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Abstract

Autism spectrum disorder (ASD) is a highly heterogeneous disorder, yet transcriptomic profiling
of bulk brain tissue has identified substantial convergence among dysregulated genes and
pathways in ASD. However, this approach lacks cell-specific resolution. We performed
comprehensive transcriptomic analyses on bulk tissue and laser-capture microdissected (LCM)
neurons of 59 postmortem human brains (27 ASD and 32 matched controls) in the superior
temporal gyrus (STG) ranging from 2-73 years of age. In bulk tissue, synaptic signaling, heat
shock protein-related pathways and RNA splicing were significantly altered in ASD. There was
age-dependent dysregulation of genes involved in GABA (GAD1 and GADZ2) and glutamate
(SLC38A1) signaling pathways. In LCM neurons, AP-1 mediated neuroinflammation and
insulin/IGF-1 signaling pathways were upregulated in ASD, while mitochondrial function,
ribosome and spliceosome components were downregulated. GABA synthesizing enzymes
GAD1 and GAD2 were both downregulated in ASD neurons. Alterations in small nucleolar
RNAs (snoRNAs) associated with splicing events suggested interplay between snoRNA
dysregulation and splicing disruption in neurons of individuals with ASD. Our findings supported
the fundamental hypothesis of altered neuronal communication in ASD, demonstrated that
inflammation was elevated at least in part in ASD neurons, and may reveal windows of
opportunity for biotherapeutics to target the trajectory of gene expression and clinical

manifestation of ASD throughout the human lifespan.

Introduction

Autism spectrum disorder (ASD) defines a heterogeneous set of complex neurodevelopmental

disorders affecting 1 in 54 children in the United States according to current estimation (1, 2)
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and confers lifelong challenges. ASD is characterized by difficulties with social communication
as well as a repetitive, restricted repertoire of behaviors and interests (3). Population, family and
twin studies all indicate a strong genetic component contributing to risk for ASDs (4, 5), with
heritability estimates of ~ 70% (6). However, the genetic causes and pathophysiology of ASD

are varied and often complex.

Despite this heterogeneity, transcriptomic analyses of postmortem human brain have elucidated
substantial convergent molecular-level pathology associated with idiopathic and syndromic forms
of ASD (7-13). Multiple studies have profiled the transcriptomes of postmortem brain regions
from individuals diagnosed with ASD (7, 8, 11, 14), including the temporal cortex implicated due
to its critical importance in speech and language function (7, 8, 11). The most consistent findings
include disruption of neuronal/synaptic activity and activation of innate immunity/glial markers (7,
8, 11). Dysregulation of alternative splicing and non-coding RNAs has also been shown to be

dysregulated in ASD brains (8).

Most previous transcriptomic studies, however, profiled homogenate brain tissue and have
therefore been unable to pinpoint the underlying specific cell-types in which gene expression is
altered. Recently, Velmeshev et al. have published the first single-nucleus RNA-sequencing (sn-
RNAseq) dataset in postmortem ASD cortex (13), identifying substantial changes in upper-layer
excitatory neurons and microglia, consistent with observations from bulk tissue. As such sn-
RNAseq datasets currently profile only the 3’ end of highly expressed genes within each cell,
these data characterize neither lowly expressed coding and non-coding genes, nor splicing

alterations that may contribute to altered neuronal function in ASD.

Here, we performed the first systematic study using transcriptomic profiling to directly compare
both bulk cortical tissue and laser capture microdissected (LCM) neurons from anatomically well-

defined superior temporal gyrus (STG) samples from 59 subjects (27 with ASD and 32 age-
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matched controls) ranging from 2-73 years of age (Figure 1, Supplementary Table 12). The STG
modulates language processing and social perception, thereby playing a critical role in integrating
a breadth of information to provide meaning to the surrounding world (15). Structural and
functional imaging studies have long implicated STG in ASD (15, 16), however molecular-level
changes in neurons remain unknown. This study aimed to identify neuron-specific transcriptomic
changes in ASD brain by identifying differentially expressed genes, differential splicing events,
age-related gene expression changes across the lifespan, as well as co-expression networks to

reveal gene modules altered in ASD (Figure 1).

Results

Global gene expression changes in ASD superior temporal gyrus (STG)

RNA sequencing was performed on bulk tissue STG of 59 human brains, 27 from individuals with
ASD and 32 from age-matched neurotypical controls, ranging from 2-73 years of age. Following
quality control, we performed a comprehensive characterization of differential gene expression
and local splicing alterations in ASD. After adjusting for known covariates and correcting for
multiple comparisons, we found 194 differentially expressed genes between individuals with ASD
and controls (FDR < 0.05). Of these, 143 were upregulated and 51 were downregulated (Figure
2A, Supplementary Table 1), with a median absolute fold change of 1.45 (range 1.11 - 4.04,
Figure 2A). We observed significant concordance between our differential gene expression (DGE)

results and previous data of the same region from different samples (12) (Supplementary Figure

1, Spearman p = 0.37 for t statistics, p-value < 107 °).

