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Abstract

Rubber tree (Hevea brasiliensis) is the main feedstock for commercial rubber; however, its
long vegetative cycle has hindered the development of more productive varieties via breeding
programs. With the availability of H. brasiliensis genomic data, several linkage maps with
associated quantitative trait loci (QTLs) have been constructed and suggested as a tool for
marker-assisted selection (MAS). Nonetheless, novel genomic strategies are still needed, and
genomic selection (GS) may facilitate rubber tree breeding programs aimed at reducing the
required cycles for performance assessment. Even though such a methodology has already been
shown to be a promising tool for rubber tree breeding, increased model predictive capabilities
and practical application are still needed. Here, we developed a novel machine learning-based
approach for predicting rubber tree stem circumference based on molecular markers. Through
a divide-and-conquer strategy, we propose a neural network prediction system with two stages:
(1) subpopulation prediction and (2) phenotype estimation. This approach yielded higher
accuracies than traditional statistical models in a single-environment scenario. By delivering
large accuracy improvements, our methodology represents a powerful tool for use in Hevea GS
strategies. Therefore, the incorporation of machine learning techniques into rubber tree GS

represents an opportunity to build more robust models and optimize Hevea breeding programs.

Keywords: deep learning, genomic selection, Hevea brasiliensis, neural networks, rubber tree

growth.
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1. Introduction

Rubber tree (Hevea brasiliensis) has an elevated importance in the global economy, being

almost the only feedstock for commercial rubber (Cros et all 2019; |Warren-Thomas et al.|

2015)). Considering the long perennial vegetative cycle of Hevea, breeding programs aim to
improve its yield production in order to reach the rapidly increasing rubber demand (Ahrends|

et al., 2015; Cros et al., 2019; Warren-Thomas et al.,[2015). Therefore, genomic approaches are

needed in rubber tree breeding, especially considering its recent domestication history
, 2018)). H. brasiliensis is a diploid species (2n = 36) with an elevated occurrence of

duplicated regions in its genome (~ 70%) (Lau et al., 2016} Liu et al.,[2020; [Tang et al., [2016)),

and this complex genomic organization has hindered the development of genomic strategies for
breeding. However, with the improvement of next-generation sequencing (NGS) technologies

and the consequent reduction in genotyping costs, data generation has become more efficient,

providing more genomic resources in less time and with lower associated costs (Roorkiwal et al.,

2018). This greater availability of data improved precision in selection with higher genetic gains

in various crops (Gonzalez-Camacho et al., [2018; Roorkiwal et al., [2018) and, in rubber tree,

could complement traditional approaches based on only phenotypic and pedigree information

(Hayes et al., 2013 Roorkiwal et al.; 2018)).

Various rubber tree genomic resources have become available in recent decades, such as

a large set of different molecular markers (Lespinasse et all [2000b; [Nakkanong et al., [2008;

de Souza et al., 2016; Venkatachalam et al., [2006), draft genomes (Lau et al) 2016; Tang

2016), and, more recently, a chromosome-level assembled genome (Liu et al., 2020)).

These data have already allowed the construction of saturated linkage maps with associated

quantitative trait loci (QTLs), which were proposed as a tool for marker-assisted selection

(MAS) (An et al.| 2019). Although QTLs for several traits have been identified in rubber tree

(An et al} 2019; Le Guen et all 2011} [2007; [Lespinasse et al., 2000a; Rosa et al., 2018} |Souzal

et al.l 2013; Tran et all |2016]), the amount of phenotypic variance explained by these identified

QTLs is usually small (Souza et al.,2013) because of the highly complex genetic architectures

associated with growth and rubber production traits. The configuration of these phenotypes

is controlled by many genes with small effects (Washburn et al., [2019)), and weak QTLs may
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not be identified using existing methodologies (Cros et al., 2019; [Muranty et al., [2015), which

prevents the identification of interindividual differences (Bellot et al. [2018). Together with

the environmental and genetic background restrictions of QTLs (Crossa et al., [2017), these

features limit the application of Hevea QTLs for MAS (de Souza et al., [2016). Consequently,

novel genomic strategies that can assist in rubber tree breeding programs are needed, especially

considering the time required to evaluate these phenotypes, the elevated costs, and the low

female fertility in H. brasiliensis (An et al. 2019; Cros et al. |2019; Souza et al., 2019).

Aimed at solving such difficulties in many crops, genomic selection (GS) has arisen as

a promising methodology for considerably reducing the required breeding cycle (Hayes et al.,
2001)). GS has shown better performance than MAS (Bernardo & Yu, 2007; Heffner et al., 2010)),

mainly because of its associated genetic gains (Albrecht et al., 2011) and reduced costs over a

long time period (Wang et al., 2018]). This strategy enables the selection of plants based on their

estimated performance obtained with a large dataset of molecular markers (Ma et al. [2018;

Roorkiwal et al.| 2018), reducing breeding time by avoiding the need to evaluate a considerable

number of phenotypes over different years (Crossa et al., [2017). Using known phenotypic and

genotypic information from a training population (Crossa et al.,2019), it is possible to create a

predictive model that can be used to predict the breeding values of a testing population using

only genotypic data (Roorkiwal et al., 2018). This modeling is generally based on a mixed-

effect regression method (Montesinos-Lopez et al. 2018) and has already been demonstrated

to be promising for several crops (Crossa et al., 2016; |Spindel et al., 2015; Wolfe et al., 2017

Xavier et al, [2016; Zhao et al) [2012). In rubber tree, Souza et al.| (2019) and |Cros et al.| (2019))

assessed the potential of GS for predicting stem circumference (SC) and rubber production
(RP), respectively, simulating breeding schemes through cross-validation (CV) techniques.
There are several CV approaches for simulating a real application of GS in a plant breeding
program. These methods take into account the population structure in the dataset and the
appropriateness of applying the developed predictive model to a set of plants. There are

basically three approaches, which are used to (1) predict traits in an untested environment

using previously tested lines (CV0) (Roorkiwal et al., 2018)), (2) predict new lines’ traits that

were not evaluated in any environment (CV1) (Montesinos-Lopez et al.,[2019b), and (3) predict
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traits that were evaluated in some environments but not in others (CV2) (Jarquin et al., 2017).
These three scenarios were already evaluated in rubber tree. (Cros et al.| (2019)) assessed the
potential of GS in a within-family context using CV0 and CV1 methods, and [Souza et al.
(2019) tested three different populations with CV1 and CV2. These initiatives represent the
first attempts to use GS on rubber tree data, but with low associated predictive capabilities
for some of the created CV schemes, mostly when prediction is performed with genotypes that
have not already been tested.

