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Abstract:
In cereals with hollow internodes, lodging resistance is influenced by morphological characteristics such as

internode diameter and culm wall thickness. Despite their relevance, knowledge of the genetic control of these
traits and their relationship with lodging is lacking in temperate cereals such as barley. To fill this gap, we
developed an image-analysis based protocol to accurately phenotype culm diameter and culm wall thickness
across 261 barley accessions. Analysis of culm trait data collected from field trials in 7 different environments
revealed genetic control as supported by high heritability values, as well as genotype-by-environment
interactions. The collection was structured mainly according to row-type, which had a confounding effect on
culm traits as evidenced by phenotypic correlations. In addition, culm traits showed strong negative
correlations with lodging but weak correlations with plant height across row-types, indicating the possibility
of improving lodging resistance independent of plant height. Using 50k iSelect SNP genotyping data, we
conducted multi-environment genome-wide association studies using mixed model approach across the whole
panel and row-type subsets: we identified a total of 192 QTLs for the studied traits, including subpopulation-
specific QTLs and several main effect loci for culm traits showing negative effects on lodging without
impacting plant height. Providing first insights into the genetic architecture of culm morphology in barley and
the possible role of candidate genes involved in hormone and cell wall related pathways, this work supports
the potential of loci underpinning culm features to improve lodging resistance and increase barley yield

stability under changing environments.

Introduction

Selection of desired plant architecture traits has represented a driving force in crop domestication and breeding.
In cereals, one of the most paradigmatic examples is offered by the widespread introduction of semi-dwarfing
genes in the modern varieties of the Green Revolution. When high fertilizer inputs were applied, traditional
varieties elongated and lodged, i.e. fell over leading to major losses in grain yields (Islam et al., 2007; Berry,
2013; Pifiera-Chavez et al., 2016). To avoid this problem, breeders developed new semi-dwarf varieties with
reduced plant height and sturdy stems, improving lodging resistance and crop production (Khush, 2001;
Chandler and Harding, 2013). Several semi-dwarfing genes are involved in the pathways of gibberellins (GA)
and brassinosteroids (BR), phytohormones which play a major role in stem elongation (Sasaki et al., 2002;
Kuczynska et al., 2013). Examples of alleles deployed in breeding include loss-of-function mutations of the
rice (Oryza Sativa) semidwarf (SD1) locus encoding a OsGA200x2 involved in GA biosynthesis (Sasaki et al.,
2002). In wheat (Triticum aestivum L), mutants of Reduced Height-1 (Rht) genes are responsible for the
expression of mutated forms of DELLA GA signalling repressor proteins (Peng et al., 1999). In barley
(Hordeum vulgare), semi-dwarf 1 (sdwl) and semi-brachytic 1 (uzul) mutant alleles were widely used in
breeding programs (Kuczynska et al., 2013; Xu et al., 2017). Barley Sdw/! encodes a GA 20-oxidase (like rice
SD1), while a missense mutation in the BR receptor gene HvBRI! causes the uzu phenotype (Chono et al.,

2003; Kuczynska and Wyka, 2011). Despite providing yield gains, some semi-dwarfing alleles have been
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associated to negative pleiotropic effects such as temperature sensitivity, late flowering and reduced grain
quality (Rajkumara, 2008; Okuno et al., 2014).

Changes in climatic conditions are predicted to increase intensity and frequency of storms, hail and heavy rains
(Lobell et al., 2011), the major causes of lodging impacting crop productivity (Berry and Spink, 2012; Berry,
2013). In cereals such as rice, wheat and barley, the stem or culm consists of alternating solid nodes and hollow
internodes. Three different types of lodging are known: culm bending, culm breaking and root lodging (Hirano
et al., 2017a). Breaking-type lodging is more serious than bending type because bent culms are still able to
transport photosynthetic assimilates from the leaves to the panicles, which is necessary for plant recovery and
grain filling. Since cereal height cannot be reduced below a certain point, improvement of lodging resistance
and therefore yield requires identification and use of other important traits (Dawson et al., 2015; Hirano et al.,
2017a; Shah et al., 2019).

Barley is one of the most important crops worldwide. Due to its intrinsic plasticity and adaptability, barley can
be cultivated in areas not suited to maize and wheat, especially where the climatic conditions are cool and/or
dry. Barley varieties can be divided into two-row and six-row types. In two-row barley, the central spikelet of
each triplet on the rachis is fertile, while the other two are reduced and do not develop. Mutations of the VRS!
gene determine the fertility of these lateral spikelets to produce six-row barleys (Komatsuda et al., 2007), and
have pleiotropic effects on a number of morphological traits (Liller et al., 2015).

Barley production can be lowered from 4 to 65% by lodging (Jedel and Helm, 1991; Sameri et al., 2009).
While agricultural practices play an important role (Cai et al., 2019), the occurrence of culm bending/breaking
lodging events is determined mainly by two factors: 1) the force exerted on the culm (e.g. wind-induced forces
or panicle weight) (Pinthus, 1974) and 2) the mechanical resistance of the stem determined by composition
and morphology (Samadi et al., 2019).

For example, in cereals with hollow internodes such as barley and rice, lodging resistance is influenced by
morphological characteristics such as internode diameter and culm wall thickness (Samadi et al., 2019; Zhang
et al., 2020). Wider culm diameter and thickness were shown to improve lodging resistance e.g. in wheat
(Zuber et al., 1999). Also a stronger culm may help to improve yield by allowing increased nutritional inputs.
Despite the relevance of these traits, knowledge of the genetic control of culm diameter and culm wall
thickness is limited to few studies in rice. A rice mutant with larger stem diameter and thickness called smos/
(small organ size) exhibits altered cell wall composition and is less prone to lodging (Hirano et al., 2014). The
SMOS]1 gene encodes an APETALA2 (AP2)-type transcription factor (Aya et al., 2014; Hirano et al., 2014)
that interacts with a GRAS transcription factor encoded by SMOS2/DLT to mediate cross-talk between auxin
and BR signalling and regulate various culm morphology features (Hirano et al., 2017b). In rice cultivar
Habataki, a variety with improved yield and large culms, two QTLs associated with culm architecture:
STRONG CULM1 (SCM1) and SCM2/APO1 (ABERRANT PANICLE ORGANIZATIONI) were respectively
identified on chromosome 1 and chromosome 6 (Ookawa et al., 2010). Two additional SCM loci were
identified from the high yielding and lodging resistant cultivar Chugoku 117, including SCM3 which was
shown to be allelic to the rice TEOSINTE BRANCHED1 (OsTB1)/FINE CULMI (FCI) gene (Minakuchi et
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al.,2010; Yano et al., 2015; Cui et al., 2020). Recently, the mediator subunit gene OsMED4_1 was uncovered
as a new player in culm and lateral organ development through NARROW LEAFI (NALI) gene regulation
(Malik et al., 2020).

The lack of efficient and accurate phenotyping protocols has been a limiting factor in further genetic dissection
of culm architecture for example through exploration of wider genetic diversity in germplasm collections. In
this context, different solutions emerged in recent years relying on high-throughput phenotyping methods
based on the use of new image analysis tools with advanced software and special platforms (Agnew et al.,
2017).

So far little is known about the genetic architecture underlying barley culm development and morphology.
Aims of this work were to explore natural genetic diversity for culm architecture traits in barley, analyze their
correlations with plant height, lodging and phenology, and identify associated genomic regions and candidate
genes through multi-environment genome-wide association studies (GWAS) on a collection of 261 European
accessions. To these ends, we developed an image-analyses based protocol to accurately phenotype culm
diameter and culm wall thickness and integrated the resulting data with genome-wide marker data from 50k

SNP iSelect genotyping (Bayer et al., 2017).

Results

Diversity, population structure and linkage disequilibrium of the barley panel

The barley panel considered in the present study is a collection representing the diversity of European barley
from the 20th century and was chosen based on previous geographic and genetic diversity analysis (Tondelli
et al., 2013). This panel was supplemented with 57 six-row and five two-row Spanish landraces representing
the ecogeographic diversity of barley cultivation in the Iberian Peninsula. Eight of the 269 genotypes did not
match with their phenotypes and were discarded from the analyses resulting in a total of 261 barley cultivars
and landraces comprising 165 two-row and 96 six-row barleys being considered in this study (Supplemental
Table S1). The 50k SNP iSelect genotyping of the collection yielded a set of 33342, 26262, and 27583
polymorphic markers for the whole, two-row, and six-row panel, respectively (Supplemental Table S2;

Supplemental Figure S1).

Genetic structure of the panel was investigated using Principal Component Analysis (PCA) on a pruned subset
of markers to reduce the effect of linkage disequilibrium (LD) on population structure. PCA indicated the first
two PC scores explained, respectively, 13% and 8.5% of total variation (Supplemental Figure S2 A). The first
PC could distinguish six-row from two-row barleys, while the second PC axis was attributed to separation of
landraces from cultivars within six-row barleys. In addition, PCA revealed the wider level of genetic variation
within six-row barleys, although the proportion of two-row barleys was higher in the panel.

As a prerequisite for GWAS, LD was calculated for each chromosome using the squared correlation coefficient

between marker pairs, r’, after correcting for genomic relatedness. The LD decay was visualized by plotting r*
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values against the physical distance in Mb. Considerable variation was observed across the genome among
whole panel and row-type subsets, reflecting breeding history and effect of selection (Supplemental Figure S2
B-D). The level of LD decay in the two-row panel at the critical 1* threshold was higher (LD = 1.4 Mb)
compared to LD decay observed within the six-row panel (LD = 0.6 Mb), with slightly higher LD in the whole
panel (LD = 0.8 Mb).

Phenotypic variation, trait heritability and correlations

The barley collection was grown under field conditions in seven environments including four locations and
two years, 2016 and 2017 (Supplemental Table S3). Field sites were chosen to represent contrasting
environments in southern Europe (Italy, CREA; Spain, CSIC) and northern Europe (Scotland, JHI; Finland,
LUKE). Regarding culm traits, we focused on culm features reported in the literature as critical for lodging
resistance in hollow cereals (Ookawa et al., 2010). Because of the great plasticity of the first internode, we
decided to focus on the second basal internode as a critical point for lodging resistance and a good descriptor
of culm characteristics (Pinthus, 1974; Berry et al., 2004). For all trials outer culm diameter (OD), inner culm
diameter (ID), culm thickness (TH) were quantified using a newly developed image analysis-based protocol
(Figure 1; Supplemental Methods S1). In order to investigate the correlations between culm traits and some
agronomic traits, we also included heading (HD), plant height (PH), and lodging (LG) (Supplemental Table
S4). We further derived section modulus (SM), the ratio between OD and TH (herewith designated as stiffness,
ST) and the ratio between OD and PH (stem index, SI) as indexes reflecting physical strength of the culm
(Supplemental Table S4; Mulsanti et al., 2018; Sowadan et al., 2018). For trial CSIC16 it was not possible to
collect lodging data. The best linear unbiased predictions (BLUEs) were calculated for the downstream

analyses.

The single and across environment means, standard deviations (SDs), ranges, minimum, and maximum values
are indicated in Supplemental Table S5. Considerable phenotypic variation was present both within and across
environments. In general, for all traits higher mean values were observed for Southern environments. CSIC16
had the highest values for almost all culm traits in the whole panel, and both two-row and six-row panels.
Highest values for HD were recorded in the CREA17 trial, while CREA16 had the highest mean value for PH
in the whole panel and also two-row and six-row panels.

Heritability values were calculated both in single and combined environments in the whole panel and both
two-row and six-row subsets (Table 1; Supplemental Methods S3). In most environments, analysis of variance
correcting for field trends i.e. the correlation between residuals from neighboring plots using the first-order
autoregressive model (AR1), improved the precision compared to base model fitting. High heritability values
(>50%) were obtained for most traits except for TH and ST, although these traits showed improved heritability
in the combined environment analysis compared to single environment. Heritability estimates varied among
environments indicating the presence of heterogeneity of genotype variance due to genotype x environment

interactions. This was especially evident for TH and ST due to their relatively low heritability values.
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We further compared phenotypic means according to row-type and germplasm source as these were important
factors shaping population structure within the panel (Supplemental Figures S2 A, S3). Results showed that
two-row landraces and six-row cultivars had latest and earliest heading, respectively, in southern trials, while
two-row cultivars were latest heading in northern trials. In these comparisons however, it should be noted that
only 6 two-row landraces were included in our collection, all from Spain, providing limited representation of
this category. PH was highly variable across environments and was mainly highest for six-row landraces in
southern trials, but this was highest for mainly two-row landraces in northern locations. LG was lowest in all
environments in two-row cultivars and highest in six-rowed landraces. For culm morphology, six-row cultivars
showed highest values of OD, ID, SM, SI, and TH, whereas two-row landraces were lowest almost in all
environments. ST was however highly variable both within and between northern and southern trials. Based
on phenotypic values obtained from combined analysis of environments, higher values were observed for culm
morphological traits in the cultivar gene pool, especially in six-row cultivars, but two-row cultivars were on
average less susceptible to lodging. Generally, landraces showed higher values for PH and HD.