Functional and pathway enrichment analyses indicated an over-representation of heat shock
proteins (HSPs) and HSP-related chaperones, which were upregulated in ASD subjects. This

included HSP70 family members HSPA1A and HSPA1B; HSP40 family members DNAJB1 and

4
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92  DNAJB4; small HSP20 family members HSPB1 and HSPB8; and HSP-binding chaperons BAG3
93 and PTGESS3 (Figure 2C,D). HSPs are involved in stress-response, immune activation and
94  inflammation(17, 18), all of which were upregulated in ASD postmortem brain (7). Downregulated
95 genes were mainly enriched in pathways related to synaptic function (Figure 2D), consistent with
96 previous findings (7). Notably, two important voltage-gated potassium channel-related genes
97 KCNH3 and KCNIP1 were among the most downregulated (Figure 2C), which may relate to

98  disrupted neuronal excitability hypothesized in ASD (19, 20).

99  As age-dependent expression alterations have been reported in ASD brain (14), we employed an
100 analytical model accounting for age and the interaction between age and diagnosis. Fourteen
101  genes showed age-dependent DGE between ASD and control (Supplementary Table 2).
102 Interestingly, genes involved in gamma aminobutyric acid (GABA) synthesis (GAD1 and GAD?2)
103  (21) were downregulated in ASD only during late adulthood (Figure 2E). This may indicate an
104  age-dependent dysregulation of GABA signaling in ASD neurons, or a decrease in the proportion

105 of GABAergic neurons in ASD brains (22).

106  Differential splicing (DS) events in the bulk tissue transcriptome were evaluated using LeafCutter
107  (26). Among 35,505 intron clusters identified by LeafCutter, 308 clusters (297 unique genes)
108 showed significant DS between ASD patients and controls (FDR < 0.05). The 297 genes did not

109  show significant functional enrichment (Figure 2F, Supplementary Table 5).

110 To place subtle changes across the ASD STG transcriptome into a systems-level context, we
111 performed weighted gene correlation network analysis (WGCNA) to build gene co-expression
112  networks (23), identifying 31 modules of co-expressed genes (Methods; Supplementary Table 3).
113  Seven modules showed a significant association with ASD diagnosis, two of which were strongly

114  enriched for ASD-associated genetic risk factors (Modules Block-M1 and Block-M10, Figure 2B).
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115  Module Block-M1 was upregulated in ASD STG and its gene members were enriched in RNA
116  splicing and mRNA metabolic pathways (Supplementary Table 4). Notably, significantly
117  upregulated HSPs were also members of the Block-M1 module (Supplementary Table 3). HSPs
118  contribute to RNA splicing during stress (24). Downregulated modules in ASD were mostly
119  enriched for synaptic functions (Block-M3, Block-M10, Block-M14, Block-M19, Block-M31;
120  Supplementary Table 4). Cell-type enrichment analysis also indicated these downregulated
121 modules were enriched in marker genes for both excitatory and inhibitory neurons (Figure 2B),

122  suggesting a broad disruption of neuronal and synaptic processes in ASD STG.

123  Genes in the upregulated module Block-M1 and one downregulated module (Block-M10) were
124 enriched in high-confidence ASD risk loci (25, 26), mutationally constrained (27) and highly
125 intolerant to mutations (pLI > 0.99) genes (28), as well as regulatory target genes of CHDS8, which
126  has clear links to at least a subset of ASD cases (29) (Figure 2B). Many hub genes for module
127  Block-M10 encoded synaptic proteins (Supplementary Figure 2, Supplementary Table 3). This
128 module was also enriched for ASD common risk alleles from ASD GWAS data (30). Together

129  this suggested a causal role of synaptic dysfunction in ASD etiology.

130 Neuron-specific gene expression and splicing alterations in ASD STG

131  To provide cell-type specificity for the observed transcriptomic changes, we next performed laser
132  capture microdissection to capture neurons using STG sections taken from the same subjects
133  profiled using bulk RNA-seq. We then interrogated ASD-associated gene expression and splicing
134  alterations using the same bioinformatic pipelines as above. Across 13,458 neuron-expressed
135 genes, 83 were significantly differentially expressed between ASD subjects and controls at FDR
136 < 0.05, of which 52 were upregulated and 31 downregulated (Figure 3A, Supplementary Table 6).
137  Median absolute fold change in expression between subjects with ASD and controls was 2.48

138 (range 1.29 - 9.72; Figure 3A). Surprisingly, concordance of neuronal DGE with bulk tissue DGE
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139 was low (Spearman p = 0.18 for t statistics, Supplementary Figure 3), suggesting our analysis

140  captured ASD signatures unique to neurons.