Different approaches have been used in GS to create predictive models, including parametric
and nonparametric methods (Crossa et al., 2017; De Los Campos et al., | 2009; Endelman, 2011}
Hayes et al., 2001} |Jannink et al., 2010; VanRaden, 2007}, [2008). Significant differences in
predictive capabilities have not been demonstrated when changing the predictive approach (Ma
et al., 2018; Roorkiwal et al., |2016; Varshney, 2016)); thus, linking genotypes and phenotypes
remains a great challenge (Bellot et al., | 2018; Harfouche et al.,[2019)), especially for plant species
with high genomic complexity. In this context, more robust techniques for estimating these
models with higher prediction capabilities are needed to expand the practical implementation
of GS in rubber tree. Nonlinear techniques have already shown improved performance in
representing complex traits with nonadditive effects (Crossa et al. 2014; |Gonzalez-Camacho
et al| 2012, 2018; Pérez-Rodriguez et all 2012), and, in this context, machine learning (ML)
strategies have emerged as a promising set of tools for complementing these statistical nonlinear
methods.

The objective of this work was to develop a genomic prediction approach for rubber tree
data. Considering that ML methods have not been proven to have better performance than sta-
tistical methodologies for GS (Bellot et al., 2018; Montesinos-Lopez et al.| [2019a), we evaluated
their efficiency in rubber tree, also suggesting a novel approach for constructing a predictive sys-
tem with neural networks based on two-stage prediction: (1) subpopulation prediction and (2)
phenotype estimation. Such a divisive approach was created considering a common paradigm in
Computer Science: divide and conquer. For datasets with a clear subpopulation structure, such
as rubber tree, the proposed approach represents a promising alternative for the development

of predictive models.
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2. Material and methods

2.1. Plant material and phenotypic characterization

The data used in this work were obtained with different experiments in two previous studies.
Therefore, our analyses were conducted by separating the methodologies and considering two
datasets: experimental group 1 (EG1) and experimental group 2 (EG2). EGI includes 408
samples of three F1 segregant populations obtained with crosses between (Popl) GT1 and
PB235 (30 genotypes) (Souza et al. 2019), (Pop2) GT1 and RRIM701 (127 genotypes) (Conson
et al., 2018} [Souza et all [2019)), and (Pop3) PR255 and PB217 (251 genotypes) (Rosa et al.|
2018; Souza et al., 2013, 2019)). EG2 is based on an F1 cross between RRIM600 and PB260
(330 samples) (Cros et al., [2019).

The parents of the crosses used are important clones for rubber tree breeding programs.
PR255, PB235, PB260, and RRIM600 have high yield, and PB217 has considerable potential
for long-term yield performance due to its slow growth process (Cros et al. 2019; Souza et al.,
2019). PR255 and RRIM701 have good growth, and RRIM701 also presents an increased
SC after initial tapping (Romain & Thierry, 2011). The latex production is stable in PR255
and medium in RRIM600. Stable or medium latex production represents a good adaptation
to several environments, as observed in GT1, a clone tolerant to wind and cold. Additionally,
PB260 presents high female fertility (Baudouin et al.,|1997), and PB235 is susceptible to tapping
panel dryness (Sivakumaran et al. [1988)).

In EG1 and EG2, we analyzed the SC trait. In EG1, Pop3 was planted in 2006 in a
randomized block design in Itiquira, Mato Grosso State, Brazil, 17°24" 03" S and 54°44’ 53" W
(Rosa et al., |2018; Souza et al.| 2013] 2019). Each individual was represented by four grafted
trees in each plot and four replications. Popl and Pop2 were planted in 2012 at the Center of
Rubber Tree and Agroforestry Systems/Agronomic Institute (IAC - Brazil), 20°25" 00” S and
49°59" 00” W, following an augmented block design, with four blocks containing two clones per
plot spaced 4 m apart for each trial, which was repeated four times (Conson et al. 2018} |[Souza
et al., 2019).

Even though EG2 corresponds to only one cross, this population was planted following an

almost complete block design at two different sites (Cros et al., [2019)), which for convenience
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we named site 1 (S1) and site 2 (S2). In S1, 189 clones were planted in 2012 in Société des
Caoutchoucs de Grand-Béréby (SOGB - Ivory Coast), 4°40" 54” N and 7°06" 05” W. In S2, 143
clones were planted in 2013 in Société Africaine de Plantations d'Hévéas (SAPH - Ivory Coast),
5°19" 47.79” N and 4°36" 39.74” W. This cross consisted of six blocks with randomized trees
spaced 2.5 m apart and a mean number of ramets per clone of 11 for S1 (ranging between 7
and 17) and 13 for S2 (ranging between 5 and 20).

SC measurements of Pop3 in EG1 were obtained in four years (from 2007 to 2010) and those
of Popl and Pop2 were obtained from 2013 to 2016, considering that growth traits are usually
measured only during the first 6 years (Rao & Kole, 2016; [Souza et al., 2019). According to
the water distribution of the experiments installed, EG1 phenotypes were measured to supply
information considering low-water (LW) and well-watered (WW) conditions; thus, Pop3 was
evaluated in October 2007-2010 (LW) and in April 2008-2010 (WW), and Popl and Pop2 were
evaluated in June 2013, December 2013, May 2014, November 2014, and June 2015-2016. SCs
were measured for individual trees at 50 cm above ground level. For both phenotypes, the
average per plot was calculated. SC in EG2 was measured at 1 m above ground level before
tapping for 3 months every two days except on Sundays (with the beginning at 32 months after

planting in S1 and 38 months after planting in S2).

2.2. Phenotypic data analysis

All phenotypic analyses were performed using R statistical software (Team et al., [2013)).
EG1 and EG2 traits were analyzed with the following steps: (1) data distribution evaluation;
(2) standardized normalization with the R package bestNormalize (Peterson, 2017); (3) mixed-
effect model creation and residual appropriateness verification through quantile-quantile (Q-Q)
plots using the breedR package (Munoz & Sanchez, 2019); (4) estimation of best linear unbiased
predictions (BLUPs) based on the models created; (5) hierarchical clustering on BLUP values
using a complete hierarchical clustering approach based on Euclidean distances and dendrogram
visualization with the ggtree R package (Yu et al., 2017); and (6) identification of phenotypic
groups using the clustering approach of (5), with cluster numbers ranging between 2 and 5,
and several clustering indexes implemented in the NbClust R package (Charrad et al., 2014)).

In EG1, we employed the following statistical mixed-effect model:
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Yijk =+ L + Bj + W + Gy + €45, (1)

where Y;;;, corresponds to the phenotype of the ith genotype in the jth block and kth loca-
tion. The phenotypic mean is represented by pu, and the fixed effects represent the contribution
of the kth location (L), the jth block at the kth location (Bjx), and the watering condition of
the measurement (W). The genotype G and the residual error e (nongenetic effects) represent
the random effects.

