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Abstract 19 

Intensity-based live-cell fluorescence resonance energy transfer (FRET) imaging converts 20 
otherwise unobservable molecular interactions inside cells into fluorescence time-series signals. 21 
However, inferring the degree of molecular interactions from these observables is challenging, 22 
due to experimental complications such as spectral crosstalk, photobleaching, and measurement 23 
noise. Conventional methods solve this inverse problem through algebraic manipulations of the 24 
observables, but such manipulations inevitably accumulate measurement noise, limiting the 25 
scope of FRET analysis. Here, we introduce a Bayesian inference framework, B-FRET, which 26 
estimates molecular interactions from FRET data in a statistically optimal manner. B-FRET 27 
requires no additional measurements beyond those routinely conducted in standard 3-cube FRET 28 
imaging methods, and yet, by using the information contained in the data more efficiently, 29 
dramatically improves the signal-to-noise ratio (SNR). We validate B-FRET using simulated data, 30 
and then apply it to FRET data measured from single bacterial cells, a system with notoriously 31 
low SNR, to reveal signaling dynamics that are otherwise hidden in noise.  32 

 33 

Introduction 34 

FRET is a short range (< 10 nm) effect whereby the energy of an excited fluorescence donor is 35 
transferred to an acceptor. By labeling proteins with the donor and acceptor, FRET transforms 36 
molecular interactions (i.e., protein-protein interactions for bimolecular FRET or protein 37 
conformational changes for unimolecular FRET) in live cells into fluorescence signals in real time1–5. 38 
The resulting fluorescence signals reflect the molecular states as time series of noisy observations, 39 
which must in turn be inverted to uncover the underlying molecular interactions within the cells. 40 
Thus, FRET analysis consists of two steps. First, information about molecular interactions is encoded 41 
into fluorescence signals (i.e., a fluorescence measurement). Second, data analysis is used to recover 42 
the information about molecular interactions from the measured fluorescence signals. The 43 
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importance of optimizing the efficiency of encoding is well-recognized – various studies have 44 
emphasized fine-tuning FRET pairs1,2,4–7, as well as aspects of the microscope setup8,9, such as 45 
fluorescence filters and photodetectors, to maximize the photon budget. However, less attention 46 
has been paid to the efficiency of the data analysis used for decoding. 47 

Conventional time-lapse FRET methods are based on sensitized emission from the acceptor, elicited 48 
by donor excitation, which encodes the information of molecular interaction into a few fluorescence 49 
time series.  Decoding molecular information from these signals is complicated by spectral 50 
crosstalk4,10,11, photobleaching12 and measurement noise13. A range of decoding methods have been 51 
proposed12,14–16: some are qualitative (e.g., simple ratiometry17), often neglecting spectral crosstalk 52 
and photobleaching, while others are quantitative (e.g., E-FRET12), correcting both spectral crosstalk 53 
and photobleaching in a principled manner. Although different in assumptions, these methods 54 
decode the information of molecular interaction by algebraically processing the time-series data, 55 
and computing a “FRET index” as a measure of the degree of molecular interactions. However, 56 
algebraic manipulation of noise-corrupted data inevitably accumulates noise – for example, if a 57 
fluorescence intensity 𝐼! is subtracted from another 𝐼", the resulting intensity is smaller than 𝐼" (i.e., 58 
𝐼" − 𝐼! < 𝐼"), but its noise measured by variance is larger than that of 𝐼" (i.e., Var(𝐼" − 𝐼!) =59 
Var(𝐼") + Var(𝐼!) > Var(𝐼")). This lowers signal-to-noise ratio (SNR) of the computed FRET indices, 60 
and thus makes it more difficult to discern the dynamics of underlying molecular interaction. Such 61 
effects have limited the application of FRET methods to cases where photon budgets are large and 62 
SNR is inherently high.  63 

Here, we develop a computational framework, B-FRET, to infer, from standard 3-cube FRET data11,12, 64 
the degree of molecular interactions defined by a FRET index in a statistically optimal manner. By 65 
applying the well-developed frameworks of Bayesian inference18,19 and filtering theory20,21, B-FRET 66 
systematically deals with the many confounding factors associated with the sensitized-emission-67 
based FRET imaging methods – including the measurement noise – without algebraic manipulations. 68 
This enables B-FRET to maximally exploit the information from measured data, drastically improving 69 
the SNR of extracted FRET time series. Furthermore, B-FRET produces not just optimally estimated 70 
values of FRET signals, but their full probability distributions. Thus, B-FRET quantifies the statistical 71 
uncertainty of the estimation of molecular interactions at each time point, an aspect that is absent in 72 
previous algebra-based methods16. We use B-FRET to analyze noisy FRET data from live single 73 
bacterial cells, and show that it estimates FRET signals and hence cellular dynamics at an 74 
unprecedented level of precision. 75 

 76 

Results 77 

B-FRET framework and learning algorithm 78 

A FRET sample under investigation contains fluorescent proteins whose states (fluorescent or 79 
photobleached, and free or complexed) change in time. A FRET measurement is a (noisy) map from a 80 
configuration of fluorescent proteins in various states to observable fluorescence signals (Fig. 1a). 81 
The goal of quantitative FRET data analysis is to infer, from the observables, the degree of donor-82 
acceptor interactions in a way that is interpretable in terms of molecular interactions and  83 
independent of instrument-specific parameters and photobleaching. The degree of interaction can 84 
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be defined in various ways depending on the purpose of an experiment, and we call such a user-85 
defined degree of interaction a FRET index 𝐸. B-FRET is a computational framework to infer the FRET 86 
index 𝐸 in a statistically optimal manner. For concreteness, we consider the most general case of bi-87 
molecular FRET, in which the donor and acceptor are on different carrier molecules and hence the 88 
stoichiometry of acceptor to donor is not fixed, and compare results with those obtained using the 89 
widely used E-FRET method12 which corrects for both spectral crosstalk and photobleaching (Online 90 
Methods and Supplementary Note 3). Note, however, that B-FRET is not restricted to bi-molecular 91 
FRET; the same idea and algorithm can be used for uni-molecular FRET systems, where the donor 92 
and acceptor are attached to the same carrier, so that the conformational changes of the carrier 93 
molecule are encoded in fluorescence signals (Supplementary Note 1 and 2).  94 

In a bimolecular FRET system, the donor (D) and acceptor (A), fused to two different molecules, can 95 
form a molecular complex leading to FRET from the donor to the acceptor. The system is 96 
characterized by the concentrations of eight chemical species: D∗, D, A∗, A, D∗A∗, D∗A, DA∗, and DA, 97 
where fluorescent and non-fluorescent molecules are indicated by the presence and absence of a 98 
star (∗) respectively, and donors and acceptors can be free (e.g., D∗) or complexed (e.g., D∗A∗) (Fig. 99 
1a). In general, inferring the temporal evolution of all the eight chemical concentrations from data of 100 
a smaller number of time series is ill-conditioned and intractable. Accordingly, all quantitative FRET 101 
analysis methods to date depend on simplifying assumptions (e.g., the conservation of the donor 102 
and acceptor concentrations during a measurement) that are satisfied in a standard experimental 103 
FRET setup. Consistent with this, we restrict the scope of this paper to a set of standard assumptions 104 
– specifically, that which underlies the E-FRET method12. See Online Methods and Supplementary 105 
Note 1 for the assumptions we make for both bi- and uni-molecular FRET. Note, however, that the B-106 
FRET framework described below is generic and does not depend on any particular set of 107 
assumptions (see Discussions). 108 

