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Abstract

Background: Non-human primates (NHP) are desirable as animal models of human disease
because they share behavioral, physiological, and genomic traits with people. Hence, NHP
recapitulate manifestations of disease not observed in other animal species. The Macaca
fascicularis (i.e., Cynomolgus macaque) is an NHP species extensively used for biomedical
research, but the TCR repertoire hasn’t been characterized yet.

Result: We used the genomic sequences to design primers to identify the expressed TCR
repertoire by single cell RNAseq. The data analysis from 22 unique samples were used to
assign a functional status to each TCR genes. We identified and analyzed the TRA/D, TRB and
TRG loci of the Cynomolgus macaque.

Conclusion: The genomic organization of the Cynomolgus macaque has great similarity with
Macaca mulatta (i.e., Rhesus macaque) and they shared >90% sequence similarity with the
human TCR repertoire. These data will facilitate the analysis of T cell immunity in Cynomolgus

macaques.
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Background

Experimental animal models are an essential tool in our pursuit of understanding human
physiology. The mouse has been incredibly useful in elucidating the major concepts of
immunology, including defining the genetic and molecular basis of immunoglobulin and TCR
formation and diversity. As part of this effort, the murine TCR repertoire have been extensively
characterized and its knowledge is being used to develop new approaches to facilitate antigen
discovery and novel treatments for human disease. However, it is not surprising that many
human diseases are inadequately modelled in mice. This has been repeatedly emphasized for
cancer and is also true for many infectious diseases. Two important examples are acquired
immunodeficiency syndrome (AIDS), which is caused by the Human Immunodeficiency Virus-1
(HIV-1), and COVID-19, which is caused by the SARS-CoV2 coronavirus [1-5]. Mice are
naturally resistant to both infections. For HIV research, the field largely turned to nonhuman
primates (NHP) as a better alternative because they could be infected with a highly related
virus, Simian Immunodeficiency Virus (SIV). Consequently, the Rhesus macaque’s TCR locus
was among the first NHP TCR locus to be characterized [6]. Cynomolgus macaques have been
increasingly used for biomedical research, especially in the fields of neurology, cardiology, and
for drug development [7, 8]. Importantly, they are increasingly used for infectious disease
research, including as a model for human HIV [9] and SARS-CoV2 infection [5]. Most NHP
species, including rhesus macaques, whether in captivity or in the wild, rapidly succumb to Mtb
infection [10, 11]. However, Flynn’s group finds that following challenge with Mtb, 50% of
infected Cynomolgus macaques develop a form of disease that resembles latent TB in people
[12-15]. Indeed, the pathology observed among Mtb-infected Cynomolgus macaques
recapitulates the entire spectrum of pathology of human TB granulomas [16]. Thus, the
Cynomolgus macaque is providing insights into human disease not possible with other small

animal models.
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78 The tremendous capacity of T cells to recognize diverse antigens has a genetic basis

79 thatis inherent in the genomic organization of the T cell receptor (TCR) loci [17]. TCR repertoire

80 diversity arises through genetic mechanisms that minimize the number of genetic elements

81 encoded by the genome while maximizing the potential breadth of expressed TCRs. The

82 germline configuration of TCR genes is not functional. Instead, the TCR loci encode families of

83 variable (V), diversity (D), and joining (J) segments, which undergo rearrangement early during

84 T cell development [17]. Recombination of V, D, and J segments leads to a gene fragment that

85 encodes the V-region domain, which becomes the N-terminus of the TCR protein and

86 determines its antigen specificity. Downstream of the V, D, and J genes are constant (C) region

87 exons, which encode the C-terminus of all TCRs and couples the TCR to the Cluster of

88 differentiation 3 (CD3) protein complex to mediate signal transduction into the cell. The primary

89  diversity of TCRs arises from the nearly random assortment of V, D, and J gene segments, as

90 well as additional diversity that occurs at the V-D and D-J junctions by imprecise recombination