EG2 SC phenotypes were modeled for each site (S1 and S2) according to the following

statistical model:

Yijkr = 4 Bj + Lij + Rogj + Gij + €ijir (2)

where Y, corresponds to the phenotype of the ith genotype positioned in the rth rank of
the kth line in the jth block. The phenotypic mean is represented by p, and the fixed effects
represent the contribution of the jth block (B;), the kth line of the jth block (Ly;), and the
rth rank of the kth line in the jth block (R,;;). The genotype G' and the residual error e
(nongenetic effects) represent the random effects. Broad-sense heritability (H?) was estimated

as H?> = 02 /o>, with o and o, representing the genetic and phenotypic variances, respectively.

2.3. Genotyping process

DNA extraction from EG1 was described by (Conson et al. (2018); [Souza et al.| (2013),
and the genotyping process was performed using a genotyping-by-sequencing (GBS) protocol
(Elshire et al., 2011)) with EcoT22I restriction enzyme followed by Illumina sequencing using
the HiSeq platform for Pop3 and the GAIlx platform for Popl and Pop2 (Souza et al., [2019).
Raw sequencing reads were processed using the TASSEL 5.0 pipeline (Glaubitz et al., 2014]),
with a minimum count of 6 reads for creating a tag. The tag mapping process was performed
using Bowtie2 v.2.1 (Li & Durbin) 2009)) with the very sensitive algorithm and H. brasiliensis
reference genome (Liu et al., [2020)). Single nucleotide polymorphisms (SNPs) were called with
the TASSEL algorithm, and only biallelic SNPs were retained using VCFtools (Danecek et al.)

2011). These markers were filtered using the R package snpReady (Granato et al., 2018b|) with
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a maximum of 20% missing data for a SNP and 50% in an individual and a minimum allele
frequency (MAF) of 5%. Missing data were imputed using the k-nearest neighbors (Cover &
Hart|, 1967)) algorithm implemented in the snpReady package.

EG2 samples were genotyped with simple sequence repeat (SSR) markers, following the
protocol for DNA extraction and genotyping described by Le Guen et al. (2009). A total of 332
SSRs were used for S1 (Tran et al., 2016) and 296 for S2 (Cros et al., 2019). Missing data were
imputed using BEAGLE 3.3.2 (Browning & Browning, 2007) with 25 iterations of the phasing
algorithm and 20 haplotype pairs to sample for each individual in an iteration. The genotypic
profile of individuals in EG1 and EG2 was evaluated using principal component analyses (PCAs)

in R statistical software (Team et al., [2013]) with the ggplot2 package (Wickham) 2016)).

2.4. Statistical models for genomic prediction

We employed two different strategies for creating traditional genomic prediction models:
Bayesian ridge regression (BRR) (Gianolal 2013)) and a single-environment, main genotypic
effect model with a Gaussian kernel (SM-GK) (Cuevas et al.; 2016). BRR and SM-GK models
were implemented in the BGLR (Pérez & de Los Campos| 2014) and BGGE (Granato et al.,
2018a) R packages, respectively. Considering the genotype matrix with n individuals and p

markers, BRR models were implemented considering the following:

y=1lp+Zy+e (3)

where y represents the BLUP values calculated based on the established mixed-effect models
for phenotypic data analyses, u the overall mean, Z the genotype matrix, e the residuals, and
~ the vector of marker effects. In SM-GK, Z is the incidence matrix of genetic effects, and ~
is the vector of genetic effects with variance estimated through a Gaussian kernel calculated

using the snpReady R package.

2.5. Genomic prediction via machine learning
For genomic prediction via ML, we selected the following algorithms: (a) AdaBoost (Freund
& Schapire, 1997), (b) multilayer perceptron (MLP) neural networks (Popescu et al. 2009),

(c) random forests (Breiman, 2001), and (d) support vector machine (SVM) (Shawe-Taylor &
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Cristianini, 2000). To create these models, we used Python v.3 programming language together
with the library scikit-learn v.0.19.0 (Pedregosa et al 2011)). We also tested a combination of
feature selection (FS) techniques for increasing the predictive accuracies (Aono et al., 2020)),
using a combination of three different methods: (i) L1-based F'S through an SVM model (Shawe-
Taylor & Cristianini, [2000), (ii) univariate F'S with Pearson correlations (and ANOVA for
discrete variables) (p-value of 0.05), and (iii) gradient tree boosting (Chen & Guestrin, 2016]).
Such a strategy is based on marker subset selection, separating the markers identified by all of
these methods together (intersection of the 3 approaches, named Inter3) or by at least two of
them simultaneously (Inter2), and using such subsets for prediction.

To understand the subset selection, we performed functional annotation of the genomic re-
gions underlying these markers selected through F'S considering a 10,000 base-pair (bp) window
for the up- and downstream regions. Using BLASTn software (Altschul et al.,|1990) (minimum
e-value of le-6), these sequences were aligned against coding DNA sequences (CDSs) from
the Malpighiales clade (Linum usitatissimum v1.0, Manihot esculenta v8.1, Populus deltoides
WV94 v2.1, Populus trichocarpa v4.1, Ricinus communis v0.1, and Saliz purpurea v5.1) of the
Phytozome v.13 database (Goodstein et al., [2012)). On the basis of significant correspondence,

Gene Ontology (GO) terms (Botstein et al., 2000) were retrieved.

2.6. Multilayer perceptron neural network

As the final approach for genomic prediction in EG1, we proposed the creation of neu-
ral networks with novel architectures for each of the biparental populations, using the Keras
Python v.3 library for this task (Chollet et al.,[2015). We employed MLP networks, which have
an architecture based on multiple layers and feedforward signal propagation (Da Silva et al.
2017). The MLP architecture is organized into one input layer (IL), followed by at least one
hidden layer (HL) and one output layer (OL). Each one of these layers contains processing ele-
ments, named neurons, which are interconnected with associated unidirectional numeric values
(weights) (Hecht-Nielsen, |1992)). The number of neurons in the IL corresponds to the quantity
of explanatory (independent) variables of the problem, which will be propagated across the
MLP structure in one direction (from the input to the output) (Da Silva et al., 2017)). The HLs

receive the output of the previous layer until this feedforward propagation generates the OL,

10
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respecting the established connections and weights of the architecture. HLs are included in an
MLP to extract unknown patterns from the dataset, making decisions that will contribute to
the overall prediction process (Da Silva et al.l 2017; |O’Shea & Nash, [2015). After the HLs,
the architecture contains the OL, which is related to the response (dependent) variable of the
problem. For regression tasks with a single output, there is only one neuron in the OL with
linear values (Kurkova & Sanguineti, 2013]).

