

Identification and characterization of the T cell receptor (TCR) repertoire of the Cynomolgus macaque (*Macaca Fascicularis*)

4 Swati Jaiswal¹, Shayla Boyce¹, Sarah K. Nyquist^{2,4,8}, Tasneem Jivanjee², Samira Ibrahim²,
5 Joshua D. Bromley^{2,3}, G. James Gatter², Hannah P. Gideon⁵, Kush V. Patel⁵, Sharie Keanne C.
6 Ganchua⁵, Bonnie Berger⁴, Sarah M. Fortune⁶, JoAnne L. Flynn⁵, Alex K. Shalek^{2,6}, Samuel M.
7 Behar^{1*}

8
9 1. Department of Microbiology and Physiological Systems, University of Massachusetts
10 Medical School, Worcester, Massachusetts, USA.

11 2. Institute for Medical Engineering & Science, Massachusetts Institute of Technology,
12 Cambridge, MA, Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, Broad Institute
13 of MIT and Harvard, Cambridge, MA

14 3. Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA

15 4. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of
16 Technology, Cambridge, MA, USA, Department of Mathematics, Massachusetts Institute of
17 Technology, Cambridge, MA, USA

18 5. Department of Microbiology and Molecular Genetics and Center for Vaccine Research,
19 University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

20 6. Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public
21 Health, Boston, MA, Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA

22 7. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA

23 8. Program in Computational and Systems Biology, Massachusetts Institute of Technology,
24 Cambridge, MA, USA

27 Short Title: Cynomolgus TCR loci

28 Keywords: T cell receptor, Cynomolgus macaque, Locus map, NHP, Variable gene

29

30 *Correspondence:

31 Samuel M. Behar

32 E-mail address: samuel.behar@umassmed.edu

33

34

35 **Abstract**

36 **Background:** Non-human primates (NHP) are desirable as animal models of human disease
37 because they share behavioral, physiological, and genomic traits with people. Hence, NHP
38 recapitulate manifestations of disease not observed in other animal species. The *Macaca*
39 *fascicularis* (i.e., Cynomolgus macaque) is an NHP species extensively used for biomedical
40 research, but the TCR repertoire hasn't been characterized yet.

41 **Result:** We used the genomic sequences to design primers to identify the expressed TCR
42 repertoire by single cell RNAseq. The data analysis from 22 unique samples were used to
43 assign a functional status to each TCR genes. We identified and analyzed the TRA/D, TRB and
44 TRG loci of the Cynomolgus macaque.

45 **Conclusion:** The genomic organization of the Cynomolgus macaque has great similarity with
46 *Macaca mulatta* (i.e., Rhesus macaque) and they shared >90% sequence similarity with the
47 human TCR repertoire. These data will facilitate the analysis of T cell immunity in Cynomolgus
48 macaques.

49

50

51

52 **Background**

53 Experimental animal models are an essential tool in our pursuit of understanding human
54 physiology. The mouse has been incredibly useful in elucidating the major concepts of
55 immunology, including defining the genetic and molecular basis of immunoglobulin and TCR
56 formation and diversity. As part of this effort, the murine TCR repertoire have been extensively
57 characterized and its knowledge is being used to develop new approaches to facilitate antigen
58 discovery and novel treatments for human disease. However, it is not surprising that many
59 human diseases are inadequately modelled in mice. This has been repeatedly emphasized for
60 cancer and is also true for many infectious diseases. Two important examples are acquired
61 immunodeficiency syndrome (AIDS), which is caused by the Human Immunodeficiency Virus-1
62 (HIV-1), and COVID-19, which is caused by the SARS-CoV2 coronavirus [1-5]. Mice are
63 naturally resistant to both infections. For HIV research, the field largely turned to nonhuman
64 primates (NHP) as a better alternative because they could be infected with a highly related
65 virus, Simian Immunodeficiency Virus (SIV). Consequently, the Rhesus macaque's TCR locus
66 was among the first NHP TCR locus to be characterized [6]. Cynomolgus macaques have been
67 increasingly used for biomedical research, especially in the fields of neurology, cardiology, and
68 for drug development [7, 8]. Importantly, they are increasingly used for infectious disease
69 research, including as a model for human HIV [9] and SARS-CoV2 infection [5]. Most NHP
70 species, including rhesus macaques, whether in captivity or in the wild, rapidly succumb to *Mtb*
71 infection [10, 11]. However, Flynn's group finds that following challenge with *Mtb*, 50% of
72 infected Cynomolgus macaques develop a form of disease that resembles latent TB in people
73 [12-15]. Indeed, the pathology observed among *Mtb*-infected Cynomolgus macaques
74 *recapitulates* the entire spectrum of pathology of human TB granulomas [16]. Thus, the
75 Cynomolgus macaque is providing insights into human disease not possible with other small
76 animal models.

77

78 The tremendous capacity of T cells to recognize diverse antigens has a genetic basis
79 that is inherent in the genomic organization of the T cell receptor (TCR) loci [17]. TCR repertoire
80 diversity arises through genetic mechanisms that minimize the number of genetic elements
81 encoded by the genome while maximizing the potential breadth of expressed TCRs. The
82 germline configuration of TCR genes is not functional. Instead, the TCR loci encode families of
83 variable (V), diversity (D), and joining (J) segments, which undergo rearrangement early during
84 T cell development [17]. Recombination of V, D, and J segments leads to a gene fragment that
85 encodes the V-region domain, which becomes the N-terminus of the TCR protein and
86 determines its antigen specificity. Downstream of the V, D, and J genes are constant (C) region
87 exons, which encode the C-terminus of all TCRs and couples the TCR to the Cluster of
88 differentiation 3 (CD3) protein complex to mediate signal transduction into the cell. The primary
89 diversity of TCRs arises from the nearly random assortment of V, D, and J gene segments, as
90 well as additional diversity that occurs at the V-D and D-J junctions by imprecise recombination
91 and the insertion of non-germline encoded nucleotides (N-regions). TCRs are heterodimers
92 formed by TCR α and TCR β chains, which are encoded by distinct loci (TRA and TRB,
93 respectively) [18]. The TCR α is encoded when V α and J α gene segments recombine; the TCR β
94 is formed from the recombination of V β , D and J β gene segments. Additional diversity is created
95 by the random pairing of the TCR α and TCR β chains. Unlike immunoglobulin genes, somatic
96 mutation does not occur in TCR genes. The potential TCR repertoire varies between animal
97 species and is driven in large part by the number of functional members of V, D, or J segments.
98 In humans, there is the potential to generate 10^{15} unique TCRs.

99 A second subset of T cells are known as Gamma-delta ($\gamma\delta$) T cells, express an
100 alternative TCR, which is encoded by distinct gene segments found in the TRG and TRD loci.
101 The $\gamma\delta$ -TCR is structurally similar to the $\alpha\beta$ -TCR. Like the TRA and TRB loci, the TRG and TRD
102 loci contain sets of V γ and J γ , and V δ , D δ and J δ gene segments, respectively. In general, there
103 are fewer gene segments in the TRG and TRD loci [19]. $\gamma\delta$ T cells remain enigmatic because

104 the antigens they recognize and the antigen presenting molecules that restrict their recognition
105 of antigen are incompletely characterized. Nevertheless, they are identified in the circulation and
106 in the tissues of all mammals, and play important roles in autoimmune disease, and in immunity
107 to infection and cancer [20, 21].

108 Here we identified the TRA, TRB, TRG and TRD loci of the Cynomolgus macaque.
109 Based initially on the homology with human TCR gene segments, and subsequently using the
110 identified gene segments from Rhesus macaque and Cynomolgus macaque, we systematically
111 identified all the V, D, J, and C gene segments belonging to all four T cell receptor loci. Finally,
112 using the genomic sequences, we designed specific primers for the amplification of the V α and
113 V β regions, and determined which of the V gene segments are expressed in individual subjects.
114 These data will allow the detailed analysis of the T cell responses in Cynomolgus macaques as
115 well as comparative immunogenetics studies, comparing different species of Cynomolgus
116 macaques, as well as the evolution of TCR genes among the primates.

117 **Results**

118 **Identification of the *Macaca fascicularis* (macfas) TCR loci**

119 Based on nucleic acid sequence homology with the human C α , C δ , C β , and C γ gene
120 segments, the TRA and TRD loci were identified on Chr.7, and TRB and TRG loci were
121 identified on Chr.3 (Figure 1). Subsequently, each human V, D, J, and C gene segment was
122 used to blast the macfas Chr.7 and 3, to identify homologous gene segments. Similarly, *Macaca*
123 *mulatta* (macmul) gene segments were also used to identify homologous genes unique to the
124 macaca genus. Using this approach, we were able to annotate and assemble a map of the
125 macfas TRA, TRB, TRG, and TRD loci as described in detail below.