91 and the insertion of non-germline encoded nucleotides (N-regions). TCRs are heterodimers

92 formed by TCRa and TCRpB chains, which are encoded by distinct loci (TRA and TRB,

93  respectively) [18]. The TCRa is encoded when Va and Ja gene segments recombine; the TCRf

94 is formed from the recombination of VB, D and JB gene segments. Additional diversity is created

95 by the random pairing of the TCRa and TCRf chains. Unlike immunoglobulin genes, somatic

96 mutation does not occur in TCR genes. The potential TCR repertoire varies between animal

97 species and is driven in large part by the number of functional members of V, D, or J segments.

98 In humans, there is the potential to generate 10° unique TCRs.

99 A second subset of T cells are known as Gamma-delta (yd) T cells, express an
100 alternative TCR, which is encoded by distinct gene segments found in the TRG and TRD loci.
101 The yd-TCR is structurally similar to the af-TCR. Like the TRA and TRB loci, the TRG and TRD
102 loci contain sets of Vy and Jy, and V9, Dd and Jb gene segments, respectively. In general, there

103  are fewer gene segments in the TRG and TRD loci [19]. y& T cells remain enigmatic because
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104 the antigens they recognize and the antigen presenting molecules that restrict their recognition
105 of antigen are incompletely characterized. Nevertheless, they are identified in the circulation and
106 in the tissues of all mammals, and play important roles in autoimmune disease, and in immunity
107 toinfection and cancer [20, 21].

108 Here we identified the TRA, TRB, TRG and TRD loci of the Cynomolgus macaque.
109 Based initially on the homology with human TCR gene segments, and subsequently using the
110 identified gene segments from Rhesus macaque and Cynomolgus macaque, we systematically
111 identified all the V, D, J, and C gene segments belonging to all four T cell receptor loci. Finally,
112  using the genomic sequences, we designed specific primers for the amplification of the Va and
113 VP regions, and determined which of the V gene segments are expressed in individual subjects.
114  These data will allow the detailed analysis of the T cell responses in Cynomolgus macaques as
115 well as comparative immunogenetics studies, comparing different species of Cynomolgus

116 macaques, as well as the evolution of TCR genes among the primates.
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117 Results

118 Identification of the Macaca fascicularis (macfas) TCR loci

119 Based on nucleic acid sequence homology with the human Ca, C, Cf, and Cy gene
120 segments, the TRA and TRD loci were identified on Chr.7, and TRB and TRG loci were
121 identified on Chr.3 (Figure 1). Subsequently, each human V, D, J, and C gene segment was
122 used to blast the macfas Chr.7 and 3, to identify homologous gene segments. Similarly, Macaca
123  mulatta (macmul) gene segments were also used to identify homologous genes unique to the
124 macaca genus. Using this approach, we were able to annotate and assemble a map of the
125 macfas TRA, TRB, TRG, and TRD loci as described in detail below.

126

127  The macfas TRA locus

128 The structure of the macfas TRA locus is like the human locus in that it overlaps the
129 TRD locus on Chromosome 7 (Figure 1A) [22]. We identified 62 TRAV genes in macfas, one
130 more than the 61 human genes but less than the 67 macmul genes. The two human gene
131 families TRAV7 and TRAV28, each contain a single member and are absent from the macfas
132  and macmul TRA locus (Table 1, Figure 2). Conversely, the TRA loci of macfas and macmul
133 have one additional gene in the TRAV24, TRAV25, and TRAV26 families. The greater number
134  of macmul TRAV genes compared to macfas results from an expansion of the TRAV22 and
135 TRAV23 families, from one member to three and four, respectively (Table 1). Of the 62 macfas
136 TRAV genes, 12 are pseudogenes and 2 are ORFs (Table 1, Table S1). There might have been
137 a gene duplication of the TRAV genes TRAV24, TRAV25, TRAV26, which differentiates the
138 human TRAV locus from the macaque locus (Figure 2B). Second, there are additional members
139  of the TRDV1. TRAV22, and TRAV23 families in NHP, compared to the human TRA/DV locus.
140 We did not find macfas homologs of macmul TRDV1-1, TRAV22-2, TRAV22-3, TRAV-23-2,
141 TRAV23-3, or TRAV23-4, despite searching the macfas genome using the macmul homologs.