Each neuron in an MLP has an output value corresponding to impulses that will be propa-
gated into the network. The input signals (x1, 23, ..., ) of a neuron are multiplied by synaptic
weights (wq,ws, ..., w,) representing their importance in neuron activation (Da Silva et al.
2017). The results of these multiplications are aggregated through summation and subtracted
by an activation threshold/bias (#). Thus, an output signal is produced, whose value is limited
with the use of an activation function g, e.g., rectified linear activation (ReLU), logistic, arc
tangent, and hyperbolic tangent functions. The purpose of such functions is to introduce non-
linearity into the network (Wang;,|[2003). The output s of an HL. neuron can then be summarized

in (Da Silva et al. 2017)

s=g (Z WiT; — 9) (4)

The structure of an artificial neural network is adaptive, changing its conformation during
a process called training, which aims to reach stability in the network via minimal error in pre-
dictive performance through changes in the connection weights (Sheela & Deepal, [2013)). The
synaptic weights in an MLP are adjusted by measuring the predictive performance of the ar-
chitecture via an error function, such as the sum of squared errors (Wangj, 2003). Even though
the propagation of signals in an MLP is in the forward direction, adjustments of weights are
not propagated in these feedforward connections. Based on the comparison of the network
output with the desirable response and the obtainment of an error value, the weights are
updated in backward propagation (Da Silva et al., |2017) to minimize the found error using
this backpropagation strategy together with an optimization algorithm (Hecht-Nielsen [1992;
Rumelhart, 1986, such as stochastic gradient descent (SGD), adaptive moment estimation

(Adam) (Kingma & Baj, 2014)), and Rmsprop (Bengio, 2015)). This process is repeated using
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the training data in a number of cycles (Hoffer et al.,2017), named epochs, and this backprop-
agation strategy usually employs a batch of samples at each gradient computation for updating
the weights (Hoffer et al., [2019).

For all the predictive tasks, we considered an MLP structure with two HLs and used the
mean absolute error (MAE) as the error function for training and defining the architecture
of the networks. Additionally, 200 epochs were considered (batch size of 16). The training
process of the networks was performed using the backpropagation strategy together with the
Adam optimization algorithm (Kingma & Ba, [2014)), which aims to minimize the MAE by
updating the synaptic weights using a gradient-based strategy that combines heuristics from
a momentum term and RMSProp (Bengio, 2015)). The update process is based on a change
of Aw;; for each connection, considering the individual influence of a weight w;; on the MAE
value obtained with the gradient descent g; in the iteration ¢ calculated with OMAFE /Ow;; and

used in the equation

U

VS + €

where 7 is the learning rate representing the amount of change in the process of training,

(5)

sz‘j =gt XN

v; is the exponential average of gradients along the weights w; of layer i, and s; is the ex-
ponential average of squares of gradients along w;. The Adam optimizer employs two other
hyperparameters for the optimization process (4 and ), which are used for the calculation of
v (vp = Br X v — (1= 1) X g) and 8¢ (8; = Po x 81 — (1 — B2) x g?). We used ; = 0.9 and
Po = 0.999 (Kingma & Bal, 2014]). We tested the following configurations for the MLP hyperpa-
rameters: (a) number of neurons in the first HL, varying from 1 to /(g + 2)m +2y/m/(q + 2)
(m individuals and ¢ output neurons in the OL); (b) number of neurons in the second HL, vary-
ing from 1 to q\/m : (c) ReLlU, sigmoid and hyperbolic tangent activation functions;
and (d) learning rates of 0.005, 0.001, and 0.0001.

2.7. Proposed approach and validation strategies

Each of the sets of hyperparameters estimated for the MLP networks was used to create

a joint and single system for prediction in EG1, which we indicate as part of a divide-and-
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conquer approach created for genomic prediction (Fig. . Considering an individual as part
of a dataset subpopulation that has a specific phenotypic distribution, we propose the use of a
two-stage prediction process based on the following steps: (1) creating four different neural net-
works according to different hyperparameter searches and the training data (division step), (2)
predicting which subpopulation an unlabeled observation belongs to according to the network
induced for this task (prediction 1 and conquer step), and (3) predicting its phenotypic perfor-
mance based on the network trained specifically for the subpopulation predicted (prediction 2

and final conquer step).

Traditional Prediction Divide and Conquer
Model Approach = o
Phenotypic Data PP 5—| = gé
SaT| 8 ISIE]
- Og | OF c 5
T = 5 Solx g0
iz 2. S| 8 g5 — 82| 22
s N a o =T o o
[T = 5 - o= =
3% g £ g8
S o 5 @ o
= =
(5]
- - =
. - S| = 9 c
£3 Novel Individuals £2 Novel Individuals o= g ]
02| Ao © 0
Estimate neural network Estimate four neural network ke -8 ] o 'g
weights using a training weights using a training 3 =3 E&
dataset - 7 dataset b=
9 Predict their putative 9 Predict which subpopulation
performance Multivariate Analysis an individual belongs
Predict their performance =
according to the specific g =| & 2 S
Population Structure model 53 A g:,;
ST | 5 c
@ Subpopulation 1 Bole 98
Low associated © Subpopulation 2 High associated g2 3 oo
accuracies on rubber ) accuracies on rubber =
tree predictive scenario O subpopulation 3 tree predictive scenario

Fig. 1. Overview of the approach proposed. Based on a divide-and-conquer strategy with different neural
networks combined into a single model (part 1), individuals with unknown phenotypic performance (a) are
classified into a subpopulation using a specific neural network (part 2) and (b) have their phenotypic values
estimated through an induced network specific to the subpopulation they belong to (part 3).

CV1 was the strategy employed for the selection of data for evaluating the models’ per-
formance due to its reduced bias when splitting the dataset and the low prediction accuracies
described (Souza et al., 2019). We first separated a test dataset using 10% of the genotypes
with a stratified holdout strategy implemented in the scikit-learn Python v.3 module (Pedregosa
et al.,|2011). The stratification was performed only in EG1 and was based on the subpopulation
structure present in the dataset. For all the models evaluated in this work (statistical and ML
based), the same dataset split was considered in every round of CV.

The remaining 90% of the genotypes were used as the development set for defining the
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networks’ architecture and for evaluating the overall models’ performance through a stratified k-
fold approach (k=4) with 50 repetitions (subpopulation stratification). The predictive accuracy
in every CV split was evaluated by comparing the predicted and real BLUPs by measuring (1)
the Pearson correlation coefficient (R) and (2) the mean absolute percentage error (MAPE).
For each trait, we compared the predictive accuracy differences using ANOVA and multiple
comparisons by Tukey’s test with the agricolae R package (de Mendiburu & de Mendiburul,
2019).

For EG1, four different MLP architectures were estimated: (a) subpopulation prediction, (b)
BLUP prediction for Popl, (¢) BLUP prediction for Pop2, and (d) BLUP prediction for Pop3.
After defining the network hyperparameters with the development set, all of these structures
were joined into a single predictive system that was used for the final prediction. In addition to
evaluating the predictive performance through the CV scenarios created, we also checked the

performance of the model for a leave-one-out (LOO) CV configuration.

