 5.17 Mb) and explained more than 8% of variance for TH and 312 

ST in the six-row panel and harbors several uncharacterized genes. SNP32-5H (pos: 553.95 Mb) was 313 

associated with OD, SI, and SM in both the six-row and the whole panel.  314 

For chromosome 6H, in total 24 QTLs were identified, among them there were two SNPs with promising 315 

effect. SNP10-6H associated with both PH and SI at position 242.933 Mb located within a gene encoding a 316 

ubiquitin carboxyl-terminal hydrolase closely related to rice Large Grain 1 (LG1/OsUBP15), a gene involved 317 

in seed size and plant height (Shi et al., 2019). SNP17-6H (512.71 Mb) was associated with SM and TH and 318 

falls within an uncharacterized gene encoding a RING/U-box superfamily protein. A large QTL region, 319 

QTL13-6H, was associated with PH in the six-row panel (pos: 428.84 – 435.12 Mb) and contains several 320 

uncharacterized genes. 321 

On chromosome 7H, a total of 34 QTLs were detected including six QTLs of special interest. QTL3-7H, was 322 

associated with ST in the whole panel, and PH, SI, and ST in the two-row panel (pos: 12.92 Mb – 14.59 Mb). 323 

The region contains several candidates including a gene encoding a GRAS transcription factor orthologous to 324 

rice DWARF AND LOW-TILLERING (DLT/SMOS2), that can directly interact with SMALL ORGAN SIZE1 325 

(SMOS1/RLA1), and RLA1 plays as an integrator with both OsBZR1 and DLT to modulate their activity (Tong 326 

et al., 2009; Tong et al., 2012; Hirano et al., 2017b; Qiao et al., 2017). 327 
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QTL5-7H was associated with ID, OD, and SM in both whole and six-rows panels and also with ST in the six-328 

row panel (pos: 21.64 – 22.45 Mb). SNP16-7H (pos: 265.29 Mb), a hotspot SNP associated with ID, OD and 329 

SM in the six-row and whole panels. Another noteworthy QTL was QTL27-7H, associated with PH, SI in the 330 

whole panel, OD, PH and SM in the six-row panel, and SI in the two-row panel (pos: 570.827 Mb – 572.61 331 

Mb). The region contains HvD27, the barley ortholog to rice strigolactone biosynthesis gene DWARF27 332 

encoding beta-carotene isomerase (Lin et al., 2009). QTL30-7H (pos: 597.44 Mb – 600.25 Mb) was associated 333 

with SI, SM, and TH and contains several genes including a patatin encoding protein gene highly related to 334 

DEP3, a rice gene previously shown to affect culm morphology and anatomy as well as panicle architecture 335 

(Qiao et al., 2011). Finally, QTL34-7H (pos: 628.34 Mb – 633.84 Mb) was associated with TH in the two-row 336 

panel and with ID, OD, and TH in the whole panel. This locus had also QL effect with SM both in the six-row 337 

and whole panel and contains HvDIM encoding Delta(24)-sterol reductase previously shown to act in the 338 

brassinosteroid pathway in barley (Dockter et al., 2014)). 339 

 340 

Identification of QTLs with interaction effects  341 

Besides the above-mentioned QTLs with main and full effects, multi-environment GWAS uncovered highly 342 

significant QTLs with interaction effects. QTL26-1H (pos: 495.79 – 497.02 Mb) was associated with SI in the 343 

two-row panel.  QTL6-2H (pos: 22.37 – 23.99 Mb) associated with SI and PH (whole, two-row, and six-row 344 

panels) spans the well-known barley PPD-H1 gene (Supplemental Table S6), involved in photoperiod 345 

responsive flowering (Turner et al., 2005). The genomic region of QTL15-3H (pos: 499.61 – 499.87 Mb), 346 

associated with ID in two-row subset, hosted uncharacterized genes. QTL34-5H (pos: 594.17 – 596.71 Mb) 347 

was associated with ID, OD, and SM in the whole and six-row panels. This QTL showed QE and QF effects 348 

in the whole panel and six-row panel, respectively, and contains a barley Gibberellin 20 oxidase, HvGA20ox1, 349 

which has recently been associated to straw breaking and flowering time in barley (Göransson et al., 2019; He 350 

et al., 2019).  QTL7-7H for PH was found across all panels and located in close proximity to the barley 351 

HvFT1/VRNH3 gene. It showed QL effect in the whole and two-row panels and QF effect in the six-row panel. 352 

In barley, HvFT1 expression requires the active version of PPD-H1 to promote flowering under long day 353 

conditions (Hemming et al., 2008). Currently there is no report on its effect on plant height.  354 

 355 
Allelic comparison of SNPs/QTLs with QM/QF effects for lodging and plant height 356 
 357 
In order to appraise the effects of the QTLs on lodging susceptibility, we focused on QTLs with QM and QF 358 

effects (Supplemental Figures S8 and S9, respectively, Supplementary Table S6). Allelic comparisons for these 359 

loci indicated that depending on the trait and sub-population their effect was highly variable. As expected, 360 

QTLs for PH and SI showed significant differences for both PH and LG. With respect to culm morphology 361 

QTLs, effects on PH and LG were variable ranging from no difference to significant differences, including 362 

some QTLs that significantly affected both LG and PH. However, most QTLs associated with culm 363 

morphology had no effects on PH in the whole panel, but showed significant effects on LG. Such types of 364 

QTLs were also detected in both six-row and two-row panels. For example, the QTLs associated with ID, OD, 365 
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and SM -SNP8-1H, QTL11-1H, QTL11-2H, QTL2-3H, SNP16-4H, QTL16-5H, QTL5-6H, QTL26-6H, 366 

QTL2-7H, SNP26-7H- affected lodging without any effect on PH in the whole panel. In two-row, some 367 

examples are QTL17-4H, QTL18-4H, QTL10-5H, and QTL16-5H. Finally, for six-row panel SNP9-1H, 368 

SNP14-4H are among the QTLs affecting lodging without any effect on PH. Considering loci with main effects 369 

(Supplemental Figure S8), out of 20 loci associated to OD, 11 had a significant impact on LG without any 370 

effect on PH (8 in the whole panel, 1 and 2 in the six-row and two-row, respectively), and out of 25 loci 371 

detected for SM, 16 significantly affected LG without impacting PH (14 in the whole panel, 2 in two-row): 372 

nine of these QTLs were shared between OD and SM (SNP7-1H, SNP8-1H, QTL11-1H, QTL11-2H, QTL2-373 

3H, QTL17-4H, QTL18-4H, QTL16-5H, SNP32-5H). Interestingly, QTL18-4H was detected in both the 374 

whole panel and the two-row panel also for TH, indicating this locus as an interesting target for manipulation 375 

of culm morphology and lodging resistance. However, fewer loci associated with TH and ST had effects on 376 

LG. We thus focused on OD, ID and SM for more detailed analyses of nine SNPs associated with these traits 377 

in the whole panel: SNP7-1H, SNP8-1H, SPN5-3H, SNP10-4H, SNP11-4H, SNP16-4H, SNP32-5H, SNP21-378 

7H and SNP26-7H. In all cases, alleles increasing culm diameter (OD, ID) and/or SM had negative effects on 379 

lodging, without affecting PH (Table 3). 380 

In conclusion, results from these analyses support the usefulness of SM and culm diameter as parameters for 381 

selecting alleles to improve lodging resistance and provide chromosomal positions and markers associated to 382 

promising loci. 383 

 384 
Discussion 385 
   386 
In the present study, we investigated natural genetic variation for morphological characteristics of the barley 387 

culm and their relationships with lodging and agronomic traits. To date, no genetic studies have used image-388 

based phenotyping to investigate the genetic architecture of culm morphology in barley. For this reason, we 389 

developed a robust method to extract quantitative measurements of culm diameter and thickness from images 390 

of culm sections, showing that significant phenotypic variation exists within our barley germplasm panel with 391 

a major contribution of genetic variation to these traits as supported by medium-high heritability values. 392 