142  We believe the differences between the macfas and macmul genomic sequences could have
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143  arisen from gaps in the known macfas sequence or problems with the genome assembly.

144 We identified 61 TRAJ genes, which is the same number as Rhesus macaque and
145 human TRAJ genes. There is a high degree of conservation between macfas and Homo
146  sapiens (homsap) TRAJ gene segments (Table S2). Finally, we compared the TRAC exons
147 from all three species. The macfas and macmul TRAC genes have identical amino acid
148 sequences (Figure S1).

149

150 The macfas TRB locus

151 The macfas TRB locus (Figure 1B) is similar in structure to the macmul TRB locus. We
152  identified 78 TRBV genes, compared to 77 annotated macmul TRBV genes (Table 1 & Table
153  S3). Both are expanded compared to the human species, for which there exists 68 distinct
154 genes. The overall TRBV family structure is similar, with some variation in the number of
155 members and the number of pseudogenes (n=17) and ORFs (n=2) (Table 1, Figure 3). The
156  organization of the TRBJ and TRBC genes is similar in all three species, characterized by a
157  duplication of the TRBJ and TRBC genes (Figure 1B). Comparing the macfas and macmul
158 TRBJ gene segments, four (including the TRBJ2.2P ORF) differ by a single nucleotide; the
159 other 10 genes are 100% conserved (Figure S2, Table S4). The TRBD1 and TRBD2 are also
160 100% conserved between macfas and macmul (Table S4). Similarly, there is a high degree of
161  conservation between macfas and homsap TRBJ gene segments (Figure S2). Finally, we
162 compared the TRBC exons from all three species. As noted, there are two TRBC genes,
163 TRBC1 and TRBC2, which are 97% identical. The macfas and macmul TRBC1 differ by only
164  two bp and the translated sequence is 100% identical; for TRBCZ2, there is a single aa difference
165  (Figure S1).

166

167 The macfas TRG locus

168 The macfas TRG locus is located on chromosome 3 (Figure 1C). We identified 12
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169 TRGV genes of which 6 are predicted to be functional and an additional 4 are pseudogenes
170  (Figure 4, Table 1, Table S5). These genes were compared to the homologous genes in human
171  and rhesus (Figure 4). The same 12 genes were found in the macmul TRG locus. We named
172  macfas TRGV4 based on its homology with homsap TRGV4*01 (92% homology, Figure 4). The
173  ortholog in the macmul TRG locus is identical in sequence, but IMGT names it TRGV8, although
174 it has only 88% homology to homsap TRGV8*01. In general, the macfas and macmul orthologs
175 had between 0-2 mismatches (i.e., >99% homology), while the homology between macfas and
176  homsap TRGV genes was 88-95%. The two NHP species lacked TRGV5, TRGV5P, TRGV?7,
177 and TRGV8, and macmul had two additional V genes, TRGVC and TRGVD. The human TRG
178 locus has two clusters of J segments and C-region genes [22, 23]; IMGT/LIGM-DB:
179 IMGTO000011 (582960 bp), human (Homo sapiens) TRG locus), and the macmul locus has a
180  similar structure (IMGT/LIGM-DB: IMGTO000059 (197016 bp), Rhesus monkey (Macaca mulatta)
181 TRG locus). While there are five macmul TRGJ gene segments, we detected only three in the
182 macfas TRG locus. These three are more like the macmul TRGJ2-1, 2-2, and 2-3 gene
183  segments (Figure 4B). Similarly, there is a single macfas TRGC region gene, and its amino acid
184  sequence is 91.9% and 96.5% identical to macmul TRGC1 and TRGC2, respectively (Figure
185 S1). There is 1, 0 and 2 mismatches between macfas and macmul TRGC2 exon 1, 2, and 3,
186  respectively. The human TRGC2 exon 2 contains a duplicated sequence, which neither the
187 macfas nor macmul exon 2 contains (Figure S2). Therefore, the macfas TRGC gene is the
188 TRGC2 ortholog, and the genomic assembly of macfas is missing a region that spans TRGJ1-1
189 to TRGCL1 (Figure 4C).