Together, these analyses show that our germplasm panel harbors significant genetic variation for culm-related
traits and suggest the existence of complex genotype x environment interactions. The obtained datasets provide
and ideal starting point for investigating the genetic architecture of barley culm morphology under contrasting

environmental conditions.

In order to gain insight into the relationships among different traits, pairwise correlations were calculated based
on phenotype values estimated both within single and combined analysis of environments (Fig.2 A,
Supplemental Figures S4-S6). Germplasm source and row-type were also considered to study their relationship
with the different traits. These values were also calculated within two-row and six-row panels to control for
row-type. In the whole panel, row-type showed positive correlations with LG, PH and culm morphological
traits, but negatively correlated with ST, SI, and HD. Germplasm source (cultivars coded as presence) had
negative correlations with PH, TH, and LG and positive correlations with OD, ID, SI, and ST, meaning that
cultivars were shorter and less prone to lodging with larger culm diameter compared to landraces. However,
correlation between germplasm source and HD was dependent on region with positive values in northern
environments and negative values in southern sites. Results show that in the whole panel strong correlations
were present between culm morphological traits. Similar results were also obtained in single environments
(Supplemental Figures S4-S6). Except for TH, culm traits were negatively correlated with LG and HD, but
positively correlated with PH. As expected, LG was positively correlated with PH. Taken together, correlation
analyses on the whole panel show that in our collection six-row lines tended to have wider and thicker culms
and were overall more prone to lodging compared to two-row. While a confounding effect of row-type may
account for the relatively weak correlations between LG and culm diameter and thickness, it should be also
noted that in our germplasm collection landraces are more represented in the six-row subset compared to the
two-row subset: this may be a confounding factor contributing to observed differences between the row-type

subsets.
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In order to explore the relationships between culm traits and lodging, excluding the effect of row-type, further
analyses were conducted within row-type subsets.

In the two-row panel, correlations between culm traits were generally maintained and stronger negative
correlations were observed between culm morphological traits and lodging. Some discrepancies were also
observed compared to the whole panel, e.g. the negative relationship between TH and lodging in contrast to
the positive correlation between these traits in the whole panel, which was possibly due to confounding effects
from six-row landraces (thick culms and more prone to lodging). Furthermore, while positively correlated with
lodging, PH was environment-dependent and did not show strong correlations with culm morphology, e.g. in
southern environments the relationship was mainly weakly negative and in northern weakly positive
(Supplemental Figure S5). HD was also mainly positively correlated with culm morphology.

In the six-row panel, culm morphological traits had the strongest interrelationships. HD was also in agreement
with whole panel with stronger negative correlations with culm morphology, and in contrast to the two-row
panel, it was positively correlated with lodging. PH had negatively weak relationship with culm traits with
stronger positive correlations in northern trials and negative correlations in southern trials (Supplemental
Figure S6).

Together, these results highlight the potential of culm morphological traits as interesting targets for
improvement of lodging resistance in barley. In particular, the general lack of correlation within row-type

subsets suggests that culm diameter is largely controlled by distinct genetic factors with respect to PH.

Multi-environment genome-wide association mapping

We performed GWAS using multi-trait mixed model (MTMM) proposed for multi-trait or multi-environment
association mapping to detect quantitative trait loci (QTLs) underlying culm morphological traits,
incorporating kinship estimated from marker data and population structure using principal components (Korte
et al., 2012). This method allows to identify five types of marker-trait associations: markers with main effects
stable across environments (QM), markers with main but also significant interaction effects (QF), marker-by-
environment interaction effects (QE), marker-by-location interaction effect (QL), and marker-by-year
interaction effect (QY) (see Supplemental Methods S4 for more details). GWAS of multi-environment trials
were performed for the whole panel and also for two-row and six-row subsets separately. The experiment-wise
GWAS significance threshold was determined according to the actual number of independent SNP tests as
estimated in Haploview software using the tagger function and the r* threshold estimated from LD decay
analysis. These threshold values were found to be -logio (P) > 4.94, -logio (P) > 4.75, and -logio (P) > 5.02 for
the whole panel, two-row, and six-row panels, respectively. However, the p-values with -logio (P) > 4 were
also retained as suggestive QTLs.

A total of 732 marker-trait associations were detected, and the associated SNPs with -logio (P) > 4 in close
vicinity were grouped into a single QTL based on the average LD decay, due to variable LD blocks for

individual chromosomes and thus a variable decay across the chromosomes (Supplemental Figure S2 B-D).
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This allowed us to converge marker-trait associations into 192 QTLs (93 single SNPs and 99 SNP clusters)
across the whole, two-row and six-row panels (Supplemental Table S6). From these loci, 109 were trait-
specific and the remaining were co-associated to at least two traits (Fig. 2B). PH with 36 QTLs and OD with
four QTLs were the traits with the maximum and minimum number of specific QTLs. Most QTLs were co-
associated between culm morphological traits. Among the highest number of co-associated QTLs, 13 QTLs
were common between SM and OD, 9 QTLs between PH and SI, 9 QTLs between ID, OD and SM, and 6
QTLs were commonly associated with ID and OD. In agreement with a largely independent genetic control,
the lowest number of co-associated QTLs were identified between PH and culm morphological traits. In
addition, 66, 24, and 45 QTLs were specific to the whole panel, two-row, and six-row panels, respectively

(Fig. 2C). Other QTLs were in common between at least two panels.

Co-association network analysis for the 192 QTLs revealed many co-association modules across the whole
panel and the row-type sub-panels, each of which contained loci from one or more genomic regions distributed
on different chromosomes (Fig. 3). The co-association module is a cluster of one or more loci that are
connected by edges. The edges connecting two loci have similar associations with the phenotype with a
distance below the threshold. Loci in different clusters are more dissimilar than to those in the same group and
would not be connected by edges in a co-association module. In other words, associated nodes with edges
appeared in close proximity, while weakly associated nodes appear far apart. One common feature that can be
clearly derived from this visualization was that PH and SI were in closer proximity across all panels and nodes
for culm morphological traits were closer together and far apart from PH. There were however some exceptions
especially for ST and TH that exhibited higher dispersion. Another interesting observation is that loci with the
same type of QTL effect appeared closer.

Collectively, multi-environment GWAS results identified loci controlling culm morphology independent of

plant height, with some QTLs showing stable effects across environments.

Identification of QTLs with main and full effects and putative candidate gene
exploration

In Table 2, we listed the most significant QTLs associated with the studied traits with QM or QF effects and
potential candidate genes. The list of all 192 QTLs with complete details can be found in Supplemental Table
S6 and synthetic view of genomic positions of QTLs along with the circular heatmap can be found in Figure
4 and Supplemental Figure S7. Promising candidate genes were selected based on literature searches, after
excluding hypothetical genes and transposable elements. Marker-trait associations were listed with progressive
numbering along chromosomes: as an example of the 93 loci detected by single SNPs, SNP1-1H is the first
associated locus on chromosome 1H. The 99 QTLs detected by SNP clusters are designated as QTLs, e.g.
QTL10-1H.

Out of a total of 31 QTLs on chromosome 1H, the most significant were SNP4-1H, SNP5-1H, SNP7-1H,
SNP8-1H, and QTL11-1H. SNP7-1H (pos: 262.13 Mb) was associated with both OD and SM in the whole


https://doi.org/10.1101/2022.03.30.486427
http://creativecommons.org/licenses/by-nc-nd/4.0/

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.30.486427; this version posted April 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

panel and located in close proximity with candidate gene HvCesA4/HvClsF4, encoding a cellulose synthase
protein previously associated to culm strength in barley (Burton et al., 2010).

For chromosome 2H, 19 QTLs were detected. QTL1-2H associated with TH (six-row panel) explained a high
proportion of phenotypic variance. We found that QTL1-2H (pos: 1.51 — 1.74 Mb) harbors the ortholog of rice
OsSDG725 encoding a histone H3K36 methyltransferase and playing an important role in rice plant growth
and development (Sui et al., 2012).

For chromosome 3H, 27 QTLs were identified including QTL19-3H (pos: 570.92 - 571.97 Mb) which is
associated with both PH and SI across all panels and spans the well-known plant height gene Sdw/ (Xu et al.,
2017) found in many elite European 2-row spring barley cultivars.

On chromosome 4H, a total of 23 QTLs were identified. A particularly interesting region with QM effect was
QTL17-4H (pos: 586.24 -586.29 Mb) associated with ID, OD, and SM in the two-row panel and explaining at
least 6% of the phenotypic variance. This QTL was found to harbor a homolog of rice CCD$§-d (carotenoid
cleavage dioxygenase). QTL18-4H was detected in both the whole panel (ID, OD, SM, TH) and two-row panel
(ID, OD, SM), explaining between 2.74% to 7.1% of variance (pos: 589.66 Mb — 590.52 Mb). SNP10-4H was
associated with SM and located within a pseudo-response regulator gene (470.68 Mb). Also, about 0.8 Mb
from this marker we noted a homolog of TRANSTHYRETIN-LIKE PROTEIN (TTL), a gene that was previously
associated with stem circumference in sorghum (Mantilla Perez et al., 2014). OD and ID were associated with
SNP16-4H (481.27 Mb), 0.5 Mb from a homolog of rice BIG GRAINI (Liu et al., 2015).

On chromosome 5H, 34 QTLs were detected, including three loci with promising associations. QTL1-5H was
identified in two-row panel as associated with ID, OD, SM, SI (pos: 0.87 - 2.21 Mb) and contained the rice
homolog of OsCCD1 (Ilg et al., 2009). QTL2-5H predominantly associated in the six-row panel with PH, ST,
TH and in the whole panel for TH (pos: 3.33 — 5.17 Mb) and explained more than 8% of variance for TH and
ST in the six-row panel and harbors several uncharacterized genes. SNP32-5H (pos: 553.95 Mb) was
associated with OD, SI, and SM in both the six-row and the whole panel.

For chromosome 6H, in total 24 QTLs were identified, among them there were two SNPs with promising
effect. SNP10-6H associated with both PH and SI at position 242.933 Mb located within a gene encoding a
ubiquitin carboxyl-terminal hydrolase closely related to rice Large Grain 1 (LG1/OsUBP15), a gene involved
in seed size and plant height (Shi et al., 2019). SNP17-6H (512.71 Mb) was associated with SM and TH and
falls within an uncharacterized gene encoding a RING/U-box superfamily protein. A large QTL region,
QTL13-6H, was associated with PH in the six-row panel (pos: 428.84 — 435.12 Mb) and contains several
uncharacterized genes.

On chromosome 7H, a total of 34 QTLs were detected including six QTLs of special interest. QTL3-7H, was
associated with ST in the whole panel, and PH, SI, and ST in the two-row panel (pos: 12.92 Mb — 14.59 Mb).
The region contains several candidates including a gene encoding a GRAS transcription factor orthologous to
rice DWARF AND LOW-TILLERING (DLT/SMOS?2), that can directly interact with SMALL ORGAN SIZE1
(SMOS1/RLAI), and RLAI plays as an integrator with both OsBZR [ and DLT to modulate their activity (Tong
et al., 2009; Tong et al., 2012; Hirano et al., 2017b; Qiao et al., 2017).
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QTLS5-7H was associated with ID, OD, and SM in both whole and six-rows panels and also with ST in the six-
row panel (pos: 21.64 —22.45 Mb). SNP16-7H (pos: 265.29 Mb), a hotspot SNP associated with ID, OD and
SM in the six-row and whole panels. Another noteworthy QTL was QTL27-7H, associated with PH, SI in the
whole panel, OD, PH and SM in the six-row panel, and SI in the two-row panel (pos: 570.827 Mb — 572.61
Mb). The region contains HvD27, the barley ortholog to rice strigolactone biosynthesis gene DWARF27
encoding beta-carotene isomerase (Lin et al., 2009). QTL30-7H (pos: 597.44 Mb — 600.25 Mb) was associated
with SI, SM, and TH and contains several genes including a patatin encoding protein gene highly related to
DEP3, arice gene previously shown to affect culm morphology and anatomy as well as panicle architecture
(Qiao et al., 2011). Finally, QTL34-7H (pos: 628.34 Mb — 633.84 Mb) was associated with TH in the two-row
panel and with ID, OD, and TH in the whole panel. This locus had also QL effect with SM both in the six-row
and whole panel and contains HvDIM encoding Delta(24)-sterol reductase previously shown to act in the

brassinosteroid pathway in barley (Dockter et al., 2014)).