The applicability of B-FRET is also independent of the specific definition of 𝐸 (see Discussions). For 109 
concreteness, here we consider a standard measure of the degree of interaction12,14,22,23:  110 

𝐸(𝑡) =
𝐸$%&[𝐷𝐴'('%)](𝑡)

[𝐷'('%)]
,										(1) 111 

where [𝐷'('%)] ≡ [𝐷∗](𝑡) + [𝐷](𝑡) + [𝐷∗𝐴∗](𝑡) + [𝐷∗𝐴](𝑡) + [𝐷𝐴∗](𝑡) + [𝐷𝐴](𝑡) is the total 112 
concentration of the donor molecule, which we assume to be constant, and [𝐷𝐴'('%)](𝑡) ≡113 
[𝐷∗𝐴∗](𝑡) + [𝐷∗𝐴](𝑡) + [𝐷𝐴∗](𝑡) + [𝐷𝐴](𝑡) is the total concentration of the donor-acceptor 114 
complex, which can change over time; 𝐸$%& is the specific FRET efficiency of the complex, defined as 115 
the probability of energy transfer from the donor to acceptor in the donor-acceptor complex per 116 
donor excitation event and is constant given a FRET pair and an experimental condition2,5. The FRET 117 
index 𝐸 defined by Eq. 1 is independent of instrument-specific parameters and of the degree of the 118 
photobleaching of the fluorescent molecules, and is linearly dependent on the fractional occupancy 119 
of the donor, making it an ideal measure of the degree of molecular interaction12.  120 

At its core, B-FRET is a direct application of Bayesian inference for so-called state space models20,21. 121 
In this framework, one infers the temporal evolution of hidden (i.e., unobservable), dynamical state 122 
variables from noisy observations. A state space model consists of a dynamic model, which describes 123 
the temporal evolution of hidden state variables, and a measurement model, which is a static 124 
function mapping the hidden variables at time 𝑡 to observables at time 𝑡. We discuss these in turn.  125 

In B-FRET, the hidden dynamic variable is the product of the specifc FRET efficiency and the total 126 
concentration of the complex, i.e., 𝜒(𝑡) = 𝐸$%&	[𝐷𝐴'('%)](𝑡) (Online Methods). The dynamic model 127 
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links 𝜒(𝑡) at two consecutive times via a probability distribution called the process noise described 128 
by a parametric probability distribution such as a Gaussian distribution (Online Methods; 129 
Supplementary Note 2). The assumption of a dynamical model is a central feature of B-FRET: it 130 
allows us to exploit temporal correlations in the hidden variable over small times20,21, which 131 
algebraic methods such as E-FRET neglects. On the other hand, process noise introduces additional 132 
parameters, (e.g., the standard deviation of a Gaussian distribution). These are estimated as part of 133 
the B-FRET algorithm, as described below and in more detail in Online Methods and Supplementary 134 
Note 2.  135 

In addition to the dynamic model, B-FRET requires a measurement model, which describes the 136 
photophysical processes by which the hidden dynamic variable 𝜒(𝑡) is converted into 137 
observables13,24. In the standard 3-cube FRET imaging setup, the data consists of three time series of 138 
fluorescence intensities  𝐼**, 𝐼++, and 𝐼+* (Fig. 1a). These are, respectively, fluorescence measured at 139 
the acceptor emission band during excitation of the acceptor band; fluorescence measured at the 140 
donor emission band during excitation of the donor band; and fluorescence measured at the 141 
acceptor emission band during excitation of the donor band. Other than excitations of and emissions 142 
from fluorescent proteins, the photophysical processes involved in a fluorescence measurement 143 
include photobleaching of fluorescent proteins, spectral crosstalk (i.e., bleed-through of donor 144 
emission to the acceptor emission band and cross-excitation of the acceptor at the donor excitation 145 
band), energy transfer from the donor to acceptor due to FRET, and measurement noise (Fig. 1a). All 146 
of these effects are incorporated into a single probabilistic model that linearly maps the hidden 147 
variables	𝜒(𝑡) into the three observables 𝐼**(𝑡), 	𝐼++(𝑡), and 𝐼+*(𝑡) – this is our measurement 148 
model (Online Methods and Supplementary Note 1). Like the dynamic model, the measurement 149 
model is another central feature of B-FRET: this model makes all the assumptions involved in the 150 
decoding process mathematically explicit, whereas they can be implicit or even undefined in 151 
algebraic methods. As with the process noise in the dynamical model, this linear map has unknown 152 
parameters, one of which is [𝐷'('%)] in the equation 1.  We estimate them as described below and in 153 
more detail in Online Methods and Supplementary Note 2.  154 

Given these two ingredients – the dynamical model and measurement model – our goal is to 155 
estimate the FRET index 𝐸(𝑡) = 𝜒(𝑡)	 [𝐷'('%)]⁄  (Eq. 1) from observables. In the framework of 156 
Bayesian inference18,19, this amounts to computing the posterior distribution of 𝐸(𝑡),  157 
𝑝(𝐸(𝑡)|𝒟,ℳ), which quantitatively describes how well the possible values of 𝐸(𝑡) are confined 158 
given all the data 𝒟 and the model ℳ. Since this distribution contains all the information one can 159 
theoretically have, computing the distribution ensures the statistically optimal inference of the FRET 160 
index. Because model parameters are also unknown, they must also be inferred from data. Thus, the 161 
computation of the posterior distribution of the FRET index is decomposed into the evaluations of 162 
two distributions: the posterior distribution of 𝐸(𝑡) given specific model parameter values, and the 163 
posterior distribution of the model parameters themselves (Online Methods). These two 164 
distributions can be evaluated using Bayesian smoothing and filtering theory, respectively 165 
(Supplementary Note 2). Once these distributions are determined, the posterior distribution 166 
𝑝(𝐸(𝑡)|𝒟,ℳ) is computed using a Monte Carlo approach (Online Methods).  167 

 168 

B-FRET efficiently learns from data 169 

To see how much the B-FRET algorithm improves the SNR of the estimated FRET index, we compared 170 
the FRET index 𝐸 computed by B-FRET with that computed by the conventional E-FRET method. We 171 
first generated a synthetic (bimolecular) FRET data set by simulating oscillatory dynamics of FRET 172 
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signals and all the confounding factors present in real data, namely spectral crosstalk, 173 
photobleaching and measurement noise (Fig 1a; Supplementary Note 4). With relatively large 174 
measurement noise, the oscillatory FRET dynamics are hard to see in the raw time-series data (Fig. 175 
1a). Consequently, the FRET index computed by E-FRET is highly noisy, and the true oscillatory 176 
dynamics are obscured (Fig. 1b). However, we found that the FRET index computed by B-FRET 177 
estimates the true signal substantially more precisely, as evidenced by comparison of estimation 178 
errors (Fig. 2b). Furthermore, unlike E-FRET, B-FRET naturally provides statistical uncertainty of the 179 
estimated FRET index as a credible interval (CI) at each time point. As expected, the width of 95% CIs 180 
(Online Methods for definition) increases over time because of the decreasing data quality resulting 181 
from photobleaching (grey shadow in Fig. 1b). Consistent with precise estimation of 𝐸, the posterior 182 
distributions of the model parameters are highly confined around their true values used to generate 183 
the synthetic data (Fig. 1c). These observations demonstrate that the raw fluorescence time-series 184 
data, despite high levels of noise, contain rich information about molecular interactions, and B-FRET 185 
successfully exploits the available information to better constrain the possible values of the FRET 186 
index and model parameters.   187 