190

191 The macfas TRD locus

192 The macfas TRD locus is located on chromosome 7 and overlaps with the TRA locus
193 (Figure 1A). Three canonical TRDV genes were identified as macfas homologs of homsap

194 TRDV1, TRDV2, and TRDV3, with homologies between 91-97% (Figure 5, Table S6). A fourth
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195 gene, TRDV4, was identified which was 100% homologous to macmul TRDV4. The macmul
196 genome has a fifth gene, TRDV1-1, which is very homologous to TRDV1 (Figure 2, 5); no
197 macfas orthologs were found for this gene. Three TRDD and four TRDJ macfas gene segments
198 were identified, as in the homsap genome (Table S6). These genes are 100% identical to their
199 macmul homologs. Similarly, the single macfas TRDC region has 100% DNA sequence identity
200 and predicted amino acid sequence as the macmul TRDC (Figure S1). There is a two amino
201 acid gap, which we suggest is a consequence of the artificial splicing between exons 2 and
202  exon 3.

203

204 The expressed V gene repertoire used by Cynomolgus macaque T cells

205 To determine the functionality of the TRAV and TRBV gene segments we identified, the
206 following criteria were used: (i) Defined L1 exon and L2-V exon, (ii) absence of nonsense or
207  missense mutation, and (iii) encodes a cytosine (C) at position 21-23 followed by tryptophan (W)
208  at position 31-33 of the 3’ end. The terminal amino acids encoded by a functional TRAV gene is
209 usually CAVR, CAL, or CAF. Similarly, the terminal amino acids encoded by a functional TRBV
210 geneis usually CASSQ, CASSL, or CASSE. Based on these criteria, we initially assigned each
211  V gene to be functional if it met these criteria. If the gene had an internal stop codon, or lacked
212 the conserved C or W residue, it was deemed a pseudogene. Finally, if the gene appeared to be
213  functional, but the L1 or L2 parts of the leader sequence could not be identified, or it lacked
214  consensus splice site for intron A, we designated it an open reading frame (Supplemental tables
215 1,3,and5).

216 To determine the expressed TRAV and TRBV repertoire, TCRs from Cynomolgus
217 macaques infected with Mycobacterium tuberculosis were analyzed. The distribution of the
218 expressed TRAV and TRBV genes in uninvolved lung from these infected subjects was
219 determined for 22 unique individuals (Figure 6). The distribution of TRAV and TRBV genes was

220 also determined in BAL cells, before or after infection, involved (i.e., granulomas) lung tissue,

10


https://doi.org/10.1101/2022.03.30.486315
http://creativecommons.org/licenses/by-nc-nd/4.0/

221

222

223

224

225

226

227

228

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.30.486315; this version posted March 31, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

and single cell lung suspensions (Figure S3). The presence of stop codons in pseudogenes that
were observed to be transcribed were confirmed (data not shown). One exception was
detected. For TRBV6-4, the expected stop codon at position 85 (TAG) was CAG in the
transcribed gene, and thus, encoded a functional glutamine (Q). This difference between the
germline and the transcribed gene could be the result of a polymorphism or a sequencing error
in the genomic reference sequence. Finally, the status of V genes designated as ORFs, was

changed to ‘functional’ if the V gene was transcribed.