126

127 **The macfas TRA locus**

128 The structure of the macfas TRA locus is like the human locus in that it overlaps the
129 TRD locus on Chromosome 7 (Figure 1A) [22]. We identified 62 TRAV genes in macfas, one
130 more than the 61 human genes but less than the 67 macmul genes. The two human gene
131 families TRAV7 and TRAV28, each contain a single member and are absent from the macfas
132 and macmul TRA locus (Table 1, Figure 2). Conversely, the TRA loci of macfas and macmul
133 have one additional gene in the TRAV24, TRAV25, and TRAV26 families. The greater number
134 of macmul TRAV genes compared to macfas results from an expansion of the TRAV22 and
135 TRAV23 families, from one member to three and four, respectively (Table 1). Of the 62 macfas
136 TRAV genes, 12 are pseudogenes and 2 are ORFs (Table 1, Table S1). There might have been
137 a gene duplication of the TRAV genes TRAV24, TRAV25, TRAV26, which differentiates the
138 human TRAV locus from the macaque locus (Figure 2B). Second, there are additional members
139 of the TRDV1, TRAV22, and TRAV23 families in NHP, compared to the human TRA/DV locus.
140 We did not find macfas homologs of macmul TRDV1-1, TRAV22-2, TRAV22-3, TRAV-23-2,
141 TRAV23-3, or TRAV23-4, despite searching the macfas genome using the macmul homologs.
142 We believe the differences between the macfas and macmul genomic sequences could have

143 arisen from gaps in the known macfas sequence or problems with the genome assembly.

144 We identified 61 TRAJ genes, which is the same number as Rhesus macaque and
145 human TRAJ genes. There is a high degree of conservation between macfas and *Homo*
146 *sapiens* (homsap) TRAJ gene segments (Table S2). Finally, we compared the TRAC exons
147 from all three species. The macfas and macmul TRAC genes have identical amino acid
148 sequences (Figure S1).

149

150 **The macfas TRB locus**

151 The macfas TRB locus (Figure 1B) is similar in structure to the macmul TRB locus. We
152 identified 78 TRBV genes, compared to 77 annotated macmul TRBV genes (Table 1 & Table
153 S3). Both are expanded compared to the human species, for which there exists 68 distinct
154 genes. The overall TRBV family structure is similar, with some variation in the number of
155 members and the number of pseudogenes (n=17) and ORFs (n=2) (Table 1, Figure 3). The
156 organization of the TRBJ and TRBC genes is similar in all three species, characterized by a
157 duplication of the TRBJ and TRBC genes (Figure 1B). Comparing the macfas and macmul
158 TRBJ gene segments, four (including the TRBJ2.2P ORF) differ by a single nucleotide; the
159 other 10 genes are 100% conserved (Figure S2, Table S4). The TRBD1 and TRBD2 are also
160 100% conserved between macfas and macmul (Table S4). Similarly, there is a high degree of
161 conservation between macfas and homsap TRBJ gene segments (Figure S2). Finally, we
162 compared the TRBC exons from all three species. As noted, there are two TRBC genes,
163 TRBC1 and TRBC2, which are 97% identical. The macfas and macmul TRBC1 differ by only
164 two bp and the translated sequence is 100% identical; for TRBC2, there is a single aa difference
165 (Figure S1).

166

167 **The macfas TRG locus**

168 The macfas TRG locus is located on chromosome 3 (Figure 1C). We identified 12

169 TRGV genes of which 6 are predicted to be functional and an additional 4 are pseudogenes
170 (Figure 4, Table 1, Table S5). These genes were compared to the homologous genes in human
171 and rhesus (Figure 4). The same 12 genes were found in the macmul TRG locus. We named
172 macfas TRGV4 based on its homology with homsap TRGV4*01 (92% homology, Figure 4). The
173 ortholog in the macmul TRG locus is identical in sequence, but IMGT names it TRGV8, although
174 it has only 88% homology to homsap TRGV8*01. In general, the macfas and macmul orthologs
175 had between 0-2 mismatches (i.e., >99% homology), while the homology between macfas and
176 homsap TRGV genes was 88-95%. The two NHP species lacked TRGV5, TRGV5P, TRGV7,
177 and TRGV8, and macmul had two additional V genes, TRGVC and TRGVD. The human TRG
178 locus has two clusters of J segments and C-region genes [22, 23]; IMGT/LIGM-DB:
179 IMGT000011 (582960 bp), human (*Homo sapiens*) TRG locus), and the macmul locus has a
180 similar structure (IMGT/LIGM-DB: IMGT000059 (197016 bp), Rhesus monkey (*Macaca mulatta*)
181 TRG locus). While there are five macmul TRGJ gene segments, we detected only three in the
182 macfas TRG locus. These three are more like the macmul TRGJ2-1, 2-2, and 2-3 gene
183 segments (Figure 4B). Similarly, there is a single macfas TRGC region gene, and its amino acid
184 sequence is 91.9% and 96.5% identical to macmul TRGC1 and TRGC2, respectively (Figure
185 S1). There is 1, 0 and 2 mismatches between macfas and macmul TRGC2 exon 1, 2, and 3,
186 respectively. The human TRGC2 exon 2 contains a duplicated sequence, which neither the
187 macfas nor macmul exon 2 contains (Figure S2). Therefore, the macfas TRGC gene is the
188 TRGC2 ortholog, and the genomic assembly of macfas is missing a region that spans TRGJ1-1
189 to TRGC1 (Figure 4C).

190

191 **The macfas TRD locus**

192 The macfas TRD locus is located on chromosome 7 and overlaps with the TRA locus
193 (Figure 1A). Three canonical TRDV genes were identified as macfas homologs of homsap
194 TRDV1, TRDV2, and TRDV3, with homologies between 91-97% (Figure 5, Table S6). A fourth

195 gene, TRDV4, was identified which was 100% homologous to macmul TRDV4. The macmul
196 genome has a fifth gene, TRDV1-1, which is very homologous to TRDV1 (Figure 2, 5); no
197 macfas orthologs were found for this gene. Three TRDD and four TRDJ macfas gene segments
198 were identified, as in the homsap genome (Table S6). These genes are 100% identical to their
199 macmul homologs. Similarly, the single macfas TRDC region has 100% DNA sequence identity
200 and predicted amino acid sequence as the macmul TRDC (Figure S1). There is a two amino
201 acid gap, which we suggest is a consequence of the artificial splicing between exons 2 and
202 exon 3.

203

204 **The expressed V gene repertoire used by Cynomolgus macaque T cells**

205 To determine the functionality of the TRAV and TRBV gene segments we identified, the
206 following criteria were used: (i) Defined L1 exon and L2-V exon, (ii) absence of nonsense or
207 missense mutation, and (iii) encodes a cytosine (C) at position 21-23 followed by tryptophan (W)
208 at position 31-33 of the 3' end. The terminal amino acids encoded by a functional TRAV gene is
209 usually CAVR, CAL, or CAF. Similarly, the terminal amino acids encoded by a functional TRBV
210 gene is usually CASSQ, CASSL, or CASSE. Based on these criteria, we initially assigned each
211 V gene to be functional if it met these criteria. If the gene had an internal stop codon, or lacked
212 the conserved C or W residue, it was deemed a pseudogene. Finally, if the gene appeared to be
213 functional, but the L1 or L2 parts of the leader sequence could not be identified, or it lacked
214 consensus splice site for intron A, we designated it an open reading frame (Supplemental tables
215 1, 3, and 5).

216 To determine the expressed TRAV and TRBV repertoire, TCRs from Cynomolgus
217 macaques infected with *Mycobacterium tuberculosis* were analyzed. The distribution of the
218 expressed TRAV and TRBV genes in uninvolved lung from these infected subjects was
219 determined for 22 unique individuals (Figure 6). The distribution of TRAV and TRBV genes was
220 also determined in BAL cells, before or after infection, involved (i.e., granulomas) lung tissue,

221 and single cell lung suspensions (Figure S3). The presence of stop codons in pseudogenes that
222 were observed to be transcribed were confirmed (data not shown). One exception was
223 detected. For TRBV6-4, the expected stop codon at position 85 (TAG) was CAG in the
224 transcribed gene, and thus, encoded a functional glutamine (Q). This difference between the
225 germline and the transcribed gene could be the result of a polymorphism or a sequencing error
226 in the genomic reference sequence. Finally, the status of V genes designated as ORFs, was
227 changed to 'functional' if the V gene was transcribed.

228

229 **Discussion**

230 The nucleic acid sequence of recombined V, D, and J gene segments encodes the
231 protein structure of the TCR and contains immunological information about T cell responses.
232 The complementarity determining region 3 (CDR3), defined as the V-D-J or V-J recombination
233 site, is unique to each unique T cell clone, sometimes referred to as a clonotype. Analytical
234 approaches are beginning to predict the antigen specificity based on the primary sequence of
235 the TCR. In the absence of the antigen specificity, the TCR sequence can be used as a
236 surrogate of antigen specificity. As T cells undergo clonal expansion after encountering
237 antigens, TCR sequences are being used to track T cells, monitor immune responses, and
238 identify new antigens for human tumors and pathogens [24-26]. Advances in T cell therapy are
239 being driven by our ability to clone and recombinantly express TCRs, as exemplified by adoptive
240 cell therapy (ACT) [27, 28]. Thus, defining the V, D, and J gene segments is an important step
241 in the analysis of T cell immunity.