3. Results

3.1. Phenotypic and genotypic data analysis

The raw phenotypic data were evaluated considering the experimental groups proposed.
EG1 (Supplementary Fig. 1) had reduced values compared to those of EG2 (Supplementary Fig.
2) due to the different heights and years of stem measurements. However, for the normalized SC
values (Supplementary Figs. 3-5), such an evident discrepancy was not observed. By modeling
the phenotypic measures with the mixed-effect models established and contrasting the raw
values with the normalized ones through Q-Q plots, we observed that the residuals obtained
with the normalized measurements in EG1 (Supplementary Fig. 6) and EG2 (Supplementary
Figs. 7-8) were more appropriate. Heritabilities (H?) were estimated as 0.55 for EG1, 0.83 for
EG2-S1 and 0.93 for EG2-S2, which is in accordance with the findings of Souza et al.| (2019)
and |Cros et al.| (2019).

Interestingly, BLUPs from EG1 (Supplementary Fig. 9) and EG2-S1 (Supplementary Fig.
10) presented reduced variability when compared to that of BLUPs estimated for EG2-S2 (Sup-

plementary Fig. 10). This observation is corroborated by the hierarchical clustering analyses
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performed for these experimental groups. EG1 (Supplementary Fig. 11) and EG2-S1 (Supple-
mentary Fig. 12) could be divided into three phenotypic groups according to the best data
partitioning scheme established through NbClust clustering indexes (Charrad et al., 2014), and
EG2-S2 could be arranged into 5 such groups (Supplementary Fig. 13). Therefore, it was
expected that for the genomic prediction step, EG2-S2 would represent a more difficult task
due to its higher data variability.

SNP calling in EG1 was performed according to the TASSEL pipeline. Of the 363,641 tags
produced, approximately 84.78% could be aligned against the H. brasiliensis reference genome,
which generated 107,466 SNPs. These markers were filtered separately for each population
using the parameters established, and then these separated datasets were combined through
intersection comparisons, yielding a final dataset of 7,414 high-quality SNP markers. For EG2
predictions, 332 and 296 SSR markers were used for EG2-S1 and EG2-S2, respectively.

Using these datasets, we performed PCAs for EG1 (Supplementary Fig. 14) and EG2 (Sup-
plementary Fig. 15). In the figures, the colors of the genotypes correspond to their BLUP
values, and their shapes correspond to population structure in EG1 and site in EG2. As
expected, for the SC trait, there were no clear associations between markers and BLUPs, un-
derlining the challenge of creating genomic prediction models. Additionally, the subpopulation

structure in EG1 was evident.

3.2. Genomic prediction

From the BLUP and marker datasets, we fit genomic prediction models using the traditional
statistical approaches (BRR and SM-GK) and the ML algorithms (AdaBoost, MLP, RF, and
SVM) selected. For EG1 (Supplementary Fig. 16), EG2-S1 (Supplementary Fig. 17) and
EG2-S2 (Supplementary Fig. 18), no substantial changes were observed when changing the
prediction approach. After applying Tukey’s multiple comparisons test, we found equivalent
performance values for SVM, SM-GK and BRR for all the experimental groups. The worst
performance was observed for MLP, however, considering the default architectures employed in
scikit-learn (Pedregosa et al., 2011).

Additionally, we also tested the inclusion of F'S techniques for increasing model performance

in ML algorithms. Using the Inter2 approach, we selected 539 (~7.27%), 69 (~20.78%) and
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82 (~27.70%) markers for EG1, EG2-S1 and EG2-S2, respectively. For Inter3, 113 (~1.52%),
8 (~2.41%) and 15 (~5.07%) markers were identified. This SNP subsetting approach was
beneficial for EG1 (Supplementary Fig. 19A), EG2-S1 (Supplementary Fig. 20) and EG2-S2
(Supplementary Fig. 21); however, there were less pronounced improvements for data from
EG2 sites, which was expected because of the limited SSR marker dataset. We considered
that, even with increased predictive accuracies, to achieve better results, a wider set of markers
would be required. Then, we considered the best strategy for EG2-S1 to be the combination
of the Inter2 FS approach with SVM and that for EG2-S2 to be the combination of Inter3 FS
with the AdaBoost ML algorithm.

Even though FS approaches boosted prediction accuracies for EG1, when analyzing model
performance by calculating the Pearson correlation between the real and predicted BLUPs for
each family separately, this better performance was caused by the overall predictions. However,
when analyzing predictive power within families (Supplementary Fig. 19B), such an approach
was not sufficient for obtaining a reliable prediction with this evident data stratification. In
this context, different from EG2, we developed an approach specific to datasets similar to EG1,
i.e., a methodology with high capabilities to supply accurate predictions, even considering the
subpopulation structure present in a dataset.

Considering a genomic prediction problem based on the creation of a regression model for a
dataset containing genotypes that belong to different groups of genetically similar individuals,
we modeled such a task by dividing the prediction into different stages (Fig. and creating
a divide-and-conquer approach for prediction. The basis of such an approach is that closely
related genotypes will share QTLs that might not be the same in another group of genotypes.
Therefore, we created a different neural network for each biparental population (divide part),
coupled with an intrapopulation system of F'S and with a different form of hyperparameter esti-
mation. Following this division part, the separated systems were combined using an additional
step (the conquer part). To do so, another neural network was created to infer which subpart

of the system should be used for prediction.
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3.3. Feature selection at the subpopulation level

The selection of subsets of markers was performed according to each EG1 network using
the four different tasks: (i) subpopulation prediction, (ii) EG1-Popl BLUP prediction, (iii)
EG1-Pop2 BLUP prediction, and (iv) EG1-Pop3 BLUP prediction. As expected, each FS
strategy returned a different quantity of markers (Table[l)). For each subset of markers selected
considering Inter2 and Inter3, we evaluated their performance using the ML algorithms selected.
Some of the models created for task (i) did not present any mistakes (Supplementary Fig. 22),
which was expected due to the subpopulation structure present in the dataset and their evident
linear separability. For this task, we considered the most suitable F'S strategy to be the Inter2
approach.

Table 1
Feature selection strategies performed on the marker dataset considering the intersection among the three

methods established (Inter3) and the intersection among at least two out of the three methods established
(Inter2).

Prediction Scenario Inter2 Inter3
Subpopulation Prediction 224 17
GT1 x PB235 345 20
GT1 x RRIM701 454 62
PR255 x PB217 591 119

For EG1-Popl (Supplementary Fig. 23), EG1-Pop2 (Supplementary Fig. 24) and EG1-Pop3
(Supplementary Fig. 25), the best accuracies were observed for the combination Inter2-SVM.
However, considering the overall performance with the other algorithms, the best approach for
SNP subsetting was Inter3. For this reason, we selected this strategy for the BLUP predic-
tion task. Interestingly, there was no intersection between these three Inter3 datasets in the
populations; the only case of overlap was a single SNP marker in Pop2 and Pop3.