11
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229 Discussion

230 The nucleic acid sequence of recombined V, D, and J gene segments encodes the
231  protein structure of the TCR and contains immunological information about T cell responses.
232  The complementarity determining region 3 (CDR3), defined as the V-D-J or V-J recombination
233 site, is unique to each unique T cell clone, sometimes referred to as a clonotype. Analytical
234  approaches are beginning to predict the antigen specificity based on the primary sequence of
235 the TCR. In the absence of the antigen specificity, the TCR sequence can be used as a
236  surrogate of antigen specificity. As T cells undergo clonal expansion after encountering
237 antigens, TCR sequences are being used to track T cells, monitor immune responses, and
238 identify new antigens for human tumors and pathogens [24-26]. Advances in T cell therapy are
239  being driven by our ability to clone and recombinantly express TCRs, as exemplified by adoptive
240  cell therapy (ACT) [27, 28]. Thus, defining the V, D, and J gene segments is an important step
241  inthe analysis of T cell immunity.

242 We identified and annotated the TRA, TRB, TRG, and TRD loci of the Cynomolgus
243  macaque. There is generally more than 90% homology between the different V, D, and J gene
244  segments in the Human, Rhesus and Cynomolgus macaque’s TCR repertoire. As one might
245  expect, the structure of the different TCR loci is highly conserved between Rhesus and
246  Cynomolgus macaque. The differences we detected (e.g., Fig.2A) are more likely to be due to
247  ascertainment bias arising from problems with genomic sequencing and assembly, than true
248  evolutionary events. In support of this conclusion, among the expressed TCR repertoire, we
249  found many macfas TCRs expressed in the lung matched to macmul reference sequences that
250 were missing from the macfas genomic sequence. We also find that there is expansion of TCR
251  beta locus of macfas and macmul compared to homsap. These differences, which are likely to
252  have occurred by gene duplication [29, 30], may have occurred in response to changes in
253  selective pressure during evolution of the TCR loci [31, 32].

254

12
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255  Conclusions

256

257 We identified and annotated the TRA/D, TRB and TRG loci of the Cynomolgus
258 macaque. The TRA and TRB genomic sequences were used to design primers, and as
259 reference sequences, to amplify and identify TCR sequences expressed by single cells from the
260 lungs of Cynomolgus macaques. By using these data to analyze the afTCRs expressed by
261 mature T cells, we were able to discern which V genes were functional based on their RNA
262  expression. This allowed us to refine and validate our predictions based on the genomic
263  sequences. Altogether, these data show the utility of these TCR reference sequences, and we
264  expect that they will be useful for the study of T cell immunity in Cynomolgus macaques.

265 Methods

266

267  Source of genomic sequence. The genome of the Cynomolgus macaque (NCBI: taxid 9541),
268 also known as the crab eating macaque, has been sequenced and we used the reference
269 genome Macaca_fascicularis_5.0 available from NCBI

270  (https://www.ncbi.nim.nih.gov/genome/776) [33, 34]. The formal genus and species name is

271 Macaca fascicularis, which we abbreviate as macfas. The Rhesus macaque (i.e., Macaca
272  mulatta; macmul) TCR sequences were obtained initially from the literature [35] and later from

273  IMGT (http://www.imgt.org) [36]. The Human (i.e., Homo sapiens; homsap) TCR sequences

274  were obtained from IMGT. In cases where more than one allele was available, the first allele
275 was used for sequence comparisons.

276

277 Annotation and analysis of Macfas TCR repertoire. To identify the location of the macfas
278 TCR loci, the human TRAC, TRBC, TRGC, and TRDC were blasted against the macfas
279 genome. Subsequently, all human gene segments were individually blasted against the macfas

280 genome. As macfas gene segments were defined, they were also used to look for other

13
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281 homologous genes. At the beginning of this study, the sequences of the macmul TCBV genes
282  were available and were used to look for homologous genes [35]. The names of the genes were
283  assigned based on the homology with the human genes, and the location in the genome. The
284  leader sequence (L1 & L2), TRV region, D region and J chain were identified for each gene. The

