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Abstract

Intensity-based live-cell fluorescence resonance energy transfer (FRET) imaging converts
otherwise unobservable molecular interactions inside cells into fluorescence time-series signals.
However, inferring the degree of molecular interactions from these observables is challenging,
due to experimental complications such as spectral crosstalk, photobleaching, and measurement
noise. Conventional methods solve this inverse problem through algebraic manipulations of the
observables, but such manipulations inevitably accumulate measurement noise, limiting the
scope of FRET analysis. Here, we introduce a Bayesian inference framework, B-FRET, which
estimates molecular interactions from FRET data in a statistically optimal manner. B-FRET
requires no additional measurements beyond those routinely conducted in standard 3-cube FRET
imaging methods, and yet, by using the information contained in the data more efficiently,
dramatically improves the signal-to-noise ratio (SNR). We validate B-FRET using simulated data,
and then apply it to FRET data measured from single bacterial cells, a system with notoriously
low SNR, to reveal signaling dynamics that are otherwise hidden in noise.

Introduction

FRET is a short range (< 10 nm) effect whereby the energy of an excited fluorescence donor is
transferred to an acceptor. By labeling proteins with the donor and acceptor, FRET transforms
molecular interactions (i.e., protein-protein interactions for bimolecular FRET or protein
conformational changes for unimolecular FRET) in live cells into fluorescence signals in real time®™.
The resulting fluorescence signals reflect the molecular states as time series of noisy observations,
which must in turn be inverted to uncover the underlying molecular interactions within the cells.
Thus, FRET analysis consists of two steps. First, information about molecular interactions is encoded
into fluorescence signals (i.e., a fluorescence measurement). Second, data analysis is used to recover
the information about molecular interactions from the measured fluorescence signals. The
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importance of optimizing the efficiency of encoding is well-recognized — various studies have

12477 3s well as aspects of the microscope setup®®, such as

emphasized fine-tuning FRET pairs
fluorescence filters and photodetectors, to maximize the photon budget. However, less attention

has been paid to the efficiency of the data analysis used for decoding.

Conventional time-lapse FRET methods are based on sensitized emission from the acceptor, elicited
by donor excitation, which encodes the information of molecular interaction into a few fluorescence
time series. Decoding molecular information from these signals is complicated by spectral
crosstalk*!%! photobleaching® and measurement noise®. A range of decoding methods have been
proposed*!4~1: some are qualitative (e.g., simple ratiometry'’), often neglecting spectral crosstalk
and photobleaching, while others are quantitative (e.g., E-FRET*?), correcting both spectral crosstalk
and photobleaching in a principled manner. Although different in assumptions, these methods
decode the information of molecular interaction by algebraically processing the time-series data,
and computing a “FRET index” as a measure of the degree of molecular interactions. However,
algebraic manipulation of noise-corrupted data inevitably accumulates noise — for example, if a
fluorescence intensity I; is subtracted from another I,, the resulting intensity is smaller than I, (i.e.,
I, — I; < L), but its noise measured by variance is larger than that of I, (i.e., Var(l, — I;) =
Var(l,) + Var(l;) > Var(l,)). This lowers signal-to-noise ratio (SNR) of the computed FRET indices,
and thus makes it more difficult to discern the dynamics of underlying molecular interaction. Such
effects have limited the application of FRET methods to cases where photon budgets are large and
SNR is inherently high.

Here, we develop a computational framework, B-FRET, to infer, from standard 3-cube FRET data''?,

the degree of molecular interactions defined by a FRET index in a statistically optimal manner. By
applying the well-developed frameworks of Bayesian inference®?® and filtering theory®®?!, B-FRET
systematically deals with the many confounding factors associated with the sensitized-emission-
based FRET imaging methods — including the measurement noise — without algebraic manipulations.
This enables B-FRET to maximally exploit the information from measured data, drastically improving
the SNR of extracted FRET time series. Furthermore, B-FRET produces not just optimally estimated
values of FRET signals, but their full probability distributions. Thus, B-FRET quantifies the statistical
uncertainty of the estimation of molecular interactions at each time point, an aspect that is absent in
previous algebra-based methods®®. We use B-FRET to analyze noisy FRET data from live single
bacterial cells, and show that it estimates FRET signals and hence cellular dynamics at an
unprecedented level of precision.

Results

B-FRET framework and learning algorithm

A FRET sample under investigation contains fluorescent proteins whose states (fluorescent or
photobleached, and free or complexed) change in time. A FRET measurement is a (noisy) map from a
configuration of fluorescent proteins in various states to observable fluorescence signals (Fig. 1a).
The goal of quantitative FRET data analysis is to infer, from the observables, the degree of donor-
acceptor interactions in a way that is interpretable in terms of molecular interactions and
independent of instrument-specific parameters and photobleaching. The degree of interaction can
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be defined in various ways depending on the purpose of an experiment, and we call such a user-
defined degree of interaction a FRET index E. B-FRET is a computational framework to infer the FRET
index E in a statistically optimal manner. For concreteness, we consider the most general case of bi-
molecular FRET, in which the donor and acceptor are on different carrier molecules and hence the
stoichiometry of acceptor to donor is not fixed, and compare results with those obtained using the
widely used E-FRET method®? which corrects for both spectral crosstalk and photobleaching (Online
Methods and Supplementary Note 3). Note, however, that B-FRET is not restricted to bi-molecular
FRET; the same idea and algorithm can be used for uni-molecular FRET systems, where the donor
and acceptor are attached to the same carrier, so that the conformational changes of the carrier
molecule are encoded in fluorescence signals (Supplementary Note 1 and 2).