Using PCA we showed that row-type and germplasm source are the major factors driving population structure 393 

of the panel. In addition, no evidence of strong admixture between row-type groups was observed in PCA. 394 

This is consistent with previous studies suggesting that breeders largely focused within the six-row and two-395 

row gene pools in developing new varieties therefore limiting the exchange of genetic variation between these 396 

major row-types, despite some cases of targeted introgression (Hernandez et al., 2020). Increasing seed number 397 

per spike was probably the reason for the human selection of recessive allele at VRS1 into the barley gene pool 398 

during domestication (Komatsuda et al., 2007). On the other hand, barleys most commonly grown in Europe 399 

are two-row cultivars, which are preferred for malting because of uniformity in seed size: this resulted in 400 

limited genetic diversity compared to the six-row cultivars. This variation in seed size is due mainly to the 401 

allelic variation at the INT-C/VRS5 gene between row-types (Ramsay et al., 2011). Row-type genes have 402 

pleiotropic effects on other traits, as well-known for tillering (Liller et al., 2015). In our study, row-type subsets 403 
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exhibited clear differences also for some culm morphological traits, e.g. six-row barleys showed higher mean 404 

values of TH and SM compared to two-row barleys. Relationships between row-type and the studied traits are 405 

also evident from positive correlations with PH, OD, ID, SM, TH, LG and negative correlations with HD, ST, 406 

SI. 407 

Correlation results showed that although plant height is important for lodging, culm characteristics also play 408 

an important role in lodging resistance. We observed strong positive correlations among culm traits, as well as 409 

negative correlations between culm traits and lodging across the whole and row-type panels. On the other hand, 410 

culm morphological traits showed weak (two-row) and even no (six-row panel) correlations with plant height. 411 

This suggests opportunities for genetic improvement of lodging resistance through manipulation of culm 412 

morphology independent of plant height. Generally, relationships among traits were similar across row-type 413 

subpopulations, sometimes with different magnitudes: for example, correlation between LG and OD was -0.52 414 

and -0.69 in two- and six-row subpanels, respectively. Interesting correlations specific of the six-row subset 415 

were detected between LG, PH and HD with six-row landraces being late heading, taller and more prone to 416 

lodging compared to six-row cultivars: these landraces also had lower values of OD, ID and SM, therefore 417 

combining different unfavorable traits for lodging susceptibility. It should be noted that these contrasting 418 

patterns may be due to the fact that the six-row cultivars were mainly early flowering lines of Scandinavian 419 

origin, while the six-row landraces were of Mediterranean origin. Based on these observations, it would be 420 

interesting to further explore the genetic relationships between heading, plant height and culm morphological 421 

traits in a wider sample of six-row barleys.   422 

Based on these results, we analyzed phenotypic variation and run mixed model GWAS in the whole panel, as 423 

well as row-type subgroups independently in order to: i) minimize the confounding effects of row-type on 424 

association analyses; ii) understand if distinct loci are segregating in row-type subpopulations and thus 425 

different regulatory networks are involved in genetic control of the studied traits. The use of mixed model in 426 

GWAS is a well-established approach to efficiently reduce false positive associations for most traits, but it 427 

may also mask true signals that are correlated with population structure. As a result, loci that distinguish barley 428 

subpopulations are often difficult to detect using mixed model. To circumvent this problem, many association 429 

mapping studies have analyzed each subpopulation separately and successfully identified loci specific to each 430 

subpopulation. In our study, 120 marker-trait associations were detected in the whole panel, including 21 and 431 

27 that were shared with the two-row and six-row panels respectively. Six associations were detected across 432 

all three panels. In addition, we uncovered 24 and 45 QTLs specific for two- and six-row panels, supporting 433 

the relevance of running GWAS on row-type subsets. We also noticed that for some QTLs detected across 434 

both row-types, allele frequencies and peak markers differed between the row-type subsets, resulting in 435 

opposite effects of minor alleles on the same trait. Taking as an example the PH locus QTL19-3H spanning 436 

the well-characterized Sdw1 gene, the peak marker in the six-row panel was JHI-Hv50k-2016-205354 with the 437 

minor allele showing a negative effect on PH and positive effect on SI, in contrast to the effect of JHI-Hv50k-438 

2016-204992, the peak marker in the two-row panel. Likewise, QTL6-2H containing PPD-H1 had negative 439 

effects on PH in the six-row panel while the effect in two-row was the opposite. This indicates that causative 440 
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variants in these major genes have different frequencies and are associated to different markers in row-type 441 

subsets. Taken together, comparative analysis of results from the whole panel and row-type subsets indicates 442 

the need to duly account for population structure in dissecting culm morphological traits and carefully analyze 443 

effects of potentially interesting markers for breeding in relation to row-type population. This is also relevant 444 

when considering crosses between row types in the context of plant breeding. 445 

While in our GWAS analysis we observed numerous trait-specific QTLs, we also observed QTLs that were 446 

associated with multiple traits. In addition, in the same QTL region, the peak marker was sometimes different 447 

depending on the panel. For example, QTL34-7H was associated with OD, ID, SM, TH in the whole panel, 448 

with SM in the six-row panel, and with TH in two-row panel (QF effect, Supplemental Figure S8). The peak 449 

markers for TH were also different between the whole panel and the two-row panel, while the peak marker for 450 

SM was common between six-row and the whole panel. This QTL harbors the HvDIM gene encoding the 451 

barley Δ5-sterol-Δ24-reductase, an enzyme involved in the brassinosteroid biosynthetic pathway (Dockter et 452 

al., 2014). A link between brassinosteroids and culm thickness is supported by studies of the rice SMOS1 and 453 

SMOS2 genes, encoding transcription factors of the AP2 and a GRAS family, respectively, that interact to 454 

integrate auxin and brassinosteroid signaling: smos1 and smos2 single mutants as well as smos1-smos2 double 455 

mutants show increased culm thickness (Hirano et al., 2017b). Classical semidwarf barley mutants brh.af, 456 

brh14.q, brh16.v, ert-u.56, ert-zd, and ari.o were shown to harbor mutations in the HvDIM gene (Dockter et 457 

al., 2014): these mutants have reduced plant height and are more resistant to lodging compared to respective 458 

wild type (Dahleen et al., 2005), but their culm morphological traits have not been described. In our work a 459 

marker within this region showed weak association with PH (JHI-Hv50k-2016-516979, p value=0.003), 460 

suggesting HvDIM as a possible candidate for QTL34-7H. However, there are other potential candidates in 461 

this genomic region that have been reported as members of glycosyl transferase (GT) gene family, such as 462 

cellulose synthase genes of the GT2 family that influences culm cellulose content (Houston et al., 2015). Given 463 

the significance of associations between this genomic region and multiple culm morphology traits, it would be 464 

interesting to further dissect this QTL to discriminate if such effects are the result of pleiotropy or closely 465 

linked genes (local LD) and identify the underlying gene(s)/alleles combining association mapping and 466 

biparental fine mapping. 467 

Taking advantage of data from seven different environments, multi-environment GWAS (Korte et al., 2012) 468 

enabled us to disentangle QTLs with main effects stable across environments (QM) from QTLs with 469 

environment-dependent effects (location and/or year). An example of a QTL with a significant interaction with 470 

location is QTL6-2H, which was detected for PH across all panels. This genomic region contains the well-471 

known PPD-H1 gene (Turner et al., 2005), a major regulator of barley flowering in response to photoperiod, 472 

that was shown to have pleiotropic effects on several agronomic traits including yield, leaf size and plant height 473 