285 annotation was done by following standard IMGT rules (http://www.imgt.org). Clustal Omega

286  was used for multiple sequence alignments (https://www.ebi.ac.uk/Tools/msa/clustalo/) [37] and
287  visualized using Archaeopteryx for Figures 2-5 [38]. Sequences were entered and tracked in
288  SnapGene (version 5.0)

289

290 Expressed TCR repertoire of Cynomolgus macaques. Cells from bronchoalveolar lavage
291  (BAL), single cell suspensions of lung, or lung tissue, were obtained from Cynomolgus
292  macaques infected with Mycobacterium tuberculosis and single cell RNAseq libraries were
293 created [39]. Primers were synthesized that were specific for the different TRAV, TRBV, TRAC,
294 and TRBC gene segments based on the genomic sequences described herein and used to
295  enrich and amplify the TCR sequences from T cells in scRNA-Seq libraries generated using 3’
296  barcoded Seqg-Well [40, 41]. Primers were not designed for pseudogenes that had internal stop
297 codons, or for some V genes that were not initially identified. The libraries were sequenced and
298 then aligned to the TCR reference sequences. The samples were analyzed for 48 TRAV and 73
299 TRBV genes. The V region and J region sequences were mapped using BOWTIE 2 as part of

300 the TCRGO algorithm (https://github.com/ShalekLab/tcrgo/tree/master/tcrgo)[41]. Briefly, reads

301 are aligned with the V and J regions in the reference TCR database, containing the sequences
302 annotated in this report (see Results, below). Each read from a Seqg-Well library includes nucleic
303 acid tags that identify the cell of origin (cell barcode) and the transcript of origin (unique
304 molecular identifier, UMI). Reads with matching cell barcode and UMI are merged, and a
305 consensus V and J region mapping is determined based on sequence similarity identified

306 among the majority of reads. A consensus CDR3 sequence is identified from reads with shared
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310 List of abbreviations