 188 

B-FRET is robust to the variation in FRET temporal patterns 189 

To see how much the precision of FRET-index estimation is affected by the underlying temporal 190 
pattern of FRET signals, we next generated synthetic data in which the FRET signal exhibits random 191 
dynamics (Supplementary Note 4). Unlike the case of oscillatory dynamics (Fig. 1), the random signal 192 
is aperiodic and contains a broad range of frequencies, including those comparable to or higher than 193 
the data-sampling frequency, which precludes algorithms that exploit regular patterns in a signal. 194 
Despite this, we found that the FRET index computed by B-FRET is more precise and less noisy than 195 
that computed by E-FRET (Fig. 2a and Supplementary Fig.1).  196 

The above two cases, oscillatory and random, were successfully analyzed with a Gaussian process 197 
noise, a standard choice for the process noise for its flexibility in capturing a broad class of 198 
dynamics20,21. However, for highly non-Gaussian dynamics, e.g., ones that remains unchanged most 199 
of the time but exhibit abrupt step changes only occasionally, it is known that non-Gaussian process 200 
noise can perform better than Gaussian process noise21. Although B-FRET is computationally cheaper 201 
with Gaussian process noise since many calculations can be executed analytically, the algorithm can 202 
be adapted to other process noise statistics by replacing the analytical calculations with numerical 203 
ones (Supplementary Note 2). To test the performance of B-FRET for non-Gaussian dynamics, we 204 
generated a synthetic FRET signal consisting of discrete steps (Supplementary Note 4), and modeled 205 
the process noise using a Student’s t-distribution (Online Methods). Indeed, the FRET index 206 
computed by B-FRET precisely captures the dynamics.  207 

We note that B-FERT, combined with the framework of model selection, does not require a user to 208 
know in advance which model (e.g., a Gaussian or non-Gaussian process noise) to use to analyze a 209 
set of data. By computing the Bayes Information Criterion (BIC; Online Methods), B-FRET enables a 210 
user to automatically select a model that is best evidenced by the data. Applying this, we confirmed 211 
that the step data supports the choice of Non-Gaussian process noise, while the oscillatory and 212 
random data do not (Supplementary Fig. 2)    213 

 214 

B-FRET outperforms conventional methods irrespective of the measurement conditions 215 
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To see how the relative performance of B-FRET to E-FRET depends on the specific conditions of time-216 
lapse imaging, such as the levels of measurement noise and sampling intervals, we investigated the 217 
signal-estimation errors of both methods for various measurement conditions.  We first generated 218 
sets of synthetic data in which the degree of donor-acceptor interaction follows Gaussian random 219 
statistics over time with a correlation time 𝜏,  and fluorescence signals 𝐼**, 𝐼++, and 𝐼+* were 220 
measured with many different sampling frequencies 𝜏, Δ𝑡⁄  and levels of measurement noise 221 
(Supplementary Note 4). For each data set, we then estimated the FRET index 𝐸 using both B-FRET 222 
and E-FRET methods.  223 

Fig. 3a shows representative results for B-FRET. As the SNR of raw fluorescent signals increases, B-224 
FRET detects more subtle changes in 𝐸 with lower statistical uncertainties (95% CIs are shown by 225 
grey shades in Fig. 3a). Also, the higher the sampling frequency relative to the FRET dynamics, the 226 
more precise the B-FRET estimation. This is because faster sampling increases the correlation 227 
between successive fluorescence signals, and these correlations are exploited by B-FRET. 228 
Meanwhile, the effect of reduced sampling frequency (Fig. 3a; lower left) can be compensated by 229 
increasing the data SNR (Fig. 3a; upper left).  230 

We quantified the average error in FRET signal estimation as the root-mean-square error normalized 231 
by the magnitude of the fluctuation of the true signal, A〈(𝐸-.' − 𝐸'/0-)"〉/Std(𝐸'/0-), for both E-232 
FRET and B-FRET in various measurement conditions (Fig. 3b and c). B-FRET (red) outperforms E-233 
FRET (blue) in all conditions explored; importantly, even if E-FRET signals are smoothed with median 234 
filters with an optimal window size in terms of error reduction (grey) – which requires knowledge of 235 
the true FRET signal that an experimenter does not usually have access to – E-FRET still significantly 236 
underperforms compared to B-FRET. This can be understood by noting that, in the E-FRET method, 237 
some information about the true FRET signals contained in the raw fluorescent time series is already 238 
lost upon the algebraic computation to obtain 𝐸, and no degree of smoothing after that 239 
computation can recover the lost information. B-FRET, on the other hand, exploits the larger amount 240 
of information in the raw observables, including temporal correlations, and achieves more precise 241 
estimation of 𝐸 without requiring any knowledge about FRET dynamics.  242 

 243 

B-FRET improves signal estimation of real data 244 

To test the performance of B-FRET on real data, we applied the method to a previously developed 245 
bi-molecular FRET system that reports the kinase activity of the E. coli chemotaxis signaling 246 
pathway22,23,25. Recent FRET analyses of this pathway at the single-cell level have revealed 247 
fundamental features of cell signaling that are inaccessible by a population-level assay, such as 248 
spontaneous fluctuation in the pathway activity25, environment-dependent dynamic modulation of 249 
the degree of cell-to-cell variability26, and the high efficiency with which cells use information 250 
acquired by the pathway27. However, the FRET data from single E. coli cells are noisy: this is firstly 251 
because the small size of bacterial cells limits the number of fluorescent molecules per cell volume, 252 
and increasing the illumination power induces more photobleaching and phototoxicity. This has 253 
limited further characterizations of the signaling pathway.  254 

The E. coli chemotaxis signaling pathway is a two-component signal transduction system28, where 255 
the receptor associated kinase CheA phosphorylates the response regulator CheY, which is then 256 
dephosphorylated by the phosphatase CheZ. Binding of chemoattractant molecules to the receptors 257 
changes the propensity for the receptor, and hence the kinase, to be active. Opposing this 258 
propensity is feedback regulation by methylation and demethylation enzymes. These two 259 
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mechanisms together produce a steady-state kinase activity that is independent of the background 260 
chemoattractant concentration, a ubiquitous phenomenon in cell signaling called response 261 
adaptation29–32. The activity of the pathway can be read out by quantifying the FRET between the 262 
donor (mYFP) fused to CheZ and the acceptor (mRFP) fused to CheY, which binds to CheZ when 263 
phosphorylated by CheA. It has been well established that, upon a step increase in a 264 
chemoattractant concentration, the kinase activity and the concentration of phosphorylated CheY 265 
(and hence the level of FRET) decreases rapidly before response adaptation, while a step decrease in 266 
a chemoattractant concentration causes the opposite response22,25.  267 