In a bimolecular FRET system, the donor (D) and acceptor (A), fused to two different molecules, can
form a molecular complex leading to FRET from the donor to the acceptor. The system is
characterized by the concentrations of eight chemical species: D*, D, A*, A,D*A*, D*A, DA, and DA,
where fluorescent and non-fluorescent molecules are indicated by the presence and absence of a
star (*) respectively, and donors and acceptors can be free (e.g., D*) or complexed (e.g., D*A*) (Fig.
1a). In general, inferring the temporal evolution of all the eight chemical concentrations from data of
a smaller number of time series is ill-conditioned and intractable. Accordingly, all quantitative FRET
analysis methods to date depend on simplifying assumptions (e.g., the conservation of the donor
and acceptor concentrations during a measurement) that are satisfied in a standard experimental
FRET setup. Consistent with this, we restrict the scope of this paper to a set of standard assumptions
— specifically, that which underlies the E-FRET method'?. See Online Methods and Supplementary
Note 1 for the assumptions we make for both bi- and uni-molecular FRET. Note, however, that the B-
FRET framework described below is generic and does not depend on any particular set of
assumptions (see Discussions).

The applicability of B-FRET is also independent of the specific definition of E (see Discussions). For

concreteness, here we consider a standard measure of the degree of interaction!*42%23;
E(t) — Emax [DAtotal](t) (1)
[Dtotal] '

where [Diotai] = [D*](t) + [D](t) + [D*A*](t) + [D*A](t) + [DA*](t) + [DA](t) is the total
concentration of the donor molecule, which we assume to be constant, and [DA;ptq](t) =
[D*A*](t) + [D*A](t) + [DA*](t) + [DA](t) is the total concentration of the donor-acceptor
complex, which can change over time; E,, 4 is the specific FRET efficiency of the complex, defined as
the probability of energy transfer from the donor to acceptor in the donor-acceptor complex per
donor excitation event and is constant given a FRET pair and an experimental condition®®. The FRET
index E defined by Eq. 1 is independent of instrument-specific parameters and of the degree of the
photobleaching of the fluorescent molecules, and is linearly dependent on the fractional occupancy
of the donor, making it an ideal measure of the degree of molecular interaction?2.

At its core, B-FRET is a direct application of Bayesian inference for so-called state space models****.

In this framework, one infers the temporal evolution of hidden (i.e., unobservable), dynamical state
variables from noisy observations. A state space model consists of a dynamic model, which describes
the temporal evolution of hidden state variables, and a measurement model, which is a static
function mapping the hidden variables at time t to observables at time t. We discuss these in turn.

In B-FRET, the hidden dynamic variable is the product of the specifc FRET efficiency and the total
concentration of the complex, i.e., x(t) = Emax [DAtotar](t) (Online Methods). The dynamic model
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links x(t) at two consecutive times via a probability distribution called the process noise described
by a parametric probability distribution such as a Gaussian distribution (Online Methods;
Supplementary Note 2). The assumption of a dynamical model is a central feature of B-FRET: it
allows us to exploit temporal correlations in the hidden variable over small times?*??, which
algebraic methods such as E-FRET neglects. On the other hand, process noise introduces additional
parameters, (e.g., the standard deviation of a Gaussian distribution). These are estimated as part of
the B-FRET algorithm, as described below and in more detail in Online Methods and Supplementary
Note 2.

In addition to the dynamic model, B-FRET requires a measurement model, which describes the
photophysical processes by which the hidden dynamic variable y(t) is converted into
observables’?*, In the standard 3-cube FRET imaging setup, the data consists of three time series of
fluorescence intensities 144, Ipp, and Ip4 (Fig. 1a). These are, respectively, fluorescence measured at
the acceptor emission band during excitation of the acceptor band; fluorescence measured at the
donor emission band during excitation of the donor band; and fluorescence measured at the
acceptor emission band during excitation of the donor band. Other than excitations of and emissions
from fluorescent proteins, the photophysical processes involved in a fluorescence measurement
include photobleaching of fluorescent proteins, spectral crosstalk (i.e., bleed-through of donor
emission to the acceptor emission band and cross-excitation of the acceptor at the donor excitation
band), energy transfer from the donor to acceptor due to FRET, and measurement noise (Fig. 1a). All
of these effects are incorporated into a single probabilistic model that linearly maps the hidden
variables y(t) into the three observables I44(t), Ipp(t), and I 4(t) — this is our measurement
model (Online Methods and Supplementary Note 1). Like the dynamic model, the measurement
model is another central feature of B-FRET: this model makes all the assumptions involved in the
decoding process mathematically explicit, whereas they can be implicit or even undefined in
algebraic methods. As with the process noise in the dynamical model, this linear map has unknown
parameters, one of which is [Dy,tq:] in the equation 1. We estimate them as described below and in
more detail in Online Methods and Supplementary Note 2.

Given these two ingredients — the dynamical model and measurement model — our goal is to
estimate the FRET index E(t) = x(t) /[Dtotai] (EQ. 1) from observables. In the framework of
Bayesian inference'®®, this amounts to computing the posterior distribution of E (t),

p(E(t)|D, M), which quantitatively describes how well the possible values of E(t) are confined
given all the data D and the model M. Since this distribution contains all the information one can
theoretically have, computing the distribution ensures the statistically optimal inference of the FRET
index. Because model parameters are also unknown, they must also be inferred from data. Thus, the
computation of the posterior distribution of the FRET index is decomposed into the evaluations of
two distributions: the posterior distribution of E (t) given specific model parameter values, and the
posterior distribution of the model parameters themselves (Online Methods). These two
distributions can be evaluated using Bayesian smoothing and filtering theory, respectively
(Supplementary Note 2). Once these distributions are determined, the posterior distribution
p(E(t)|D, M) is computed using a Monte Carlo approach (Online Methods).