311  Adoptive cell therapy (ACT)

312  Acquired immunodeficiency syndrome (AIDS)
313 Constant (C)

314  Cluster of differentiation 3 (CD3)

315 Complementary determining region 3 (CDR3)
316 Diversity (D)

317 Human Immunodeficiency Virus-1 (HIV-1)
318 Joining (J)

319 Gamma-delta (yd)

320 Macaca fascicularis (macfas)

321 Macaca mulatta (macmul)

322  Mycobacterium tuberculosis (Mtb)

323  Non-human primates (NHP)

324  Simian Immunodeficiency Virus (SIV)

325 T cell receptor (TCR)

326 Variable (V)

327

328
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369 List of Tables

370 Table 1: Comparison of genes (TRAV/ TRBV/ TRDV/ TRGV) in macfas, macmul and human

TRAV gene segments TRBV gene segments TRGV gene segments

Subgroup |Macfas|Macmul|Human Subgroup|Macfas|Macmul|Human SubgrouplGENE |Macfas|Macmul|Human
TRAV1 2 2 2 TRBV1 3 3 1 TRGV1 1 ORF  ORF
TRAV2 1 1 1 TRBV2 3 3 1 TRGV2 1 1 1
TRAV3 1 1 1 TRBV3 4 4 2 TRGV3 1 1 1
TRAV4 1 1 1 TRBV4 3 3 3 TRGV3P 0 NR *
TRAVS 1 1 1 TRBVS 10 10 8 — TRGV4 1 Ox** 1
TRAV6 1 1 1 TRBV6 10 10 9 TRGVSP 0 NR P
TRAV7 0 0 1 TRBV7 11 11 9 TRGVS 0 NR 1
TRAVS 7 7 8 TRBVS 2 2 2 TRGV6 P P P
TRAVY 2 2 2 TRBV9 1 1 1 TRGV7 0 NR P
TRAV10 1 1 1 TRBV10 3 3 3 TRGVS 0 1xxx 1
TRAV11 3 3 2 TRBV11 3 3 3 TRGV2 TRGV9 1 1 1
TRAV12 3 3 3 TRBV12 4 4 5 TRGV3 TRGV10 1 ORF  ORF
TRAV13 2 2 2 TRBV13 1 1 1 TRGV4 TRGV11 P P ORF
TRAV14 2 2 2 TRBV14 1 1 1 TRGVA TRGVA P P P
TRAV15 1 1 1 TRBV15 1 1 1 TRGVB TRGVB P P P
TRAV16 1 1 1 TRBV16 1 1 1 TRGVC TRGVC 0 P NR
TRAV17 1 1 1 TRBV17 1 0 1 TRGVD TRGVD 0 P NR
TRAV18 1 1 1 TRBV18 1 1 1 Total | 12 | 12 | 14
TRAV19 1 1 1 TRBV19 1 1 1
TRAV20 1 1 1 TRBV20 1 1 1 TRDV gene segments
TRAV21 1 1 1 TRBV21 1 1 1 Subgroup |GENE  |Macfas|Macmul|Human
TRAV22 1 3 1 TRBV22 1 1 1 TRDV1 TRDV1 1 1 1
TRAV23 1 4 1 TRBV23 1 1 1 TRDV2 TRDV2 1 1 1
TRAV24 2 2 1 TRBV24 1 1 1 TRDV3 TRDV3 1 1 1
TRAV25 2 2 1 TRBV25 1 1 1 TRDV4 TRDV4 1 1 0
TRAV26 3 3 2 TRBV26 1 1 1 Total | 12 | 12 | 14
TRAV27 1 1 1 TRBV27 1 1 1
TRAV28 0 0 1 TRBV28 1 1 1
TRAV29 1 1 1 TRBV29 1 1 1
TRAV30 1 1 1 TRBV30 1 1 1 P pseudogene
TRAV31 1 1 1 TRBVA 1 1 1 ORF open reading frame
TRAV32 1 1 1 TRBVB 1 1 1 NR not reported
TRAV33 1 1 1 TRBVC 1 1 1 0 no homologous gene identified
TRAV34 1 1 1 Total | 78 | 77 | 68 Hxk nomenclature discrepancy
TRAV35 1 1 1
TRAV36 1 1 1
TRAV37 1 1 1
TRAV38 2 2 2
TRAV39 1 1 1
TRAV40 1 1 1
TRAV41 1 1 1
TRAV46 1 1 1
TRAVA 1 1 1
TRAVB 1 1 1
TRAVC 1 1 1
Total | 62 | 67 | 61

371

372  Notes:

373 1. The numerical value for every gene represents the number of allele present.

374 2. ORF: Open reading frame

375 3. NR: Not reported

376 4. P: Pseudogene

377 5. F: Functional

378 6. ***: Nomenclature discrepancy
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379 Figure Legends

380

381 Figure 1: The Macfas TCR loci.

382  Structure of the TCR loci (A) TRA/TRD (B) TRB and (C) TRG loci. (A) The TRA and TRD loci
383 are interspersed on Chr. 7. The genes above the x-axis belong to the TRA locus; those below
384  the axis belong to the TRD locus. The boxed region is expanded to show greater detail. (B) The
385 TRB locus is located on Chr. 3. The boxed region is expanded to show greater detail. (C) The
386 TRG locus is located on Chr. 3. Each line represents a gene and the distance between them is
387  proportional to their spacing on Chr.7 and Chr.3. The blue boxes represent the 3' region of the
388 AMPH gene and exon 10 of STARD3NL, which are boundaries of the TRG locus. The black
389 lines represent V gene, green lines are J chain, purple lines represent C region, and the red
390 lines are representing D region.