We measured fluorescence signals, 𝐼**, 𝐼+*, and 𝐼++ from single E. coli cells using a 3-cube FRET 268 
measurement setup (Fig. 4a; Online Methods). In this setup, we delivered fast-switching (~ 0.1 s) 269 
step-like changes of 𝛼-methyl-aspartate (MeAsp), a non-metabolizable analog of the 270 
chemoattractant aspartate, using a recently-developed microfluidic system26,27. Large step changes 271 
in MeAsp (100% changes or higher) were delivered to cells at the beginning and end of the 272 
measurement to define the dynamic range (i.e., minimal and maximal FRET levels) of each cell.  273 
Several small step changes in MeAsp (20% changes) that cause sub-saturating responses, on 274 
average, were also applied in the middle of the measurement (Fig. 4b). First, we extracted the FRET 275 
index 𝐸 using the E-FRET method (Fig. 4b left). As expected, the large noise prevented us from 276 
discerning single responses to the sub-saturating (20%) step stimuli. Quantifying responses from 277 
such noisy data requires some form of data averaging, as was done before26,27; however it 278 
unavoidably masks properties of individual responses. Next, we analyzed the same set of data using 279 
the B-FRET method (Fig. 4b right). B-FRET drastically improved the SNR and disclosed the cell-to-cell 280 
and temporal variations in the signaling dynamics more vividly: some cells respond to small step 281 
signals faithfully, whereas other cells neglect the same signals; some cells fluctuate vigorously, 282 
whereas some cells are more stable. Such variations could be functionally important for a cell 283 
population to deal with environmental uncertainties as recent studies have suggested33–35. 284 
Furthermore, B-FRET not just make some subsaturating responses clearly discernible by eye; it also 285 
enables us to tell whether the changes in FRET are statistically significant or not (red boxes in Fig. 286 
4b). Finally, as with synthetic data (Fig. 1c), the posterior distributions of the model parameters are 287 
highly confined (Fig. 4c), demonstrating that real experimental data also contain sufficient 288 
information to confine the photophysical model. Together, these results demonstrate that B-FRET 289 
can greatly improve the quality of extracted FRET signals, and therefore help experimenters reveal 290 
novel dynamic features of cellular processes.  291 

 292 

Discussions 293 

Inefficient decoding of the information about molecular interactions from FRET data amounts to 294 
wasting acquired photons. Here, we propose a computational framework, B-FRET, to decode the 295 
FRET index time series with theoretically maximal efficiency. A conventional way to improve SNR in 296 
live FRET imaging has been to aggregate signals from many samples (e.g., cells) and compute their 297 
average22,23; however, this method fails to capture variations and asynchronous dynamics across 298 
samples. B-FRET reduces the need for such averaging, as we demonstrated here by analyzing 299 
signaling dynamics in single bacterial cells (Fig. 4), and thereby providing a powerful aid to studies of 300 
biological variation – both across cells within a population, and across time within a single cell – that 301 
would be lost in averaging. B-FRET is of practical use even to experimenters who do not necessarily 302 
need to reduce SNR: to achieve a given SNR, B-FRET requires fewer photons, reducing the need for 303 
high-power illumination and therefore the unwanted effects of photobleaching and phototoxicity. 304 
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Thus, B-FRET computationally extends the scope of FRET analyses by increasing the SNR and/or by 305 
requiring less photons, in much the same way as brighter FRET pairs or more sensitive 306 
photodetectors experimentally enhance FRET.     307 

Although a method has been developed that systematically incorporates measurement noise and 308 
infers molecular interactions for snapshot FRET data13, developing a similar method for time-lapse 309 
FRET data has remained a challenge due to additional complications, such as photobleaching and 310 
temporal changes in the degree of FRET. Past approaches to the analysis of time-lapse FRET data 311 
have neglected measurement noise. B-FRET, by performing Bayesian inference on state space 312 
models, deals with measurement noise and other confounding factors in a principled manner. 313 
Furthermore, the statistical uncertainties of the observables are systematically converted to that of 314 
the inferred FRET index, which is expressed as the (posterior) distribution of the FRET index. This 315 
enables the experimenter to assess the uncertainty of the estimate and evaluate whether a change 316 
in a FRET index is statistically significant or not.  317 

Another important advantage of B-FRET is that it decouples the assumptions involved in the 318 
inference problem from the definition of the FRET index, whereas these are inherently coupled in 319 
the past algebraic approaches. For example, E-FRET, under a certain set of assumptions, gives an 320 
algebraic formula (Online Methods) to compute the FRET index, which can be interpreted in 321 

molecular terms as 𝐸(𝑡) = 1!"#[+*$%$"&](')
[+$%$"&]

 (Eq. 1). But the method gives no clue about how to 322 

compute different FRET indexes such as e.g. 𝐸*(𝑡) =
1!"#[+*$%$"&](')

[*$%$"&]
. B-FRET provides a single 323 

algorithm for computing any FRET index, once it is defined. In B-FRET, therefore, inferring 𝐸*(𝑡) is as 324 
straightforward as 𝐸(𝑡), once the necessary parameters are provided (See Supplementary Note 1). 325 
In principle B-FRET can incorporate any set of assumptions into the inference procedure: different 326 
assumptions constrain the relationship between variables differently, but the core inference 327 
algorithm in B-FRET is independent of the constraints (Online Methods). However, this flexibility 328 
should not lead to the presumption that B-FRET enables sufficiently precise estimation of FRET 329 
indices in any condition: instead, B-FRET gives the statistically optimal inference under a certain set 330 
of assumptions. It is possible that the ‘optimal’ result does not meet the demand of an 331 
experimenter, if the experiment is not constrained enough. It is beyond the scope of the current 332 
study to explore non-standard experimental conditions because they are highly variable among 333 
experiments. In future studies, it will be important to investigate what experimental conditions 334 
better confine a FRET index, and how it depends on different FRET indices.      335 

As a result of B-FRET’s ability to easily incorporate different sets of assumptions, one can analyze 336 
both bimolecular and unimolecular FRET using the same framework; only a slightly different set of 337 
assumptions needs to be made for unimolecular FRET due to the fixed stoichiometry of the donor 338 
and acceptor. In Supplementary Note 1, we derive the photophysical model for unimolecular FRET 339 
systems. Based on this model, we analyze unimolecular FRET data obtained from eukaryotic cells 340 
and demonstrate that it improves the SNR of an estimated FRET index (Supplementary Note 5 and 341 
Supplementary Fig. 3).  342 

As with all other quantitative FRET methods, the applications of B-FRET are naturally limited by our 343 
understanding of the photophysical processes involved in a FRET measurement. For example, 344 
photoconversion of fluorescent proteins, which were reported to occur upon excitation for some 345 
fluorescence proteins in certain conditions2,36,37, can produce another chemical species that are 346 
dissimilar to both donor and acceptor during a measurement. If such secondary processes are 347 
significant but not taken into consideration in the photophysical model (Online Methods), B-FRET 348 
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can yield misleading results. Although it is possible to incorporate such processes into our 349 
photophysical model once they are characterized, B-FRET does not alleviate the necessity for careful 350 
selection of a FRET pair and for control experiments to validate the basic assumptions involved in the 351 
data analysis. A distinct advantage of B-FRET is that its assumptions are explicit – helping 352 
experimenters identify necessary controls and tailor their experiments accordingly. 353 