(Karsai et al., 1999; Digel et al., 2016). With respect to lodging, alleles with stable phenotypic effects across 474 

environments are preferable for breeding under changing climatic conditions.  For this reason, we decided to 475 

focus our attention on culm morphology QTLs with main effects, showing significant negative impact on 476 

lodging without affecting PH: for nine SNPs detected in the whole panel, alleles increasing culm diameter 477 
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and/or SM consistently reduced lodging (SNP7-1H, SNP8-1H, SNP5-3H, SNP10-4H, SNP11-4H, SNP16-4H, 478 

SNP32-5H, SNP21-7H and SNP26-7H). We scanned regions adjacent to these SNPs ± 0.8 Mb (i.e. the 479 

genome-wide LD decay estimated for the whole panel) in order to search for potential candidate genes. For 480 

example, cellulose synthase gene HvCslF4 (1H, 261.4 Mb) is located near SNP7-1H (262.1 Mb): a 481 

retroelement insertion within this gene was previously associated with the fragile stem2 (fs2) mutant phenotype 482 

in barley, suggesting a link between stem strength and genes involved in cellulose content (Burton et al., 2010). 483 

Since we analyzed culm morphology traits in straw culm sections, cell wall composition and cellulose content 484 

are likely to impact the morphological features considered in our work. Another example is SNP32-5H (5H, 485 

553.9 Mb): the adjacent region hosts several possible candidate genes, including HvMND1 (552.9 Mb), which 486 

encodes a N-acetyl-transferase-like protein recently shown to regulate barley plastochron and plant 487 

architecture (Walla et al., 2020). 488 

Beside these SNPs, additional QTLs were identified as associated with culm features and having impact on 489 

lodging, independent of PH. Among them, QTL17-4H had main effects on ID, OD and SM and contained a 490 

carotenoid cleavage dioxygenase 8 (CCD8) gene located in close proximity to the peak marker. A recent 491 

phylogenetic study showed that rice has four CCD8 genes (CCD8-a, -b, -c, and -d), while Arabidopsis has 492 

only one: both Arabidopsis CCD8 and rice CCD8-b are involved in the biosynthesis of strigolactones, 493 

phytohormones that control lateral shoot growth, and affect stem thickness at least in some species (reviewed 494 

in Chesterfield et al., 2020). The barley ortholog of OsCCD8-b is located on chromosome 3H, while the CCD8 495 

gene associated with QTL17-4H is more closely related with OsCCD8d, whose function has not been 496 

characterized yet (Priya and Siva, 2014). An alternative candidate gene for this QTL may be MDP1, encoding 497 

a MADS box transcription factor implicated in brassinosteroid signaling (Duan et al., 2006). 498 

While validation of these potential candidate genes will require more detailed analyses, our results provide the 499 

first insights into the genetic architecture of culm morphology in barley and its relevance for lodging. 500 

Utilization of loci underpinning culm features may open new avenues to improve lodging resistance and 501 

increase barley yield stability under changing environments. 502 

 503 
Materials and methods 504 
 505 
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Plant materials, experimental design and phenotyping 506 
 507 

The germplasm collection considered in this study was composed of 165 two-row and 96 six-row barley lines, 508 

including both European cultivars and a set of Spanish landraces (Supplemental Table S1) grown at two 509 

Northern and two Southern European sites respectively. Southern sites were winter-sown and for these sites 510 

only we included 34 Spanish landraces that had a vernalisation requirement. Barley lines were sown for two 511 

consecutive harvest years, 2016 and 2017, in four European research stations (Supplemental Table S3), except 512 

for the LUKE site (Finland), where data were collected only for 2017. Fields were organized in row and column 513 

designs with 2 complete replicates. Each plot covered on average 2m² and all the trials were rainfed - additional 514 

details about field trials and sowing densities are presented in Supplemental Table S3.  515 

Zadoks scale was used throughout all trials in order to define the specific developmental stage for sampling 516 

and phenotypic measurements (Zadoks et al., 1974). Details of phenotyping methods used to measure the 517 

studied traits are described in Supplemental Table S4. Samples were collected from plot centres at Zadoks 518 

stage 90 from the second internode of the main culm, which is considered a critical area for lodging resistance 519 

(Pinthus, 1974; Berry et al., 2004). A dedicated image analysis-based protocol was developed for measurement 520 

of culm morphological traits and additional details can be found in Supplemental Methods S1. 521 

 522 
Genome-wide SNPs genotyping and genotype imputation 523 
 524 
The barley germplasm panel was genotyped with the 50k Illumina Infinium iSelect genotyping array (Bayer 525 

et al., 2017). Physical positions of markers were based on pseudo-molecule assembly by Monat et al., 2019. 526 

Allele calls were made using GenomeStudio Genotyping Module v2.0.2 (Illumina, San Diego, California). 527 

After manual checking, SNP markers with more than two alleles, missing values greater than 10%, minor allele 528 

frequency (MAF) < 5% were excluded from analyses, along with unmapped SNPs. As a result, 36020 SNP 529 

markers and 261 genotypes (165 two-row and 96 six-row barleys) remained for the analysis. Missing 530 

genotypes were imputed using Beagle v5.0 (Browning et al., 2018, Supplemental Methods S2). 531 

 532 
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Linkage disequilibrium, population structure, and kinship 533 
 534 
LD is in many cases influenced by the presence of population structure and relatedness due to demographic 535 

and breeding history of the accessions. To take into consideration these factors, the intrachromosomal LD 536 

between two SNPs was estimated as squared allele-frequency correlations (r2) using an unbiased (due to non-537 

independence relationships between individuals) estimation implemented in the R package called LDcorSV 538 

(Mangin et al., 2012). The markers were thinned to every three SNP and LD between all pairs of 539 

intrachromosomal sites was estimated. Four r2 estimates were calculated: r2 based on raw genotype data, r2 540 

with population structure represented by the PCA after scaling the PC scores across a range of zero to one (rs2, 541 

see below), r2 with relatedness (rv2; see the next section), and r2 with both population structure and relatedness 542 

(rsv2). The r2 values were plotted against the physical distance (Mb) and a nonlinear LOESS curve was fitted 543 

to investigate the relationship between LD and physical distance. A square root transformation of unlinked r2 544 

values was calculated and the parametric 95th percentile of the distribution of transformed values was taken 545 

as a critical r2 value (Breseghello and Sorrells, 2006). The unlinked r2 refers to the r2 between the SNP loci 546 

with a physical distance greater than 50 Mb.   547 

Population structure was estimated using principal components analysis. Prior to PCA, the genotype marker 548 

data were filtered out by LD-pruning to generate a pruned dataset of SNPs that are in approximate linkage 549 

equilibrium, thus reducing the effect of LD on population structure. The LD-based SNP pruning was conducted 550 

with a window size of 100 kb, shifting the window by one SNP at the end of each step. Then one SNP from a 551 

pair of SNPs was removed if their LD was greater than 0.2.  Both PCA and LD pruning were conducted in 552 

SNPRelate package in R software (Zheng et al., 2012). To investigate relatedness between individuals, a matrix 553 

of genomic relationship was calculated from marker data by the method described by (VanRaden, 2008) 554 

available in the R package snpReady (Granato et al., 2018).  555 

 556 
 557 
Statistical analysis of phenotypic data 558 
 559 

Following a two-step approach, we initially obtained best linear unbiased estimates (BLUEs) of each genotype 560 

from analysis of individual environments. Note that in this first step the genotype effect was treated as fixed 561 

in order to prevent shrinkage in estimated means. BLUEs from this first step became the phenotype input for 562 

step two for combined analysis using a mixed model to estimate variance components, broad-sense heritability, 563 

and subsequent GWAS (Smith et al., 2001). The full description of analytical methods of multi-environment 564 

phenotypic data can be found in Supplemental Methods S3.  565 

 566 

Multi-environment GWAS analysis 567 
 568 

For GWAS, we first extended the general mixed model form of the multi-environment analysis by adding 569 

genotype principal components into the fixed part of the model. In addition we incorporated the genomic 570 
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relationships into the variance-covariance matrix of random effects to reflect the genetic relatedness between 571 

individuals in the population (!! 	⨂$), allowing a diagonal residual matrix (different residual variances in 572 

each trial). GWAS was performed using the method proposed by Korte et al., (2012) which can be extended 573 

to multi-environment trials to identify QTL/SNPs either with main or interaction effects. The full description 574 

of analytical methods of multi-environment GWAS can be found in Supplemental Methods S4.  575 