Identification of QTLs with interaction effects

Besides the above-mentioned QTLs with main and full effects, multi-environment GWAS uncovered highly
significant QTLs with interaction effects. QTL26-1H (pos: 495.79 — 497.02 Mb) was associated with SI in the
two-row panel. QTL6-2H (pos: 22.37 — 23.99 Mb) associated with SI and PH (whole, two-row, and six-row
panels) spans the well-known barley PPD-HI gene (Supplemental Table S6), involved in photoperiod
responsive flowering (Turner et al., 2005). The genomic region of QTL15-3H (pos: 499.61 — 499.87 Mb),
associated with ID in two-row subset, hosted uncharacterized genes. QTL34-5H (pos: 594.17 — 596.71 Mb)
was associated with ID, OD, and SM in the whole and six-row panels. This QTL showed QE and QF effects
in the whole panel and six-row panel, respectively, and contains a barley Gibberellin 20 oxidase, HvGA20o0x1,
which has recently been associated to straw breaking and flowering time in barley (Goransson et al., 2019; He
et al., 2019). QTL7-7H for PH was found across all panels and located in close proximity to the barley
HvFTI/VRNH3 gene. It showed QL effect in the whole and two-row panels and QF effect in the six-row panel.
In barley, HvF'TI expression requires the active version of PPD-HI to promote flowering under long day

conditions (Hemming et al., 2008). Currently there is no report on its effect on plant height.

Allelic comparison of SNPs/QTLs with QM/QF effects for lodging and plant height

In order to appraise the effects of the QTLs on lodging susceptibility, we focused on QTLs with QM and QF
effects (Supplemental Figures S8 and S9, respectively, Supplementary Table S6). Allelic comparisons for these
loci indicated that depending on the trait and sub-population their effect was highly variable. As expected,
QTLs for PH and SI showed significant differences for both PH and LG. With respect to culm morphology
QTLs, effects on PH and LG were variable ranging from no difference to significant differences, including
some QTLs that significantly affected both LG and PH. However, most QTLs associated with culm
morphology had no effects on PH in the whole panel, but showed significant effects on LG. Such types of

QTLs were also detected in both six-row and two-row panels. For example, the QTLs associated with ID, OD,


https://doi.org/10.1101/2022.03.30.486427
http://creativecommons.org/licenses/by-nc-nd/4.0/

366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

384
385

386
387

388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.30.486427; this version posted April 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

and SM -SNP8-1H, QTL11-1H, QTL11-2H, QTL2-3H, SNP16-4H, QTL16-5H, QTL5-6H, QTL26-6H,
QTL2-7H, SNP26-7H- affected lodging without any effect on PH in the whole panel. In two-row, some
examples are QTL17-4H, QTL18-4H, QTL10-5H, and QTL16-5H. Finally, for six-row panel SNP9-1H,
SNP14-4H are among the QTLs affecting lodging without any effect on PH. Considering loci with main effects
(Supplemental Figure S8), out of 20 loci associated to OD, 11 had a significant impact on LG without any
effect on PH (8 in the whole panel, 1 and 2 in the six-row and two-row, respectively), and out of 25 loci
detected for SM, 16 significantly affected LG without impacting PH (14 in the whole panel, 2 in two-row):
nine of these QTLs were shared between OD and SM (SNP7-1H, SNP8-1H, QTL11-1H, QTL11-2H, QTL2-
3H, QTL17-4H, QTL18-4H, QTL16-5H, SNP32-5H). Interestingly, QTL18-4H was detected in both the
whole panel and the two-row panel also for TH, indicating this locus as an interesting target for manipulation
of culm morphology and lodging resistance. However, fewer loci associated with TH and ST had effects on
LG. We thus focused on OD, ID and SM for more detailed analyses of nine SNPs associated with these traits
in the whole panel: SNP7-1H, SNP8-1H, SPN5-3H, SNP10-4H, SNP11-4H, SNP16-4H, SNP32-5H, SNP21-
7H and SNP26-7H. In all cases, alleles increasing culm diameter (OD, ID) and/or SM had negative effects on
lodging, without affecting PH (Table 3).

In conclusion, results from these analyses support the usefulness of SM and culm diameter as parameters for
selecting alleles to improve lodging resistance and provide chromosomal positions and markers associated to

promising loci.

Discussion

In the present study, we investigated natural genetic variation for morphological characteristics of the barley
culm and their relationships with lodging and agronomic traits. To date, no genetic studies have used image-
based phenotyping to investigate the genetic architecture of culm morphology in barley. For this reason, we
developed a robust method to extract quantitative measurements of culm diameter and thickness from images
of culm sections, showing that significant phenotypic variation exists within our barley germplasm panel with
a major contribution of genetic variation to these traits as supported by medium-high heritability values.

Using PCA we showed that row-type and germplasm source are the major factors driving population structure
of the panel. In addition, no evidence of strong admixture between row-type groups was observed in PCA.
This is consistent with previous studies suggesting that breeders largely focused within the six-row and two-
row gene pools in developing new varieties therefore limiting the exchange of genetic variation between these
major row-types, despite some cases of targeted introgression (Hernandez et al., 2020). Increasing seed number
per spike was probably the reason for the human selection of recessive allele at RS/ into the barley gene pool
during domestication (Komatsuda et al., 2007). On the other hand, barleys most commonly grown in Europe
are two-row cultivars, which are preferred for malting because of uniformity in seed size: this resulted in
limited genetic diversity compared to the six-row cultivars. This variation in seed size is due mainly to the
allelic variation at the INT-C/VRS5 gene between row-types (Ramsay et al., 2011). Row-type genes have

pleiotropic effects on other traits, as well-known for tillering (Liller et al., 2015). In our study, row-type subsets
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exhibited clear differences also for some culm morphological traits, e.g. six-row barleys showed higher mean
values of TH and SM compared to two-row barleys. Relationships between row-type and the studied traits are
also evident from positive correlations with PH, OD, ID, SM, TH, LG and negative correlations with HD, ST,
SI.

Correlation results showed that although plant height is important for lodging, culm characteristics also play
an important role in lodging resistance. We observed strong positive correlations among culm traits, as well as
negative correlations between culm traits and lodging across the whole and row-type panels. On the other hand,
culm morphological traits showed weak (two-row) and even no (six-row panel) correlations with plant height.
This suggests opportunities for genetic improvement of lodging resistance through manipulation of culm
morphology independent of plant height. Generally, relationships among traits were similar across row-type
subpopulations, sometimes with different magnitudes: for example, correlation between LG and OD was -0.52
and -0.69 in two- and six-row subpanels, respectively. Interesting correlations specific of the six-row subset
were detected between LG, PH and HD with six-row landraces being late heading, taller and more prone to
lodging compared to six-row cultivars: these landraces also had lower values of OD, ID and SM, therefore
combining different unfavorable traits for lodging susceptibility. It should be noted that these contrasting
patterns may be due to the fact that the six-row cultivars were mainly early flowering lines of Scandinavian
origin, while the six-row landraces were of Mediterranean origin. Based on these observations, it would be
interesting to further explore the genetic relationships between heading, plant height and culm morphological
traits in a wider sample of six-row barleys.

Based on these results, we analyzed phenotypic variation and run mixed model GWAS in the whole panel, as
well as row-type subgroups independently in order to: i) minimize the confounding effects of row-type on
association analyses; ii) understand if distinct loci are segregating in row-type subpopulations and thus
different regulatory networks are involved in genetic control of the studied traits. The use of mixed model in
GWAS is a well-established approach to efficiently reduce false positive associations for most traits, but it
may also mask true signals that are correlated with population structure. As a result, loci that distinguish barley
subpopulations are often difficult to detect using mixed model. To circumvent this problem, many association
mapping studies have analyzed each subpopulation separately and successfully identified loci specific to each
subpopulation. In our study, 120 marker-trait associations were detected in the whole panel, including 21 and
27 that were shared with the two-row and six-row panels respectively. Six associations were detected across
all three panels. In addition, we uncovered 24 and 45 QTLs specific for two- and six-row panels, supporting
the relevance of running GWAS on row-type subsets. We also noticed that for some QTLs detected across
both row-types, allele frequencies and peak markers differed between the row-type subsets, resulting in
opposite effects of minor alleles on the same trait. Taking as an example the PH locus QTL19-3H spanning
the well-characterized Sdw1 gene, the peak marker in the six-row panel was JHI-Hv50k-2016-205354 with the
minor allele showing a negative effect on PH and positive effect on SI, in contrast to the effect of JHI-Hv50k-
2016-204992, the peak marker in the two-row panel. Likewise, QTL6-2H containing PPD-HI had negative

effects on PH in the six-row panel while the effect in two-row was the opposite. This indicates that causative
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variants in these major genes have different frequencies and are associated to different markers in row-type
subsets. Taken together, comparative analysis of results from the whole panel and row-type subsets indicates
the need to duly account for population structure in dissecting culm morphological traits and carefully analyze
effects of potentially interesting markers for breeding in relation to row-type population. This is also relevant

when considering crosses between row types in the context of plant breeding.

While in our GWAS analysis we observed numerous trait-specific QTLs, we also observed QTLs that were
associated with multiple traits. In addition, in the same QTL region, the peak marker was sometimes different
depending on the panel. For example, QTL34-7H was associated with OD, ID, SM, TH in the whole panel,
with SM in the six-row panel, and with TH in two-row panel (QF effect, Supplemental Figure S8). The peak
markers for TH were also different between the whole panel and the two-row panel, while the peak marker for
SM was common between six-row and the whole panel. This QTL harbors the HvDIM gene encoding the
barley A5-sterol-A24-reductase, an enzyme involved in the brassinosteroid biosynthetic pathway (Dockter et
al., 2014). A link between brassinosteroids and culm thickness is supported by studies of the rice SMOSI and
SMOS?2 genes, encoding transcription factors of the AP2 and a GRAS family, respectively, that interact to
integrate auxin and brassinosteroid signaling: smos/ and smos2 single mutants as well as smos /-smos2 double
mutants show increased culm thickness (Hirano et al., 2017b). Classical semidwarf barley mutants brh.af,
brhi4.q, brhi6.v, ert-u.56, ert-zd, and ari.o were shown to harbor mutations in the HvDIM gene (Dockter et
al., 2014): these mutants have reduced plant height and are more resistant to lodging compared to respective
wild type (Dahleen et al., 2005), but their culm morphological traits have not been described. In our work a
marker within this region showed weak association with PH (JHI-Hv50k-2016-516979, p value=0.003),
suggesting HvDIM as a possible candidate for QTL34-7H. However, there are other potential candidates in
this genomic region that have been reported as members of glycosyl transferase (GT) gene family, such as
cellulose synthase genes of the GT2 family that influences culm cellulose content (Houston et al., 2015). Given
the significance of associations between this genomic region and multiple culm morphology traits, it would be
interesting to further dissect this QTL to discriminate if such effects are the result of pleiotropy or closely
linked genes (local LD) and identify the underlying gene(s)/alleles combining association mapping and
biparental fine mapping.