Finally, we comment on time-lapse FRET imaging with sub-compartment resolution. Previously, to 354 
quantify the dynamics of the degree of molecular interaction with sub-compartment resolution, 355 
methods like E-FRET were applied on a pixel-by-pixel basis and FRET indices were computed for 356 
individual pixels12. Nothing prevents applying B-FRET to data obtained from individual pixels, in 357 
principle. However, quantitative interpretation of FRET indices computed in such a way is not as 358 
straightforward, because assumptions that can be readily validated at the compartment level may 359 
not be validated at the sub-compartment level. For example, the total concentrations of fluorescent 360 
proteins are often assumed constant at the compartment level for E-FRET (and in the examples in 361 
this paper). This is valid, at least to a first approximation, at the compartment level as far as the 362 
measurement duration is sufficiently shorter than the time scale of factors that can change the 363 
protein concentrations, e.g., gene expression. However, this does not necessarily mean that it also 364 
holds at the sub-compartment level – the spatial distributions of proteins may dynamically change 365 
within a compartment without changing the total concentration. We are not aware of any 366 
quantitative FRET method that generally provides molecular interpretation at the sub-compartment 367 
level. Given the general demand to resolve molecular interactions at the subcellular level in cell 368 
biology, it will be an important future direction to develop such a quantitative FRET method.  369 

 370 

Online methods 371 

Strains and plasmids for the bimolecular FRET experiment 372 

The E. coli strain used for the bimolecular FRET experiments is a derivative of E. coli K-12 strain 373 
RP437 (HCB33), and described in detail elsewhere25,26. In brief, the FRET acceptor-donor pair (CheY-374 
mRFP and CheZ-mYFP) is expressed in tandem from plasmid pSJAB10625 under an isopropyl β-D-375 
thiogalactopyranoside (IPTG)-inducible promoter. The glass-adhesive mutant of FliC (FliC*) was 376 
expressed from a sodium salicylate (NaSal)-inducible pZR1 plasmid. The plasmids are transformed in 377 
VS115, a cheY cheZ fliC mutant of RP437 (gift of V. Sourjik). The crosstalk coefficient for spectral 378 
bleedthrough was measured using a strain expressing CheZ-YFP from a plasmid, and that for cross-379 
excitation was measured using a strain expressing CheY-mRFP from a plasmid (Supplementary Note 380 
3).  381 

 382 

Cell preparation and bimolecular FRET measurement in a microfluidic device 383 

Single-cell FRET microscopy and cell culture was carried out essentially as described previously25–27. 384 
In brief, cells were picked from a frozen stock at -80°C and inoculated in 2 mL of Tryptone Broth (TB; 385 
1% bacto tryptone, 0.5 % NaCl) and grown overnight to saturation at 30°C and shaken at 250 RPM. 386 
Cells from a saturated overnight culture were diluted 100X in 10 mL TB and grown to OD600 0.45-387 
0.47 in the presence of 100 μg/ml ampicillin, 34 μg/ml chloramphenicol, 50 μM IPTG and 3 μM 388 
NaSal, at 33.5°C and 250 RPM shaking. Cells were collected by centrifugation (5 min at 5000 rpm, or 389 
4080 RCF) and washed twice with motility buffer (10 mM KPO4, 0.1 mM EDTA, 1 μM methionine, 10 390 
mM lactic acid, pH 7), and then were resuspended in 2 mL motility buffer. Cells were left for 2 hours 391 
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before starting a measurement to let all fluorescent proteins mature. Cells in motility buffer do not 392 
synthesize new proteins due to auxotrophic limitation. All experiments were performed at 22-23°C. 393 
Microfluidic devices for the FRET experiments were constructed from polydimethylsiloxane (PDMS) 394 
and used to control stimulus levels delivered to cells following exactly the same protocol as 395 
before26,27.  396 

 397 

Single-cell bimolecular FRET imaging system 398 

FRET imaging in the microfluidic device was performed using an inverted microscope (Eclipse Ti-E; 399 
Nikon) equipped with an oil-immersion objective lens (CFI Apo TIRF 60X Oil; Nikon). YFP was 400 
illuminated by an LED illumination system (SOLA SE, Lumencor) through an excitation bandpass filter 401 
(FF01-500/24-25; Semrock) and a dichroic mirror (F01-542/27-25F; Semrock). The fluorescence 402 
emission was led into an emission image splitter (OptoSplit II; Cairn) and further split into donor and 403 
acceptor channels by a second dichroic mirror (FF580-FDi01-25x36; Semrock). The emission was 404 
then collected through emission bandpass filters (FF520-Di02-25x36 and FF593-Di03-25x36; 405 
Semrock) by a sCMOS camera (ORCA-Flash4.0 V2; Hamamatsu). RFP was illuminated in the same 406 
way as YFP except that an excitation bandpass filter (FF01-575/05-25; Semrock) and a dichroic 407 
mirror (FF593-Di03-25x36; Semorock) were used. An additional excitation filter (59026x; Chroma) 408 
was used in front of the excitation filters. To synchronize image acquisition and the delivery of 409 
stimulus solutions, a custom-made MATLAB program controlled both the imaging system (through 410 
the API provided by Micro-Manager38) and the states of the solenoid valves. 411 

 412 

Photophysical model  413 

Here, we consider the case of bi-molecular FRET systems discussed in the main text; however, 414 
essentially the same argument applies to uni-molecular FRET systems (Supplementary Note 1).  415 

First, we define the FRET data set. Time-lapse measurements of 𝐼++, 𝐼+*, and 𝐼** are conducted at 416 
discrete time points. We assume that FRET from the donor to acceptor affects 𝐼++ and 𝐼+*, but not 417 
𝐼** (See below and Supplementary Note 1). Thus, the sampling frequency of  𝐼++ and/or 𝐼+* limits 418 
the temporal resolution of an estimated FRET signal. In practice, 𝐼++ and 𝐼+* are measured (almost) 419 
simultaneously to better exploit the FRET-induced changes in 𝐼++ and 𝐼+*. Thus, we designate the 420 
same time points for the 𝐼++ and 𝐼+* measurements, and the set of the time points are written as 421 
𝑡!:7'
+ ≡ I𝑡!+ , 𝑡"+ , … , 𝑡7'

+ K, where 𝑁+ is the total number of measurements. 𝐼** is generally acquired at 422 
different time points from 𝐼++ and 𝐼+*, and thus we designate the time points for 𝐼** as 𝑡!:7(

* ≡423 
I𝑡!*, 𝑡"*, … , 𝑡7(

* K, where 𝑁* is the total number of measurements, and generally 𝑁+ ≠ 𝑁*. The entire 424 
set of the time-lapse fluorescence intensity data is 𝒟 = I𝐼**,!:7( , 𝐼++,!:7' , 𝐼+*,!:7'K, where  425 