From the genomic regions flanking these markers selected for BLUP prediction, we could
retrieve several instances of correspondence between rubber tree sequences and CDSs from
the Malpighiales clade in the Phytozome database. From the 20 markers used in Popl for
prediction, 62 in Pop2, and 119 in Pop3, we found CDS correspondence for the genomic regions
related to 8 (40%), 27 (~43.55%) and 48 (~40.32%) SNPs, respectively. Even though there was

no obvious complementarity among these markers due to the absence of intersections, we found
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GO terms with similar biological processes (Supplementary Tables 1-3), indicating common

molecular processes related to these genomic regions.

3.4. Neural network creation

With the marker dataset established through FS for EG1 subtasks, we estimated the best
hyperparameter configuration for creating the networks proposed: (i) subpopulation predic-
tion in EG1 (Supplementary Fig. 26), (ii) BLUP prediction in EG1-Popl (Supplementary Fig.
27), (iii) BLUP prediction in EG1-Pop2 (Supplementary Fig. 28), and (iv) BLUP prediction in
EG1-Pop3 (Supplementary Fig. 29). With the exception of network (i), which is a classification
task, for each hyperparameter combination, we evaluated the MAPE and R Pearson coefficient
values using the development set to select the best configuration for prediction. For network (i),
several hyperparameter combinations returned prediction capabilities without mistakes (Sup-
plementary Fig. 26), which led us to select the configuration with the minimum value for the

loss function (Table [2)).

Table 2

Hyperparameter definition for each one of the created neural networks in experimental groups 1 (EG1) and
2 (EG2) considering (i) the number of neurons selected for the first hidden layer (N-1HL), (ii) the number
of neurons selected for the second hidden layer (N-2HL), (iii) the learning rate (LR), and (iv) the activation
function (AF).

Neural Network N-1HL N-2HL LR AF
EG1 (Subpopulation Prediction) 45 25 0.005 Rectified linear activation
EG1 (BLUP Prediction in GT1 x PB235) 10 3 0.005 Rectified linear activation
EG1 (BLUP Prediction in GT1 x RRIM701) 30 7 0.005 Rectified linear activation
EG1 (BLUP Prediction in PR255 x PB217) 42 4 0.005 Rectified linear activation

For networks (ii), (iii) and (iv), we selected the best hyperparameter combination by eval-
uating the plot profiles. We selected the combinations closest to the right corner of the plots
(Supplementary Figs. 27-29), ideally representing the best MAPE and R Pearson coefficient
simultaneously. Interestingly, for the four networks, the best activation function was ReLU,
and the learning rate was 0.005, only changing the quantity of neurons in the established HLs.
An evaluation of the predictive performance of these networks compared to the traditional ge-
nomic prediction approaches with k-fold CV built in the development set revealed significant
improvement and effective performance in each population, different from the FS performed

using these datasets combined (Supplementary Fig. 19).
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The network modeled for EG1-Popl showed the largest increases (Supplementary Fig. 30),
with a mean improvement of 9 times the initial obtained accuracies. EG1-Pop2 (Supplementary
Fig. 31) and EG1-Pop3 (Supplementary Fig. 32) showed increases of 7 and 3 times, respec-
tively. In addition to such significant improvements, the models’ performance was also more
stable, with the predictive accuracies having a narrow distribution, as observed in the boxplots’

conformations.

3.5. Divide-and-conquer approach

All of the individual networks were combined to create the proposed approach in EGI.
Compared with the traditional approaches, this approach showed a mean improvement of 4
times the initial accuracies (Fig. [2A) in the k-fold evaluations. Moreover, BRR and SM-GK
presented equivalent performance values. Additionally, when analyzing the performance of
the development set for predicting the BLUP values of genotypes from the test set, we found
Pearson R coefficients of 0.39, 0.42, and 0.81 for BRR, SM-GK, and the proposed approach,

respectively, showing the methodology’s efficiency even for data not in the development set.
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Fig. 2. Predictive accuracies for stem circumference BLUP prediction in experimental group 1 (EG1) con-
sidering (A) a 4-fold cross validation (CV) scheme (50 times repeated) and (B) a leave-one-out CV strategy.
The models used for prediction were a single-environment model with a nonlinear Gaussian kernel (SM-GK),
Bayesian ridge regression (BRR), and the proposed strategy using the divide-and-conquer approach. The labels
indicate the results from Tukey’s multiple comparison test.

As the final step in model evaluation, we performed a LOO CV split to check whether
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an increase in the training data improves prediction accuracy. By contrasting the real BLUP
values with the predicted values, we found R Pearson coefficients of 0.14, 0.16 and 0.68 for
BRR, SM-GK, and the proposed approach, respectively. The regression curve clearly indicates

the proposed approach’s appropriateness for rubber tree data (Fig. )

4. Discussion

GS has emerged as a potential tool for application in plant breeding programs (Cros et al.)

2015} [Crossa et al.| [2016; [O’Connor et al., 2018} [Spindel et al., 2015; [Wolfe et al., 2017; Kavier
et al., 2016} Zhao et al. 2012). In rubber tree, previously obtained results (Cros et al., [2019;

Souza et al., 2019) have demonstrated the potential of such a technique for reducing breeding

cycles. Because of the strong commercial rubber demand, there have been many economic

incentives for rubber tree production in more environments beyond its natural range (Ahrends|

et al., 2015; Warren-Thomas et al. 2015). Considering the difficulty of achieving ideal condi-

tions for cultivating H. brasiliensis and the rubber demand, the development of more efficient

varieties is needed. However, Hevea’s long life cycle considerably reduces breeding efficiency

(An et al) 2019). Therefore, the application of GS in rubber tree represents an alternative for

achieving the desired rubber production in less time by replacing clone trials and reducing the

long period of phenotypic evaluation (Cros et al., 2019).

The main objective of rubber tree breeding programs is to increase latex production with

rapid growth (Rosa et al.; 2018)). Increased SC development can be associated with several rub-

ber tree characteristics, such as growth (Chandrashekar et al., |1998)), latex production (Souzal

2019), and drought resistance (Zhang et all, [2019). Due to the high versatility of SC

in evaluating rubber trees (Chanroj et al., 2017; Dijkman et al. [1951; Gongalves et al., (1984}

Khan et al., [2018]), we proposed to develop more effective models for predicting this trait, pro-

viding a method to be incorporated into the estimation of tree performance. The lack of high

genotype variability in the datasets used represents a real scenario for rubber tree breeding

programs (Souza et al., 2019), which face the difficulty of generating a population (Cros et al.|

2019)). In addition to the within-family approach suggested for GS with full-sib families by

(Cros et al.|(2019)), the use of interconnected families is a common strategy for perennial species
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(Grattapaglia, 2017; |Kumar et al., [2015; Muranty et al., [2015)).