B-FRET efficiently learns from data

To see how much the B-FRET algorithm improves the SNR of the estimated FRET index, we compared
the FRET index E computed by B-FRET with that computed by the conventional E-FRET method. We
first generated a synthetic (bimolecular) FRET data set by simulating oscillatory dynamics of FRET
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signals and all the confounding factors present in real data, namely spectral crosstalk,
photobleaching and measurement noise (Fig 1a; Supplementary Note 4). With relatively large
measurement noise, the oscillatory FRET dynamics are hard to see in the raw time-series data (Fig.
1a). Consequently, the FRET index computed by E-FRET is highly noisy, and the true oscillatory
dynamics are obscured (Fig. 1b). However, we found that the FRET index computed by B-FRET
estimates the true signal substantially more precisely, as evidenced by comparison of estimation
errors (Fig. 2b). Furthermore, unlike E-FRET, B-FRET naturally provides statistical uncertainty of the
estimated FRET index as a credible interval (Cl) at each time point. As expected, the width of 95% Cls
(Online Methods for definition) increases over time because of the decreasing data quality resulting
from photobleaching (grey shadow in Fig. 1b). Consistent with precise estimation of E, the posterior
distributions of the model parameters are highly confined around their true values used to generate
the synthetic data (Fig. 1c). These observations demonstrate that the raw fluorescence time-series
data, despite high levels of noise, contain rich information about molecular interactions, and B-FRET
successfully exploits the available information to better constrain the possible values of the FRET
index and model parameters.

B-FRET is robust to the variation in FRET temporal patterns

To see how much the precision of FRET-index estimation is affected by the underlying temporal
pattern of FRET signals, we next generated synthetic data in which the FRET signal exhibits random
dynamics (Supplementary Note 4). Unlike the case of oscillatory dynamics (Fig. 1), the random signal
is aperiodic and contains a broad range of frequencies, including those comparable to or higher than
the data-sampling frequency, which precludes algorithms that exploit regular patterns in a signal.
Despite this, we found that the FRET index computed by B-FRET is more precise and less noisy than
that computed by E-FRET (Fig. 2a and Supplementary Fig.1).

The above two cases, oscillatory and random, were successfully analyzed with a Gaussian process
noise, a standard choice for the process noise for its flexibility in capturing a broad class of
dynamics®>?, However, for highly non-Gaussian dynamics, e.g., ones that remains unchanged most
of the time but exhibit abrupt step changes only occasionally, it is known that non-Gaussian process
noise can perform better than Gaussian process noise®!. Although B-FRET is computationally cheaper
with Gaussian process noise since many calculations can be executed analytically, the algorithm can
be adapted to other process noise statistics by replacing the analytical calculations with numerical
ones (Supplementary Note 2). To test the performance of B-FRET for non-Gaussian dynamics, we
generated a synthetic FRET signal consisting of discrete steps (Supplementary Note 4), and modeled
the process noise using a Student’s t-distribution (Online Methods). Indeed, the FRET index
computed by B-FRET precisely captures the dynamics.

We note that B-FERT, combined with the framework of model selection, does not require a user to
know in advance which model (e.g., a Gaussian or non-Gaussian process noise) to use to analyze a
set of data. By computing the Bayes Information Criterion (BIC; Online Methods), B-FRET enables a
user to automatically select a model that is best evidenced by the data. Applying this, we confirmed
that the step data supports the choice of Non-Gaussian process noise, while the oscillatory and
random data do not (Supplementary Fig. 2)

B-FRET outperforms conventional methods irrespective of the measurement conditions
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To see how the relative performance of B-FRET to E-FRET depends on the specific conditions of time-
lapse imaging, such as the levels of measurement noise and sampling intervals, we investigated the
signal-estimation errors of both methods for various measurement conditions. We first generated
sets of synthetic data in which the degree of donor-acceptor interaction follows Gaussian random
statistics over time with a correlation time 7. and fluorescence signals 1,4, Ipp, and Ip 4 were
measured with many different sampling frequencies 7. /At and levels of measurement noise
(Supplementary Note 4). For each data set, we then estimated the FRET index E using both B-FRET
and E-FRET methods.

Fig. 3a shows representative results for B-FRET. As the SNR of raw fluorescent signals increases, B-
FRET detects more subtle changes in E with lower statistical uncertainties (95% Cls are shown by
grey shades in Fig. 3a). Also, the higher the sampling frequency relative to the FRET dynamics, the
more precise the B-FRET estimation. This is because faster sampling increases the correlation
between successive fluorescence signals, and these correlations are exploited by B-FRET.
Meanwhile, the effect of reduced sampling frequency (Fig. 3a; lower left) can be compensated by
increasing the data SNR (Fig. 3a; upper left).

We quantified the average error in FRET signal estimation as the root-mean-square error normalized

by the magnitude of the fluctuation of the true signal, \/{(Eest — Erue)?)/Std(E e, for both E-
FRET and B-FRET in various measurement conditions (Fig. 3b and c). B-FRET (red) outperforms E-
FRET (blue) in all conditions explored; importantly, even if E-FRET signals are smoothed with median
filters with an optimal window size in terms of error reduction (grey) — which requires knowledge of
the true FRET signal that an experimenter does not usually have access to — E-FRET still significantly
underperforms compared to B-FRET. This can be understood by noting that, in the E-FRET method,
some information about the true FRET signals contained in the raw fluorescent time series is already
lost upon the algebraic computation to obtain E, and no degree of smoothing after that
computation can recover the lost information. B-FRET, on the other hand, exploits the larger amount
of information in the raw observables, including temporal correlations, and achieves more precise
estimation of E without requiring any knowledge about FRET dynamics.

B-FRET improves signal estimation of real data

To test the performance of B-FRET on real data, we applied the method to a previously developed
bi-molecular FRET system that reports the kinase activity of the E. coli chemotaxis signhaling
pathway?>?32>, Recent FRET analyses of this pathway at the single-cell level have revealed
fundamental features of cell signaling that are inaccessible by a population-level assay, such as
spontaneous fluctuation in the pathway activity®®, environment-dependent dynamic modulation of
the degree of cell-to-cell variability®®, and the high efficiency with which cells use information
acquired by the pathway?’. However, the FRET data from single E. coli cells are noisy: this is firstly
because the small size of bacterial cells limits the number of fluorescent molecules per cell volume,
and increasing the illumination power induces more photobleaching and phototoxicity. This has
limited further characterizations of the signaling pathway.