 576 
Analysis of co-association network between traits  577 
 578 

For each panel, we first organized associations from all traits into a matrix with SNPs (SNPs within the same 579 

LD region were treated as a single QTL) in rows and traits in columns and filled with cells for corresponding 580 

marker effects and its association with corresponding trait ( QM, QF and interaction effects) after correction 581 

for population structure and kinship. The resulting matrix were then used to provide a pairwise Pearson 582 

correlations matrix between loci.  The correlation matrix was subsequently used as an input matrix for network 583 

analysis. We used undirected graph networks to visualize submodules of loci using  igraph package in R to 584 

visualize proximities between loci in a network plot (Csardi and Nepusz, 2006). Nodes (SNPs) were connected 585 

by edges if they had a pairwise correlation above threshold (r>= 0.9) from the similarity matrix described 586 

above. 587 
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Supplemental Figure S3. Comparison of row type and germplasm source for their effect on 

studied traits. 

Supplemental Figure S4. Pairwise correlation coefficients between traits in the whole panel. 

Supplemental Figure S5. Pairwise correlation coefficients between traits in the two-row panel. 
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Supplemental Figure S7. Circos heatmap for the 192 QTLs identified from GWAS. 
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Tables 

Table 1. Estimates of broad-sense heritability for culm morphological traits in single and across 

environments. Heritability values with less than moderate value are indicated in bold. 

 

Table 2. Summary of candidate genes underlying the most significant markers with QM and QF 

effect on studied traits using multi-environment GWAS. 

 

Table 3. Details of subset of SNPs with QM effect associated with culm morphology and negative 

effects on lodging without impact on plant height. 
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Figure Legends 

Figure 1. Workflow of phenotyping protocol for culm morphology traits. A.1) Barley specimens 

were gathered when plants reached Zadoks stage 90 (grain ripening). Three  random plants were 

collected from each plot. A.2) Samples were cleaned and the main culm was selected for each plant. 

The first internode (I1) was identified as the most basal internode ≥ 1cm. The second internode (I2) 

was the one immediately above (white arrowheads indicate the positions of flanking nodes). Five 

mm tall sections from the center of I2 (red lines) were obtained using a dedicated circular saw.  B) 

Sections were attached to black A4 cardboaord with superglue and organized on the cardboard 

following the plot order in the field. The upper part of each section was highlighted with a bright 

white marker in order to enhance the contrast with the blackboard. C.1) Cardboards with I2 sections 

were scanned using a flat office scanner to obtain 300 dpi color images. C.2) Using the software 

ImageJ with a dedicated macro the I2 section images were converted to black and white images. 

C.3i) ImageJ software was able to isolate and measure the medullary cavity of the culm (in red). 

C.3o) ImageJ software was used to isolate and measure the external outline (in red). ID, inner 

diameter, OD, outer diameter, TH, thickness were derived from images 3i and 3o according to 

formulas in Supplemental Table S4. 

Figure 2. A) Pairwise phenotypic correlations between traits along with row type and germplasm 

sources within whole panel and row type groups based on means estimated across trials; B)  UpSetR 

plot showing the overlap of the associated SNPs/loci for traits identified by GWAS; C) Venn diagram 

showing distribution of QTLs among whole panel and row type groups. 

Figure 3. Co-association network representing co-association modules between 192 loci across 

whole panel and row type subsets, with color schemes according to the phenotypic traits. Each node 

is a SNP/QTL and a color according to its association with corresponding trait. Strong co-

associations with a correlation above threshold (r = 0.9) are connected by edges. 

Figure 4. Physical map of 192 QTLs associated with culm morphological traits a cross whole panel 

and the row type subsets. Loci with red, blue, and green colors are unique to whole panel, two-row, 

and six-row subsets, respectively. Loci with black color are those detected at least in two 

association panel. Purple color indicates relative position of barley known genes at that particular 

genomic region. 
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Table 1. Estimates of broad-sense heritability for culm morphological traits in single and across 
environments. Heritabilities with less than moderate valule are indicated in bold. 

a: (Gen): random genotype effect; (Rep): Random replicate effect; (Row): Random row effect; (Col): random column effect; ID 
(Row):ID(Col): two dimensional independent error structure; ID(Row):AR1(Col): One dimensional correlated error for columns 
with first-order autoregressive process ; AR1(Row):ID(Col): one dimensional correlated error for rows with first-order 
autoregressive process ; AR1(Row):AR1(Col): two dimensional correlated error with first-order auto regressive process. 
 

Env Factor a Residual b Panel HD PH OD ID TH SM ST SI 

CREA16 Gen+Rep+Col+Row AR1(Row) : AR1(Col) Whole panel 98.75 90.00 80.48 81.12 53.31 75.97 59.79 87.81 

      2-row 96.79 82.64 65.44 69.33 27.95 53.13 53.36 83.82 

      6-row 99.32 87.43 86.14 87.90 55.09 83.87 67.24 90.21 

CREA17 Gen+Rep+Col ID(Row) : AR1 (Col) Whole panel 94.02 85.76 73.84 65.35 67.01 75.59 51.75 86.42 

      2-row 87.47 82.84 70.22 64.19 47.37 67.04 56.27 82.89 

      6-row 95.89 88.77 79.01 70.85 77.18 82.85 39.37 90.70 

CSIC16 Gen+Rep+Col+Row ID(Row) : ID (Col) Whole panel 97.13 94.84 79.58 71.65 77.51 81.93 52.39 - 

      2-row 94.39 90.15 75.29 67.85 54.87 73.45 32.22 - 

      6-row 98.35 92.59 81.16 76.19 78.27 85.01 64.09 - 

CSIC17 Gen+Rep+Col+Row AR1(Row) : AR1(Col) Whole panel 94.17 93.11 87.39 81.67 78.77 86.67 72.08 92.81 

      2-row 86.88 85.18 79.64 78.16 29.82 69.25 70.15 89.71 

      6-row 96.51 92.85 85.95 82.89 78.08 87.43 48.81 94.76 

JHI16 Gen+Rep+Col+Row AR1(Row) : AR1(Col) Whole panel 95.62 93.85 89.54 87.51 81.98 90.00 73.07 92.15 

      2-row 90.85 93.48 77.53 68.67 70.85 72.26 55.07 91.87 

      6-row 87.97 90.45 88.57 89.22 76.56 89.35 74.01 91.14 

JHI17 Gen+Rep+Col+Row AR1(Row) : AR1(Col) Whole panel 93.37 93.13 84.64 78.33 53.32 86.75 47.19 85.73 

      2-row 83.68 92.78 69.05 63.14 20.85 59.37 35.96 85.22 

      6-row 86.67 93.60 85.45 78.39 67.04 88.21 41.48 81.15 

LUKE17 Gen+Rep+Col+Row ID(Row) : ID (Col) Whole panel 95.39 96.74 84.74 84.87 61.62 84.75 60.60 92.04 

      2-row 91.05 93.33 57.80 57.34 41.01 50.03 43.83 91.04 

      6-row 96.44 95.74 84.62 86.14 54.34 84.50 62.32 89.19 
Combined 
Environments    Whole panel 93.10 91.42 89.21 86.98 81.52 84.77 70.49 91.91 

      2-row 90.43 94.26 83.31 81.37 57.81 72.38 57.98 92.48 

      6-row 89.95 81.90 90.18 88.98 68.61 85.49 75.11 91.58 
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Table 2. Summary of candidate genes underlying the most significant markers with QM and QF effect on studied traits using multi-
environment GWAS. 