242 We identified and annotated the TRA, TRB, TRG, and TRD loci of the Cynomolgus
243 macaque. There is generally more than 90% homology between the different V, D, and J gene
244 segments in the Human, Rhesus and Cynomolgus macaque's TCR repertoire. As one might
245 expect, the structure of the different TCR loci is highly conserved between Rhesus and
246 Cynomolgus macaque. The differences we detected (e.g., Fig.2A) are more likely to be due to
247 ascertainment bias arising from problems with genomic sequencing and assembly, than true
248 evolutionary events. In support of this conclusion, among the expressed TCR repertoire, we
249 found many macfas TCRs expressed in the lung matched to macmul reference sequences that
250 were missing from the macfas genomic sequence. We also find that there is expansion of TCR
251 beta locus of macfas and macmul compared to homsap. These differences, which are likely to
252 have occurred by gene duplication [29, 30], may have occurred in response to changes in
253 selective pressure during evolution of the TCR loci [31, 32].

254

255 **Conclusions**

256

257 We identified and annotated the TRA/D, TRB and TRG loci of the Cynomolgus
258 macaque. The TRA and TRB genomic sequences were used to design primers, and as
259 reference sequences, to amplify and identify TCR sequences expressed by single cells from the
260 lungs of Cynomolgus macaques. By using these data to analyze the $\alpha\beta$ TCRs expressed by
261 mature T cells, we were able to discern which V genes were functional based on their RNA
262 expression. This allowed us to refine and validate our predictions based on the genomic
263 sequences. Altogether, these data show the utility of these TCR reference sequences, and we
264 expect that they will be useful for the study of T cell immunity in Cynomolgus macaques.

265 **Methods**

266

267 **Source of genomic sequence.** The genome of the Cynomolgus macaque (NCBI: taxid 9541),
268 also known as the crab eating macaque, has been sequenced and we used the reference
269 genome Macaca_fascicularis_5.0 available from NCBI
270 (<https://www.ncbi.nlm.nih.gov/genome/776>) [33, 34]. The formal genus and species name is
271 *Macaca fascicularis*, which we abbreviate as macfas. The Rhesus macaque (i.e., *Macaca*
272 *mulatta*; macmul) TCR sequences were obtained initially from the literature [35] and later from
273 IMGT (<http://www.imgt.org>) [36]. The Human (i.e., *Homo sapiens*; homsap) TCR sequences
274 were obtained from IMGT. In cases where more than one allele was available, the first allele
275 was used for sequence comparisons.

276

277 **Annotation and analysis of Macfas TCR repertoire.** To identify the location of the macfas
278 TCR loci, the human TRAC, TRBC, TRGC, and TRDC were blasted against the macfas
279 genome. Subsequently, all human gene segments were individually blasted against the macfas
280 genome. As macfas gene segments were defined, they were also used to look for other

281 homologous genes. At the beginning of this study, the sequences of the macmul TCBV genes
282 were available and were used to look for homologous genes [35]. The names of the genes were
283 assigned based on the homology with the human genes, and the location in the genome. The
284 leader sequence (L1 & L2), TRV region, D region and J chain were identified for each gene. The
285 annotation was done by following standard IMGT rules (<http://www.imgt.org>). Clustal Omega
286 was used for multiple sequence alignments (<https://www.ebi.ac.uk/Tools/msa/clustalo/>) [37] and
287 visualized using Archaeopteryx for Figures 2–5 [38]. Sequences were entered and tracked in
288 SnapGene (version 5.0)

289

290 **Expressed TCR repertoire of Cynomolgus macaques.** Cells from bronchoalveolar lavage
291 (BAL), single cell suspensions of lung, or lung tissue, were obtained from Cynomolgus
292 macaques infected with *Mycobacterium tuberculosis* and single cell RNAseq libraries were
293 created [39]. Primers were synthesized that were specific for the different TRAV, TRBV, TRAC,
294 and TRBC gene segments based on the genomic sequences described herein and used to
295 enrich and amplify the TCR sequences from T cells in scRNA-Seq libraries generated using 3'
296 barcoded Seq-Well [40, 41]. Primers were not designed for pseudogenes that had internal stop
297 codons, or for some V genes that were not initially identified. The libraries were sequenced and
298 then aligned to the TCR reference sequences. The samples were analyzed for 48 TRAV and 73
299 TRBV genes. The V region and J region sequences were mapped using BOWTIE 2 as part of
300 the TCRGO algorithm (<https://github.com/ShalekLab/tcrgo/tree/master/tcrgo>) [41]. Briefly, reads
301 are aligned with the V and J regions in the reference TCR database, containing the sequences
302 annotated in this report (see Results, below). Each read from a Seq-Well library includes nucleic
303 acid tags that identify the cell of origin (cell barcode) and the transcript of origin (unique
304 molecular identifier, UMI). Reads with matching cell barcode and UMI are merged, and a
305 consensus V and J region mapping is determined based on sequence similarity identified
306 among the majority of reads. A consensus CDR3 sequence is identified from reads with shared

307 mappings.

308

309

310 **List of abbreviations**

311 Adoptive cell therapy (ACT)
312 Acquired immunodeficiency syndrome (AIDS)
313 Constant (C)
314 Cluster of differentiation 3 (CD3)
315 Complementary determining region 3 (CDR3)
316 Diversity (D)
317 Human Immunodeficiency Virus-1 (HIV-1)
318 Joining (J)
319 Gamma-delta ($\gamma\delta$)
320 *Macaca fascicularis* (macfas)
321 *Macaca mulatta* (macmul)
322 *Mycobacterium tuberculosis* (Mtb)
323 Non-human primates (NHP)
324 Simian Immunodeficiency Virus (SIV)
325 T cell receptor (TCR)
326 Variable (V)
327
328

329 **Declarations**

330

331 **Ethics approval.** All experiments, protocols, and care of animals were approved by the
332 University of Pittsburgh School of Medicine Institutional Animal Care and Use Committee
333 (IACUC). The Division of Laboratory Animal Resources and IACUC adheres to national
334 guidelines established by the Animal Welfare Act (7 U.S. Code Sections 2131-2159) and the
335 Guide for the Care and use of Laboratory Animals (Eighth Edition) as mandated by the U.S.
336 Public Health Service Policy. The DLAR program is AAALAC accredited. Animals used in this
337 study were housed in rooms with autonomously controlled temperature and provided enhanced
338 enrichment procedures.

339

340 **Consent for publication.** Not applicable

341

342 **Availability of data and materials.** All data generated or analyzed during this study are
343 included in this published article [and its supplementary information files]

344 **Competing interests.** A.K.S. reports compensation for consulting and/or SAB membership
345 from Merck, Honeycomb Biotechnologies, Cellarity, Repertoire Immune Medicines, Ochre Bio,
346 Third Rock Ventures, Hovione, Relation Therapeutics, FL82, and Dahlia Biosciences.

347 **Funding.** This project has been funded in part with Federal funds from the National Institute of
348 Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human
349 Services, under Contract No. 75N93019C00071, and additional support from The Bill and
350 Melinda Gates Foundation.

351

352 **Authors' contributions.**

353 S.J. and S.M.B., conceptualized and wrote the manuscript; S.B., helps in preliminary data
354 acquisition; S.K.N., contributed to methodology and performed sc RNA seq data analysis;

355 S.K.G., K.P., H.G. NHP Sample processing and facilitated transfer of the samples; T.J., S.I.,
356 J.B., and G.J.G., have contributed in T cell processing for scRNA sequencing; A.K.S. and B.B.,
357 provided resource and supervision for scRNA sequencing and data analysis; Funding
358 Acquisition, J.F., S.M.F., S.M.B.; S.J. and S.M.B. have reviewed and edited the manuscript. All
359 authors reviewed the manuscript.

360

361 **Acknowledgements.**

362 Roisin Floyd, Marc Wadsworth, and Travis Hughes have performed original sequence libraries
363 for depletion experiment that were helpful in analyzing the expressed repertoire, Jake
364 Rosenberg and Andy Tu helped in the development of TCR pipeline and interpretation of
365 results.