The E. coli chemotaxis signaling pathway is a two-component signal transduction system?®, where
the receptor associated kinase CheA phosphorylates the response regulator CheY, which is then
dephosphorylated by the phosphatase CheZ. Binding of chemoattractant molecules to the receptors
changes the propensity for the receptor, and hence the kinase, to be active. Opposing this
propensity is feedback regulation by methylation and demethylation enzymes. These two
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mechanisms together produce a steady-state kinase activity that is independent of the background
chemoattractant concentration, a ubiquitous phenomenon in cell signaling called response
adaptation®*32, The activity of the pathway can be read out by quantifying the FRET between the
donor (mYFP) fused to CheZ and the acceptor (mRFP) fused to CheY, which binds to CheZ when
phosphorylated by CheA. It has been well established that, upon a step increase in a
chemoattractant concentration, the kinase activity and the concentration of phosphorylated CheY
(and hence the level of FRET) decreases rapidly before response adaptation, while a step decrease in
a chemoattractant concentration causes the opposite response®>?>,

We measured fluorescence signals, 144, Ipa, and Ipp from single E. coli cells using a 3-cube FRET
measurement setup (Fig. 4a; Online Methods). In this setup, we delivered fast-switching (~ 0.1 s)
step-like changes of a-methyl-aspartate (MeAsp), a non-metabolizable analog of the
chemoattractant aspartate, using a recently-developed microfluidic system?®?’. Large step changes
in MeAsp (100% changes or higher) were delivered to cells at the beginning and end of the
measurement to define the dynamic range (i.e., minimal and maximal FRET levels) of each cell.
Several small step changes in MeAsp (20% changes) that cause sub-saturating responses, on
average, were also applied in the middle of the measurement (Fig. 4b). First, we extracted the FRET
index E using the E-FRET method (Fig. 4b left). As expected, the large noise prevented us from
discerning single responses to the sub-saturating (20%) step stimuli. Quantifying responses from
such noisy data requires some form of data averaging, as was done before?®?’; however it
unavoidably masks properties of individual responses. Next, we analyzed the same set of data using
the B-FRET method (Fig. 4b right). B-FRET drastically improved the SNR and disclosed the cell-to-cell
and temporal variations in the signaling dynamics more vividly: some cells respond to small step
signals faithfully, whereas other cells neglect the same signals; some cells fluctuate vigorously,
whereas some cells are more stable. Such variations could be functionally important for a cell
population to deal with environmental uncertainties as recent studies have suggested®.
Furthermore, B-FRET not just make some subsaturating responses clearly discernible by eye; it also
enables us to tell whether the changes in FRET are statistically significant or not (red boxes in Fig.
4b). Finally, as with synthetic data (Fig. 1c), the posterior distributions of the model parameters are
highly confined (Fig. 4c), demonstrating that real experimental data also contain sufficient
information to confine the photophysical model. Together, these results demonstrate that B-FRET
can greatly improve the quality of extracted FRET signals, and therefore help experimenters reveal
novel dynamic features of cellular processes.

Discussions

Inefficient decoding of the information about molecular interactions from FRET data amounts to
wasting acquired photons. Here, we propose a computational framework, B-FRET, to decode the
FRET index time series with theoretically maximal efficiency. A conventional way to improve SNR in
live FRET imaging has been to aggregate signals from many samples (e.g., cells) and compute their
average®>?*; however, this method fails to capture variations and asynchronous dynamics across
samples. B-FRET reduces the need for such averaging, as we demonstrated here by analyzing
signaling dynamics in single bacterial cells (Fig. 4), and thereby providing a powerful aid to studies of
biological variation — both across cells within a population, and across time within a single cell —that
would be lost in averaging. B-FRET is of practical use even to experimenters who do not necessarily
need to reduce SNR: to achieve a given SNR, B-FRET requires fewer photons, reducing the need for
high-power illumination and therefore the unwanted effects of photobleaching and phototoxicity.
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305  Thus, B-FRET computationally extends the scope of FRET analyses by increasing the SNR and/or by
306 requiring less photons, in much the same way as brighter FRET pairs or more sensitive
307 photodetectors experimentally enhance FRET.

308  Although a method has been developed that systematically incorporates measurement noise and
309 infers molecular interactions for snapshot FRET data'®, developing a similar method for time-lapse
310  FRET data has remained a challenge due to additional complications, such as photobleaching and
311 temporal changes in the degree of FRET. Past approaches to the analysis of time-lapse FRET data
312 have neglected measurement noise. B-FRET, by performing Bayesian inference on state space

313 models, deals with measurement noise and other confounding factors in a principled manner.

314  Furthermore, the statistical uncertainties of the observables are systematically converted to that of
315 theinferred FRET index, which is expressed as the (posterior) distribution of the FRET index. This
316  enables the experimenter to assess the uncertainty of the estimate and evaluate whether a change
317 ina FRET index is statistically significant or not.

318  Another important advantage of B-FRET is that it decouples the assumptions involved in the
319 inference problem from the definition of the FRET index, whereas these are inherently coupled in
320 the past algebraic approaches. For example, E-FRET, under a certain set of assumptions, gives an

321  algebraic formula (Online Methods) to compute the FRET index, which can be interpreted in
Emax[DAtotail ()
[Dtotail

323  compute different FRET indexes such as e.g. E4(t) = W. B-FRET provides a single
total

324  algorithm for computing any FRET index, once it is defined. In B-FRET, therefore, inferring E4(t) is as
325  straightforward as E (t), once the necessary parameters are provided (See Supplementary Note 1).
326  In principle B-FRET can incorporate any set of assumptions into the inference procedure: different
327  assumptions constrain the relationship between variables differently, but the core inference

328  algorithm in B-FRET is independent of the constraints (Online Methods). However, this flexibility
329  should not lead to the presumption that B-FRET enables sufficiently precise estimation of FRET

330 indices in any condition: instead, B-FRET gives the statistically optimal inference under a certain set
331  of assumptions. It is possible that the ‘optimal’ result does not meet the demand of an

332  experimenter, if the experiment is not constrained enough. It is beyond the scope of the current
333  study to explore non-standard experimental conditions because they are highly variable among
334  experiments. In future studies, it will be important to investigate what experimental conditions
335 better confine a FRET index, and how it depends on different FRET indices.