QTL ID Peak marker Chr Pos QTL region (bp) Panel 
QTL 
type  Trait (-Log10 P) Gene GeneID_MOREX.V2 

SNP4-1H JHI-Hv50k-2016-19014 1H 55564074 55564074 2-row QF PH (5.61) Asparticproteinase HORVU.MOREX.r2.1HG0014120 

SNP5-1H JHI-Hv50k-2016-19267 1H 59577895 59577895 2-row QF PH (5.61) Y14a HORVU.MOREX.r2.1HG0014550 

SNP7-1H JHI-Hv50k-2016-21372 1H 262131347 262131347 Whole-panel QM OD (4.71), SM (5.66) HvCesA4/HvClsF4 HORVU.MOREX.r2.1HG0032090 

QTL11-1H JHI-Hv50k-2016-25138 1H 331015882 331015882-332043281 Whole-panel QM OD (4.71), SM (5.66)   HORVU.MOREX.r2.1HG0038730 

SNP13-1H JHI-Hv50k-2016-26359 1H 342720997 342720997 2-row QF PH (4.04) Rhmbd HORVU.MOREX.r2.1HG0039970 

 JHI-Hv50k-2016-26359 1H 342720997   2-row QM SI (5.49)     

 JHI-Hv50k-2016-26359 1H 342720997   Whole-panel QM PH (4.6), SI (5.08)     

SNP18-1H SCRI_RS_145336 1H 423204614 423204614 2-row QM SI (5.72) UGT707A3 HORVU.MOREX.r2.1HG0050860 

 SCRI_RS_145336 1H 423204614   Whole-panel QM SI (5.96)     

QTL29-1H JHI-Hv50k-2016-52276 1H 506206295 505927936-506431159 Whole-panel QM TH (4.94)   Several candidate genes 

QTL1-2H 12_31446 2H 1739468 1514860-1739468 6-row QM TH (5.01) SDG725 HORVU.MOREX.r2.2HG0079410 

QTL5-2H 12_31284 2H 18622308 18522424-20868342 2-row QF SI (5.29)  Eligulum-a HORVU.MOREX.r2.2HG0086910 

 JHI-Hv50k-2016-71066 2H 18623653   Whole-panel QM SI (4.2)     

 JHI-Hv50k-2016-71911 2H 20459215   Whole-panel QF SM (5.66)     

SNP7-2H JHI-Hv50k-2016-75227 2H 28446036 28446036 2-row QF SI (4.75) BRCT HORVU.MOREX.r2.2HG0090080 

 JHI-Hv50k-2016-75227 2H 28446036   2-row QM PH (4.99)     

QTL11-2H JHI-Hv50k-2016-103173 2H 559241964 559231441-561722120 Whole-panel QM SM (7.23)   Several candidate genes 

 JHI-Hv50k-2016-103187 2H 559376614   Whole-panel QM ID (5.7), OD (6.29)     

QTL12-2H JHI-Hv50k-2016-109824 2H 598521913 597215106-598522113 6-row QF SM (4.27)   Several candidate genes 

 JHI-Hv50k-2016-109824 2H 598521913   Whole-panel QF ID (4.21), OD (4.8)     

 JHI-Hv50k-2016-109823 2H 598522113   Whole-panel QF SM (6.16)     

QTL14-2H JHI-Hv50k-2016-124833 2H 633916743 633545278-635684841 2-row QM PH (4.55)   Several candidate genes 

 JHI-Hv50k-2016-124833 2H 633916743   Whole-panel QM PH (5.85)     

QTL15-2H JHI-Hv50k-2016-127337 2H 638383926 638383926-638729272 Whole-panel QF SM (5.12), TH (4.61)   Several candidate genes 

QTL18-2H JHI-Hv50k-2016-142360 2H 665679591 665678929-669091745 6-row QM ID (5.09)   Several candidate genes 

 JHI-Hv50k-2016-142412 2H 665806846   Whole-panel QM ST (4.35)     

 JHI-Hv50k-2016-142417 2H 665806970   Whole-panel QF SM (4.18)     

 JHI-Hv50k-2016-142979 2H 667239912   6-row QM SM (4.71)     
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Table 2. Continued. 

QTL ID Peak marker Chr Pos QTL region (bp) Panel 
QTL 
type  Trait (-Log10 P) Gene GeneID_MOREX.V2 

SNP9-3H JHI-Hv50k-2016-167742 3H 158248886 158248886 Whole-panel QM SM (4.95)   - 

QTL19-3H JHI-Hv50k-2016-204951 3H 570921209 570921209-571967329 Whole-panel QF SI (4.26) HvGA20ox3 HORVU.MOREX.r2.3HG0255700 

 JHI-Hv50k-2016-204992 3H 570930550   2-row QF PH (5.35), SI (4.99)     

 JHI-Hv50k-2016-205354 3H 571967329   6-row QM PH (5.51), SI (5.74)     

 JHI-Hv50k-2016-205354 3H 571967329   Whole-panel QM PH (4.94)     

QTL21-3H JHI-Hv50k-2016-206708 3H 579170749 577209764-583819782 Whole-panel QM SI (5.44)   Several candidate genes 

 JHI-Hv50k-2016-207617 3H 583528139   2-row QF SI (5.47)     

QTL17-4H JHI-Hv50k-2016-262348 4H 586245828 586245828-586286949 2-row QM ID (4.68), OD (4.77), SM (4.77) CCD8d HORVU.MOREX.r2.4HG0337890 

QTL18-4H JHI-Hv50k-2016-263046 4H 589723289 589666126-590513139 Whole-panel QM SM (4.95)   Several candidate genes 

 JHI-Hv50k-2016-263069 4H 590012027   2-row QM SM (4.81)   - 

 JHI-Hv50k-2016-263069 4H 590012027   Whole-panel QM OD (5.05)     

 JHI-Hv50k-2016-263064 4H 590012403   2-row QM TH (5.16)     

 JHI-Hv50k-2016-263064 4H 590012403   Whole-panel QM TH (4.73)     

 JHI-Hv50k-2016-263080 4H 590144147   2-row QM OD (4.92)     

 JHI-Hv50k-2016-263116 4H 590513139   Whole-panel QF ID (4.07)     

QTL19-4H JHI-Hv50k-2016-263583 4H 594808440 594808131-595015320 Whole-panel QF ST (4.76)   Several candidate genes 

 JHI-Hv50k-2016-263787 4H 594902360   2-row QF ST (4.86)     

QTL23-4H JHI-Hv50k-2016-275313 4H 621344288 621344288-622035884 6-row QM ID (5.33), ST (4.75)   Several candidate genes 

 JHI-Hv50k-2016-275693 4H 621902266   6-row QF PH (4.71)     

 JHI-Hv50k-2016-275696 4H 621902455   Whole-panel QM ST (4.16)     

QTL1-5H JHI-Hv50k-2016-277297 5H 1444564 869533-2211050 Whole-panel QM OD (4.26), SM (4.2)  CCD1  HORVU.MOREX.r2.5HG0349440 

 JHI-Hv50k-2016-277332 5H 1447495   Whole-panel QM TH (4.33)     

 JHI-Hv50k-2016-277338 5H 1448582   2-row QM SI (4.09)     

 JHI-Hv50k-2016-277724 5H 2211050   2-row QM ID (5.05), OD (5.6), SM (5.62)     

QTL2-5H JHI-Hv50k-2016-278616 5H 4053376 3330549-5170277 6-row QM ST (5.33), TH (4.62)   Several candidate genes 

 JHI-Hv50k-2016-278616 5H 4053376   Whole-panel QM TH (4.58)     

QTL3-5H JHI-Hv50k-2016-279858 5H 6140678 6139160-6687421 2-row QM ID (4.7)   Several candidate genes 

QTL4-5H JHI-Hv50k-2016-281676 5H 10305211 10221340-10615460 6-row QM SI (5.24)   Several candidate genes 

 JHI-Hv50k-2016-281715 5H 10326076   2-row QM ID (4.12)     
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Table 2. Continued. 