366

367

368

369 **List of Tables**

370 Table 1: Comparison of genes (TRAV/ TRBV/ TRDV/ TRGV) in macfas, macmul and human

TRAV gene segments				TRBV gene segments				TRGV gene segments				TRDV gene segments					
Subgroup	Macfas	Macmul	Human	Subgroup	Macfas	Macmul	Human	Subgroup	GENE	Macfas	Macmul	Human	Subgroup	GENE	Macfas	Macmul	
TRAV1	2	2	2	TRBV1	3	3	1	TRGV1	1	ORF	ORF		TRDV1	TRDV1	1	1	
TRAV2	1	1	1	TRBV2	3	3	1	TRGV2	1	1	1		TRDV2	TRDV2	1	1	
TRAV3	1	1	1	TRBV3	4	4	2	TRGV3	1	1	1		TRDV3	TRDV3	1	1	
TRAV4	1	1	1	TRBV4	3	3	3	TRGV3P	0	NR	*		TRDV3P	TRDV3P	0	NR	
TRAV5	1	1	1	TRBV5	10	10	8	TRGV4	1	0***	1		TRDV4	TRDV4	1	0***	
TRAV6	1	1	1	TRBV6	10	10	9	TRGV5P	0	NR	P		TRDV5P	TRDV5P	0	P	
TRAV7	0	0	1	TRBV7	11	11	9	TRGV5	0	NR	1		TRDV5	TRDV5	0	1	
TRAV8	7	7	8	TRBV8	2	2	2	TRGV6	P	P	P		TRDV6	TRDV6	P	P	
TRAV9	2	2	2	TRBV9	1	1	1	TRGV7	0	NR	P		TRDV7	TRDV7	0	P	
TRAV10	1	1	1	TRBV10	3	3	3	TRGV8	0	1***	1		TRDV8	TRDV8	0	1***	
TRAV11	3	3	2	TRBV11	3	3	3	TRGV2	TRGV9	1	1	1		TRDV2	TRDV9	1	1
TRAV12	3	3	3	TRBV12	4	4	5	TRGV3	TRGV10	1	ORF	ORF		TRDV3	TRDV10	1	ORF
TRAV13	2	2	2	TRBV13	1	1	1	TRGV4	TRGV11	P	P	ORF		TRDV4	TRDV11	P	ORF
TRAV14	2	2	2	TRBV14	1	1	1	TRGVA	TRGVA	P	P	P		TRDVVA	TRDVVA	P	P
TRAV15	1	1	1	TRBV15	1	1	1	TRGVB	TRGVB	P	P	P		TRDVVB	TRDVVB	P	P
TRAV16	1	1	1	TRBV16	1	1	1	TRGVC	TRGVC	0	P	NR		TRDVVC	TRDVVC	0	NR
TRAV17	1	1	1	TRBV17	1	0	1	TRGVD	TRGVD	0	P	NR		TRDVVD	TRDVVD	0	NR
TRAV18	1	1	1	TRBV18	1	1	1	Total	12	12	14		Total	12	12	14	
TRAV19	1	1	1	TRBV19	1	1	1										
TRAV20	1	1	1	TRBV20	1	1	1										
TRAV21	1	1	1	TRBV21	1	1	1										
TRAV22	1	3	1	TRBV22	1	1	1										
TRAV23	1	4	1	TRBV23	1	1	1										
TRAV24	2	2	1	TRBV24	1	1	1										
TRAV25	2	2	1	TRBV25	1	1	1										
TRAV26	3	3	2	TRBV26	1	1	1										
TRAV27	1	1	1	TRBV27	1	1	1										
TRAV28	0	0	1	TRBV28	1	1	1										
TRAV29	1	1	1	TRBV29	1	1	1										
TRAV30	1	1	1	TRBV30	1	1	1										
TRAV31	1	1	1	TRBVA	1	1	1										
TRAV32	1	1	1	TRBVB	1	1	1										
TRAV33	1	1	1	TRBVC	1	1	1										
TRAV34	1	1	1	Total	78	77	68										
TRAV35	1	1	1														
TRAV36	1	1	1														
TRAV37	1	1	1														
TRAV38	2	2	2														
TRAV39	1	1	1														
TRAV40	1	1	1														
TRAV41	1	1	1														
TRAV46	1	1	1														
TRAVA	1	1	1														
TRAVB	1	1	1														
TRAVC	1	1	1														
Total	62	67	61														

371

372 Notes:

1. The numerical value for every gene represents the number of allele present.
2. ORF: Open reading frame
3. NR: Not reported
4. P: Pseudogene
5. F: Functional
6. ***: Nomenclature discrepancy

P pseudogene
ORF open reading frame
NR not reported
0 no homologous gene identified
*** nomenclature discrepancy

379 **Figure Legends**

380

381 **Figure 1: The Macfas TCR loci.**

382 Structure of the TCR loci (A) TRA/TRD (B) TRB and (C) TRG loci. (A) The TRA and TRD loci
383 are interspersed on Chr. 7. The genes above the x-axis belong to the TRA locus; those below
384 the axis belong to the TRD locus. The boxed region is expanded to show greater detail. (B) The
385 TRB locus is located on Chr. 3. The boxed region is expanded to show greater detail. (C) The
386 TRG locus is located on Chr. 3. Each line represents a gene and the distance between them is
387 proportional to their spacing on Chr.7 and Chr.3. The blue boxes represent the 3' region of the
388 AMPH gene and exon 10 of STARD3NL, which are boundaries of the TRG locus. The black
389 lines represent V gene, green lines are J chain, purple lines represent C region, and the red
390 lines are representing D region.

391

392 **Figure 2. TRAV families**

393 Phylogenetic tree illustrating (A) functional genes (black), pseudogenes (red) and ORFs (blue)
394 of the macfas TRAV locus. The genes clustered together belong to the same family. (B)
395 Comparison of the TRAV/TRDV locus of homsap, macfas, and macmul. The genes that are
396 exclusive to humans are highlighted in purple. Those TRAV genes found in macfas and macmul
397 but not in homsap are in yellow, and the genes are present only in macmul but absent in
398 macmul are in red. See text for the details.

399

400 **Figure 3. TRBV families**

401 Phylogenetic tree illustrating functional genes (black), pseudogenes (red) and ORFs (blue) of
402 the macfas TRBV locus. The genes clustered together belongs to the same family. #, TRBV6-4
403 is a pseudogene in the genomic sequence, but the expressed gene is functional (see results,
404 "Expressed V gene repertoire").

405

406 **Figure 4. TRGV and TRGJ gene segment homologies**

407 (A) Phylogenetic tree illustrating functional genes (black), pseudogenes (red) and ORFs (blue)
408 of the macfas TRGV locus. The number (i.e., “n=1”) is the number of mismatches between the
409 macfas and macmul genes. The % is the homology between the macfas and the homsap gene.
410 Homologies between other genes of interest are indicated with a dotted line. *, homsap genes
411 for which no macfas or macmul homologs were identified. ‡, nomenclature discrepancy. (B)
412 Phylogenetic tree clustering macfas and macmul TRGJ genes. (C) Schematic of the genomic
413 organization of the 3' region of the TRG locus. TRGV (red), TRGJ (blue) and TRGC (black).

414

415 **Figure 5. TRDV and TRDJ gene segment homologies**

416 (A) Phylogenetic tree showing the functional genes homsap, macfas and macmul TRDV genes.
417 Comparisons are indicated with dotted lines and the percent homology is indicated followed by
418 the number of sequence mismatches. Each TRDV gene family is color coded. (B) Alignment of
419 macmul and macfas TRDJ showing the conserved amino acids (boxed).

420

421 **Figure 6. The expressed TRAV and TRBV repertoire.** Single cell analysis of lung
422 mononuclear cells from Cynomolgus macaques reveals their functionally expressed TRAV and
423 TRBV repertoire. Each dot represents a different animal. All samples are from uninvolved lung
424 tissue from subjects infected with *M. tuberculosis*. The average percentage was calculated for
425 the TRAV (A) and TRBV (B) and the distribution was individually normalized for each subject.
426 Red bar represents the median. *, expression not analyzed.

427 **Supplemental information**

428

429 **Figure S1.** Constant region homology. Alignment of the amino acid sequence of the TCR
430 constant regions, derived from the in silico splicing of the human, macfas and macmul TRAC,
431 TRBC, TRGC, and TRDC exons. Dots represent identical homology. Amino acids are
432 represented by the 1-letter code. X, is undetermined.

433

434 **Figure S2.** TRBJ gene segment homology. Alignment of the nucleic acid sequences of the
435 human, macfas and macmul TRBJ genes. Dots represent identical homology.

436

437 **Figure S3.** Single cell analysis of lung mononuclear cells from Cynomolgus macaques. (A)
438 TRAV and (B) TRBV repertoire of T cells from bronchoalveolar lavage fluid, before or after
439 infection (BAL (PRE), BAL (POST)), uninvolved or involved lung tissue (UI and granuloma,
440 respectively), or single cell suspensions (SC). The mean value of the average percentage of the
441 UMI counts from each sample was plotted. Each point represents a different sample. *,
442 expression not analyzed.

443

444 **Table S1:** Macfas TRAV functional status, nucleotide sequence and the translated sequence

445

446 **Table S2.** Macfas TRAJ sequence.

447

448 **Table S3:** Macfas TRBV functional status, nucleotide sequence and the translated sequence.

449

450 **Table S4:** Macfas TRDV and TRDJ functional status, nucleotide sequence and the translated
451 sequence.

452

453 **Table S5:** Macfas TRGV/TRGJ functional status, nucleotide sequence and the translated

454 sequence.

455

456 **References**

457

458 1. Urano E, Okamura T, Ono C, Ueno S, Nagata S, Kamada H, Higuchi M, Furukawa M,
459 Kamitani W, Matsuura Y *et al*: **COVID-19 cynomolgus macaque model reflecting**
460 **human COVID-19 pathological conditions**. *Proc Natl Acad Sci U S A* 2021, **118**(43).