322  molecularterms as E(t) = (Eq. 1). But the method gives no clue about how to

336  Asaresult of B-FRET’s ability to easily incorporate different sets of assumptions, one can analyze
337 both bimolecular and unimolecular FRET using the same framework; only a slightly different set of
338  assumptions needs to be made for unimolecular FRET due to the fixed stoichiometry of the donor
339  and acceptor. In Supplementary Note 1, we derive the photophysical model for unimolecular FRET
340  systems. Based on this model, we analyze unimolecular FRET data obtained from eukaryotic cells
341  and demonstrate that it improves the SNR of an estimated FRET index (Supplementary Note 5 and
342  Supplementary Fig. 3).

343  As with all other quantitative FRET methods, the applications of B-FRET are naturally limited by our
344  understanding of the photophysical processes involved in a FRET measurement. For example,

345 photoconversion of fluorescent proteins, which were reported to occur upon excitation for some
346  fluorescence proteins in certain conditions*3®3’, can produce another chemical species that are
347  dissimilar to both donor and acceptor during a measurement. If such secondary processes are

348  significant but not taken into consideration in the photophysical model (Online Methods), B-FRET
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can yield misleading results. Although it is possible to incorporate such processes into our
photophysical model once they are characterized, B-FRET does not alleviate the necessity for careful
selection of a FRET pair and for control experiments to validate the basic assumptions involved in the
data analysis. A distinct advantage of B-FRET is that its assumptions are explicit — helping
experimenters identify necessary controls and tailor their experiments accordingly.

Finally, we comment on time-lapse FRET imaging with sub-compartment resolution. Previously, to
quantify the dynamics of the degree of molecular interaction with sub-compartment resolution,
methods like E-FRET were applied on a pixel-by-pixel basis and FRET indices were computed for
individual pixels'?. Nothing prevents applying B-FRET to data obtained from individual pixels, in
principle. However, quantitative interpretation of FRET indices computed in such a way is not as
straightforward, because assumptions that can be readily validated at the compartment level may
not be validated at the sub-compartment level. For example, the total concentrations of fluorescent
proteins are often assumed constant at the compartment level for E-FRET (and in the examples in
this paper). This is valid, at least to a first approximation, at the compartment level as far as the
measurement duration is sufficiently shorter than the time scale of factors that can change the
protein concentrations, e.g., gene expression. However, this does not necessarily mean that it also
holds at the sub-compartment level — the spatial distributions of proteins may dynamically change
within a compartment without changing the total concentration. We are not aware of any
guantitative FRET method that generally provides molecular interpretation at the sub-compartment
level. Given the general demand to resolve molecular interactions at the subcellular level in cell
biology, it will be an important future direction to develop such a quantitative FRET method.

Online methods
Strains and plasmids for the bimolecular FRET experiment

The E. coli strain used for the bimolecular FRET experiments is a derivative of E. coli K-12 strain
RP437 (HCB33), and described in detail elsewhere®>?. In brief, the FRET acceptor-donor pair (CheY-
mRFP and CheZ-mYFP) is expressed in tandem from plasmid pSIAB106%* under an isopropyl B-D-
thiogalactopyranoside (IPTG)-inducible promoter. The glass-adhesive mutant of FIiC (FIiC*) was
expressed from a sodium salicylate (NaSal)-inducible pZR1 plasmid. The plasmids are transformed in
VS115, a cheY cheZ fliC mutant of RP437 (gift of V. Sourjik). The crosstalk coefficient for spectral
bleedthrough was measured using a strain expressing CheZ-YFP from a plasmid, and that for cross-
excitation was measured using a strain expressing CheY-mRFP from a plasmid (Supplementary Note
3).

Cell preparation and bimolecular FRET measurement in a microfluidic device

Single-cell FRET microscopy and cell culture was carried out essentially as described previously*2’.

In brief, cells were picked from a frozen stock at -80°C and inoculated in 2 mL of Tryptone Broth (TB;
1% bacto tryptone, 0.5 % NaCl) and grown overnight to saturation at 30°C and shaken at 250 RPM.
Cells from a saturated overnight culture were diluted 100X in 10 mL TB and grown to OD600 0.45-
0.47 in the presence of 100 pg/ml ampicillin, 34 pg/ml chloramphenicol, 50 uM IPTG and 3 uM
NaSal, at 33.5°C and 250 RPM shaking. Cells were collected by centrifugation (5 min at 5000 rpm, or
4080 RCF) and washed twice with motility buffer (10 mM KPO4, 0.1 mM EDTA, 1 uM methionine, 10
mM lactic acid, pH 7), and then were resuspended in 2 mL motility buffer. Cells were left for 2 hours
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392 before starting a measurement to let all fluorescent proteins mature. Cells in motility buffer do not
393  synthesize new proteins due to auxotrophic limitation. All experiments were performed at 22-23°C.
394  Microfluidic devices for the FRET experiments were constructed from polydimethylsiloxane (PDMS)
395  and used to control stimulus levels delivered to cells following exactly the same protocol as

396  before?®?,

397
398  Single-cell bimolecular FRET imaging system

399 FRET imaging in the microfluidic device was performed using an inverted microscope (Eclipse Ti-E;
400 Nikon) equipped with an oil-immersion objective lens (CFlI Apo TIRF 60X Qil; Nikon). YFP was

401  illuminated by an LED illumination system (SOLA SE, Lumencor) through an excitation bandpass filter
402 (FFO1-500/24-25; Semrock) and a dichroic mirror (F01-542/27-25F; Semrock). The fluorescence

403  emission was led into an emission image splitter (OptoSplit II; Cairn) and further split into donor and
404  acceptor channels by a second dichroic mirror (FF580-FDi01-25x36; Semrock). The emission was
405  then collected through emission bandpass filters (FF520-Di02-25x36 and FF593-Di03-25x36;

406  Semrock) by a sSCMOS camera (ORCA-Flash4.0 V2; Hamamatsu). RFP was illuminated in the same
407  way as YFP except that an excitation bandpass filter (FF01-575/05-25; Semrock) and a dichroic

408  mirror (FF593-Di03-25x36; Semorock) were used. An additional excitation filter (59026x; Chroma)
409  was used in front of the excitation filters. To synchronize image acquisition and the delivery of

410  stimulus solutions, a custom-made MATLAB program controlled both the imaging system (through
411  the API provided by Micro-Manager3®) and the states of the solenoid valves.