𝐼**,!:7( = I𝐼**(𝑡!*), 𝐼**N𝑡"*O, … , 𝐼**N𝑡7(
* OK, 426 

𝐼++,!:7' = I𝐼++(𝑡!+), 𝐼++(𝑡"+), … , 𝐼++N𝑡7'
+ OK,	 427 

𝐼+*,!:7' = I𝐼+*(𝑡!+), 𝐼+*(𝑡!+), … , 𝐼+*N𝑡7'
+ OK. 428 

Next, we construct a photophysical model ℳ to be learned from the data 𝒟. Under a standard 3-cube 429 
FRET-microscopy setup, the (background-subtracted) observables 𝐼**, 𝐼++  and 𝐼+*  are generally 430 
linked to the concentrations of the chemical species as follows: 431 
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𝐼**(𝑡) = 𝐶**	([𝐴∗](𝑡) + [𝐷∗𝐴∗](𝑡) + [𝐷𝐴∗](𝑡)) + 𝜉**(𝑡), 432 

𝐼++(𝑡) = 𝐶++	N[𝐷∗](𝑡) + [𝐷∗𝐴](𝑡) + (1 − 𝐸$%&)[𝐷∗𝐴∗](𝑡)O + 𝜉++(𝑡),      (Eqs. 2) 433 

𝐼+*(𝑡) = 𝑎	𝐼**(𝑡)TTTTTTTT + 𝑑	𝐼++(𝑡)TTTTTTTT + 𝐶++	𝐺	𝐸$%&	[𝐷∗𝐴∗](𝑡) + 𝜉+*(𝑡), 434 

where 𝜉**, 𝜉++	and 𝜉+* describe the measurement noise of corresponding fluorescent channels, 435 

and we assume they follow the zero-mean Gaussian distributions, i.e., 𝜉**(𝑡)	~	N Y0, 𝜎**" (𝑡)\, 436 

𝜉++(𝑡)	~	N Y0, 𝜎++" (𝑡)\, and 𝜉+*(𝑡)	~	N Y0, 𝜎+*" (𝑡)\, where 𝜎**" , 𝜎++" , and 𝜎+*"  are time-dependent 437 

variances and are determined from the data (Supplementary Note 3; Note parametric noise models 438 
other than Gaussian distributions can also be used if necessary); 𝐼**TTTT and 𝐼++TTTT are respectively the 439 
expectation values of  𝐼** and 𝐼++, and thus 𝑎	𝐼**TTTT and 𝑑	𝐼++TTTT respectively represent the cross-440 
excitation of the acceptor by the donor excitation wavelengths and the bleedthrough of the donor 441 
emission into the acceptor emission filter4,10,11; 𝐶**, 𝐶++, 𝑎, 𝑑, and 𝐺 are parameters dependent on 442 
imaging systems and the photophysical properties of the donor and acceptor, which are defined as  443 

𝐶** ≡ 𝜈*𝜖**𝑄*𝐿*𝑆*𝑡**, 444 

𝐶++ ≡ 𝜈+𝜖++𝑄+𝐿+𝑆+𝑡++ , 445 

𝑎 ≡
𝜈+𝜖+*𝑡+*
𝜈*𝜖**𝑡**

, 446 

𝑑 ≡
𝐿*𝑆*𝑡+*
𝐿+𝑆+𝑡++

, 447 

𝐺 ≡
𝑄*𝐿*𝑆*𝑡+*
𝑄+𝐿+𝑆+𝑡++

, 448 

where, 𝜈+  (𝜈* ) is the intensity of illumination reaching the sample through the donor (acceptor) 449 
excitation filter, 𝜖++ the absorption coefficient of the donor,  𝜖+* (𝜖**) the absorption coefficient of 450 
the acceptor at the donor-excitation (acceptor-excitation) wavelength, 𝑄+ (𝑄*) the quantum yield of 451 
donor (acceptor),	𝐿+  (𝐿* ) the throughput of the donor (acceptor) emission light-path,	𝑆+  (𝑆* ) the 452 
quantum sensitivity of the camera for donor (acceptor) emission, and 𝑡+*, 𝑡**, and 𝑡++ respectively 453 
the exposure time for the FRET, acceptor, and donor channels12,13,24. The parameters 𝑎, 𝑑 and 𝐺 can 454 
be determined by independent measurements12,27. 𝐶++  and 𝐶**  do not necessarily need to be 455 
determined as explained below. The model (Eqs. 2) is general, only assuming that the acceptor 456 
fluorescence is not detectable through the donor emission filter and that the acceptor excitation light 457 
does not excite the donor, which are easily achieved by selecting appropriate filter sets12,27.  458 

We introduce the following set of assumptions, which are satisfied in a typical FRET experiment and 459 
used also in E-FRET12 (see also Supplementary Note 1). (i) The total amount of donor and acceptor 460 
molecules are conserved during the course of a measurement.  (ii) The photobleaching locally follows 461 
a first-order decay process, i.e., the rate of change of the amount of intact (i.e., fluorescent) donor 462 
(acceptor) is proportional to its concentration, although the proportionality constants can change over 463 
time. (iii) The system is in a quasi-steady state at each time point with the timescale of photobleaching 464 
is much larger than other relevant timescales (e.g., that of binding and unbinding of the fluorescently-465 
labeled proteins). See Supplementary Note 1 for how these are expressed mathematically. 466 
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Without loss of generality we set  𝐶** = 𝐶++ = 1, because these parameters only affect the units of 467 
the concentrations of the chemical species (see Discussion). Also, we introduce a new label 𝜒(𝑡) =468 
𝐸$%&	[𝐷𝐴'('%)](𝑡) because we are not necessarily interested in decomposing 𝐸$%& and [𝐷𝐴'('%)](𝑡), 469 
which only appear as a product in our definition of the FRET index 𝐸 . Under these assumptions, 470 
Equations 2 is reduced to  471 

𝐼**(𝑡) = 𝑓*(𝑡)[𝐴'('%)] + 𝜉**(𝑡), 472 

𝐼++(𝑡) = 𝑓+(𝑡)[𝐷'('%)] 	− 𝑓*(𝑡)𝑓+(𝑡)𝜒(𝑡) + 𝜉++(𝑡),           (Eqs. 3) 473 

𝐼+*(𝑡) = 𝑎𝑓*(𝑡)[𝐴'('%)] + 𝑑𝑓+(𝑡)[𝐷'('%)] + (𝐺 − 𝑑)𝑓*(𝑡)𝑓+(𝑡)𝜒(𝑡) + 𝜉+*(𝑡), 474 

where [𝐴9:9;<] and [𝐷'('%)] are the total concentrations of the acceptor and donor respectively; 475 
𝑓*(𝑡) and 𝑓+(𝑡) are the intact fractions of the acceptor and donor at time	𝑡 respectively, and hence 476 
take values between 0 and 1 (see Supplementary Note 1 for derivation). To learn the model from 477 
data, 𝑓*(𝑡) and 𝑓+(𝑡) need to be expressed by parametric functions, whose parameters, as well as 478 
other parameters, are estimated by the inference algorithm described below. Any parametric 479 
functions can be used depending on the data in principle.  See Supplementary Note 5 for the specific 480 
functions used to analyze data used in this paper.  481 

The presence of the hidden variable 𝜒(𝑡) in the equations for 𝐼++ and 𝐼+* (Eqs. 3) makes the 482 
learning of the model less straightforward. To deal with this, we rewrite the equations for 𝐼++ and 483 
𝐼+* using the framework of the state-space model20,21: 484 

𝐱= = 𝐱=>! + 𝐪=>!, 485 

𝐲= = 𝐇=𝐱= + 𝐫= . 486 

The first line, the dynamic model, describes the time evolution of the state 𝐱= = N1, 𝜒(𝑡=+)O
?