461 2. Shiina T, Suzuki S, Congy-Jolivet N, Aarnink A, Garchon HJ, Dereuddre-Bosquet N,
462 Vaslin B, Tchitchev N, Desjardins D, Autran B *et al*: **Cynomolgus macaque IL37**
463 **polymorphism and control of SIV infection**. *Sci Rep* 2019, **9**(1):7981.

464 3. Rodgers MA, Ameel C, Ellis-Connell AL, Balgeman AJ, Maiello P, Barry GL, Friedrich
465 TC, Klein E, O'Connor SL, Scanga CA: **Preexisting Simian Immunodeficiency Virus**
466 **Infection Increases Susceptibility to Tuberculosis in Mauritian Cynomolgus**
467 **Macques**. *Infect Immun* 2018, **86**(12).

468 4. Mohns MS, Greene JM, Cain BT, Pham NH, Gostick E, Price DA, O'Connor DH:
469 **Expansion of Simian Immunodeficiency Virus (SIV)-Specific CD8 T Cell Lines from**
470 **SIV-Naive Mauritian Cynomolgus Macaques for Adoptive Transfer**. *J Virol* 2015,
471 **89**(19):9748-9757.

472 5. Salguero FJ, White AD, Slack GS, Fotheringham SA, Bewley KR, Gooch KE, Longet S,
473 Humphries HE, Watson RJ, Hunter L *et al*: **Comparison of rhesus and cynomolgus**
474 **macaques as an infection model for COVID-19**. *Nat Commun* 2021, **12**(1):1260.

475 6. Greenaway HY, Ng B, Price DA, Douek DC, Davenport MP, Venturi V: **NKT and MAIT**
476 **invariant TCR α sequences can be produced efficiently by VJ gene recombination**.
477 *Immunobiology* 2013, **218**(2):213-224.

478 7. Carlsson HE, Schapiro SJ, Farah I, Hau J: **Use of primates in research: a global**
479 **overview.** *Am J Primatol* 2004, **63**(4):225-237.

480 8. Ebeling M, Kung E, See A, Broger C, Steiner G, Berrera M, Heckel T, Iniguez L, Albert
481 T, Schmucki R *et al*: **Genome-based analysis of the nonhuman primate *Macaca***
482 ***fascicularis* as a model for drug safety assessment.** *Genome Res* 2011,
483 **21**(10):1746-1756.

484 9. Van Rompay KKA: **Tackling HIV and AIDS: contributions by non-human primate**
485 **models.** *Lab Anim (NY)* 2017, **46**(6):259-270.

486 10. Matz-Rensing K, Hartmann T, Wendel GM, Frick JS, Homolka S, Richter E, Munk MH,
487 Kaup FJ: **Outbreak of Tuberculosis in a Colony of Rhesus Monkeys (*Macaca***
488 ***mulatta*) after Possible Indirect Contact with a Human TB Patient.** *J Comp Pathol*
489 2015, **153**(2-3):81-91.

490 11. Sapolsky RM, Share LJ: **A Pacific Culture among Wild Baboons: Its Emergence and**
491 **Transmission.** *PLOS Biology* 2004, **2**(4):e106.

492 12. Cadena AM, Hopkins FF, Maiello P, Carey AF, Wong EA, Martin CJ, Gideon HP,
493 DiFazio RM, Andersen P, Lin PL *et al*: **Concurrent infection with *Mycobacterium***
494 **tuberculosis confers robust protection against secondary infection in macaques.**
495 *PLoS Pathog* 2018, **14**(10):e1007305.

496 13. Maiello P, DiFazio RM, Cadena AM, Rodgers MA, Lin PL, Scanga CA, Flynn JL:
497 **Rhesus Macaques Are More Susceptible to Progressive Tuberculosis than**
498 ***Cynomolgus* Macaques: a Quantitative Comparison.** *Infect Immun* 2018, **86**(2).

499 14. Flynn JL, Gideon HP, Mattila JT, Lin PL: **Immunology studies in non-human primate**
500 **models of tuberculosis.** *Immunol Rev* 2015, **264**(1):60-73.

501 15. Lin PL, Ford CB, Coleman MT, Myers AJ, Gawande R, Ioerger T, Sacchettini J, Fortune
502 SM, Flynn JL: **Sterilization of granulomas is common in active and latent**
503 **tuberculosis despite within-host variability in bacterial killing.** *Nat Med* 2014,
504 **20**(1):75-79.

505 16. Scanga CA, Flynn JL: **Modeling tuberculosis in nonhuman primates.** *Cold Spring*
506 *Harb Perspect Med* 2014, **4**(12):a018564.

507 17. Qi Q, Liu Y, Cheng Y, Glanville J, Zhang D, Lee JY, Olshen RA, Weyand CM, Boyd SD,
508 Goronzy JJ: **Diversity and clonal selection in the human T-cell repertoire.** *Proc Natl*
509 *Acad Sci U S A* 2014, **111**(36):13139-13144.

510 18. Gouaillard C, Huchenq-Champagne A, Arnaud J, Chen CI CL, Rubin B: **Evolution of T**
511 **cell receptor (TCR) alpha beta heterodimer assembly with the CD3 complex.** *Eur J*
512 *Immunol* 2001, **31**(12):3798-3805.

513 19. Murphy K, Weaver C: **Janeway's Immunobiology**; 2017.

514 20. Kim DS, Lee KY, Yang WI, Han SJ, Hwang EH: **Gamma/delta T lymphocytes in the**
515 **BCG granulomatous lesions.** *Yonsei Med J* 1996, **37**(5):319-324.

516 21. Zhao Y, Niu C, Cui J: **Gamma-delta (gammadelta) T cells: friend or foe in cancer**
517 **development?** *J Transl Med* 2018, **16**(1):3.

518 22. Lefranc MP, Lefranc G: **The T Cell Receptor FactsBook.** London: Academic Press;
519 2001.

520 23. Lefranc MP, Chuchana P, Dariavach P, Nguyen C, Huck S, Brockly F, Jordan B, Lefranc
521 G: **Molecular mapping of the human T cell receptor gamma (TRG) genes and**
522 **linkage of the variable and constant regions.** *Eur J Immunol* 1989, **19**(6):989-994.

523 24. Huang H, Wang C, Rubelt F, Scriba TJ, Davis MM: **Analyzing the Mycobacterium**
524 **tuberculosis immune response by T-cell receptor clustering with GLIPH2 and**
525 **genome-wide antigen screening.** *Nat Biotechnol* 2020, **38**(10):1194-1202.

526 25. Glanville J, Huang H, Nau A, Hatton O, Wagar LE, Rubelt F, Ji X, Han A, Krams SM,
527 Pettus C *et al*: **Identifying specificity groups in the T cell receptor repertoire.** *Nature*
528 2017.

529 26. Munson DJ, Egelston CA, Chiotti KE, Parra ZE, Bruno TC, Moore BL, Nakano TA,
530 Simons DL, Jimenez G, Yim JH *et al*: **Identification of shared TCR sequences from T**
531 **cells in human breast cancer using emulsion RT-PCR.** *Proc Natl Acad Sci U S A*
532 2016, **113**(29):8272-8277.

533 27. Feldman SA, Assadipour Y, Kriley I, Goff SL, Rosenberg SA: **Adoptive Cell Therapy--**
534 **Tumor-Infiltrating Lymphocytes, T-Cell Receptors, and Chimeric Antigen**
535 **Receptors.** *Semin Oncol* 2015, **42**(4):626-639.

536 28. Tang L, Zheng Y, Melo MB, Mabardi L, Castano AP, Xie YQ, Li N, Kudchodkar SB,
537 Wong HC, Jeng EK *et al*: **Enhancing T cell therapy through TCR-signaling-**
538 **responsive nanoparticle drug delivery.** *Nat Biotechnol* 2018, **36**(8):707-716.

539 29. Ohno S: **Evolution by Gene Duplication.** Heidelberg, Germany: Springer-Verlag; 1970.

540 30. Lynch M, Conery JS: **The evolutionary fate and consequences of duplicate genes.**
541 *Science* 2000, **290**(5494):1151-1155.

542 31. Demuth JP, De Bie T, Stajich JE, Cristianini N, Hahn MW: **The evolution of**
543 **mammalian gene families.** *PLoS One* 2006, **1**:e85.

544 32. Olson MV: **When less is more: gene loss as an engine of evolutionary change.** *Am*
545 *J Hum Genet* 1999, **64**(1):18-23.

546 33. Yan G, Zhang G, Fang X, Zhang Y, Li C, Ling F, Cooper DN, Li Q, Li Y, van Gool AJ *et*
547 *al: Genome sequencing and comparison of two nonhuman primate animal models,*
548 **the cynomolgus and Chinese rhesus macaques.** *Nat Biotechnol* 2011, **29**(11):1019-
549 1023.

550 34. Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R, Leipe D,
551 McVeigh R, O'Neill K, Robbertse B *et al: NCBI Taxonomy: a comprehensive update*
552 **on curation, resources and tools.** *Database (Oxford)* 2020, **2020**.

553 35. Greenaway HY, Kurniawan M, Price DA, Douek DC, Davenport MP, Venturi V:
554 **Extraction and characterization of the rhesus macaque T-cell receptor β-**
555 **chain genes.** *Immunol Cell Biol* 2009, **87**(7):546-553.