Using these dataset configurations, we evaluated ML algorithms as a more accurate method-
ology for predicting SC, a complex trait. |Cros et al.[(2019) obtained a mean accuracy for rubber
production in a CV0 scenario of 0.53, which increased to 0.56 when selecting a set of markers
based on heterozygosity values. In a CV1 scheme, the mean values ranged between 0.33 and
0.60. In the proposed work, we observed even lower accuracies when using SC instead of rubber
production, which is in accordance with the findings of [Souza et al.| (2019). In (Souza et al.,
2019), the authors achieved mean accuracies ranging between 0.19 and 0.28 in a CV1 scenario,
contrasted with a CV2 scheme with values ranging between 0.84 and 0.86. For unknown tested
genotypes, the predictive accuracies in rubber tree are low, and the inclusion of GS in Hevea
breeding programs is therefore still not feasible.

Using the traditional approaches for prediction, we achieved LOO configurations of 0.14
and 0.16 for the BRR and SM-GK approaches, respectively, which is similar to what [Souza
et al. (2019) observed. The BRR and SM-GK methodologies were selected to represent a
parametric and a semiparametric approach (Heslot et al., 2012). Different from BRR, which
estimates marker effects, SM-GK estimates genotype effects through a relationship matrix
obtained with a reproducing kernel (Granato et al., 2018a)). Even though [Souza et al.| (2019)
found similar results when using a linear and a nonlinear kernel for the estimation of the genomic
relationship matrix, (Gianola et al.| (2014)) considered GK to have a more flexible structure and
a higher associated performance. Therefore, considering these findings together with the fact
that no significant differences have been found among statistical models for GS (Ma et al.|
2018; [Roorkiwal et al., 2016; |[Varshney|, 2016)), we selected only these two statistical models for
predictive evaluation.

Even though some previous attempts did not reveal significant differences in employing
ML in GS compared with traditional linear regression methodologies (Crossa et al., 2019;
Montesinos-Lopez et al., [2019al 2018, 2019b}; Zingaretti et all [2020)), this is not what we ob-
served in our study, which corroborates the findings of Bellot et al. (2018)); Liu et al. (2019));
Ma et al. (2018); [Waldmann et al.| (2020). This discrepancy may be explained by the different

strategies used in the ML algorithms, especially distinct neural network architectures, training
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methodologies, and CV scenarios. The design of neural network architectures is an important
step in using deep learning for prediction because differences in the definition of topologies can

lead to decreased accuracies (Ma et al., 2018).

4.1. Divide-and-conquer strategy

Several factors are known to influence prediction accuracy in GS, such as the relationship
between the individuals used to train models and those that will be predicted (Washburn et al.,
2019), the size and structure of the populations used (Crossa et al., 2017)), the trait heritability
(Zhang et al., 2017)), the marker density (Liu et al., [2018), and the linkage disequilibrium (LD)
between the set of markers used and the associated QTLs (Raymond et al., 2018). This last
aspect is especially critical in the datasets employed because of the limited set of markers
obtained through GBS and SSR genotyping. Considering the reduced accuracies obtained with
the CV1 technique already described in (Cros et al., 2019; [Souza et al., [2019)), it was expected
that when using a K-fold strategy, the same observations would be found for the traditional
regression models.

One of the main challenges in GS is the high dimensionality of the features in the datasets
because the number of SNPs is much larger than the number of phenotypic observations (Long
et al., [2007)) (‘large p, small n’ problem). Although a greater saturation of markers enables an
increase in the probability of finding LD, a larger number of markers in the same LD block
does not contribute to better prediction performance (Liu et all 2018). In this context, F'S
techniques may be an alternative strategy for building a predictive model, considering that
not all markers are related to a specific phenotype (Yin et al., [2019) and that the quantity
required for this task directly depends on the complexity and genetic architecture of the traits
used (Liu et al., [2018)). Therefore, like Bermingham et al.| (2015), [Bellot et al. (2018)), |Li et al.
(2018), Inacio & Alves (2019), Aono et al.| (2020), Ramzan et al. (2020), Luo et al. (2021)), and
Pimenta et al.| (2021]), we decided to test the prediction improvements by using an FS technique
to enhance network performances.

Subset selection showed improvements for EG2 (Supplementary Figs. 20-21); however,
there were no sizable improvements because of the genetic complexity of SC (Francisco et al.|

2021)) and the low density of SSR markers (Nadeem et al., 2018). In EG1, although an overall
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improvement in prediction accuracy was observed (Supplementary Fig. 19), when evaluating
the intrapopulation predictive accuracy, we observed clear inefficiency of the approach, probably
caused by the different allele substitution effects between the three subpopulations employed
(Raymond et al., |2018). In such a scenario with unbalanced interconnected families, novel
approaches are needed, and in this work, we have proposed the use of a divide-and-conquer
strategy.

In computer science, the divide-and-conquer paradigm is based on the principle that if a
problem is not simple enough to be solved directly, it can be divided into subproblems, and
their results can be combined (Smith, 1985). In our prediction task, the BLUPs of the popu-
lations could not be properly predicted together; thus, we separated the problem into different
networks for prediction, combining the strategy into a single network structure. Such an ap-
proach has already been applied to the development of neural network architectures (Feng
et al., 2019; [Frosyniotis et al., [2003; Mohamad, 2013} [Sakhakarmi & Park, 2020); however, such
a formulation has not been explored in genomic prediction. In addition to increasing prediction
accuracies, such an approach can reduce the time required for network training and hyperpa-
rameter estimation (Mohamad, [2013)), supply superior model interpretability without loss of
performance (Fu et al., 2019)), and be used in combination with other models (Intanagonwiwat],
1998), including traditional genomic prediction methods. Considering that in genomic predic-
tion, most of the scenarios include different population structures, such a paradigm can benefit
the application and development of GS strategies.

In our dataset, most of the observed variance within SNP markers was caused by population
structure, which is clearly shown by the PCA results (Supplementary Fig. 14). As this strong
variability can be associated with several genomic regions and influence various traits differently
and simultaneously in the populations (Linhart & Grant|,[1996), we hypothesize that traditional
genomic prediction models are not capable of capturing these interpopulation differences related
to SC QTLs. This is the main reason why performing F'S on these unbalanced datasets together
was not a promising strategy in our study. As intrapopulation QTLs are not transferable to
other populations, the main effects on phenotypic variation are specific to the within-population

genetic structure (Wiirschum) |2012)). In this sense, the prediction task in single populations can
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be seen as simpler than that in multiple populations (Ogut et al., 2015)), which was the basis for

developing the divide-and-conquer strategy. Considering the specific effects of causal genetic

variants within populations (Hirschhorn et al., [2001; Pressoir & Berthaud, [2004), we tried to

incorporate such factors into separate networks with their specific hyperparameter optimization
processes.