412
413  Photophysical model

414 Here, we consider the case of bi-molecular FRET systems discussed in the main text; however,
415  essentially the same argument applies to uni-molecular FRET systems (Supplementary Note 1).

416  First, we define the FRET data set. Time-lapse measurements of I,p, Ip4, and 144 are conducted at
417  discrete time points. We assume that FRET from the donor to acceptor affects I, and I 4, but not
418 1,4 (See below and Supplementary Note 1). Thus, the sampling frequency of I, and/or I 4 limits
419  the temporal resolution of an estimated FRET signal. In practice, Ipp and Ip4 are measured (almost)
420  simultaneously to better exploit the FRET-induced changes in Ipp and Ip 4. Thus, we designate the
421  same time points for the Ipp and Ip4 measurements, and the set of the time points are written as
422 tf:ND = {tf, to, ..., tﬁD}, where Nj is the total number of measurements. I, 4 is generally acquired at
423  different time points from I, and Ip4, and thus we designate the time points for I44 as t'14:1vA =

424 {tf, t5, ..., t,‘(‘,A}, where Ny is the total number of measurements, and generally N, # N4. The entire
425  set of the time-lapse fluorescence intensity datais D = {IAA_LNA, Ippa:ng IDAJ:ND}, where

426 lyaan, = {IAA(tf); IAA(t'zq); s IAA(tf:l/A)},
427 Ippa:ng = {IDD &), Ipp (), .., Ipp (tﬁD)},
428 Ipag:n, = {IDA(t?):IDA(t?)I ---:IDA(tIL\?D)}-

429 Next, we construct a photophysical model M to be learned from the data D. Under a standard 3-cube
430  FRET-microscopy setup, the (background-subtracted) observables I44,Ipp and Ip, are generally
431 linked to the concentrations of the chemical species as follows:
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432 Iya(t) = Caa ([A7]() + [D*A7](t) + [DAT](D)) + Saa (D),
433 Ipp(t) = Cpp ([D*1(®) + [D*A(E) + (1 — Epax) [D*A*I(®)) + Epp (), (Egs. 2)
434 Ina(t) = alps(t) +dIpp(t) + Cpp G Enpgyx [D*A](E) + Epalt),

435  where é44,&pp and &p4 describe the measurement noise of corresponding fluorescent channels,

436  and we assume they follow the zero-mean Gaussian distributions, i.e., §44(t) ~ N (0, afA(t)),

437  épp(t) ~N (0, agD(t)), and &p,(t) ~N (O, G,%A(t)), where 62, 05p, and a5, are time-dependent
438  variances and are determined from the data (Supplementary Note 3; Note parametric noise models
439  other than Gaussian distributions can also be used if necessary); I,4 and Ipp are respectively the
440  expectation values of I44 and Ipp, and thus a 1,4 and d Ipp, respectively represent the cross-

441  excitation of the acceptor by the donor excitation wavelengths and the bleedthrough of the donor
442  emission into the acceptor emission filter**%'%; C,,, Cpp, a, d, and G are parameters dependent on
443  imaging systems and the photophysical properties of the donor and acceptor, which are defined as

444 Can = Va€44Q4L4Satan,
445 Cpp = vpeppQpLpSptpp,
Vp€pal
246 o = Jpépaloa
Va€aataa
L,S,t
447 d= M}
LpSptpp
LSt
248 C= QaLsSa DA
QpLpSptpp

449  where, vy (v,4) is the intensity of illumination reaching the sample through the donor (acceptor)
450  excitation filter, €pp the absorption coefficient of the donor, €p4 (€44) the absorption coefficient of
451  the acceptor at the donor-excitation (acceptor-excitation) wavelength, Qp (Q,4) the quantum yield of
452  donor (acceptor), Lp (Ly) the throughput of the donor (acceptor) emission light-path, Sy (S,) the
453  quantum sensitivity of the camera for donor (acceptor) emission, and tp,, t44, and tpp respectively
454  the exposure time for the FRET, acceptor, and donor channels!***?*, The parameters a, d and G can
455  be determined by independent measurements'*?’. Cpp and C44 do not necessarily need to be
456  determined as explained below. The model (Egs. 2) is general, only assuming that the acceptor
457  fluorescence is not detectable through the donor emission filter and that the acceptor excitation light
458  does not excite the donor, which are easily achieved by selecting appropriate filter sets'??.

459  We introduce the following set of assumptions, which are satisfied in a typical FRET experiment and
460  used also in E-FRET® (see also Supplementary Note 1). (i) The total amount of donor and acceptor
461 molecules are conserved during the course of a measurement. (ii) The photobleaching locally follows
462 a first-order decay process, i.e., the rate of change of the amount of intact (i.e., fluorescent) donor
463  (acceptor)is proportional to its concentration, although the proportionality constants can change over
464  time. (iii) The system is in a quasi-steady state at each time point with the timescale of photobleaching
465  is much larger than other relevant timescales (e.g., that of binding and unbinding of the fluorescently-
466 labeled proteins). See Supplementary Note 1 for how these are expressed mathematically.
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467  Without loss of generality we set C,4 = Cpp = 1, because these parameters only affect the units of
468  the concentrations of the chemical species (see Discussion). Also, we introduce a new label y(t) =
469  Epgx [DAtorai](t) because we are not necessarily interested in decomposing Eqx and [DAsoear] (1),
470  which only appear as a product in our definition of the FRET index E. Under these assumptions,
471 Equations 2 is reduced to

472 Iia(t) = fa(®O[Atotar] +Eaa(t),
473 Ipp(t) = fo(O[Drotar] — fa(®) fp (@ x (@) + Epp (D), (Egs. 3)
474 Ipa(t) = afa(OlAcotar] + dfp(O[Diotar]l + (G — ) fa(®) fp O x () + Epalt),

475  where [Aiotal] @and [D:orai] are the total concentrations of the acceptor and donor respectively;

476  f4(t) and fp(t) are the intact fractions of the acceptor and donor at time t respectively, and hence
477  take values between 0 and 1 (see Supplementary Note 1 for derivation). To learn the model from
478  data, f4(t) and fp(t) need to be expressed by parametric functions, whose parameters, as well as
479  other parameters, are estimated by the inference algorithm described below. Any parametric

480  functions can be used depending on the data in principle. See Supplementary Note 5 for the specific
481  functions used to analyze data used in this paper.