556 36. Lefranc MP, Giudicelli V, Duroux P, Jabado-Michaloud J, Folch G, Aouinti S, Carillon E,
557 Duvergey H, Houles A, Paysan-Lafosse T *et al: IMGT(R), the international*
558 **ImMunoGeneTics information system(R) 25 years on.** *Nucleic Acids Res* 2015,
559 **43**(Database issue):D413-422.

560 37. Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN,
561 Potter SC, Finn RD *et al: The EMBL-EBI search and sequence analysis tools APIs in*
562 **2019.** *Nucleic Acids Res* 2019, **47**(W1):W636-W641.

563 38. Han MV, Zmasek CM: **phyloXML: XML for evolutionary biology and comparative**
564 **genomics.** *BMC Bioinformatics* 2009, **10**:356.

565 39. Gideon HP, Hughes TK, Wadsworth MH, 2nd, Tu AA, Gierahn TM, Hopkins FH, Wei J-
566 R, Kummerlowe C, Grant NL, Nargan K *et al*: **Multimodal profiling of lung**
567 **granulomas reveals cellular correlates of tuberculosis control.** 2020.
568 <https://www.biorxiv.org/content/10.1101/2020.10.24.352492v1>

569 40. Tu AA, Gierahn TM, Monian B, Morgan DM, Mehta NK, Ruiter B, Shreffler WG, Shalek
570 **AK, Love JC: TCR sequencing paired with massively parallel 3' RNA-seq reveals**
571 **clonotypic T cell signatures.** *Nat Immunol* 2019, **20**(12):1692-1699.

572 41. Jivanjee T, Ibrahim S, Nyquist SK, Gatter GJ, Bromley JD, Jaiswal S, Berger B, Behar
573 **SM, Love JC, Shalek AK: Enriching and Characterizing T-Cell Repertoires from 3'**
574 **Barcoded Single-Cell Whole Transcriptome Amplification Products.** 2022.
575 <https://doi.org/10.48550/arXiv.2203.11266>

576

577

578

579

580

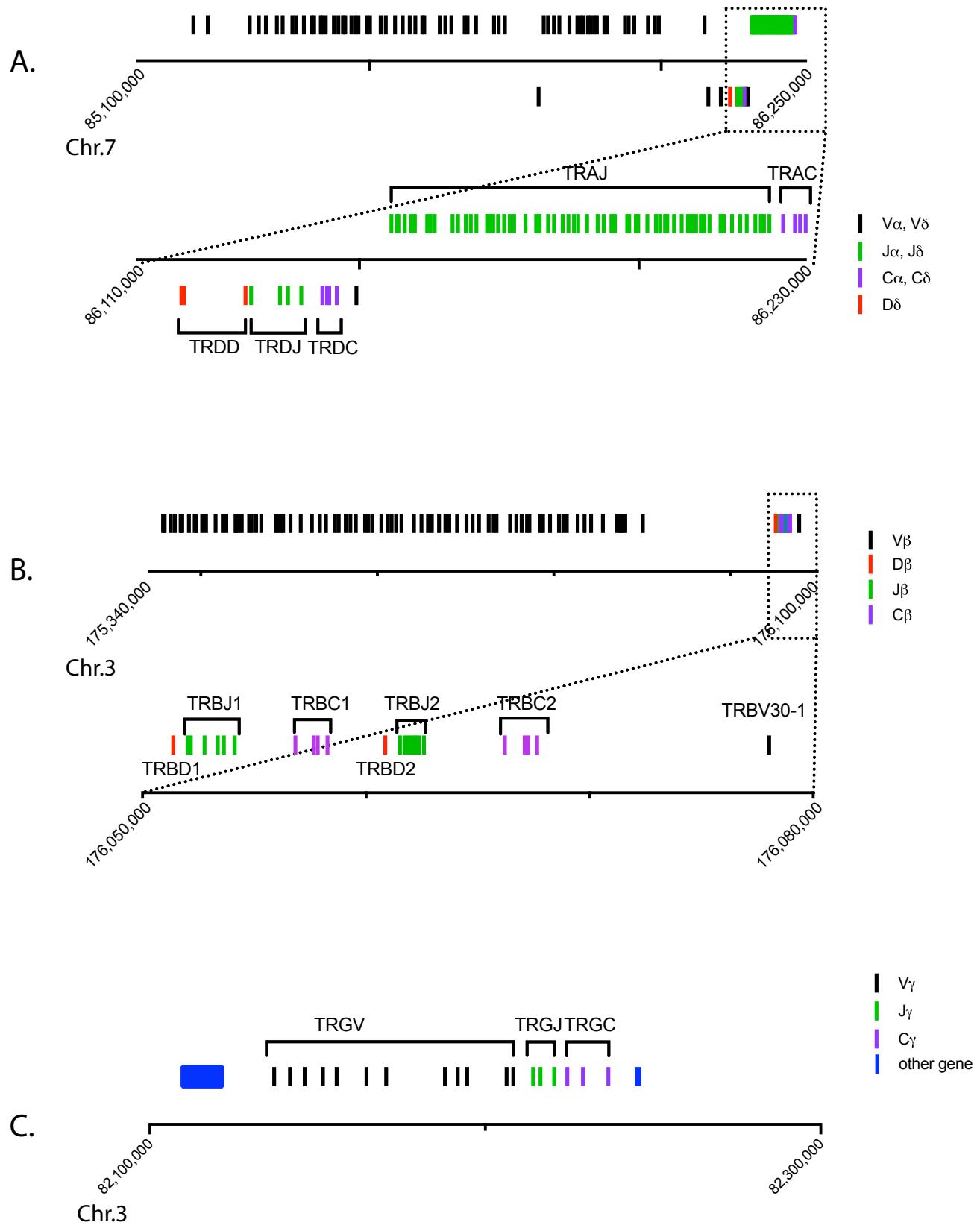
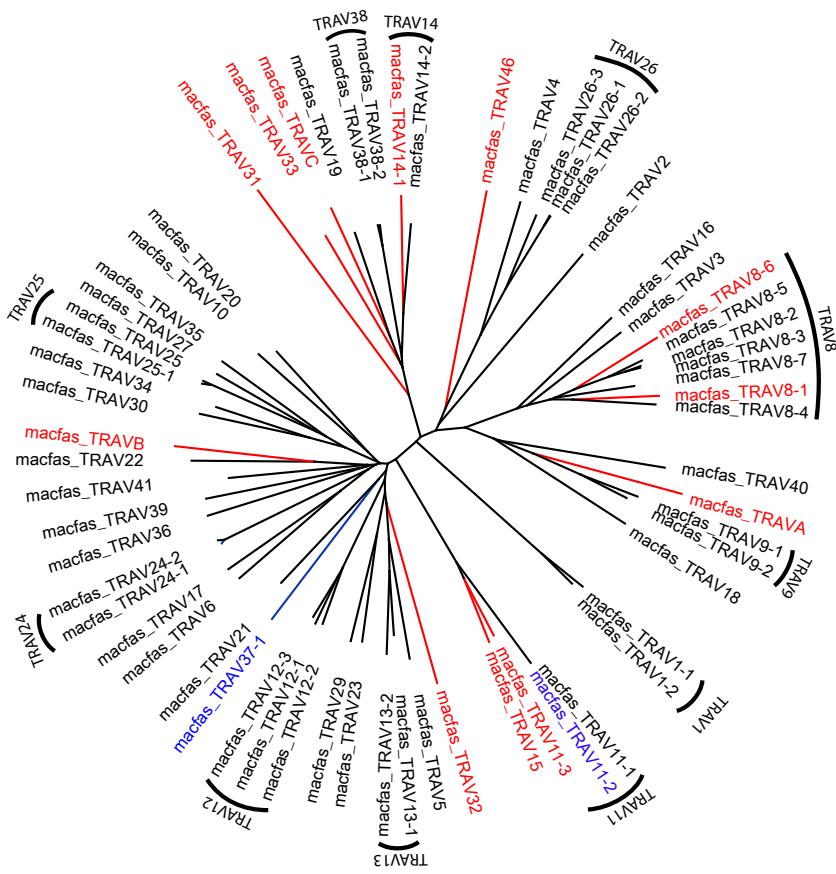
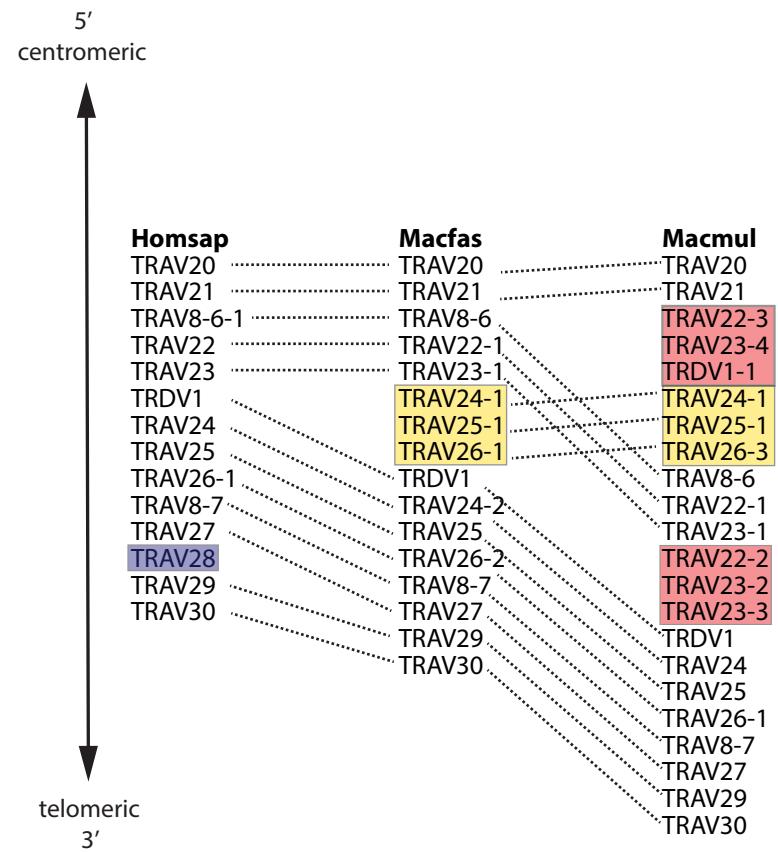