QTL ID Peak marker Chr Pos QTL region (bp) Panel 
QTL 
type  Trait (-Log10 P) Gene GeneID_MOREX.V2 

QTL7-5H JHI-Hv50k-2016-287215 5H 27977719 27977719-33923320 6-row QM SI (4.76)   Several candidate genes 

 JHI-Hv50k-2016-287531 5H 29346346   Whole-panel QM TH (4.12)     

 JHI-Hv50k-2016-287643 5H 29357949   Whole-panel QM SI (4.03)     

 JHI-Hv50k-2016-288619 5H 33923127   6-row QM TH (5.47)     

QTL16-5H JHI-Hv50k-2016-309388 5H 452787194 449553280-453741857 Whole-panel QM TH (6.32)   Several candidate genes 

 JHI-Hv50k-2016-309383 5H 452787694   2-row QF SM (4.3)     

 JHI-Hv50k-2016-309383 5H 452787694   Whole-panel QM OD (5.48), SI (4.19), SM (6.94)     

SNP19-5H JHI-Hv50k-2016-310560 5H 467079429 467079429 6-row QF ID (5.79) ABA8ox2 HORVU.MOREX.r2.5HG0402930 

QTL27-5H JHI-Hv50k-2016-329041 5H 525702571 525598290-525702571 Whole-panel QF ID (5.78), OD (5.23), SM (6.00) SIP1 HORVU.MOREX.r2.5HG0420210 

SNP32-5H 12_31206 5H 553957781 553957781 6-row QM OD (4.41), SI (7.62), SM (5.63) SAP6 HORVU.MOREX.r2.5HG0430170 

 12_31206 5H 553957781   Whole-panel QM SM (4.05)     

QTL6-6H JHI-Hv50k-2016-383797 6H 36026739 35725637-37076534 Whole-panel QF TH (5.23)   - 

SNP10-6H SCRI_RS_161533 6H 242933786 242933786 Whole-panel QM PH (4.93), SI (4.22) UBP15,LG1 HORVU.MOREX.r2.6HG0483350 

QTL13-6H JHI-Hv50k-2016-405999 6H 431754022 428846608-435119247 6-row QM PH (5.18)   Several candidate genes 

SNP17-6H 12_30573 6H 512709462 512709462 6-row QF SM (5.66) RFP HORVU.MOREX.r2.6HG0509750 

QTL3-7H JHI-Hv50k-2016-449409 7H 13356822 12920299-14593868 2-row QM SI (5.25) SMOS2/DLT HORVU.MOREX.r2.7HG0534100 

 JHI-Hv50k-2016-449409 7H 13356822   Whole-panel QF ST (5.87)     

 JHI-Hv50k-2016-449626 7H 13692220   2-row QM ST (5.95)     

QTL5-7H JHI-Hv50k-2016-453012 7H 22070216 21643770-22444585 Whole-panel QF OD (4.99), SM (5.03)   Several candidate genes 

 JHI-Hv50k-2016-453082 7H 22441304   6-row QM ID (4.7), OD (4.52), SM (4.12)     

QTL7-7H JHI-Hv50k-2016-460460 7H 39722386 38675923-39722386 6-row QF PH (4.82) HvFT1/VRNH3 HORVU.MOREX.r2.7HG0542540 

SNP16-7H JHI-Hv50k-2016-478948 7H 265292093 265292093 6-row QF SM (4.18) NTL HORVU.MOREX.r2.7HG0573190 

 JHI-Hv50k-2016-478948 7H 265292093   Whole-panel QF OD (5.97), PH (4.46), SM (7.28)     

 JHI-Hv50k-2016-478948 7H 265292093   Whole-panel QM ID (6.33)     

QTL27-7H SCRI_RS_168994 7H 570828407 570827595-572601830 6-row QF OD (4.74), SM (5.72) DWARF27 HORVU.MOREX.r2.7HG0603370 

 JHI-Hv50k-2016-493265 7H 572601830   2-row QM SI (4.54)     

QTL30-7H JHI-Hv50k-2016-501203 7H 598638988 597448728-600244977 2-row QM ST (4.94) DEP3 HORVU.MOREX.r2.7HG0610260 

SNP32-7H SCRI_RS_213791 7H 625219043 625219043 Whole-panel QM ST (5.05)   HORVU.MOREX.r2.7HG0620190  
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Table 2. Continued. 

QTL ID Peak marker Chr Pos QTL region (bp) Panel 
QTL 
type  Trait (-Log10 P) Gene GeneID_MOREX.V2 

QTL34-7H JHI-Hv50k-2016-516642 7H 628347284 628346780-633832080 Whole-panel QF ID (4.27), OD (4.07) HvDIM HORVU.MOREX.r2.7HG0622270 

 JHI-Hv50k-2016-518794 7H 632545446   Whole-panel QF TH (5.15)     

 JHI-Hv50k-2016-519440 7H 633832080   2-row QF TH (5.49)     
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Table 3. Details of subset of SNPs with main effects and associated with culm traits with negative effects on lodging without impacting on plant 
height. A1, A2, and MAF indicate major allele, minor allele and minor allele frequency, respectively. The allele associated with decreased lodging  
is underlined. PVE (%) is the percentage of phenotype variance explained by SNP. β is the SNP main effect, α1 is the SNP -by-location effect, and 
α2 is the SNP -by-year effect derived from GWAS model. 

SNP Panel Trait Peak marker MAF A1 A2 chr position -Log10 
(P-value) 

β α1 α2 PVE 
(%) 

SNP7-1H Whole panel OD JHI-Hv50k-2016-21372 0.13 A C 1H 262131347 4.71 0.472 -0.012 -0.001 2.46 
  

SM 
 

0.13 A C 1H 262131347 5.66 0.533 -0.024 0.008 3.41 

SNP8-1H Whole panel ID JHI-Hv50k-2016-22255 0.14 C A 1H 280712482 4.15 0.481 -0.008 -0.012 2.91 
 

 OD  0.14 C A 1H 280712482 4.26 0.502 -0.01 0.007 2.98 
 

 SM  0.14 C A 1H 280712482 4.15 0.501 -0.019 0.022 3.24 

SNP5-3H Whole panel ID JHI-Hv50k-2016-162361 0.21 A G 3H 28691973 4.06 -0.255 0.003 0.003 1.53 

SNP10-4H Whole panel SM JHI-Hv50k-2016-246906 0.09 C T 4H 470693015 4.21 0.554 -0.035 0.02 1.72 

SNP11-4H Whole panel SM JHI-Hv50k-2016-247273 0.09 G T 4H 474202180 4.21 0.554 -0.035 0.02 1.72 

SNP16-4H Whole panel ID JHI-Hv50k-2016-261211 0.15 T C 4H 581266705 4.38 0.307 -0.007 0.003 1.23 
  

OD 
 

0.15 T C 4H 581266705 4.30 0.312 0.001 0.002 1.21 

SNP32-5H Whole panel SM 12_31206 0.27 C G 5H 553957781 4.05 0.185 0 -0.005 1.06 
 

Six-row OD  0.24 C G 5H 553957781 4.41 0.345 -0.005 0.002 3.51 
 

Six-row SI  0.24 C G 5H 553957781 7.62 0.522 0.017 -0.042 6.62 
 

Six-row SM  0.24 C G 5H 553957781 5.63 0.358 0 -0.006 4.85 

SNP21-7H Whole panel ID JHI-Hv50k-2016-486762 0.19 C G 7H 434555860 4.26 -0.482 -0.011 -0.005 4.93 
  

