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Abstract

Sequence content is heterogeneous throughout genomes. Therefore, Genome-wide NGS
reads biased towards specific nucleotide profiles are affected by the genome-wide
heterogeneous nucleotide distribution. Boquila generates sequences that mimic the
nucleotide profile of true reads, which can be used to correct the nucleotide-based bias
of genome-wide distribution of NGS reads. Boquila can be configured to generate reads
from only specified regions of the reference genome. It also allows the use of input DNA
sequencing to correct the bias due to the copy number variations in the genome.
Boquila uses standard file formats for input and output data, and it can be easily
integrated into any workflow for high-throughput sequencing applications.

Introduction !
Simulating genomic data for benchmarking bioinformatics programs has become 2
increasingly popular, particularly for read alignment, genome assembly, and variant and 3
RNA-seq analysis [1]. Using such an approach allows for systematic performance 4
assessment even in the absence of gold-standard data. Most currently available 5
simulation tools are heavily geared towards benchmarking; they concentrate on 6
generating reads produced by a specific sequencing experiment by modeling the 7
characteristics of reads produced by sequencing machinery. Consequently, the correction s
metrics are primarily associated with artificial errors commonly introduced by these 0
specific sequencing protocols. 10

Although most of the tools use some profile for simulating, these profiles are used for
simulating characteristics of sequencing protocols rather than the biological experiments. 1

No simulation tool utilizes nucleotide content profile to our knowledge. SomatoSim [2], 1
VarSim [3], SimuSCoP [4], and many other tools [5H9] were specifically designed to 1
simulate genomic variation. ART [10] and SInC [5] generate profiles based on specific 15
error models and quality score distribution extracted from empirical data. pIRS [11] 16
and Mitty [12] generate quality profiles based on mapped reads and empirical data. 17
NanoSim [13|, a nanopore sequence simulator, also uses error profiles and length 18
distributions. Gargammel, ancient DNA sequencing simulator, uses sequencing errors 19
and quality profiles can model base compositions. It can mimic UV damage by adding 2
deamination. However, it is specifically designed for simulation of ancient DNA 2
sequences [14]. BEAR [15], focused on metagenomics, generates error, quality, and 2
abundance profiles. However, the nucleotide content of the reads could be biased for 23
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several reasons. First, if sequence library preparation involves immunoprecipitation, 2
antibodies might be biased towards pulling down specific nucleotide profiles. Moreover, 2
ligation efficiencies could be different across varying nucleotides on both 5 and 3’ ends, 2

which would result in some nucleotide enrichment at the read ends. Furthermore, the 7
nature of sequencing technology might supposedly yield a particular biased nucleotide 2
profile. For instance, sequencing methods yielding the maps of UV damage naturally 29
result in dipyrimidine-enriched reads [16}[17]. Additionally, the GC content of the reads
might vary depending on the sequencing platform [18]. Finally, the PCR step might 3
introduce another nucleotide bias due to differential efficiencies of universal primers 3

towards specific nucleotides [19]. Considering such factors that could affect the genomic 3
distribution of the reads, there is a clear need for a sequencing read simulation tool that s
utilizes nucleotide content profile although simulated reads can also be used to eliminate 3
nucleotide content bias in experiments whose results are affected by nucleotide content. 36
Simulation tools mentioned above can account for error and quality profiles of 37
sequencing platforms and GC content biases. However, most of them were designed to s
simulate reads based on sequencing instruments. There was no other option if aimed to 30
generate a simulated dataset that mimics the nucleotide content of input reads. Here we 40

present boquila, a nucleotide content-based NGS read simulator that can produce a
simulated reads with a similar nucleotide content profile to input reads. They can be 2
used to normalize the nucleotide content bias in actual reads. 3

Genomic regions with higher copy numbers have a greater chance of being pulled a
down during library preparation, whereas those with lower copy numbers are harder to
detect. Boquila can also use data from input sequencing as input while generating a6
simulated reads. With this approach, we can also use generated simulated reads to a7
normalize the impacts of copy number variations. as
Features and methods .
Boquila was specifically developed to generate synthetic reads with the same nucleotide s
content as input reads. It operates with FASTA or FASTQ files as an input and 51
generates reads according to the nucleotide content of the input. The number of 52
generated reads and their length distribution will equal the input reads. The nucleotide s
profile can be calculated based on user-defined kmer length or single nucleotides. 54
Boquila can use the entire genome or pre-defined genomic intervals while randomly 55

selecting reads from the reference genome, thus providing fine-grained control over the s
regions where simulated reads are generated. Alternative to the reference genome, input s
sequencing reads can also be used, if a user has raw genome sequence data as a control  ss
retrieved from the same experimental setup (cell type, conditions, etc). In this case, 59
reads are randomly generated from input sequencing reads. When generating simulated e
reads, the nucleotide profile obtained from input reads is adjusted dynamically based on &
the nucleotide profile obtained so far from simulated reads. In this manner, simulated 62
reads can be further conformed to input reads. 63