Figure 1

A.**B.****Figure 2**

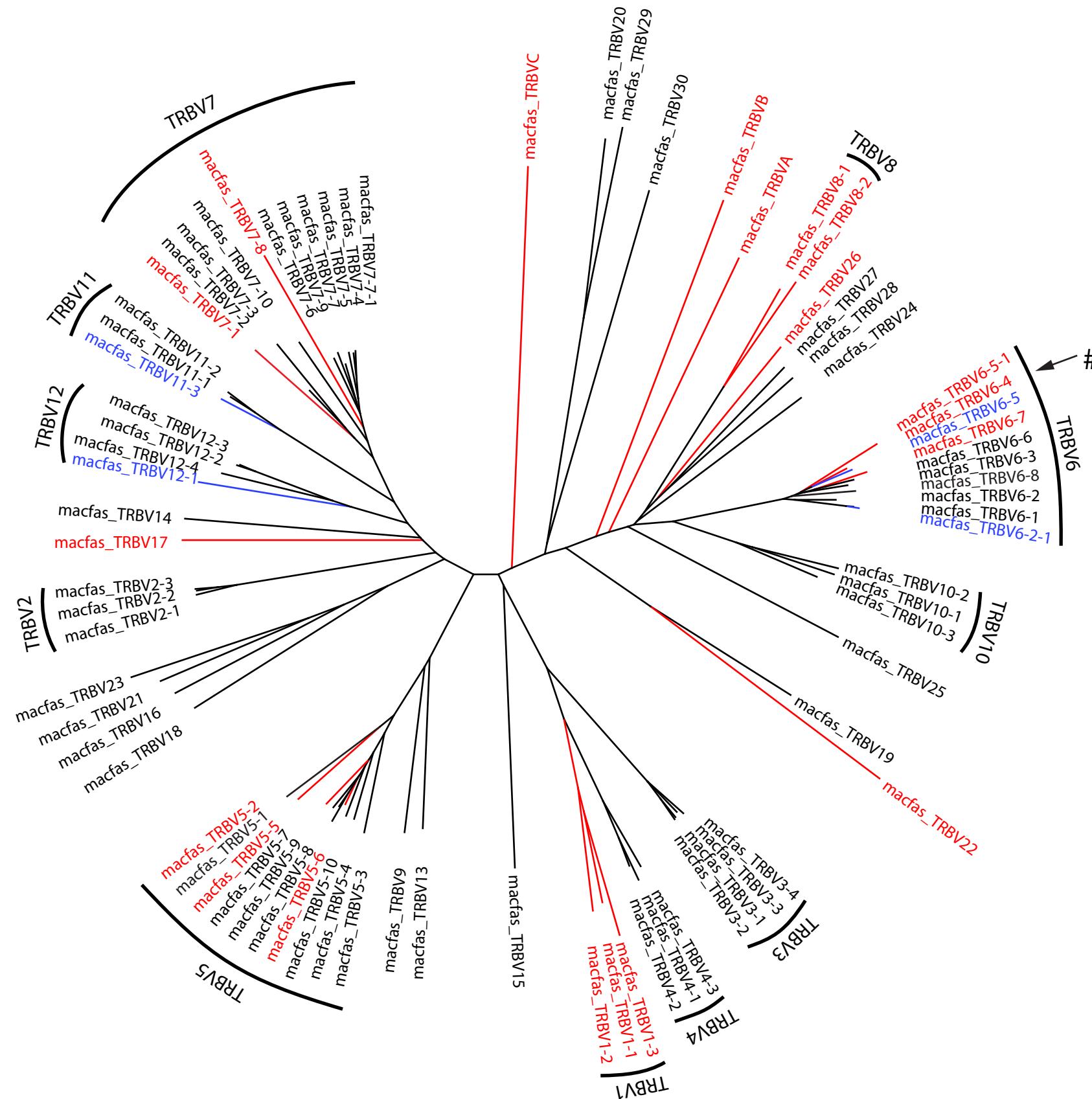


Figure 3

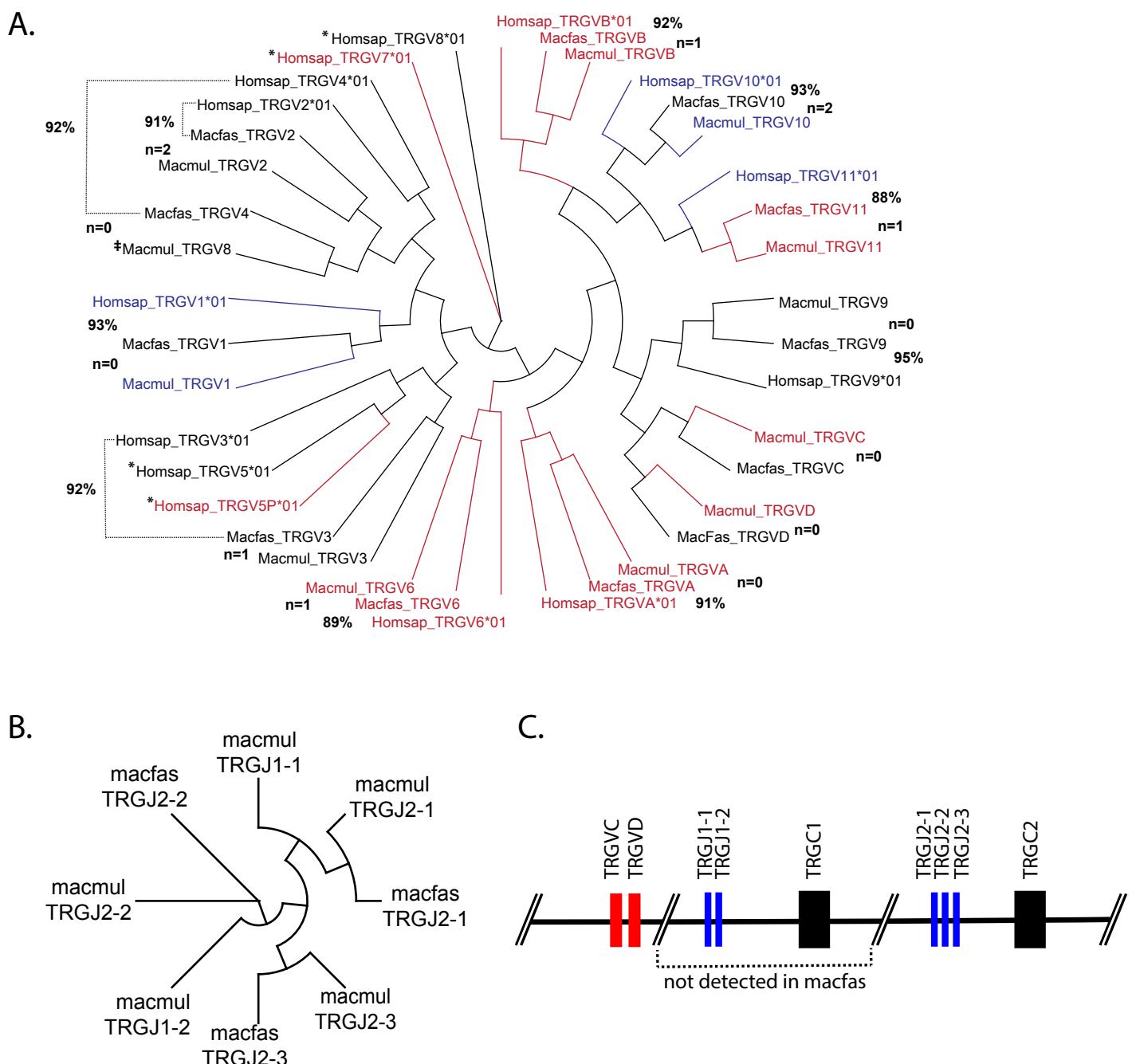
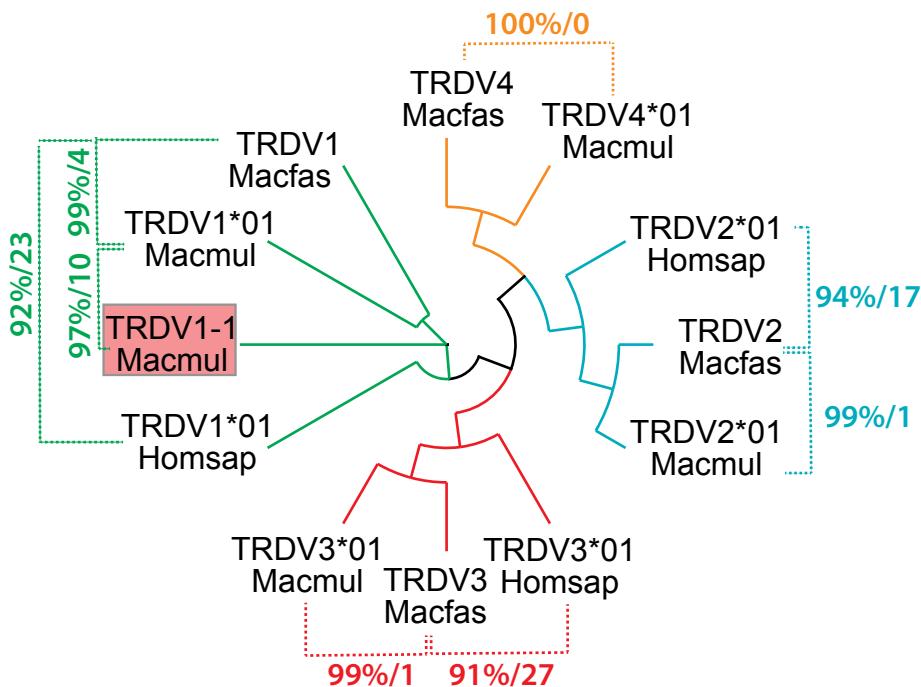