Taking advantage of data from seven different environments, multi-environment GWAS (Korte et al., 2012)
enabled us to disentangle QTLs with main effects stable across environments (QM) from QTLs with
environment-dependent effects (location and/or year). An example of a QTL with a significant interaction with
location is QTL6-2H, which was detected for PH across all panels. This genomic region contains the well-
known PPD-H]I gene (Turner et al., 2005), a major regulator of barley flowering in response to photoperiod,
that was shown to have pleiotropic effects on several agronomic traits including yield, leaf size and plant height
(Karsai et al., 1999; Digel et al., 2016). With respect to lodging, alleles with stable phenotypic effects across
environments are preferable for breeding under changing climatic conditions. For this reason, we decided to
focus our attention on culm morphology QTLs with main effects, showing significant negative impact on

lodging without affecting PH: for nine SNPs detected in the whole panel, alleles increasing culm diameter
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and/or SM consistently reduced lodging (SNP7-1H, SNP8-1H, SNP5-3H, SNP10-4H, SNP11-4H, SNP16-4H,
SNP32-5H, SNP21-7H and SNP26-7H). We scanned regions adjacent to these SNPs + 0.8 Mb (i.e. the
genome-wide LD decay estimated for the whole panel) in order to search for potential candidate genes. For
example, cellulose synthase gene HvCsiF4 (1H, 261.4 Mb) is located near SNP7-1H (262.1 Mb): a
retroelement insertion within this gene was previously associated with the fragile stem?2 (fs2) mutant phenotype
in barley, suggesting a link between stem strength and genes involved in cellulose content (Burton et al., 2010).
Since we analyzed culm morphology traits in straw culm sections, cell wall composition and cellulose content
are likely to impact the morphological features considered in our work. Another example is SNP32-5H (5H,
553.9 Mb): the adjacent region hosts several possible candidate genes, including HvMND1 (552.9 Mb), which
encodes a N-acetyl-transferase-like protein recently shown to regulate barley plastochron and plant
architecture (Walla et al., 2020).

Beside these SNPs, additional QTLs were identified as associated with culm features and having impact on
lodging, independent of PH. Among them, QTL17-4H had main effects on ID, OD and SM and contained a
carotenoid cleavage dioxygenase 8 (CCDS) gene located in close proximity to the peak marker. A recent
phylogenetic study showed that rice has four CCDS8 genes (CCD8-a, -b, -c, and -d), while Arabidopsis has
only one: both Arabidopsis CCDS8 and rice CCDS-b are involved in the biosynthesis of strigolactones,
phytohormones that control lateral shoot growth, and affect stem thickness at least in some species (reviewed
in Chesterfield et al., 2020). The barley ortholog of OsCCDS-b is located on chromosome 3H, while the CCDS8
gene associated with QTL17-4H is more closely related with OsCCD8d, whose function has not been
characterized yet (Priya and Siva, 2014). An alternative candidate gene for this QTL may be MDP1, encoding
a MADS box transcription factor implicated in brassinosteroid signaling (Duan et al., 2006).

While validation of these potential candidate genes will require more detailed analyses, our results provide the
first insights into the genetic architecture of culm morphology in barley and its relevance for lodging.
Utilization of loci underpinning culm features may open new avenues to improve lodging resistance and

increase barley yield stability under changing environments.

Materials and methods
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Plant materials, experimental design and phenotyping

The germplasm collection considered in this study was composed of 165 two-row and 96 six-row barley lines,
including both European cultivars and a set of Spanish landraces (Supplemental Table S1) grown at two
Northern and two Southern European sites respectively. Southern sites were winter-sown and for these sites
only we included 34 Spanish landraces that had a vernalisation requirement. Barley lines were sown for two
consecutive harvest years, 2016 and 2017, in four European research stations (Supplemental Table S3), except
for the LUKE site (Finland), where data were collected only for 2017. Fields were organized in row and column
designs with 2 complete replicates. Each plot covered on average 2m? and all the trials were rainfed - additional
details about field trials and sowing densities are presented in Supplemental Table S3.

Zadoks scale was used throughout all trials in order to define the specific developmental stage for sampling
and phenotypic measurements (Zadoks et al., 1974). Details of phenotyping methods used to measure the
studied traits are described in Supplemental Table S4. Samples were collected from plot centres at Zadoks
stage 90 from the second internode of the main culm, which is considered a critical area for lodging resistance
(Pinthus, 1974; Berry et al., 2004). A dedicated image analysis-based protocol was developed for measurement

of culm morphological traits and additional details can be found in Supplemental Methods S1.

Genome-wide SNPs genotyping and genotype imputation

The barley germplasm panel was genotyped with the 50k Illumina Infinium iSelect genotyping array (Bayer
et al., 2017). Physical positions of markers were based on pseudo-molecule assembly by Monat et al., 2019.
Allele calls were made using GenomeStudio Genotyping Module v2.0.2 (Illumina, San Diego, California).
After manual checking, SNP markers with more than two alleles, missing values greater than 10%, minor allele
frequency (MAF) <5% were excluded from analyses, along with unmapped SNPs. As a result, 36020 SNP
markers and 261 genotypes (165 two-row and 96 six-row barleys) remained for the analysis. Missing

genotypes were imputed using Beagle v5.0 (Browning et al., 2018, Supplemental Methods S2).
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Linkage disequilibrium, population structure, and Kkinship

LD is in many cases influenced by the presence of population structure and relatedness due to demographic
and breeding history of the accessions. To take into consideration these factors, the intrachromosomal LD
between two SNPs was estimated as squared allele-frequency correlations (r*) using an unbiased (due to non-
independence relationships between individuals) estimation implemented in the R package called LDcorSV
(Mangin et al., 2012). The markers were thinned to every three SNP and LD between all pairs of
intrachromosomal sites was estimated. Four r* estimates were calculated: * based on raw genotype data, r*
with population structure represented by the PCA after scaling the PC scores across a range of zero to one (rs2,
see below), r* with relatedness (rv2; see the next section), and r* with both population structure and relatedness
(rsv2). The 1* values were plotted against the physical distance (Mb) and a nonlinear LOESS curve was fitted
to investigate the relationship between LD and physical distance. A square root transformation of unlinked
values was calculated and the parametric 95th percentile of the distribution of transformed values was taken
as a critical r* value (Breseghello and Sorrells, 2006). The unlinked r* refers to the r* between the SNP loci
with a physical distance greater than 50 Mb.

Population structure was estimated using principal components analysis. Prior to PCA, the genotype marker
data were filtered out by LD-pruning to generate a pruned dataset of SNPs that are in approximate linkage
equilibrium, thus reducing the effect of LD on population structure. The LD-based SNP pruning was conducted
with a window size of 100 kb, shifting the window by one SNP at the end of each step. Then one SNP from a
pair of SNPs was removed if their LD was greater than 0.2. Both PCA and LD pruning were conducted in
SNPRelate package in R software (Zheng et al., 2012). To investigate relatedness between individuals, a matrix
of genomic relationship was calculated from marker data by the method described by (VanRaden, 2008)
available in the R package snpReady (Granato et al., 2018).

Statistical analysis of phenotypic data

Following a two-step approach, we initially obtained best linear unbiased estimates (BLUEs) of each genotype
from analysis of individual environments. Note that in this first step the genotype effect was treated as fixed
in order to prevent shrinkage in estimated means. BLUEs from this first step became the phenotype input for
step two for combined analysis using a mixed model to estimate variance components, broad-sense heritability,
and subsequent GWAS (Smith et al., 2001). The full description of analytical methods of multi-environment
phenotypic data can be found in Supplemental Methods S3.

Multi-environment GWAS analysis

For GWAS, we first extended the general mixed model form of the multi-environment analysis by adding

genotype principal components into the fixed part of the model. In addition we incorporated the genomic
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relationships into the variance-covariance matrix of random effects to reflect the genetic relatedness between
individuals in the population (Z; ® K), allowing a diagonal residual matrix (different residual variances in
each trial). GWAS was performed using the method proposed by Korte et al., (2012) which can be extended
to multi-environment trials to identify QTL/SNPs either with main or interaction effects. The full description

of analytical methods of multi-environment GWAS can be found in Supplemental Methods S4.

Analysis of co-association network between traits

For each panel, we first organized associations from all traits into a matrix with SNPs (SNPs within the same
LD region were treated as a single QTL) in rows and traits in columns and filled with cells for corresponding
marker effects and its association with corresponding trait ( QM, QF and interaction effects) after correction
for population structure and kinship. The resulting matrix were then used to provide a pairwise Pearson
correlations matrix between loci. The correlation matrix was subsequently used as an input matrix for network
analysis. We used undirected graph networks to visualize submodules of loci using igraph package in R to
visualize proximities between loci in a network plot (Csardi and Nepusz, 2006). Nodes (SNPs) were connected
by edges if they had a pairwise correlation above threshold (r>= 0.9) from the similarity matrix described

above.
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Supplemental Figure S1. Distribution of SNP markers and marker density in the panel

Supplemental Figure S2. Plots of PCA and LD (12) decay corrected for population structure and
relatedness.

Supplemental Figure S3. Comparison of row type and germplasm source for their effect on
studied traits.

Supplemental Figure S4. Pairwise correlation coefficients between traits in the whole panel.
Supplemental Figure S5. Pairwise correlation coefficients between traits in the two-row panel.
Supplemental Figure S6. Pairwise correlation coefficients between traits in the six-row panel.
Supplemental Figure S7. Circos heatmap for the 192 QTLs identified from GWAS.
Supplemental Figure S8. Comparison of allelic variants at peak markers with QM effect.
Supplemental Figure S9. Comparison of allelic variants at peak markers with QF effect.
Supplemental Table S1. List of 261 barley genotypes and their phenotypic information.
Supplemental Table S2. Number of SNP markers by chromosome.

Supplemental Table S3. Summary of experimental locations with phenotypic data.
Supplemental Table S4. Description of the traits and phenotyping methods measured in the panel.
Supplemental Table S5. Summary statistics of the eight traits measured in the 261 barley lines.
Supplemental Table S6. Complete list of QTLs detected in multi-environment GWAS.
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Tables

Table 1. Estimates of broad-sense heritability for culm morphological traits in single and across

environments. Heritability values with less than moderate value are indicated in bold.

Table 2. Summary of candidate genes underlying the most significant markers with QM and QF

effect on studied traits using multi-environment GWAS.

Table 3. Details of subset of SNPs with QM effect associated with culm morphology and negative
effects on lodging without impact on plant height.


https://doi.org/10.1101/2022.03.30.486427
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.30.486427; this version posted April 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Figure Legends

Figure 1. Workflow of phenotyping protocol for culm morphology traits. A.1) Barley specimens
were gathered when plants reached Zadoks stage 90 (grain ripening). Three random plants were
collected from each plot. A.2) Samples were cleaned and the main culm was selected for each plant.
The first internode (I1) was identified as the most basal internode > Icm. The second internode (12)
was the one immediately above (white arrowheads indicate the positions of flanking nodes). Five
mm tall sections from the center of 12 (red lines) were obtained using a dedicated circular saw. B)
Sections were attached to black A4 cardboaord with superglue and organized on the cardboard
following the plot order in the field. The upper part of each section was highlighted with a bright
white marker in order to enhance the contrast with the blackboard. C.1) Cardboards with 12 sections
were scanned using a flat office scanner to obtain 300 dpi color images. C.2) Using the software
Image]J with a dedicated macro the 12 section images were converted to black and white images.
C.3i) Image] software was able to isolate and measure the medullary cavity of the culm (in red).
C.30) Imagel software was used to isolate and measure the external outline (in red). ID, inner
diameter, OD, outer diameter, TH, thickness were derived from images 31 and 30 according to

formulas in Supplemental Table S4.

Figure 2. A) Pairwise phenotypic correlations between traits along with row type and germplasm
sources within whole panel and row type groups based on means estimated across trials; B) UpSetR
plot showing the overlap of the associated SNPs/loci for traits identified by GWAS; C) Venn diagram

showing distribution of QTLs among whole panel and row type groups.

Figure 3. Co-association network representing co-association modules between 192 loci across
whole panel and row type subsets, with color schemes according to the phenotypic traits. Each node
is a SNP/QTL and a color according to its association with corresponding trait. Strong co-

associations with a correlation above threshold (r = 0.9) are connected by edges.