OD 
 

0.19 C G 7H 434555860 4.05 -0.481 -0.004 -0.02 4.48 

SNP26-7H Whole panel SM JHI-Hv50k-2016-492337 0.24 C T 7H 562028351 4.23 -0.511 0.017 -0.034 7.02 
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Figure 1. Workflow of phenotyping protocol for culm morphology traits. A.1) Barley specimens 
were gathered when plants reached Zadoks stage 90 (grain ripening). Three  random plants were 
collected from each plot. A.2) Samples were cleaned and the main culm was selected for each 
plant. The first internode (I1) was identified as the most basal internode ≥ 1cm. The second 
internode (I2) was the one immediately above (white arrowheads indicate the positions of flanking 
nodes). Five mm tall sections from the center of I2 (red lines) were obtained using a dedicated 
circular saw.  B) Sections were attached to black A4 cardboaord with superglue and organized on 
the cardboard following the plot order in the field. The upper part of each section was highlighted 
with a bright white marker in order to enhance the contrast with the blackboard. C.1) Cardboards 
with I2 sections were scanned using a flat office scanner to obtain 300 dpi color images. C.2) 
Using the software ImageJ with a dedicated macro the I2 section images were converted to black 
and white images. C.3i) ImageJ software was able to isolate and measure the medullary cavity of 
the culm (in red). C.3o) ImageJ software was used to isolate and measure the external outline (in 
red). ID, inner diameter, OD, outer diameter, TH, thickness were derived from images 3i and 3o 
according to formulas in Supplemental Table S4. 
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Figure 2. A) Pairwise phenotypic correlations between traits along with row type and germplasm 
sources within whole panel and row type groups based on means estimated across trials; B) UpSetR 
plot showing the overlap of the associated SNPs/loci for traits identified by GWAS; C) Venn diagram 
showing distribution of QTLs among whole panel and row type groups.  
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Figure 3. Co-association network representing co-association modules between 192 loci across 
whole panel and row type subsets, with color schemes according to the phenotypic traits. Each 
node is a SNP/QTL and a color according to its association with corresponding trait. Strong co-
associations with a correlation above threshold (r = 0.9) are connected by edges. 
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Figure 4. Physical map of 192 QTLs associated with culm morphological traits a cross 
whole panel and the row type subsets. Loci with red, blue, and green colors are unique 
to whole panel, two-row, and six-row subsets, respectively. Loci with black color are 
those detected at least in two association panel. Purple color indicates relative position 
of barley known genes at that particular genomic region. 
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Figure S2. Distribution of SNP markers and marker density within the window size of 1Mb within the whole panel, 2-row, and 6-row 
panels, respectively. The number of markers per each chromosome are shown in the Supplemental Table S3. 

Whole panel 6-row2-row
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Figure S2. A) Biplot of first two PC scores from PCA analysis conducted on genotype marker data representing population  structure 
of the panel related to row type and germplasm resource. Plots of LD (r2) decay corrected for population structure and relatedness 
representing intrachromosomal decay of marker pairs over all chromosomes as a function of physical distance. The blue line is the 
95th percentile distribution of unlinked r2 values > 50 Mb and the red line illustrates the LD decay based on LOESS fitting curve. B) 
Whole panel; C) two-row panel; D) six-row panel.  
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Figure S3. Comparison of row type and germplasm source for their effect on studied traits based on single- and 
across-environment trials within the barley panel. Mean differences were performed using a one-way ANOVA 
with Tukey’s honestly (HSD) test. Different letters above each column indicate significant differences (p-value= 
0.05). 
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Figure S4. Pairwise correlation coefficients between traits, row type, and germplasm source (cultivar/landrace)  in the whole panel 
based on genotype values estimated both in single and combined multi-environment analysis. Data for lodging In CSIC16 is not 
available. 
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Figure S5. Pairwise correlation coefficients between traits and germplasm source (cultivar/landrace) in the 2-row panel based on 
genotype values estimated both in single and combined multi-environment analysis. Data for lodging In CSIC16 is not available. 
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Figure S6. Pairwise correlation coefficients between traits and germplasm source (cultivar/landrace) in the 6-row panel based on 
genotype values estimated both in single and combined multi-environment analysis. Data for lodging In CSIC16 is not available. 
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Figure S7. Circos heatmap for the 192 QTLs identified from GWAS of seven traits for the whole panel and 
row type groups. Each track belongs to one trait which also divided into five subsectors for QF, QM, QE, 
QL, and QY effect with red colors showing the presence of QTL at that position.  The letters a, b, c, d, e, 
and f, are respectively related to QTLs identified in whole panel (a), 2-row (b), 6-row (d), both whole panel 
and 2-row (e), both whole panel and 6-row (f), and both 2-row and 6-row (g), and all the panels (h). 
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Figure S8. Comparison of allelic variants at peak markers of loci with QM effect (Supplemental Table S5). A) comparison between alleles 
at each marker for their effect on plant height; B) and their effect on lodging. The points indicate the mean value and the bars indicate the 
95% confidence interval of the mean of corresponding allele. Significant differences are shown with asterisk. 
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Figure S9. Comparison of allelic variants at peak markers of loci with QF effect (Supplemental Table S5). A) comparison between alleles at 
each marker for their effect on plant height; B) and their effect on lodging. The points indicate the mean value and the bars indicate the 95% 
confidence interval of the mean of corresponding allele. Significant differences are shown with asterisk. 
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Methods S1. Additional methodological details on improved protocol for barley culm 
morphological traits. 

Samples were collected at Zadoks stage 90 from the second internode of barley main culm, which 
is considered to different extent a critical area for lodging resistance (Pinthus 1974, Berry et al., 
2004). Furthermore samples at Zadoks stage 90 have a different and more uniform cellular 
composition compared with other growth stages (Luo et al., 2007;  Wang et al., 2018).  The second 
basal internode was identified as the internode following the first internode longer than 1 cm above 
the root crown (Berry et al., 2004; Berry et al., 2007; Berry, 2013). 
   
At Zadock stage 90 (fully mature), three randomly selected plants for each plot were uprooted, 
avoiding those on the plot’s borders.  For each plant, the main stem was identified and the second 
basal internode was excised. Using a custom-made circular saw, internodes were cut in the central 
position to produce 5 mm thick cross-sections, taking care to produce blunt cuts. The resulting 
internode sections were attached with cyanoacrylic glue (Super Attak) to a black A4 cardboard, 
previously divided into 3cm x 5cm cells, each corresponding to a filed plot. Three samples (each 
from a distinct plant from the same plot) were glued in the same cell. On the side of each cardboard 
a paper ruler was attached in order to allow the software calibration during image analysis. Each 
section was then colored with a white marker (Uni-ball Posca, 0,7 mm) to ensure maximum 
contrast with the black background. In order to extract accurate measurements from culm sections, 
we developed a high-throughput image analysis protocol based on images obtained by scanning 
cardboards with a flat office scanner (600 dpi images in .tiff format).  
The images were then analyzed to derive culm diameter and thickness data with a custom made 
macro command in Java language on the software ImageJ (Schindelin et al., 2012).  
 
 
 
Methods S2. Additional methodological details on missing genotype imputation. 

To increase detection power and minimizing the loss of significant association, missing data were 
imputed using Beagle v5.0, which enables haplotypes inference and imputation of missing 
genotypes (Browning et al., 2018). Beagle uses a hidden Markov model to find the most likely 
haplotype pair for each individual given the genotype data for that individual. To estimate genotype 
phase the program works iteratively using an expectation –maximization method. Out of these 
markers, markers in perfect Linkage disequilibrium (LD) with adjacent SNP within the window 
size of 100kb (LD=1) were removed. Thus, a total of 33342 (Whole panel), 26262 (two-row 
subset), and 27583 (six-row subset) SNPs were left for calculation of kinship matrix and 
subsequent GWAS analysis. 
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Methods S3. Additional methodological details on statistical analysis of phenotypic data, 
computation of adjusted means, estimation of variance components, and heritability. 
 

Following a two-stage approach, in each environment (stage 1) with two replicates and coordinates 
of column and rows, a mixed model was used. We treated the genotype (to obtain BLUEs) and 
replicate as fixed effects and row and columns as random effects. Depending of the trial, the 
residual effects were also modelled using spatial methods that accommodate local or plot to plot 
variation (Table 1). 