391

392  Figure 2. TRAV families

393  Phylogenetic tree illustrating (A) functional genes (black), pseudogenes (red) and ORFs (blue)
394 of the macfas TRAV locus. The genes clustered together belong to the same family. (B)
395 Comparison of the TRAV/TRDV locus of homsap, macfas, and macmul. The genes that are
396 exclusive to humans are highlighted in purple. Those TRAV genes found in macfas and macmul
397 but not in homsap are in yellow, and the genes are present only in macmul but absent in
398 macmul are in red. See text for the details.

399

400 Figure 3. TRBV families

401 Phylogenetic tree illustrating functional genes (black), pseudogenes (red) and ORFs (blue) of
402 the macfas TRBV locus. The genes clustered together belongs to the same family. #, TRBV6-4
403 is a pseudogene in the genomic sequence, but the expressed gene is functional (see results,

404  “Expressed V gene repertoire”).
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405

406  Figure 4. TRGV and TRGJ gene segment homologies

407 (A) Phylogenetic tree illustrating functional genes (black), pseudogenes (red) and ORFs (blue)
408  of the macfas TRGV locus. The number (i.e., “n=1") is the number of mismatches between the
409 macfas and macmul genes. The % is the homology between the macfas and the homsap gene.
410 Homologies between other genes of interest are indicated with a dotted line. *, homsap genes
411  for which no macfas or macmul homologs were identified. , nomenclature discrepancy. (B)
412  Phylogenetic tree clustering macfas and macmul TRGJ genes. (C) Schematic of the genomic
413  organization of the 3’ region of the TRG locus. TRGV (red), TRGJ (blue) and TRGC (black).

414

415  Figure 5. TRDV and TRDJ gene segment homologies

416  (A) Phylogenetic tree showing the functional genes homsap, macfas and macmul TRDV genes.
417 Comparisons are indicated with dotted lines and the percent homology is indicated followed by
418 the number of sequence mismatches. Each TRDV gene family is color coded. (B) Alignment of
419 macmul and macfas TRDJ showing the conserved amino acids (boxed).

420

421 Figure 6. The expressed TRAV and TRBV repertoire. Single cell analysis of lung
422  mononuclear cells from Cynomolgus macaques reveals their functionally expressed TRAV and
423  TRBV repertoire. Each dot represents a different animal. All samples are from uninvolved lung
424 tissue from subjects infected with M. tuberculosis. The average percentage was calculated for
425 the TRAV (A) and TRBV (B) and the distribution was individually normalized for each subject.

426  Red bar represents the median. *, expression not analyzed.
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427  Supplemental information

428

429 Figure S1. Constant region homology. Alignment of the amino acid sequence of the TCR
430 constant regions, derived from the in silico splicing of the human, macfas and macmul TRAC,
431 TRBC, TRGC, and TRDC exons. Dots represent identical homology. Amino acids are
432  represented by the 1-letter code. X, is undetermined.

433

434  Figure S2. TRBJ gene segment homology. Alignment of the nucleic acid sequences of the
435  human, macfas and macmul TRBJ genes. Dots represent identical homology.

436

437  Figure S3. Single cell analysis of lung mononuclear cells from Cynomolgus macaques. (A)
438 TRAV and (B) TRBV repertoire of T cells from bronchoalveolar lavage fluid, before or after
439 infection (BAL (PRE), BAL (POST)), uninvolved or involved lung tissue (Ul and granuloma,
440  respectively), or single cell suspensions (SC). The mean value of the average percentage of the
441  UMI counts from each sample was plotted. Each point represents a different sample. *,
442  expression not analyzed.

443

444  Table S1: Macfas TRAV functional status, nucleotide sequence and the translated sequence
445

446  Table S2. Macfas TRAJ sequence.

447

448 Table S3: Macfas TRBV functional status, nucleotide sequence and the translated sequence.
449

450 Table S4: Macfas TRDV and TRDJ functional status, nucleotide sequence and the translated
451 sequence.

452
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453 Table S5: Macfas TRGV/TRGJ functional status, nucleotide sequence and the translated
454  sequence.

455
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