Simulated reads are exported in FASTA or FASTQ format based on the input read e
format. Simulated reads can also be exported in BED format. Quality scores are copied s
over from input reads if input reads are present in FASTQ format. FASTA and FASTQ

are standard formats for high-throughput sequencing reads, making boquila easier to 67
integrate into existing workflows. Additionally, obtaining output in BED format can 68
help bypass alignment, which is one of the most time- and resource-intensive steps in 69
any NGS workflow. 70
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Results n

We used boquila to generate simulated reads for the data sets of two published studies:
XR-seq data from and damage-seq data from [21]. Simulated reads have the same

nucleotide content as true reads Fig (XR-seq Hotelling’s T-square: 0.25, p-value: 7
0.99, damage-seq Hotelling’s T-square: 5.2, p-value: 0.4), but they are randomly 7
generated from the genome. Both XR-seq and damage-seq reads have a certain 76
nucleotide bias due to the UV-induced damage site. The simulated reads generated by =
boquila can be used to normalize the true repair signal and the true damage signal 78
obtained from XR-seq and damage-seq, respectively Fig[I]C. Using this method, we can 1
eliminate the potential bias of the nucleotide content in subsequent analyses. 8
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Fig 1. A: Overall workflow of boquila. B: Nucleotide frequency of simulated and true
reads for XR-seq (left) and damage-seq (right). XR-seq reads are enriched with
thymines at 19-21st positions of the reads, whereas centered damage-seq reads are
enriched with pyrimidines at 5-6th positions. C: UV-induced repair (XR-seq) profiles
around transcription start sites (TSS). Due to transcription-coupled repair (TCR),
transcribed strand (TS) is expected to have higher repair signals relative to the
non-transcribed strand (NTS). Whether sequence bias affect the TCR profile around
TSS is investigated with the simulated reads (bottom). The profiles showing
observed/expected (due to sequence context) ratios (on the right) indicate the TS (top)
and NTS (bottom) TCR profiles.
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Discussion n
In this study, we propose a novel sequencing simulator utilizing nucleotide content. 8
Some simulators can account for bias produced by sequencing machinery and GC 83
content. Furthermore, some focused on introducing genomic variation into simulated o
reads, Table [Il However, no simulation tool can yield random reads reflecting the 8
nucleotide content profile of the input reads. Alternative to the reference genome, 86

boquila can also use input sequencing data during simulation to account for CNV bias, &
which most other simulation tools neglect. With the development of NGS technologies s
for each specific research question, specialized correction tools must be used to remove s
technical artifacts of the methodology. In that respect, boquila fills an essential gap in w0
NGS analysis. o1

Table 1. Brief summary of existing simulation tools

. Output Output GC CNV Nucleotide Genomic . .
Simulator Layout Format bias bias Content Variation Simulated Profile
MetaSim [22] SE FA empirical error, genome abundance profile
Mason |23] SE,PE FAFQ empirical error and quality profiles
BEERS |[24] PE FA intron signal profile, error profile
ART |[10] SE,PE FQ,SAM empirical length, error, quality profiles
GemSIM [25] SE.PE FQ,SAM v v empirical quality and error profiles
Grinder [26] SE.PE FQ,FA v position dependent error profile
pIRS [11] PE FQ v v empirical base-calling, gc%-depth profiles
Wessim [27] SE,PE FQ,SAM v fragment generation models
NeSSM 28] SE,PE FQ v error and coverage profiles
xs [29) SE.PE FQ read-length and quality profiles
SInC [5] SE.PE FQ v quality and error profiles
CuReSim [30] SE FQ v v error profile
FASTQSim [31] SE FQ read-length, quality and error profiles
BEAR [15] SE,PE FQ empirical length, error, quality profiles
VarSim [3] FQ v mutation profile
SCNVSim [6] SE,PE FA VCF SV,.CNV -
IntSim [7] SE.PE FQ v v read-length, quality and error profiles
tHapMix [§] BAM v error profile
gargammel [14] SE,PE FQ v damage, fragmentation, contamination profiles
NEAT |32 SE,PE FQ v v read-length, quality and error profiles
NanoSim [13] SE FQ error profile, length distribution profile
Pysim-sv |9 SE.,PE FQ v v -
Xome-Blender [33] PE BAM v -
Mitty |12 SE,PE FQ, VCF v v empirical quality and length profiles
PasSS [34] SE,PE FQ read-length and error profiles
SimuSCoP [4] SE.PE FQ v v quality and error profiles
PBSIM?2 [35] SE FQ quality and error profiles
SomatoSim [2] PE SAM,BAM SNV error profile
boquila SE FQ,FA\BED Vv v v nucleotide content profile

SE: single end, PE: paired end, FA: fasta, FQ: fastq, SNV: single nucleotide variation, CNV: copy
number variation, SV: structural variation.
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Availability

Boquila is written in Rust and freely available at
https://github.com/CompGenomeLab/boquila.
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