. The 487 
process noise 𝐪=>! governs the transition between two consecutive states. For example, Gaussian 488 
process noise can be written as:  489 

𝐪=>!~NY𝟎,𝐐N𝜎@O\, 490 

where the covariance matrix 𝐐N𝜎@O is defined as  491 

𝐐N𝜎@O = j
0 0
0 𝜎@"k. 492 

For non-Gaussian dynamics, one can use the Student’s t-distribution19,21, which can be written as 	493 

𝐪=>! = j0𝑞k, 494 

and 495 

𝑞~StN𝑞|	𝜎@, 𝜈O =
ΓY𝜈 + 12 \

oπν𝜎@"Γ Y
𝜈
2\
r1 +

1
𝜈
𝑞"

𝜎@"
s
>AB!"

, 496 

where 𝜎@ is the scale parameter and  𝜈 > 0 is called the degree of freedom. When 𝜈 = 1, the t-497 
distribution reduces to the Cauchy or Lorentz distribution, while for 𝜈 ≫ 5 it approaches a Gaussian 498 
distribution 𝑁(0, 𝜎@").  499 
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The second line, the measurement model, describes the relationship between the observables 𝐲= =500 

Y𝐼++N𝑡=+O,
	

𝐼+*N𝑡=+O\
?

 given the state 𝐱=. The measurement model matrix 𝐇= at time 𝑡=+ is defined as 501 

𝐇= = r
𝑓+(𝑡=+)[𝐷'('%)] −𝑓*(𝑡=+)𝑓+(𝑡=+)

𝑎[𝐴'('%)]𝑓*(𝑡=+) + 𝑑[𝐷'('%)]𝑓+(𝑡=+) (𝐺 − 𝑑)𝑓*(𝑡=+)𝑓+(𝑡=+)
s. 502 

The Gaussian measurement noise 𝐫= at time 𝑡=+ is written as 503 

𝐫=~N(𝟎, 𝐑=), 504 

where the covariance matrix 𝐑= is defined as 505 

𝐑= = r
𝜎++" N𝑡=+O 0

0 𝜎+*" N𝑡=+O
s. 506 

The variances of measurement noise can be determined from data (Supplementary Note 3).  507 

 508 

Learning algorithm 509 

To compute the posterior distribution of the FRET index 𝐸=, 𝑝(𝐸=|𝒟,ℳ), where 𝐸= ≡ 𝐸(𝑡=+), we 510 
rewrite it in term of the model parameters 𝜽: 511 

𝑝(𝐸=|𝒟,ℳ) = x𝑝(𝜽|𝒟,ℳ)𝑝(𝐸=|𝜽, 𝒟,ℳ)𝑑𝜽. 512 

The right-hand side is the expectation of a function of model parameters 𝜽, 𝑝(𝐸=|𝜽, 𝒟,ℳ), with 513 
respect to the (posterior) distribution of 𝜽, 𝑝(𝜽|𝒟,ℳ). Thus, we evaluate the integral on the right-514 
hand side by a Monte Carlo approach, drawing many samples from the two probability distributions 515 
as described below.  516 

First, we evaluate 𝑝(𝜽|𝒟,ℳ). Using Bayes’ rule, this can be written as 517 

𝑝(𝜽|𝒟,ℳ) =
𝑝(𝜽|ℳ)𝑝(𝒟|𝜽,ℳ)

𝑍
, 518 

where 𝑝(𝜽|ℳ) is the prior distribution of the model parameters, which are usually wide in width to 519 
express one’s ignorance about the parameter values (See Supplementary Note 2 for how to design 520 
prior distributions for each model parameter and Supplementary Note 5 for the actual distributions 521 
used to analyze data presented in this paper); 𝑝(𝒟|𝜽,ℳ) is the likelihood function, which describes 522 
the probability of observed data as a function of model parameters 𝜽; and 𝑍 is the normalization 523 
constant, which one does not have to evaluate for the purpose of drawing samples form 𝑝(𝜽|𝒟,ℳ). 524 
The prior distribution 𝑝(𝜽|ℳ) is given by the user of B-FRET and the likelihood function 𝑝(𝒟|𝜽,ℳ) 525 
is evaluated by using the Bayesian filtering algorithm20,21 (Supplementary Note 2). Then, using a 526 

sampling method18,19, one can draw a set of samples I𝜽CKCD!
E

 from the distribution, where 527 
𝜽C~	𝑝(𝜽|𝒟,ℳ) and 𝑅	(≫ 1) is the number of samples. Samples were drawn either directly from 528 
the distribution using a Markov chain Monte Carlo (MCMC) method (e.g., slice sampling18,19), or from 529 
an approximated Gaussian distribution obtained by Laplace’s method18,19. In drawing many samples, 530 
the latter is computationally much cheaper, and thus we adopted it upon confirmation that the bias 531 
introduced by the approximation is negligible (Supplementary Fig. 4).  532 
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Second, we evaluate the (posterior) distribution of the FRET index 𝑝N𝐸={𝜽C , 𝒟,ℳO based on 533 

Bayesian smoothing algorithm20,21, using the sampled parameter set I𝜽CKCD!
E

  (Supplementary Note 534 

2). This enables to draw samples I𝐸=C KCD!
E

 from the distribution, where 𝐸=C~𝑝N𝐸={𝜽C , 𝒟,ℳO. Using 535 
the samples, we can evaluate the integral as 536 

x𝑝(𝜽|𝒟,ℳ)𝑝(𝐸=|𝜽, 𝒟,ℳ)𝑑𝜽 ≈
1
𝑅
}𝛿N𝐸= − 𝐸=C O
E

CD!

, 537 

where	𝛿(𝑥) is the Dirac delta function. With sufficiently large 𝑅 samples from 𝑝(𝐸=|𝒟,ℳ), one can 538 
quantify any properties of the distribution 𝑝(𝐸=|𝒟,ℳ). We used the median of the sample as 539 
representative values of the estimates, and the interval between 2.27 and 97.73 percentiles, each of 540 
which corresponds to 𝜇 ± 2𝜎 respectively for a Gaussian distribution N(𝜇, 𝜎), as a measure of the 541 
statistical uncertainty of the estimation and called it a ‘95% credible interval (CI)’. 542 

 543 

E-FRET method and the effect of error in optical parameter estimation 544 

The E-FRET method12 provides a formula for a FRET index 𝐸,(//  that gives an estimate of Eq. 1. This 545 
reads 546 

𝐸,(//(𝑡) =
𝐼+*(𝑡) − 𝑎𝐼**(𝑡)TTTTTTTT − 𝑑𝐼++(𝑡)

𝐼+*(𝑡) − 𝑎𝐼**(𝑡)TTTTTTTT + (𝐺 − 𝑑)𝐼++(𝑡)
𝐼**(𝑡 = 0)TTTTTTTTTTTTT

𝐼**(𝑡)TTTTTTTT ,					(Eq. 4) 547 

Where the optical parameters 𝑎, 𝑑, and 𝐺 are defined in Photophysical model. For the variables with 548 
bars, e.g., 𝐼**(𝑡)TTTTTTTT, their expected (or smoothed) values can be used as opposed to raw intensity 549 
values. It can be shown that under the assumptions described in Photophysical model and in the 550 
limit of zero measurement noise, this quantity converges to the FRET index defined by Eq. 1 551 
(Supplementary Note 1). The optical parameters 𝑎, 𝑑, and 𝐺 are measured from independent 552 
measurements, but only with finite precision. The errors in the estimations of these parameters 553 
introduce some biases in the computed FRET index, whose effect grows as more fluorescent 554 
proteins are photobleached, which can be corrected under some assumptions27 (See Supplementary 555 
Note 3 for more detail).  556 