Figure 4. Physical map of 192 QTLs associated with culm morphological traits a cross whole panel
and the row type subsets. Loci with red, blue, and green colors are unique to whole panel, two-row,
and six-row subsets, respectively. Loci with black color are those detected at least in two
association panel. Purple color indicates relative position of barley known genes at that particular

genomic region.


https://doi.org/10.1101/2022.03.30.486427
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.30.486427; this version posted April 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Literature cited

Agnew E, Bray A, Floro E, Ellis N, Gierer J, Lizarraga C, O’Brien D, Wiechert M, Mockler
TC, Shakoor N, et al (2017) Whole-plant manual and image-based phenotyping in controlled
environments. Curr Protoc Plant Biol 2: 1-21

Aya K, Hobo T, Sato-Izawa K, Ueguchi-Tanaka M, Kitano H, Matsuoka M (2014) A novel
AP2-type transcription factor, SMALL ORGAN SIZEI, controls organ size downstream of an
auxin signaling pathway. Plant Cell Physiol 55: 897-912

Bayer MM, Rapazote-Flores P, Ganal M, Hedley PE, Macaulay M, Plieske J, Ramsay L,
Russell J, Shaw PD, Thomas W, et al (2017) Development and evaluation of a barley 50k
iSelect SNP array. Front Plant Sci 8: 1792

Berry PM (2013) Lodging resistance in cereals. /n P Christou, R Savin, BA Costa-Pierce, I
Misztal, CBA Whitelaw, eds, Sustain. Food Prod. Springer New York, New York, NY, pp
1096-1110

Berry PM, Spink J (2012) Predicting yield losses caused by lodging in wheat. Field Crop Res 137:
19-26

Berry PM, Sterling M, Spink JH, Baker CJ, Sylvester-Bradley R, Mooney SJ, Tams AR,
Ennos AR (2004) Understanding and reducing lodging in cereals. Adv Agron 84: 217-271

Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in
wheat (Triticum aestivum L.) cultivars. Genetics 172: 1165-1177

Browning BL, Zhou Y, Browning SR (2018) A one-penny imputed genome from next-generation
reference panels. Am J Hum Genet 103: 338348

Burton RA, Ma G, Baumann U, Harvey AJ, Shirley NJ, Taylor J, Pettolino F, Bacic A, Beatty
M, Simmons CR, et al (2010) A customized gene expression microarray reveals that the
brittle stem phenotype fs2 of barley Is attributable to a retroelement in the HvCesA4 cellulose
synthase gene. Plant Physiol 153: 17161728

Cai T, Peng D, Wang R, Jia X, Qiao D, Liu T, Jia Z, Wang Z, Ren X (2019) Can intercropping
or mixed cropping of two genotypes enhance wheat lodging resistance? Field Crop Res 239:
10-18

Chandler PM, Harding CA (2013) ‘Overgrowth’ mutants in barley and wheat: new alleles and
phenotypes of the ‘Green Revolution” DELLA gene. J Exp Bot 64: 1603—-1613

Csardi G, Nepusz T (2006) The igraph software package for complex network research. Inter
Journal Complex Syst 1695:1-9

Chesterfield RJ, Vickers CE, Beveridge CA (2020) Translation of strigolactones from plant
hormone to agriculture: achievements, future perspectives, and challenges. Trends Plant Sci
25: 1087-1106

Chono M, Honda I, Zeniya H, Yoneyama K, Saisho D, Takeda K, Takatsuto S, Hoshino T,
Watanabe Y (2003) A semidwarf phenotype of barley uzu results from a nucleotide
substitution in the gene encoding a putative brassinosteroid receptor. Plant Physiol 133: 1209—
1219

Cui Y, Hu X, Liang G, Feng A, Wang F, Ruan S, Dong G, Shen L, Zhang B, Chen D, et al
(2020) Production of novel beneficial alleles of a rice yield-related QTL by CRISPR/Cas9.
Plant Biotechnol J 18: 1987-1989

Dahleen LS, Vander Wal LJ, Franckowiak JD (2005) Characterization and molecular mapping
of genes determining semidwarfism in barley. J Hered 96: 654—662

Dawson IK, Russell J, Powell W, Steffenson B, Thomas WTB, Waugh R (2015) Barley: a
translational model for adaptation to climate change. New Phytol 206: 913-931

Digel B, Tavakol E, Verderio G, Tondelli A, Xu X, Cattivelli L, Rossini L, von Korff M (2016)
Photoperiod-HI (Ppd-HI) controls leaf size. Plant Physiol 172: 405415

Dockter C, Gruszka D, Braumann I, Druka A, Druka I, Franckowiak J, Gough SP, Janeczko


https://doi.org/10.1101/2022.03.30.486427
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.30.486427; this version posted April 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

A, Kurowska M, Lundqyvist J, et al (2014) Induced variations in brassinosteroid genes define
barley height and sturdiness, and expand the green revolution genetic toolkit. Plant Physiol
166: 1912-1927

Duan K, Li L, Hu P, Xu SP, Xu ZH, Xue HW (2006) A brassinolide-suppressed rice MADS-box
transcription factor, OsMDP]I, has a negative regulatory role in BR signaling. Plant J 47: 519—
531

Goransson M, Hallsson JH, Lillemo M, Orabi J, Backes G, Jahoor A, Hermannsson J,
Christerson T, Tuvesson S, Gertsson B, et al (2019) Identification of ideal allele
combinations for the adaptation of spring barley to northern latitudes. Front Plant Sci 10: 542

Granato ISC, Galli G, de Oliveira Couto EG, e Souza MB, Mendonc¢a LF, Fritsche-Neto R
(2018) snpReady: a tool to assist breeders in genomic analysis. Mol Breed 38: 102

He T, Hill CB, Angessa TT, Zhang X-Q, Chen K, Moody D, Telfer P, Westcott S, Li C (2019)
Gene-set association and epistatic analyses reveal complex gene interaction networks affecting
flowering time in a worldwide barley collection. J Exp Bot 70: 5603—-5616

Hemming MN, Peacock WJ, Dennis ES, Trevaskis B (2008) Low-temperature and daylength
cues are integrated to regulate Flowering Locus T in barley. Plant Physiol 147: 355-366

Hernandez J, Meints B, Hayes P (2020) Introgression breeding in barley: perspectives and case
studies. Front Plant Sci 11: 761

Hirano K, Okuno A, Hobo T, Ordonio R, Shinozaki Y, Asano K, Kitano H, Matsuoka M
(2014) Utilization of stiff culm trait of rice smos/ mutant for increased lodging resistance.
PLoS One 9: €96009

Hirano K, Ordonio RL, Matsuoka M (2017a) Engineering the lodging resistance mechanism of
post-green revolution rice to meet future demands. Proc Japan Acad Ser B Phys Biol Sci 93:
220-233

Hirano K, Yoshida H, Aya K, Kawamura M, Hayashi M, Hobo T, Sato-Izawa K, Kitano H,
Ueguchi-Tanaka M, Matsuoka M (2017b) SMALL ORGAN SIZE 1 and SMALL ORGAN
SIZE 2/DWARF AND LOW-TILLERING form a complex to integrate auxin and
brassinosteroid signaling in rice. Mol Plant 10: 590-604

Houston K, Burton RA, Sznajder B, Rafalski AJ, Dhugga KS, Mather DE, Taylor J,
Steffenson BJ, Waugh R, Fincher GB (2015) A genome-wide association study for culm
cellulose content in barley reveals candidate genes co-expressed with members of the
CELLULOSE SYNTHASE A gene family. PLoS One 10: e0130890

Iig A, Beyer P, Al-Babili S (2009) Characterization of the rice carotenoid cleavage dioxygenase 1
reveals a novel route for geranial biosynthesis. FEBS J 276: 736747

Islam MS, Peng S, Visperas RM, Ereful N, Sultan M, Bhuiya U, Julfiquar AW (2007)
Lodging-related morphological traits of hybrid rice in a tropical irrigated ecosystem. Field
Crop Res 101: 240-248

Jedel PE, Helm JH (1991) Lodging effects on a semidwarf and two standard barley cultivars.
Agron J 83: 158-161

Karsai I, Mészaros K, Sziics P, Hayes PM, Lang L, Bed6 Z (1999) Effects of loci determining
photoperiod sensitivity (Ppd-H]1) and vernalization response (S42) on agronomic traits in the
“Dicktoo” x “Morex” barley mapping population. Plant Breed 118: 399—403

Khush GS (2001) Green revolution: The way forward. Nat Rev Genet 2: 815-822

Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori K, Perovic D, Stein N,
Graner A, Wicker T, Tagiri A, et al (2007) Six-rowed barley originated from a mutation in a
homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci U S A 104: 1424—
1429

Korte A, Vilhjalmsson BJ, Segura V, Platt A, Long Q, Nordborg M (2012) A mixed-model
approach for genome-wide association studies of correlated traits in structured populations.
Nat Genet 44: 1066—1071

Kuczynska A, Surma M, Adamski T, Mikolajczak K, Krystkowiak K, Ogrodowicz P (2013)


https://doi.org/10.1101/2022.03.30.486427
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.30.486427; this version posted April 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Effects of the semi-dwarfing sdwl/denso gene in barley. J Appl Genet 54: 381-390

Kuczynska A, Wyka T (2011) The effect of the denso dwarfing gene on morpho-anatomical
characters in barley recombinant inbred lines. Breed Sci 61: 275-280

Liller CB, Neuhaus R, von Korff M, Koornneef M, van Esse W (2015) Mutations in barley row
type genes have pleiotropic effects on shoot branching. PLoS One 10: €0140246

Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z, Yan C, Jiang B, Su Z, Li J, et al (2009)
DWARF27,an iron-containing protein required for the biosynthesis of strigolactones,regulates
rice tiller bud outgrowth. Plant Cell 21: 1512—-1525

Liu L, Tong H, Xiao Y, Che R, Xu F, Hu B, Liang C, Chu J, Li J, Chu C (2015) Activation of
Big Grainl significantly improves grain size by regulating auxin transport in rice. Proc Natl
Acad Sci U S A 112: 11102-11107

Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production
since 1980. Science (80-) 333: 616-620

Malik N, Ranjan R, Parida SK, Agarwal P, Tyagi AK (2020) Mediator subunit OsMED14 1
plays an important role in rice development. Plant J 101: 1411-1429

Mangin B, Siberchicot A, Nicolas S, Doligez A, This P, Cierco-Ayrolles C (2012) Novel
measures of linkage disequilibrium that correct the bias due to population structure and
relatedness. Heredity 108: 285-291

Mantilla Perez MB, Zhao J, Yin Y, Hu J, Salas Fernandez MG (2014) Association mapping of
brassinosteroid candidate genes and plant architecture in a diverse panel of Sorghum bicolor.
Theor Appl Genet 127: 2645-2662

Minakuchi K, Kameoka H, Yasuno N, Umehara M, Luo L, Kobayashi K, Hanada A, Ueno K,
Asami T, Yamaguchi S, et al (2010) FINE CULM1 (FC1) works downstream of
strigolactones to inhibit the outgrowth of axillary buds in rice. Plant Cell Physiol 51: 1127—
1135

Monat C, Padmarasu S, Lux T, Wicker T, Gundlach H, Himmelbach A, Ens J, Li C,
Muehlbauer GJ, Schulman AH, et al (2019) TRITEX: chromosome-scale sequence
assembly of Triticeae genomes with open-source tools. Genome Biol 20: 284

Mulsanti IW, Yamamoto T, Ueda T, et al (2018) Finding the superior allele of japonica-type for
increasing stem lodging resistance in indica rice varieties using chromosome segment
substitution lines. Rice 11: 25

Okuno A, Hirano K, Asano K, Takase W, Masuda R, Morinaka Y, Ueguchi-Tanaka M,
Kitano H, Matsuoka M (2014) New approach to increasing rice lodging resistance and
biomass yield through the use of high gibberellin producing varieties. PLoS One 9: e86870

Ookawa T, Hobo T, Yano M, Murata K, Ando T, Miura H, Asano K, Ochiai Y, Ikeda M,
Nishitani R, et al (2010) New approach for rice improvement using a pleiotropic QTL gene
for lodging resistance and yield. Nat Commun 1: 132

Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ,
Worland AJ, Pelica F, et al (1999) “Green revolution” genes encode mutant gibberellin
response modulators. Nature 400: 256261

Pifiera-Chavez FJ, Berry PM, Foulkes MJ, Molero G, Reynolds MP (2016) Avoiding lodging
in irrigated spring wheat. II. genetic variation of stem and root structural properties. Field Crop
Res 196: 64—74

Pinthus MJ (1974) Lodging in wheat, barley, and oats: the phenomenon, its causes, and preventive
measures. Adv Agron 25: 209-263

Priya R, Siva R (2014) Phylogenetic analysis and evolutionary studies of plant carotenoid cleavage
dioxygenase gene. Gene 548: 223-233

Qiao S, Sun S, Wang L, Wu Z, Li C, Li X, Wang T, Leng L, Tian W, Lu T, et al (2017) The
RLA1/SMOSI transcription factor functions with OsBZR1 to regulate brassinosteroid
signaling and rice architecture. Plant Cell 29: 292-309