After calculation of BLUEs for each trait from all seven environments, approximately 6% of  data 
mainly from six-row panel were missing  in the genotype-environment table (i.e, for three 
environments JHI16, JHI17, and LUKE17) . Removing accessions with missing phenotype will 
reduce the sample size and consequently will negatively impact the statistical inference and 
subsequent GWAS analysis (Rodrigues et al., 2014; Scutari et al., 2014; Dahl et al., 2016).  
Therefore, prior to subsequent analysis, and due to small fraction of missing phenotypes existed in 
our data, we performed imputation of missing cells in a genotype-by-environment table using the 
Expectation Maximization Additive Main Effects and Multiplicative Interaction (EM-AMMI) 
algorithm (Cauch and Zobel, 1990; Gauch 1992). We run the algorithm using five steps with the R 
script indicated as follows (Cauch and Zobel, 1990; Paderewski and Rodrigues, 2014):  At first, 
initial values were assigned to missing cells; secondly, the parameters of the AMMI model were 
estimated; third, the adjusted means were calculated according to principal components obtained 
from AMMI analysis; next, missing cells were filled based on adjusted means and ;finally, the steps 
from 2 to 5 were repeated if the Chebyshev distance between the missing value estimations in the 
two progressive iteration steps were greater than the assumed precision, otherwise the algorithm 
was stopped. We considered the results as reliable, as the relationships between the genotypes and 
environments for almost all traits were present. The important factor of the algorithm is to select 
appropriate number of principal components to be included in imputation process. We selected this 
number based on the minimum of the Root Mean Square Predictive Difference (RMSPD, Gauch 
and Zobel, 1990; Dias and Krzanowski, 2003). The appropriate number of principal components 
is the one with the smallest RMSPD value. The RMSPD values were calculated according to leave-
one-out cross validation (LOO-CV) procedure. Briefly, a single non-missing phenotype is hidden 
from the dataset and EM-AMMI is employed on training data (without missing). The procedure is 
repeated for each observation until no empty cell remained in the dataset. The RMSPD, is then 
obtained based on the difference between the hidden value and the value imputed by EM-AMMI 
(the predictive differences). We initially performed association analysis both on imputed data and 
the data after removing missing cells and found that, although the results were highly similar, the 
analysis with imputed phenotypes, in accordance with previous studies,  resulted in well-calibrated 
p-values due to increased sample size (Scutari et al., 2014; Dahl et al., 2016).  
 
In  stage 2, the resulting BLUEs were used for combined analysis using a mixed model to estimate 
variance components, broad-sense heritability, and subsequent GWAS. Variance components and 
heritability values were estimated under the general form of mixed model: 
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! = Χ# + Ζ& + ' 

where y is a vector of observations (phenotypic BLUEs across environments), X is the design 
matrix for fixed effects β (intercepts and environment), Z is the design matrix for random effects 
(genotypes). &	is the vector of random effects with &~*(,. .!)	and '~*(,. 0). The .! is between 
environment variance-covariance matrix and R is a diagonal block matrix where : 

.! = 2
3"# ⋯ 3"$
⋮ ⋱ ⋮
3$" ⋯ 3$#

7 and   0 = ⨁%&"
$ 0% 

The specification of variance structure is important in combined analysis. Traditionally the 
genotypic variances within all environments and the covariances between genotypic values for 
each pair of environments are assumes equal. We relaxed these assumptions for .!	using the mixed 
model allowing for unequal genotype variances and unique covariances for each pair of 
environments. Therefore we specified the unstructured covariance and heterogeneous variance 
(US) model in the multi-environment analysis (7 within-environment variances and 14 between-
environment covariances). The genotype means from combined multi-environment analysis 
(BLUPs) were then obtained for comparisons with single environments and for correlation analysis 
between traits. 

Using average covariance between genotypes across environments as the numerator and average 
variance of genotype means across environments as the denominator we estimated the heritability 
using the following formula: 

h2g=  (!""#)))))))
$!%
&

' *
(')*)$!%%#

' * *
'&∑

$,%
&
-

'
%.*

 

 where e refers to the number of environments, r refers to the number of replications within 
environment, 39%%, is the genotype covariance between environments i and i’,	3-%#  is the genotype 
variance within environment i, and 3.%#  is assumed to follow :%~*(,. 0)	in environment i and 0 is 
diagonal matrix calculated from squared errors of genotype BLUEs from stage 1. If the covariance 
between environments is higher, the heritability would be high accordingly. The variance 
parameters were estimated by maximizing the REML (Patterson and Thompson, 1971) log‐
likelihood function using the AI algorithm (Gilmour et al., 1995), implemented in the package 
ASReml-R (Butler et al., 2017). Pairwise correlations between traits based on genotype means 
estimated from each environment and across environments were calculated using R package 
ggcorrplot.  
 
Methods S4. Additional methodological details on multi-environment GWAS analysis. 
 

The MTMM can be written as follow: 
 

! = 	∑ <%=%$
%&" +	>#+(>	× l)?"+(>	× f)?#+ @ 
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Where ! is the vector of phenotypic BLUEs across environments, > is the vector of marker scores 
and <% 	is a vector having 1 for values belonging to the i’th environment and 0 otherwise. l is a 
vector with 1 for all the values measured in the same location, f is a vector with 1 for all the values 
measured in the same year, and @ ~*(,. .! 	⨂B + 0) is a random variable comprising of both 
residual and random genetic effects. The variance of @  is estimated from a variance decomposition 
model described above. A generalized least square (GLS) F-test was used to estimate the genome-
wide marker effects depending on what kind of QTL/SNP we were interested as follows: 
 
QF, This is the full model which tested against null model #=?"=?#=0 which identifies SNPs with 
both stable and interaction effects; 
 QM, To identify the main QTL which tests the model with ?"=?#=0 against the null model with 
#=?"=?#=0; 
QL, To identify the QTL × location interaction which tests the full model against the null model 
with ?"=0. 
QY: To identify the QTL × year interaction the full model tested against null model with ?#=0. 
QE: To identify any QTL × environment interaction effect where the full model is tested against 
null model with  ?"=?#=0. 
 
For marker-trait association, we didn’t use the Bonferroni adjustment due to its highly conservative 
nature and overcorrect for SNPs falling in high linkage disequilibrium that are not truly 
independent. Therefore, we approximated GWAS p-value significance thresholds according to the 
true number of ‘independent SNP tests’. This effective number of SNPs was estimated in software 
Haploview 4.2 (Barret et al., 2005) using r-square tag threshold estimated from LD decay analysis 
(see LD section) (Mackay, 1996). We also retained the associations with –log10 P ≥ 4 but lower 
than the significance threshold as suggestive QTLs. Haploview was also used to determine the 
extent of QTL intervals within the barley chromosomes where SNPs detected in the same haplotype 
blocks were considered as the same QTL. To estimate the proportion of phenotypic variance 
explained by an SNP, we were faced with either a single SNP or multiple SNPs in the region with 
high LD between them. In the case of first situation we calculated variance using the following 
formulae: CDE/ 	(%)	= 2pi(1-pi)β ×100 where β is the main effect derived from the GWAS model 
and pi is the frequency of minor allele at SNPi. In the case of QTL region with multiple associated 
SNPs, the phenotypic variance explained by the QTL was calculated as: 
CDE/ 	(%)	=	#∗

/H12#∗ ×100, where #∗ is a matrix with the elements #%∗ = 2pi(1-pi)#% and #∗/is 
the transposed matrix. D Is the LD-matrix (Pearson correlations) of the variants in the QTL region. 
To derive PVE (%) explained by QTL-by-Location and QTL-by-Year effects, the  #%was replaced 
by ?"  and ?# , respectively. Finally, the total phenotype variance was obtained by summing over 
main and interaction effects.  
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