Figure 4

A.

B.

		Phe	Gly	Gly	Val	Glu
macfas	TRDJ1	-----	ACACTGATAAACTCATC	TTTGAAAGGA	ACCCGTGTGACT	GTGGAAACCAA
macmul	TRDJ1	-----
macfas	TRDJ2	-----	CTTT...A.CAC....TGT.AAC.C.TCG
macmul	TRDJ2	-----	CTTT...A.CAC....TGT.AAC.C.TCG
macfas	TRDJ3	CTCCTGGG....CCGAC.GA.GT.TCT..CAAAC.CTTCG..CC	
macmul	TRDJ3	CTCCTGGG....CCGAC.GA.GT.TCT..CAAAC.CTTCG..CC	
macfas	TRDJ4	-----CAGACC...GCTA.C..GAGAG.C	
macmul	TRDJ4	-----CAGACC...GCTA.C..GAGAG.C	

Figure 5

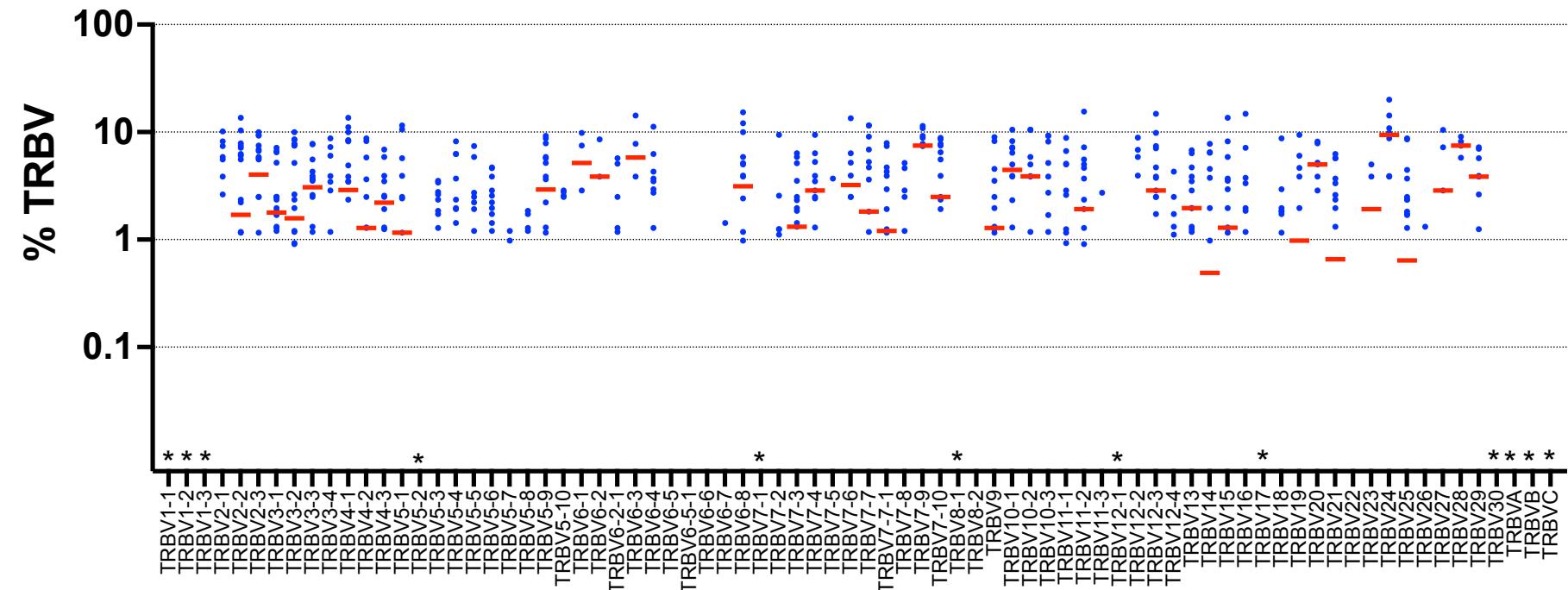
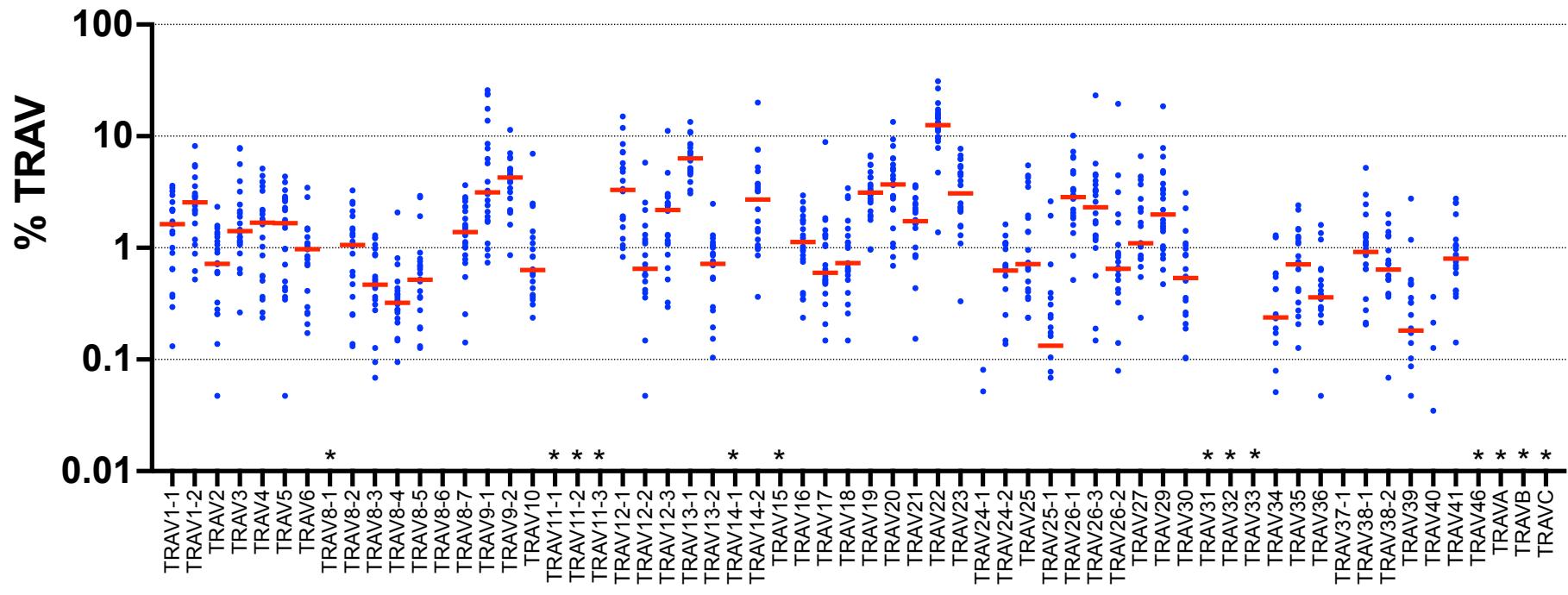



Figure 6