Qiao Y, Piao R, Shi J, Lee SI, Jiang W, Kim BK, Lee J, Han L, Ma W, Koh HJ (2011) Fine


https://doi.org/10.1101/2022.03.30.486427
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.30.486427; this version posted April 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high
grain yield in rice (Oryza sativa L.). Theor Appl Genet 122: 1439-1449

Rajkumara S (2008) Lodging in cereals-a review. Agric Rev 29: 55-60

Ramsay L, Comadran J, Druka A, Marshall DF, Thomas WTB, MacAulay M, MacKenzie K,
Simpson C, Fuller J, Bonar N, et al (2011) INTERMEDIUM-C, a modifier of lateral spikelet
fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1.
Nat Genet 43: 169-172

Rockstrom J, Williams J, Daily G, Noble A, Matthews N, Gordon L, Wetterstrand H,
DeClerck F, Shah M, Steduto P, et al (2017) Sustainable intensification of agriculture for
human prosperity and global sustainability. Ambio 46: 4—17

Samadi AF, Suzuki H, Ueda T, Yamamoto T, Adachi S, Ookawa T (2019) Identification of
quantitative trait loci for breaking and bending types lodging resistance in rice, using
recombinant inbred lines derived from Koshihikari and a strong culm variety, Leaf Star. Plant
Growth Regul 89: 83-98

Sameri M, Nakamura AS, Nair ASK, Ae AKT, Komatsuda T (2009) A quantitative trait locus
for reduced culm internode length in barley segregates as a Mendelian gene. Theor Appl Genet
118: 643-652

Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K,
Saito T, Kobayashi M, Khush GS, et al (2002) A mutant gibberellin-synthesis gene in rice:
new insight into the rice variant that helped to avert famine over thirty years ago. Nature 416:
701-702

Shah L, Yahya M, Shah SMA, Nadeem M, Ali A, Ali A, Wang J, Riaz MW, Rehman S, Wu
W, et al (2019) Improving lodging resistance: using wheat and rice as classical examples. Int J
Mol Sci 20: 4211

Shi C, Ren Y, Liu L, Wang F, Zhang H, Tian P, Pan T, Wang Y, Jing R, Liu T, et al (2019)
Ubiquitin specific protease 15 has an important role in regulating grain width and size in rice.
Plant Physiol 180: 381-391

Smith A, Cullis B, Gilmour A (2001) The analysis of crop variety evaluation data in Australia.
Aust New Zeal J Stat 43: 129-145

Sowadan O, Li D, Zhang Y, Zhu S, Hu X, Bhanbhro LB, Edzesi WM, Dang X, Hong D (2018)
Mining of favorable alleles for lodging resistance traits in rice (Oryza sativa) through
association mapping. Planta 248: 155-169

Sui P, Jin J, Ye S, Mu C, Gao J, Feng H, Shen W-H, Yu Y, Dong A (2012) H3K36 methylation
is critical for brassinosteroid-regulated plant growth and development in rice. Plant J 70: 340—
347

Tondelli A, Xu X, Moragues M, Sharma R, Schnaithmann F, Ingvardsen C, Manninen O,
Comadran J, Russell J, Waugh R, et al (2013) Structural and temporal variation in genetic
diversity of european spring two-row barley cultivars and association mapping of quantitative
traits. Plant Genome. 6: 1-14

Tong H, Jin Y, Liu W, Li F, Fang J, Yin Y, Qian Q, Zhu L, Chu C (2009) DWARF AND
LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid
signaling in rice. Plant J 58: 803—816

Tong H, Liu L, Jin Y, Du L, Yin Y, Qian Q, Zhu L, Chu C (2012) DWARF AND LOW-
TILLERING acts as a direct downstream target of a GSK3/SHAGGY -Like kinase to mediate
brassinosteroid responses in rice. Plant Cell 24: 2562-2577

Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator
Ppd-H1 provides adaptation to photoperiod in barley. Science 310: 1031-1034

VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91: 4414—
4423

Walla A, Wilma van Esse G, Kirschner GK, Guo G, Briinje A, Finkemeier I, et al (2020) An
acyl-CoA N-acyltransferase regulates meristem phase change and plant architecture in barley.


https://doi.org/10.1101/2022.03.30.486427
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.30.486427; this version posted April 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Plant Physiol 183: 1088—109

Xu Y, Jia Q, Zhou G, Zhang X-Q, Angessa T, Broughton S, Yan G, Zhang W, Li C (2017)
Characterization of the sdw/ semi-dwarf gene in barley. BMC Plant Biol 17: 11

Yano K, Ookawa T, Aya K, Ochiai Y, Hirasawa T, Ebitani T, Takarada T, Yano M,
Yamamoto T, Fukuoka S, et al (2015) Isolation of a novel lodging resistance QTL gene
involved in strigolactone signaling and its pyramiding with a QTL gene involved in another
mechanism. Mol Plant 8: 303-314

Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed
Res 14: 415-421

Zhang R, Jia Z, Ma X, Ma H, Zhao Y (2020) Characterising the morphological characters and
carbohydrate metabolism of oat culms and their association with lodging resistance. Plant Biol
22:267-276

Zhang W jun, Li G hua, Yang Y ming, Li Q, Zhang J, Liu J you, Wang S, Tang S, Ding Y
feng (2014) Effects of nitrogen application rate and ratio on lodging resistance of super rice
with different genotypes. J Integr Agric 13: 6372

Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS (2012) A high-performance
computing toolset for relatedness and principal component analysis of SNP data.
Bioinformatics 28: 33263328

Zuber U, Winzeler H, Messmer MM, Keller M, Keller B, Schmid JE, Stamp P (1999)
Morphological traits associated with lodging resistance of spring wheat (Triticum aestivum L.).
J Agron Crop Sci 182: 17-24


https://doi.org/10.1101/2022.03.30.486427
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 1. Estimates of broad-sense heritability for culm morphological traits in single and across
environments. Heritabilities with less than moderate valule are indicated in bold.

Env Factor 2 Residual Panel HD PH oD ID TH SM ST SI
CREA1l6 Gen+tRep+Col+Row  ARI1(Row) : AR1(Col)  Whole panel 98.75 90.00 80.48 81.12 53.31 7597 59.79 87.81
2-row 96.79 82.64 6544 6933 2795 53.13 5336 83.82
6-row 99.32  87.43 86.14 8790 55.09 8387 6724 90.21
CREA17 Gen+Rep+Col ID(Row) : AR1 (Col) Whole panel  94.02 85.76  73.84 6535 67.01 7559 51.75 86.42
2-row 8747 8284 7022 64.19 4737 67.04 5627 82.89
6-row 9589 8877 79.01 70.85 77.18 82.85 39.37 90.70
CSIC16 Gen+Rep+Col+Row  ID(Row) : ID (Col) Whole panel  97.13  94.84 79.58 71.65 77.51 8193 5239 -
2-row 9439 90.15 7529 67.85 5487 7345 3222 -
6-row 9835 9259 81.16 76.19 7827 8501 64.09 -
CSIC17 Gen+tRep+Col+Row  ARI1(Row) : AR1(Col)  Whole panel 94.17 93.11 87.39 81.67 78.77 86.67 72.08 92.81
2-row 86.88 85.18 79.64 78.16 29.82 69.25 70.15 89.71
6-row 96.51 9285 8595 82.89 78.08 8743 48.81 94.76
JHI16 Gen+tRep+Col+Row  ARI1(Row) : AR1(Col)  Whole panel 95.62 93.85 89.54 87.51 8198 90.00 73.07 92.15
2-row 90.85 9348 7753 68.67 70.85 7226 5507 91.87
6-row 87.97 9045 8857 8922 7656 8935 7401 91.14
JHI17 Gen+tRep+Col+Row  ARI1(Row) : AR1(Col)  Whole panel 93.37 93.13 84.64 7833 5332 86.75 47.19 85.73
2-row 83.68 9278 69.05 63.14 2085 5937 3596 8522
6-row 86.67 93.60 8545 7839 67.04 8821 4148 8I1.15
LUKE17 Gen+Rep+Col+Row  ID(Row) : ID (Col) Whole panel  95.39 96.74 84.74 84.87 61.62 8475 60.60 92.04
2-row 91.05 9333 57.80 5734 41.01 50.03 43.83 91.04
6-row 96.44 9574 84.62 86.14 5434 8450 6232 89.19
Combined
Environments Whole panel  93.10 9142 89.21 86.98 81.52 84.77 7049 91.91
2-row 90.43 9426 8331 8137 57.81 7238 5798 9248
6-row 89.95 8190 90.18 8898 68.61 8549 75.11 91.58

a: (Gen): random genotype effect; (Rep): Random replicate effect; (Row): Random row effect; (Col): random column effect; ID
(Row):ID(Col): two dimensional independent error structure; ID(Row): AR1(Col): One dimensional correlated error for columns
with first-order autoregressive process ; AR1(Row):ID(Col): one dimensional correlated error for rows with first-order
autoregressive process ; AR1(Row):AR1(Col): two dimensional correlated error with first-order auto regressive process.
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Table 2. Summary of candidate genes underlying the most significant markers with QM and QF effect on studied traits using multi-

environment GWAS.

QTL
QTL ID Peak marker Chr Pos QTL region (bp) Panel type Trait (-Logi P) Gene GenelD MOREX.V2
SNP4-1H JHI-Hv50k-2016-19014 1H 55564074 55564074 2-row QF PH (5.61) Asparticproteinase  HORVU.MOREX.r2.1HG0014120
SNP5-1H JHI-Hv50k-2016-19267 1H 59577895 59577895 2-row QF PH (5.61) Yl4a HORVU.MOREX.r2.1HG0014550
SNP7-1H JHI-Hv50k-2016-21372 1H 262131347 262131347 Whole-panel QM OD (4.71), SM (5.66) HvCesA4/HvCIsF4 ~HORVU.MOREX.r2.1HG0032090
QTL11-1H  JHI-Hv50k-2016-25138 1H 331015882  331015882-332043281 Whole-panel QM OD (4.71), SM (5.66) HORVU.MOREX.r2.1HG0038730
SNPI3-1H  JHI-Hv50k-2016-26359 1H 342720997 342720997 2-row QF PH (4.04) Rhmbd HORVU.MOREX.r2.1HG0039970
JHI-Hv50k-2016-26359 1H 342720997 2-row QM SI(5.49)
JHI-Hv50k-2016-26359 1H 342720997 Whole-panel QM PH (4.6), SI (5.08)
SNPI8-IH  SCRI RS 145336 1H 423204614 423204614 2-row QM SI(5.72) UGT70743 HORVU.MOREX.r2.1IHG0050860
SCRI RS 145336 1H 423204614 Whole-panel QM SI(5.96)
QTL29-1H  JHI-Hv50k-2016-52276 1H 506206295  505927936-506431159 Whole-panel QM TH (4.94) Several candidate genes
QTLI1-2H 12 31446 2H 1739468 1514860-1739468 6-row QM TH (5.01) SDG725 HORVU.MOREX.r2.2HG0079410
QTL5-2H 12 31284 2H 18622308 18522424-20868342 2-row QF SI(5.29) Eligulum-a HORVU.MOREX.r2.2HG0086910
JHI-Hv50k-2016-71066 2H 18623653 Whole-panel QM SI(4.2)
JHI-Hv50k-2016-71911 2H 20459215 Whole-panel ~ QF SM (5.66)
SNP7-2H JHI-Hv50k-2016-75227 2H 28446036 28446036 2-row QF SI (4.75) BRCT HORVU.MOREX.r2.2HG0090080
JHI-Hv50k-2016-75227 2H 28446036 2-row QM PH (4.99)
QTL11-2H  JHI-Hv50k-2016-103173  2H 559241964  559231441-561722120 Whole-panel QM SM (7.23) Several candidate genes
JHI-Hv50k-2016-103187  2H 559376614 Whole-panel QM ID (5.7), OD (6.29)
QTLI2-2H  JHI-Hv50k-2016-109824  2H 598521913 597215106-598522113 6-row QF SM (4.27) Several candidate genes
JHI-Hv50k-2016-109824  2H 598521913 Whole-panel ~ QF ID (4.21), OD (4.8)
JHI-Hv50k-2016-109823  2H 598522113 Whole-panel ~ QF SM (6.16)
QTL14-2H  JHI-Hv50k-2016-124833  2H 633916743  633545278-635684841 2-row QM PH (4.55) Several candidate genes
JHI-Hv50k-2016-124833  2H 633916743 Whole-panel QM PH (5.85)
QTL15-2H  JHI-Hv50k-2016-127337  2H 638383926  638383926-638729272 Whole-panel ~ QF SM (5.12), TH (4.61) Several candidate genes
QTL18-2H  JHI-Hv50k-2016-142360  2H 665679591  665678929-669091745 6-row QM ID (5.09) Several candidate genes
JHI-Hv50k-2016-142412  2H 665806846 Whole-panel QM ST (4.35)
JHI-Hv50k-2016-142417  2H 665806970 Whole-panel ~ QF SM (4.18)
JHI-Hv50k-2016-142979  2H 667239912 6-row QM SM (4.71)
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Table 2. Continued.