Interestingly, F'S steps performed in the three different populations of EG1 returned different
markers, but these markers were putatively associated with genes acting in similar biological
processes. GO mRNA splicing was found in the intersection set of markers selected for the
three populations. The occurrence of genetic variation related to such a regulatory process
may influence the transcription of diverse mRNAs from the same gene in different ways. Such

diversity of molecules may be related to differences in phenotypic performance, leading to

increased plant capabilities (Mastrangelo et all 2012; |Szakonyi & Duque, [2018; Wei et al.|

2017)). Additionally, base-excision repair was found in both Popl and Pop3, which represents a

very important defense pathway for maintaining genomic integrity (Roldéan-Arjona et al., 2019))

and is clearly essential for rubber tree growth and development (Murphy, 2005). Due to the

increased quantity of individuals in Pop2 and Pop3, more GO categories were found, including

important processes for plant growth, such as response to different types of stress and several

metabolic processes (Francisco et al., [2021]).

4.2. Deep learning architectures

Different studies have reported the use of deep learning for genomic prediction with various

datasets, including for humans (Bellot et al., 2018; [Yin et al., [2019), sows (Waldmann et al.|

2020), and plant species such as soybean (Liu et al., 2019), wheat (Crossa et al.,[2019; Ma et al.,

2018; Montesinos-Lépez et al., 2019a, 2018, 2019b)), maize (Montesinos-Lépez et al., 2018), and

strawberry and blueberry (Zingaretti et al., 2020)). Even though all of these studies used deep

learning, the neural network creation approaches were not the same; some of them included

architectures of convolutional neural networks (CNNs) (Waldmann et al. 2020; Yin et al.

2019; [Zingaretti et al., 2020)), while others included MLPs (Crossa et al.| 2019, [Montesinos-|

Lépez et al., [2019a, 2018, 2019b) or both approaches (Bellot et al., 2018; [Liu et al., 2019; Ma/

et al [2018)). There is no consensus on the efficiency of neural networks for genomic prediction;
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however, we decided to use such an architecture for combining multiple training processes into
a single predictive structure.

For each of the neural network architectures, we employed an MLP structure. We did not
include convolutional operations because of the reduced quantity of markers obtained through
FS. Additionally, CNNs were developed for extracting unknown patterns from the dataset, and
as we hypothesized that F'S operations might work as indicators of QTL regions, such operations
would not be necessary. To define the most promising network architecture, we used a grid
search, testing different combinations of hyperparameters as already performed in relation to
GS strategies (Crossa et al., [2019; Montesinos-Lopez et al.,|2019a;, 2018, [2019b)). Although other
researchers have used the ‘trial and error’ approach to define the network topology (Sheela &
Deepa, 2013), we preferred to develop a strategy that could be replicated in other predictive
scenarios, especially with other traits and crops.

The approximation of functions through neural networks was supported first based on [Kol-
mogorov| (1957)) and later on |Hecht-Nielsen| (1987)), which extended the theorem of |Kolmogorov
(1957), proving that any continuous function can be represented by a neural network with one
HL containing 2n 4+ 1 nodes (n features) and a more complex activation function than that
usually employed by current researchers (Stathakis, [2009). It has already been proven that one
HL is capable of universal approximation by using a complex activation function (Hornik, 1993}
Hornik et al., 1989; Huang), 2003; [Thomas et al., 2017; Wang), 2003)); however, when using regu-
lar functions, such as sigmoid and ReLU functions, there is reduced efficiency of such networks.
In this context, Kurkova (1992) suggested that two HLs could be a solution for this reduced
efficiency. In addition, the usage of an additional HL. can substantially reduce the total number
of required nodes for a satisfactory predictive capability (Stathakis|, 2009), and it has already
been shown that some problems can be solved only by the use of two HLs (Chester}, [1990; Son-
tag) (1991 Thomas et al.; 2017)). In practical situations, a neural network architecture with two
HLs generalizes better than that with one and has been considered a superior approach (Islam
& Murase, 2001} Thomas et al., 2017). Therefore, in our study, we decided to include two HLs
in our proposed architecture, representing a network with more complex training complexity

(Kurkova & Sanguineti, 2013)).

25


https://doi.org/10.1101/2022.03.30.486381
http://creativecommons.org/licenses/by-nc-nd/4.0/

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.30.486381; this version posted March 31, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Concerning the quantity of hidden neurons in a neural network, many researchers have
developed different strategies, aiming at increasing accuracy and prediction while decreasing
errors (Sheela & Deepal, [2013)). [Huang (2003) has already proven that in a network architecture
with two HLs, the number of nodes required to achieve a reasonable predictive accuracy with m
samples and ¢ output neurons is \/m + ZW in the first HL and q\/m
in the second HL. However, the quantity of suggested nodes tends to lead to overfitting of
the training data with any arbitrary small error (Sheela & Deepal 2013)), and considering the
capability of predicting unknown data, these values can be considered the maximum number of
nodes in an artificial neural network structure (Stathakis, 2009). The lower bound for hidden
neurons was already proposed by |Jiang et al. (2008)), which can be useful for accelerating the
learning speed, but there was no evidence on separating this quantity across HLs, and the study
was based on an MLP with 3 HLs (Sheela & Deepal [2013)). Thus, in our architecture definition,
we decided to test a large quantity of neurons, considering the findings of Huang| (2003), as our
upper bound.

The created network coupling the population-specific architectures could increase the ini-
tial prediction capabilities by more than four times. Such an improvement represents the first
attempt to develop a ML strategy for genomic prediction in rubber tree, with a high potential
to be adapted to other species with the same data configuration. Considering a broader sce-
nario with distantly related genotypes belonging to a population with undefined structure, this
same approach could be applied. Instead of relying on the predefined stratification, clustering
analyses could be performed and used for the divide part. Such a practice is already common
in breeding, i.e., taking advantage of population structure for model prediction through multi-
variate techniques (Berro et al.; 2019; Guo et al., 2014; Stewart-Brown et al., 2019; [Wang et al.,
2017). Taking into account the importance of such group configuration in the differentiation of
multiple traits (Bolnick et al.| 2011; |Goodnight|, [1989; |Merila & Crnokrak, 2001), the strategy
developed represents a promising approach for several plant species with a difficult prediction
scenario.

The use of GS in rubber tree can optimize breeding programs, and the incorporation of

ML techniques can be seen as a new possibility for building more robust models with higher

26


https://doi.org/10.1101/2022.03.30.486381
http://creativecommons.org/licenses/by-nc-nd/4.0/

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.30.486381; this version posted March 31, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

associated prediction capabilities. By using data from rubber tree breeding programs, we were
able to generate promising predictive results for a highly complex trait and a novel strategy for
prediction, which has significant potential to enhance selection efficiency, reduce the length of
the selection cycle, and supply a means of developing low-density markers to be employed in
MAS because of the FS steps. Although our results confirmed the efficiency of the methodology
proposed for rubber tree data, to properly evaluate the full potential of the method in other
species and broader scenarios, our approach should be investigated in further studies with more

genetically diverse populations in contrasting environments.
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