482  The presence of the hidden variable y(t) in the equations for I, and Ip,4 (Egs. 3) makes the
483 learning of the model less straightforward. To deal with this, we rewrite the equations for I, and
484  Ip, using the framework of the state-space model?®%!:

485 Xk = Xg—1 T Qi-1,
486 Yk = Hkxk + Iy.

T
487  The first line, the dynamic model, describes the time evolution of the state x;, = (1,)((15,?)) .The
488 process noise (,_q governs the transition between two consecutive states. For example, Gaussian
489 process noise can be written as:

490 qr-1~N (0' Q(Ux))f

491  where the covariance matrix Q(O'X) is defined as

0 O
492 Q(ay) = (0 0)?).
493  For non-Gaussian dynamics, one can use the Student’s t-distribution'®?!, which can be written as
0
494 Ai—1 = (q),
495 and

496 q~St(q| Oy v) =

r(*3 1) (1 1 q2>_v2j’
’T[VO')?F(%)

497  where gy is the scale parameter and v > 0 is called the degree of freedom. Whenv = 1, the t-
498  distribution reduces to the Cauchy or Lorentz distribution, while for v >> 5 it approaches a Gaussian
499  distribution N (0, o).
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500 The second line, the measurement model, describes the relationship between the observables y, =
501 (IDD (t,?), IDA(t,’g))T given the state x;. The measurement model matrix Hy, at time t? is defined as
<00 H, - ( o Dowl L) )

alAcotatl fa(tic) + d[Deorarlfo(tc) (G — d)fa(ti)fp ()
503  The Gaussian measurement noise ry, at time t7 is written as
504 r,~N(O,Ry),
505  where the covariance matrix Ry, is defined as
506 Ry = (GgD(t’?) , ; )

0 O'DA(t,?

507  The variances of measurement noise can be determined from data (Supplementary Note 3).
508
509 Learning algorithm

510  To compute the posterior distribution of the FRET index E, p(Ex|D, M), where Ej, = E(tP), we
511 rewrite it in term of the model parameters 0:

512 p(E|D, M) = f p(81D, M)p(E, |6, D, M) do.

513  The right-hand side is the expectation of a function of model parameters 0, p(E; |8, D, M), with
514 respect to the (posterior) distribution of 8, p(0|D, M). Thus, we evaluate the integral on the right-
515 hand side by a Monte Carlo approach, drawing many samples from the two probability distributions
516  as described below.

517  First, we evaluate p(@|D, M). Using Bayes’ rule, this can be written as

p(8IM)p(D|6, M)

518 p(8|D, M) = 7 )

519  where p(8|M) is the prior distribution of the model parameters, which are usually wide in width to
520  express one’s ignorance about the parameter values (See Supplementary Note 2 for how to design
521 prior distributions for each model parameter and Supplementary Note 5 for the actual distributions
522  used to analyze data presented in this paper); p(D|0, M) is the likelihood function, which describes
523  the probability of observed data as a function of model parameters @; and Z is the normalization
524  constant, which one does not have to evaluate for the purpose of drawing samples form p(8|D, M).
525  The prior distribution p(@|M) is given by the user of B-FRET and the likelihood function p(D|6, M)
526 s evaluated by using the Bayesian filtering algorithm?®?! (Supplementary Note 2). Then, using a

d18,19 R
i

527  sampling metho , one can draw a set of samples {Hi} -1 from the distribution, where

528  O'~p(0|D, M) and R (>> 1) is the number of samples. Samples were drawn either directly from
529 the distribution using a Markov chain Monte Carlo (MCMC) method (e.g., slice sampling®®*°), or from
530 an approximated Gaussian distribution obtained by Laplace’s method®*. In drawing many samples,
531 the latter is computationally much cheaper, and thus we adopted it upon confirmation that the bias
532  introduced by the approximation is negligible (Supplementary Fig. 4).
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Second, we evaluate the (posterior) distribution of the FRET index p(Ek|0i,D, ]V[) based on

20,21

R
Bayesian smoothing algorithm*®**, using the sampled parameter set {0‘} - (Supplementary Note

i

2). This enables to draw samples {E,i}il from the distribution, where E,i~p(Ek|0i, D, ]V[) Using

the samples, we can evaluate the integral as

R
1 )
[ @D, 2005 16,0300 0 = ) 65 L),
i=1

where §(x) is the Dirac delta function. With sufficiently large R samples from p(E}|D, M), one can
quantify any properties of the distribution p(Ej|D, M'). We used the median of the sample as
representative values of the estimates, and the interval between 2.27 and 97.73 percentiles, each of
which corresponds to u *+ 20 respectively for a Gaussian distribution N(u, o), as a measure of the
statistical uncertainty of the estimation and called it a ‘95% credible interval (Cl)’.

E-FRET method and the effect of error in optical parameter estimation

The E-FRET method'? provides a formula for a FRET index E,,,, that gives an estimate of Eq. 1. This
reads

Ina(t) —alys(t) — dlpp(t)  I4(t =0)
Ipa(t) — alys(t) + (G — d)Ipp(t)  Taa(D)

Where the optical parameters a, d, and G are defined in Photophysical model. For the variables with

Ecorr(t) = ’ (Eq- 4’)

bars, e.g., L,4(t), their expected (or smoothed) values can be used as opposed to raw intensity
values. It can be shown that under the assumptions described in Photophysical model and in the
limit of zero measurement noise, this quantity converges to the FRET index defined by Eq. 1
(Supplementary Note 1). The optical parameters a, d, and G are measured from independent
measurements, but only with finite precision. The errors in the estimations of these parameters
introduce some biases in the computed FRET index, whose effect grows as more fluorescent
proteins are photobleached, which can be corrected under some assumptions?’ (See Supplementary
Note 3 for more detail).