QTL
QTL ID Peak marker Chr Pos QTL region (bp)  Panel type  Trait (-Logio P) Gene GenelD MOREX.V2
SNP9-3H  JHI-Hv50k-2016-167742  3H 158248886 158248886 Whole-panel QM SM (4.95) -
QTLI9-3H  JHI-Hv50k-2016-204951  3H 570921209 570921209-571967329 Whole-panel ~ QF SI (4.26) HvGA200x3 HORVU.MOREX.12.3HG0255700
JHI-Hv50k-2016-204992  3H 570930550 2-row QF PH (5.35), SI (4.99)
JHI-Hv50k-2016-205354  3H 571967329 6-row QM PH (5.51), SI (5.74)
JHI-Hv50k-2016-205354  3H 571967329 Whole-panel QM PH (4.94)
QTL21-3H  JHI-Hv50k-2016-206708  3H 579170749 577209764-583819782 Whole-panel QM SI (5.44) Several candidate genes
JHI-Hv50k-2016-207617  3H 583528139 2-row QF SI(5.47)
QTLI7-4H  JHI-Hv50k-2016-262348  4H 586245828  586245828-586286949 2-row QM ID (4.68), OD (4.77), SM (4.77)  CCD8d HORVU.MOREX.12.4HG0337890
QTLI8-4H  JHI-Hv50k-2016-263046  4H 589723289  589666126-590513139 Whole-panel QM SM (4.95) Several candidate genes
JHI-Hv50k-2016-263069  4H 590012027 2-row QM SM (4.81) -
JHI-Hv50k-2016-263069  4H 590012027 Whole-panel QM 0D (5.05)
JHI-Hv50k-2016-263064  4H 590012403 2-row QM TH (5.16)
JHI-Hv50k-2016-263064  4H 590012403 Whole-panel QM TH (4.73)
JHI-Hv50k-2016-263080  4H 590144147 2-row QM OD (4.92)
JHI-Hv50k-2016-263116  4H 590513139 Whole-panel ~ QF ID (4.07)
QTLI9-4H  JHI-Hv50k-2016-263583  4H 594808440  594808131-595015320 Whole-panel ~ QF ST (4.76) Several candidate genes
JHI-Hv50k-2016-263787  4H 594902360 2-row QF ST (4.86)
QTL23-4H  JHI-Hv50k-2016-275313  4H 621344288  621344288-622035884 6-row QM ID (5.33), ST (4.75) Several candidate genes
JHI-Hv50k-2016-275693  4H 621902266 6-row QF PH (4.71)
JHI-Hv50k-2016-275696  4H 621902455 Whole-panel QM ST (4.16)
QTLI-5H  JHI-Hv50k-2016-277297  5H 1444564 869533-2211050 Whole-panel QM OD (4.26), SM (4.2) CCDI HORVU.MOREX.12.5HG0349440
JHI-Hv50k-2016-277332  5H 1447495 Whole-panel QM TH (4.33)
JHI-Hv50k-2016-277338  5H 1448582 2-row QM SI (4.09)
JHI-Hv50k-2016-277724  5H 2211050 2-row QM ID (5.05), OD (5.6), SM (5.62)
QTL2-5H  JHI-Hv50k-2016-278616 ~ 5H 4053376 3330549-5170277 6-row QM ST (5.33), TH (4.62) Several candidate genes
JHI-Hv50k-2016-278616 ~ 5H 4053376 Whole-panel QM TH (4.58)
QTL3-5H  JHI-Hv50k-2016-279858  5H 6140678 6139160-6687421 2-row QM ID (4.7) Several candidate genes
QTL4-5H  JHI-Hv50k-2016-281676  5H 10305211 10221340-10615460 6-row QM SI(5.24) Several candidate genes
JHI-Hv50k-2016-281715  5H 10326076 2-row oM ID (4.12)
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Table 2. Continued.

QTL
QTL ID Peak marker Chr Pos QTL region (bp)  Panel type  Trait (-Logio P) Gene GenelD MOREX.V2
QTL7-5H  JHI-Hv50k-2016-287215  5H 27977719 27977719-33923320 6-row QM SI (4.76) Several candidate genes
JHI-Hv50k-2016-287531  5H 29346346 Whole-panel QM TH (4.12)
JHI-Hv50k-2016-287643  5H 29357949 Whole-panel QM SI (4.03)
JHI-Hv50k-2016-288619  5H 33923127 6-row QM TH (5.47)
QTLI6-5H  JHI-Hv50k-2016-309388  5H 452787194  449553280-453741857 Whole-panel QM TH (6.32) Several candidate genes
JHI-Hv50k-2016-309383  5H 452787694 2-row QF SM (4.3)
JHI-Hv50k-2016-309383  5H 452787694 Whole-panel QM OD (5.48), SI (4.19), SM (6.94)
SNP19-5H  JHI-Hv50k-2016-310560  5H 467079429 467079429 6-row QF ID (5.79) ABASox2 HORVU.MOREX.12.5HG0402930
QTL27-5H  JHI-Hv50k-2016-329041  5H 525702571 525598290-525702571 Whole-panel ~ QF ID (5.78), OD (5.23), SM (6.00) ~ SIPI HORVU.MOREX.12.5HG0420210
SNP32-5H 1231206 5H 553957781 553957781 6-row QM OD (4.41), SI (7.62), SM (5.63)  SAP6 HORVU.MOREX.12.5HG0430170
1231206 5H 553957781 Whole-panel QM SM (4.05)
QTL6-6H  JHI-Hv50k-2016-383797  6H 36026739 35725637-37076534 Whole-panel ~ QF TH (5.23) -
SNP10-6H  SCRI_RS_161533 6H 242933786 242933786 Whole-panel QM PH (4.93), SI (4.22) UBPISLGI HORVU.MOREX.12.6HG0483350
QTLI3-6H  JHI-Hv50k-2016-405999  6H 431754022  428846608-435119247 6-row QM PH (5.18) Several candidate genes
SNP17-6H 1230573 6H 512709462 512709462 6-row QF SM (5.66) RFP HORVU.MOREX.12.6HG0509750
QTL3-7H  JHI-Hv50k-2016-449409  7H 13356822 12920299-14593868 2-row QM SI (5.25) SMOS2/DLT HORVU.MOREX.12.7HG0534100
JHI-Hv50k-2016-449409  7H 13356822 Whole-panel ~ QF ST (5.87)
JHI-Hv50k-2016-449626  7H 13692220 2-row QM ST (5.95)
QTL5-7H  JHI-Hv50k-2016-453012  7H 22070216  21643770-22444585 Whole-panel ~ QF OD (4.99), SM (5.03) Several candidate genes
JHI-Hv50k-2016-453082  7H 22441304 6-row QM ID (4.7), OD (4.52), SM (4.12)
QTL7-7H  JHI-Hv50k-2016-460460  7H 39722386 38675923-39722386 6-row QF PH (4.82) HVFTI/VRNH3 HORVU.MOREX.12.7HG0542540
SNP16-7H  JHI-Hv50k-2016-478948  7H 265292093 265292093 6-row QF SM (4.18) NTL HORVU.MOREX.12.7HG0573190
JHI-Hv50k-2016-478948  7H 265292093 Whole-panel ~ QF OD (5.97), PH (4.46), SM (7.28)
JHI-Hv50k-2016-478948  7H 265292093 Whole-panel QM ID (6.33)
QTL27-7H  SCRI_RS_168994 7H 570828407  570827595-572601830 6-row QF OD (4.74), SM (5.72) DWARF27 HORVU.MOREX.12.7HG0603370
JHI-Hv50k-2016-493265  7H 572601830 2-row QM SI (4.54)
QTL30-7H  JHI-Hv50k-2016-501203  7H 598638988 597448728-600244977 2-row QM ST (4.94) DEP3 HORVU.MOREX.r2.7HG0610260
SNP32-7H  SCRI RS 213791 7H 625219043 625219043 Whole-panel QM ST (5.05) HORVU.MOREX.r2.7HG0620190
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Table 2. Continued.

QTL
QTLID Peak marker Chr Pos QTL region (bp)  Panel type  Trait (-Logio P) Gene GenelD MOREX.V2
QTL34-7H  JHI-Hv50k-2016-516642  7H 628347284  628346780-633832080 Whole-panel ~ QF ID (4.27), OD (4.07) HvDIM HORVU.MOREX.r2.7HG0622270
JHI-Hv50k-2016-518794  7H 632545446 Whole-panel ~ QF TH (5.15)
JHI-Hv50k-2016-519440  7H 633832080 2-row QF TH (5.49)
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Table 3. Details of subset of SNPs with main effects and associated with culm traits with negative effects on lodging without impacting on plant
height. A1, A2, and MAF indicate major allele, minor allele and minor allele frequency, respectively. The allele associated with decreased lodging
is underlined. PVE (%) is the percentage of phenotype variance explained by SNP. B is the SNP main effect, a; is the SNP -by-location effect, and
o> is the SNP -by-year effect derived from GWAS model.

SNP Panel Trait  Peak marker MAF Al A2 chr position -Log10 B o1 o2 PVE
(P-value) (%)
SNP7-1H Whole panel oD JHI-Hv50k-2016-21372 0.13 A C 1H 262131347 4.71 0.472 -0.012  -0.001  2.46
SM 0.13 A C 1H 262131347 5.66 0.533 -0.024  0.008 3.41
SNP8-1H Whole panel ID JHI-Hv50k-2016-22255 0.14 C A 1H 280712482 4.15 0.481 -0.008 -0.012 291
oD 0.14 C A 1H 280712482 4.26 0.502 -0.01 0.007 2.98
SM 0.14 C A 1H 280712482 4.15 0.501 -0.019  0.022 3.24
SNP5-3H Whole panel ID JHI-Hv50k-2016-162361 0.21 A G 3H 28691973 4.06 -0.255  0.003 0.003 1.53
SNP10-4H Whole panel SM JHI-Hv50k-2016-246906 0.09 C T 4H 470693015 4.21 0.554 -0.035  0.02 1.72
SNP11-4H Whole panel SM JHI-Hv50k-2016-247273 0.09 G T 4H 474202180 4.21 0.554 -0.035  0.02 1.72
SNP16-4H Whole panel ID JHI-Hv50k-2016-261211 0.15 T C 4H 581266705 438 0.307 -0.007  0.003 1.23
oD 0.15 T C 4H 581266705 430 0.312 0.001 0.002 1.21
SNP32-5H Whole panel SM 12 31206 0.27 C G SH 553957781 4.05 0.185 0 -0.005  1.06
Six-row oD 0.24 C G SH 553957781 4.41 0.345 -0.005  0.002 3.51
Six-row SI 0.24 C G SH 553957781 7.62 0.522 0.017 -0.042  6.62
Six-row SM 0.24 C G SH 553957781 5.63 0.358 0 -0.006  4.85
SNP21-7H Whole panel ID JHI-Hv50k-2016-486762 0.19 C G TH 434555860 4.26 -0.482  -0.011 -0.005 4.93
oD 0.19 C G TH 434555860 4.05 -0.481  -0.004  -0.02 4.48
SNP26-7H Whole panel SM JHI-Hv50k-2016-492337 0.24 C T TH 562028351 4.23 -0.511  0.017 -0.034  7.02
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Figure 1. Workflow of phenotyping protocol for culm morphology traits. A.1) Barley specimens
were gathered when plants reached Zadoks stage 90 (grain ripening). Three random plants were
collected from each plot. A.2) Samples were cleaned and the main culm was selected for each
plant. The first internode (I1) was identified as the most basal internode > 1cm. The second
internode (I2) was the one immediately above (white arrowheads indicate the positions of flanking
nodes). Five mm tall sections from the center of 12 (red lines) were obtained using a dedicated
circular saw. B) Sections were attached to black A4 cardboaord with superglue and organized on
the cardboard following the plot order in the field. The upper part of each section was highlighted
with a bright white marker in order to enhance the contrast with the blackboard. C.1) Cardboards
with 12 sections were scanned using a flat office scanner to obtain 300 dpi color images. C.2)
Using the software Image] with a dedicated macro the 12 section images were converted to black
and white images. C.3i) ImagelJ software was able to isolate and measure the medullary cavity of
the culm (in red). C.30) ImageJ software was used to isolate and measure the external outline (in
red). ID, inner diameter, OD, outer diameter, TH, thickness were derived from images 31 and 30
according to formulas in Supplemental Table S4.
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Figure 2. A) Pairwise phenotypic correlations between traits along with row type and germplasm
sources within whole panel and row type groups based on means estimated across trials; B) UpSetR
plot showing the overlap of the associated SNPs/loci for traits identified by GWAS; C) Venn diagram
showing distribution of QTLs among whole panel and row type groups.
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Figure 3. Co-association network representing co-association modules between 192 loci across
whole panel and row type subsets, with color schemes according to the phenotypic traits. Each
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across-environment trials within the barley panel. Mean differences were performed using a one-way ANOVA
with Tukey’s honestly (HSD) test. Different letters above each column indicate significant differences (p-value=
0.05).
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Figure S5. Pairwise correlation coefficients between traits and germplasm source (cultivar/landrace) in the 2-row panel based on
genotype values estimated both in single and combined multi-environment analysis. Data for lodging In CSIC16 is not available.
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Figure S7. Circos heatmap for the 192 QTLs identified from GWAS of seven traits for the whole panel and
row type groups. Each track belongs to one trait which also divided into five subsectors for QF, QM, QE,
QL, and QY effect with red colors showing the presence of QTL at that position. The letters a, b, ¢, d, ¢,
and f, are respectively related to QTLs identified in whole panel (a), 2-row (b), 6-row (d), both whole panel
and 2-row (e), both whole panel and 6-row (f), and both 2-row and 6-row (g), and all the panels (h).
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Figure S9. Comparison of allelic variants at peak markers of loci with QF effect (Supplemental Table S5). A) comparison between alleles at
each marker for their effect on plant height; B) and their effect on lodging. The points indicate the mean value and the bars indicate the 95%