 557 

Model selection 558 

In case a user of B-FRET is not sure about what model to use (e.g., Gaussian or non-Gaussian process 559 
noise), the framework of model selection enables to select, among a set of candidate models, a 560 
model that is best evidenced by a set of data. For this purpose, B-FRET computes the Bayesian 561 
information criterion (BIC) defined as 562 

BIC = 𝑁𝜽 log𝑁𝒟 − 2 log 𝑝(𝒟|𝜽H*I ,ℳ),	 563 

where 𝑁𝜽 and 𝑁𝒟 are the numbers of the model parameters and data points, respectively and 𝜽H*I 564 
is the parameter values that maximize the likelihood function 𝑝(𝒟|𝜽,ℳ). A model with the lowest 565 
BIC value is selected as the best model among a set of candidates (Supplementary Fig. 2).   566 
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 695 

Figure 1 Optimal decoding of the FRET index 𝐸 from FRET data. (a) A schematic of 3-cube time-lapse FRET 696 
imaging. For both bi-molecular and uni-molecular FRET systems, a FRET sample (left) consists of 8 chemical 697 
species (the schematic represents the case of bi-molecular FRET, where the donor and acceptor can be 698 
isolated from each other): fluorescent donor (D; cyan) and acceptor (A; orange), photobleached D and A (grey) 699 
and 4 different D-A complexes. A time-lapse FRET measurement encodes the molecular information into the 700 
three fluorescence time series (right), 𝐼!! (acceptor emissions during acceptor excitation), 𝐼"" (donor emission 701 
during donor excitations), and 𝐼"! (acceptor emission during donor excitations). The encoding subjects to 702 
measurement noise, photobleaching, and spectral crosstalk (middle). The relationship between the sample 703 
state and the observables can be expressed by a photophysical model with unknown parameters, which are 704 
learned from the observables via B-FRET. (b) Decoding the information of molecular interactions measured by 705 
the FRET index 𝐸 from the synthetic data shown in a both by the E-FRET (top) and B-FRET (bottom). True 706 
(magenta) and estimated FRET index 𝐸 (grey line) are shown. Implementing an optimal decoding, B-FRET 707 
estimates the true signal more precisely. For B-FRET, 95% credible intervals are shown by grey shade. (c) Prior 708 
and posterior distributions of the unknown parameters in the photophysical model. From left to right: the total 709 
concentrations of acceptor ([𝐴#$#%&]), donor ([𝐷#$#%&]), the fraction of intact acceptor (𝑓!), and donor (𝑓"). 710 
Insets in the left two panels are magnified posterior distributions (green) plotted in log scale for both X and Y 711 
axes. In the right two panels, ranges of priors and posteriors of 𝑓! and 𝑓" (from 2.5 to 97.5 percentile) are 712 
shown. In all cases, posteriors are highly confined, implying the presence of rich information about the model 713 
parameters in the observables shown in a.  714 
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 715 

Figure 2 B-FRET performance is robust for different FRET dynamics. (a) Synthetic data with random (left) and 716 
step (right) FRET signals. (Top) Raw fluorescence timeseries. (Middle) The FRET index 𝐸 computed by E-FRET 717 
(grey; 𝐸'(#) and its true values (magenta; 𝐸#)*'). (Bottom) The FRET index 𝐸 computed by B-FRET (grey; 𝐸'(#) 718 
and its true values (magenta). The shade shows 95% credible interval. (c) A bar chart quantifying the error in 𝐸 719 
estimation defined as ⟨|𝐸'(# − 𝐸#)*'|⟩, where the angle bracket is temporal average. The error bars are 720 
standard deviation over 5 data sets with identical FRET signal dynamics but different realizations of 721 
measurement noise.     722 
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 740 

Figure 3 B-FRET outperforms conventional methods irrespective of measurement conditions. (a) 741 
Representative simulated data – 𝐼"" with (dark grey) and without (cyan) measurement noise – and estimated 742 
(dark grey) and true (magenta) values of the FRET index 𝐸 in 4  measurement conditions are shown. FRET 743 
signals were changed randomly with a correlation time 𝜏+, and data were sampled every Δ𝑡; two sampling 744 
frequencies 𝜏+ Δ𝑡⁄ ≈ 1 (under-sampling regime) and 10 (over-sampling regime) are shown. Different levels of 745 
measurement noise were simulated without changing the expected values of the observables; two different 746 
data SNRs (Supplementary Note 4) are shown. (b) Errors in 𝐸 estimation defined as 747 
4⟨(𝐸'(# − 𝐸#)*'),⟩ Std(𝐸#)*'):  for B-FRET (red), E-FRET (blue) and E-FRET combined with optimal median 748 
filtering (grey) were plotted against sampling frequency, 𝜏+ Δ𝑡⁄ . Cases of high data SNR (≈ 0.13; top) and low 749 
data SNR (≈ 0.04; bottom) are shown. Optimal median filtering requires knowledge about true signals, which 750 
is not accessible, and hence cannot be implemented in practice. Thus, the grey line gives the minimum 751 
achievable error by the combination of E-FRET and median filtering. B-FRET requires no knowledge about true 752 
signals, and yet outperforms E-FRET in all explored conditions. (c) Error in 𝐸 estimation plotted against data 753 
SNR. Cases of under-sampling (𝜏+/Δ𝑡 ≈ 1) and over-sampling (𝜏+/Δ𝑡 ≈ 10) are shown. Again, E-FRET 754 
outperforms E-FRET in all explored conditions.  755 
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 761 

Figure 4 B-FRET infers the FRET index precisely in real FRET data. (a) Three observables, 𝐼!!, 𝐼"", and 𝐼"!, were 762 
acquired from a bimolecular FRET system in single E. coli cells. The change s in FRET reports the changes in the 763 
activity of a kinase that governs chemotaxis behavior of E. coli. (b) Using FRET data sets from individual E. coli 764 
cells, the FRET index 𝐸 was estimated by E-FRET (left) and B-FRET (right). Five representative cells are shown. 765 
Blues and red in the background indicate different concentrations (numbers in the unit of µM) of a 766 
chemoattractant MeAsp delivered to the cells. The red vertical line in the left panel corresponds to the change 767 
in the FRET index Δ𝐸 = 0.05. For B-FRET, 95% credible intervals are shown by the grey shade. The noise 768 
reduction by B-FRET reveals temporal and cell-to-cell variation in the FRET dynamics, while they are mostly 769 
obscured in the noise in the E-FRET results. Regions enclosed by the red boxes are expanded above. (c) Prior 770 
and posterior distributions of the model parameters. Despite the relatively high noise of the FRET data, the 771 
posterior distributions are highly confined, suggesting the efficient usage of information contained in the raw 772 
data by B-FRET. The data in panel a and c are from the cell shown at the bottom in panel b. 773 
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