Model selection

In case a user of B-FRET is not sure about what model to use (e.g., Gaussian or non-Gaussian process
noise), the framework of model selection enables to select, among a set of candidate models, a
model that is best evidenced by a set of data. For this purpose, B-FRET computes the Bayesian
information criterion (BIC) defined as

where Ny and Np are the numbers of the model parameters and data points, respectively and @ 4p
is the parameter values that maximize the likelihood function p(D|@, M'). A model with the lowest
BIC value is selected as the best model among a set of candidates (Supplementary Fig. 2).
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Figure 1 Optimal decoding of the FRET index E from FRET data. (a) A schematic of 3-cube time-lapse FRET
imaging. For both bi-molecular and uni-molecular FRET systems, a FRET sample (left) consists of 8 chemical
species (the schematic represents the case of bi-molecular FRET, where the donor and acceptor can be
isolated from each other): fluorescent donor (D; cyan) and acceptor (A; orange), photobleached D and A (grey)
and 4 different D-A complexes. A time-lapse FRET measurement encodes the molecular information into the
three fluorescence time series (right), 1,4 (acceptor emissions during acceptor excitation), I, (donor emission
during donor excitations), and I, , (acceptor emission during donor excitations). The encoding subjects to
measurement noise, photobleaching, and spectral crosstalk (middle). The relationship between the sample
state and the observables can be expressed by a photophysical model with unknown parameters, which are
learned from the observables via B-FRET. (b) Decoding the information of molecular interactions measured by
the FRET index E from the synthetic data shown in a both by the E-FRET (top) and B-FRET (bottom). True
(magenta) and estimated FRET index E (grey line) are shown. Implementing an optimal decoding, B-FRET
estimates the true signal more precisely. For B-FRET, 95% credible intervals are shown by grey shade. (c) Prior
and posterior distributions of the unknown parameters in the photophysical model. From left to right: the total
concentrations of acceptor ([Atotai]), donor ([Deotai]), the fraction of intact acceptor (f,), and donor (fp).
Insets in the left two panels are magnified posterior distributions (green) plotted in log scale for both X and Y
axes. In the right two panels, ranges of priors and posteriors of f, and f, (from 2.5 to 97.5 percentile) are
shown. In all cases, posteriors are highly confined, implying the presence of rich information about the model
parameters in the observables shown in a.
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716 Figure 2 B-FRET performance is robust for different FRET dynamics. (a) Synthetic data with random (left) and
717 step (right) FRET signals. (Top) Raw fluorescence timeseries. (Middle) The FRET index E computed by E-FRET
718 (grey; E,g) and its true values (magenta; E;,.). (Bottom) The FRET index E computed by B-FRET (grey; E,;)
719 and its true values (magenta). The shade shows 95% credible interval. (c) A bar chart quantifying the error in E
720  estimation defined as (|E.s; — E¢yel), where the angle bracket is temporal average. The error bars are

721 standard deviation over 5 data sets with identical FRET signal dynamics but different realizations of

722 measurement noise.
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741 Figure 3 B-FRET outperforms conventional methods irrespective of measurement conditions. (a)

742 Representative simulated data — I,, with (dark grey) and without (cyan) measurement noise — and estimated
743 (dark grey) and true (magenta) values of the FRET index E in 4 measurement conditions are shown. FRET
744 signals were changed randomly with a correlation time 7., and data were sampled every At; two sampling
745 frequencies t./At =~ 1 (under-sampling regime) and 10 (over-sampling regime) are shown. Different levels of
746 measurement noise were simulated without changing the expected values of the observables; two different
747 data SNRs (Supplementary Note 4) are shown. (b) Errors in E estimation defined as

748  \J{(Eest — Etrue)?)/Std(Eye) for B-FRET (red), E-FRET (blue) and E-FRET combined with optimal median
749 filtering (grey) were plotted against sampling frequency, t./At. Cases of high data SNR (= 0.13; top) and low
750 data SNR (= 0.04; bottom) are shown. Optimal median filtering requires knowledge about true signals, which
751 is not accessible, and hence cannot be implemented in practice. Thus, the grey line gives the minimum

752 achievable error by the combination of E-FRET and median filtering. B-FRET requires no knowledge about true
753 signals, and yet outperforms E-FRET in all explored conditions. (c) Error in E estimation plotted against data
754 SNR. Cases of under-sampling (t./At = 1) and over-sampling (t./At = 10) are shown. Again, E-FRET

755 outperforms E-FRET in all explored conditions.
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762 Figure 4 B-FRET infers the FRET index precisely in real FRET data. (a) Three observables, I,,, Ipp, and I 4, were
763 acquired from a bimolecular FRET system in single E. coli cells. The change s in FRET reports the changes in the
764 activity of a kinase that governs chemotaxis behavior of E. coli. (b) Using FRET data sets from individual E. coli
765 cells, the FRET index E was estimated by E-FRET (left) and B-FRET (right). Five representative cells are shown.
766 Blues and red in the background indicate different concentrations (numbers in the unit of uM) of a

767 chemoattractant MeAsp delivered to the cells. The red vertical line in the left panel corresponds to the change
768 in the FRET index AE = 0.05. For B-FRET, 95% credible intervals are shown by the grey shade. The noise

769 reduction by B-FRET reveals temporal and cell-to-cell variation in the FRET dynamics, while they are mostly
770 obscured in the noise in the E-FRET results. Regions enclosed by the red boxes are expanded above. (c) Prior
771 and posterior distributions of the model parameters. Despite the relatively high noise of the FRET data, the
772 posterior distributions are highly confined, suggesting the efficient usage of information contained in the raw
773 data by B-FRET. The data in panel a and c are from the cell shown at the bottom in panel b.
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