confidence interval of the mean of corresponding allele. Significant differences are shown with asterisk.
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Methods S1. Additional methodological details on improved protocol for barley culm
morphological traits.

Samples were collected at Zadoks stage 90 from the second internode of barley main culm, which
is considered to different extent a critical area for lodging resistance (Pinthus 1974, Berry et al.,
2004). Furthermore samples at Zadoks stage 90 have a different and more uniform cellular
composition compared with other growth stages (Luo et al., 2007; Wang et al., 2018). The second
basal internode was identified as the internode following the first internode longer than 1 cm above
the root crown (Berry et al., 2004; Berry et al., 2007; Berry, 2013).

At Zadock stage 90 (fully mature), three randomly selected plants for each plot were uprooted,
avoiding those on the plot’s borders. For each plant, the main stem was identified and the second
basal internode was excised. Using a custom-made circular saw, internodes were cut in the central
position to produce 5 mm thick cross-sections, taking care to produce blunt cuts. The resulting
internode sections were attached with cyanoacrylic glue (Super Attak) to a black A4 cardboard,
previously divided into 3cm x Scm cells, each corresponding to a filed plot. Three samples (each
from a distinct plant from the same plot) were glued in the same cell. On the side of each cardboard
a paper ruler was attached in order to allow the software calibration during image analysis. Each
section was then colored with a white marker (Uni-ball Posca, 0,7 mm) to ensure maximum
contrast with the black background. In order to extract accurate measurements from culm sections,
we developed a high-throughput image analysis protocol based on images obtained by scanning
cardboards with a flat office scanner (600 dpi images in .tiff format).

The images were then analyzed to derive culm diameter and thickness data with a custom made
macro command in Java language on the software ImageJ (Schindelin et al., 2012).

Methods S2. Additional methodological details on missing genotype imputation.

To increase detection power and minimizing the loss of significant association, missing data were
imputed using Beagle v5.0, which enables haplotypes inference and imputation of missing
genotypes (Browning et al., 2018). Beagle uses a hidden Markov model to find the most likely
haplotype pair for each individual given the genotype data for that individual. To estimate genotype
phase the program works iteratively using an expectation —maximization method. Out of these
markers, markers in perfect Linkage disequilibrium (LD) with adjacent SNP within the window
size of 100kb (LD=1) were removed. Thus, a total of 33342 (Whole panel), 26262 (two-row
subset), and 27583 (six-row subset) SNPs were left for calculation of kinship matrix and
subsequent GWAS analysis.
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Methods S3. Additional methodological details on statistical analysis of phenotypic data,
computation of adjusted means, estimation of variance components, and heritability.

Following a two-stage approach, in each environment (stage 1) with two replicates and coordinates
of column and rows, a mixed model was used. We treated the genotype (to obtain BLUEs) and
replicate as fixed effects and row and columns as random effects. Depending of the trial, the
residual effects were also modelled using spatial methods that accommodate local or plot to plot
variation (Table 1).

After calculation of BLUES for each trait from all seven environments, approximately 6% of data
mainly from six-row panel were missing in the genotype-environment table (i.e, for three
environments JHI16, JHI17, and LUKE17) . Removing accessions with missing phenotype will
reduce the sample size and consequently will negatively impact the statistical inference and
subsequent GWAS analysis (Rodrigues et al., 2014; Scutari et al., 2014; Dahl et al., 2016).
Therefore, prior to subsequent analysis, and due to small fraction of missing phenotypes existed in
our data, we performed imputation of missing cells in a genotype-by-environment table using the
Expectation Maximization Additive Main Effects and Multiplicative Interaction (EM-AMMI)
algorithm (Cauch and Zobel, 1990; Gauch 1992). We run the algorithm using five steps with the R
script indicated as follows (Cauch and Zobel, 1990; Paderewski and Rodrigues, 2014): At first,
initial values were assigned to missing cells; secondly, the parameters of the AMMI model were
estimated; third, the adjusted means were calculated according to principal components obtained
from AMMI analysis; next, missing cells were filled based on adjusted means and ;finally, the steps
from 2 to 5 were repeated if the Chebyshev distance between the missing value estimations in the
two progressive iteration steps were greater than the assumed precision, otherwise the algorithm
was stopped. We considered the results as reliable, as the relationships between the genotypes and
environments for almost all traits were present. The important factor of the algorithm is to select
appropriate number of principal components to be included in imputation process. We selected this
number based on the minimum of the Root Mean Square Predictive Difference (RMSPD, Gauch
and Zobel, 1990; Dias and Krzanowski, 2003). The appropriate number of principal components
is the one with the smallest RMSPD value. The RMSPD values were calculated according to leave-
one-out cross validation (LOO-CV) procedure. Briefly, a single non-missing phenotype is hidden
from the dataset and EM-AMMI is employed on training data (without missing). The procedure is
repeated for each observation until no empty cell remained in the dataset. The RMSPD, is then
obtained based on the difference between the hidden value and the value imputed by EM-AMMI
(the predictive differences). We initially performed association analysis both on imputed data and
the data after removing missing cells and found that, although the results were highly similar, the
analysis with imputed phenotypes, in accordance with previous studies, resulted in well-calibrated
p-values due to increased sample size (Scutari et al., 2014; Dahl et al., 2016).

In stage 2, the resulting BLUEs were used for combined analysis using a mixed model to estimate
variance components, broad-sense heritability, and subsequent GWAS. Variance components and
heritability values were estimated under the general form of mixed model:
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y=Xp+Zu+e

where y is a vector of observations (phenotypic BLUEs across environments), X is the design
matrix for fixed effects B (intercepts and environment), Z is the design matrix for random effects
(genotypes). u is the vector of random effects with u~N (0. Z¢;) and e~N(o. R). The X is between
environment variance-covariance matrix and R is a diagonal block matrix where :

02 - oy,
Xe=|: ~ i |and R=6®/_,R;
Oy 0-72

The specification of variance structure is important in combined analysis. Traditionally the
genotypic variances within all environments and the covariances between genotypic values for
each pair of environments are assumes equal. We relaxed these assumptions for X using the mixed
model allowing for unequal genotype variances and unique covariances for each pair of
environments. Therefore we specified the unstructured covariance and heterogeneous variance
(US) model in the multi-environment analysis (7 within-environment variances and 14 between-
environment covariances). The genotype means from combined multi-environment analysis
(BLUPs) were then obtained for comparisons with single environments and for correlation analysis
between traits.

Using average covariance between genotypes across environments as the numerator and average
variance of genotype means across environments as the denominator we estimated the heritability
using the following formula:

W= = —
2 _
MJ’- (e—l)agii,

2
1ve Yei
+_ —_

e e ezz
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where e refers to the number of environments, r refers to the number of replications within
environment, g;;, 1s the genotype covariance between environments i and 1’, O';l- is the genotype
variance within environment i, and ¢ is assumed to follow €;~N (0. R) in environment i and R is
diagonal matrix calculated from squared errors of genotype BLUEs from stage 1. If the covariance
between environments is higher, the heritability would be high accordingly. The variance
parameters were estimated by maximizing the REML (Patterson and Thompson, 1971) log-
likelihood function using the Al algorithm (Gilmour et al., 1995), implemented in the package
ASReml-R (Butler et al., 2017). Pairwise correlations between traits based on genotype means
estimated from each environment and across environments were calculated using R package

ggcorrplot.

Methods S4. Additional methodological details on multi-environment GWAS analysis.

The MTMM can be written as follow:

Y= Sl st XBHE % Dag+Hx X Hag+ v
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Where y is the vector of phenotypic BLUEs across environments, X is the vector of marker scores
and s; is a vector having 1 for values belonging to the 1’th environment and 0 otherwise. 1 is a
vector with 1 for all the values measured in the same location, f is a vector with 1 for all the values
measured in the same year, and v ~N(0.Z; ® K + R) is a random variable comprising of both
residual and random genetic effects. The variance of v is estimated from a variance decomposition
model described above. A generalized least square (GLS) F-test was used to estimate the genome-
wide marker effects depending on what kind of QTL/SNP we were interested as follows:

QF, This is the full model which tested against null model f=a;=a,=0 which identifies SNPs with
both stable and interaction effects;

QM, To identify the main QTL which tests the model with a;=a,=0 against the null model with
B=a=a,=0;

QL, To identify the QTL x location interaction which tests the full model against the null model
with a;=0.

QY: To identify the QTL x year interaction the full model tested against null model with a,=0.
QE: To identify any QTL X environment interaction effect where the full model is tested against
null model with a;=a,=0.

For marker-trait association, we didn’t use the Bonferroni adjustment due to its highly conservative
nature and overcorrect for SNPs falling in high linkage disequilibrium that are not truly
independent. Therefore, we approximated GWAS p-value significance thresholds according to the
true number of ‘independent SNP tests’. This effective number of SNPs was estimated in software
Haploview 4.2 (Barret et al., 2005) using r-square tag threshold estimated from LD decay analysis
(see LD section) (Mackay, 1996). We also retained the associations with —logio P > 4 but lower
than the significance threshold as suggestive QTLs. Haploview was also used to determine the
extent of QTL intervals within the barley chromosomes where SNPs detected in the same haplotype
blocks were considered as the same QTL. To estimate the proportion of phenotypic variance
explained by an SNP, we were faced with either a single SNP or multiple SNPs in the region with
high LD between them. In the case of first situation we calculated variance using the following
formulae: PVEg (%) = 2pi(1-pi)p X100 where B is the main effect derived from the GWAS model
and p; 1s the frequency of minor allele at SNP;. In the case of QTL region with multiple associated
SNPs, the phenotypic variance explained by the QTL was calculated as:

PVEg (%) = ﬂ*TD‘lﬁ* %100, where B* is a matrix with the elements B;" = 2pi(1-pi); and ,B*Tis
the transposed matrix. D Is the LD-matrix (Pearson correlations) of the variants in the QTL region.
To derive PVE (%) explained by QTL-by-Location and QTL-by-Year effects, the [;was replaced
by a; and a, , respectively. Finally, the total phenotype variance was obtained by summing over
main and interaction effects.
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