141 Upregulated genes in ASD neurons were highly enriched in pathways related to growth and
142  differentiation (Figure 3E). Specifically, the AP-1 transcription factor complex components (31)
143  FOS, JUN and JUNB were all up-regulated in ASD neurons, among other growth/differentiation
144  regulators such as SOX9, STPR1 and PPP1R16B (Figure 3D). The AP-1 transcription factor
145  complex is known to regulate a number of downstream biological processes (31). Indeed, we
146  found upregulated B cell signaling adaptor gene BCL 70 and NFkB inhibitor delta gene NFKBID
147  in ASD neurons (Figure 3D). NFkB and AP-1 may function together in regulating inflammatory
148  processes (32-34), and up-regulation of both NFKBID and AP-1 point to dysregulated
149 inflammation in ASD neurons. In addition, the inward-rectifier potassium ion channel gene KCNJ2
150  was also up-regulated in ASD neurons (Figure 3D). Interestingly, both KCNJ2 and AP-1 subunit

151  FOS were involved in regulating excitability and plasticity at the cholinergic synapse (35-37).

152  Downregulated genes in ASD neurons are primarily enriched in mitochondrial function and
153  oxidoreductase activity (Figure 3E). Specifically, comparing to bulk tissue STG, more subunits of
154  the NADH:ubiquinone oxidoreductase (complex |I) were downregulated in neurons, and their
155  effect sizes were larger (Supplementary Figure 4). Indeed, oxidative phosphorylation (OXPHOS)
156  defects have been reported in ASD lymphocytes, muscle, and temporal lobe (38-40). Our results
157  provide evidence that compared to bulk tissue, mitochondrial dysfunction is much more profound

158 in STG neurons.

159  While LCM captured both excitatory and inhibitory neurons, we note that GAD7 and GADZ2 genes
160 are among the most downregulated in ASD neurons (Figure 3D). The coordinated down-

161  regulation of both GABA synthesizing enzymes suggest that the level of GABA neurotransmitter
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162  may be decreased in ASD neurons, providing support to the excitation to inhibition (E/I) imbalance

163  hypothesis of ASD (19, 20, 41).

164 By testing the interaction between diagnosis and age, 3 genes (HTRAZ2, aka OMI; ZNF765; and
165 PCDHB18P) showed age-dependent differential expression in ASD neurons (Supplementary
166  Table 7). For example, age trajectories of serine peptidase HTRAZ2 were opposite in ASD brains
167  compared to controls (Figure 3B). In healthy brains, the expression of HTRA2 was much higher
168  before age 30 and decreases with age, while its expression levels begin lower and increase with
169 age in ASD STG neurons. Attenuated HTRAZ2 activity may lead to neuronal cell death, altered
170  chaperon activity and autophagy and has been linked to Parkinson’s disease (42). In addition,
171 increased active form of the OMI/HTRAZ2 serine protease has been positively correlated with
172  cholinergic alterations in AD brain (43). Thus, itis plausible that the altered expression of HTRA2
173  with age we observed in ASD brain may be associated with neuronal alterations during

174  development.

175  We also quantified local splicing events in the neuronal transcriptome. After adjusting for multiple
176  testing, LeafCutter identified 1292 significant differential spliced intron clusters (1177 unique
177  genes) out of 17,250 total intron clusters at FDR < 0.05 (Figure 3C, Supplementary Table 8). No
178  functional enrichment was observed for the 1177 genes. We observed more disruptions in local
179  splicing events in ASD neurons than in bulk tissue (308 DS out of 35505 events in bulk tissue,

180 1292 DS out of 17250 events in neurons; p < 2 x 10-'®test of proportions).

181  Neuron-specific networks pinpoint subtle changes in the neuronal transcriptome in ASD

182  Co-expression network analysis on neuronal data identified 18 modules, each containing between
183 101 and 998 co-expressed genes (Supplementary Table 9). Four modules were significantly

184  upregulated in ASD neurons, while one module was downregulated (Figure 4A).
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185  The upregulated neu-M5 co-expression module was highly represented by the DGE analysis
186  signal. Upregulated genes JUN, JUNB, NFKBID were all hub genes of neu-M5 module. Neu-M5
187  module also captured additional AP-1 subunits and interactors, such as FOSL2 (44) and IRF3
188 (34, 45). Neu-M5 module was enriched in immune response pathways, providing further evidence
189  that AP-1 mediated neuroinflammation was elevated in ASD neurons (Figure 4C, Supplementary
190 Table 10). Hubs of Neu-M5 also contained multiple ion channel-related genes, such as sodium
191  ion channel gene SCN1B, potassium channel genes KCNJ2 and KCNJ10, and solute carrier gene
192  SLC40A1 (Figure 4C, Supplementary Table 9). Coordinated upregulation of various ion channels
193  suggested that membrane transport was activated in ASD neurons, consistent with heightened
194  excitability. Neu-M5 was significantly overlapped with module M16 from Voineagu et al. (7). M16
195  was also enriched in immune/inflammatory response and was up-regulated in ASD (7). Our data
196 refined our understanding of the neuroinflammatory changes in ASD to include a neuronal
197  component. Additionally, downregulated neu-M17 module was enriched in mitochondrial function
198  and contained most differentially expressed mitochondrial genes, such as ATP synthase subunits

199  ATP5F1B and ATP5PF (Figure 4F, Supplementary Table 9).

200 Neuronal co-expression networks further captured signals that were not detected by DGE
201 analysis. Neu-M6 module was upregulated in ASD, and among its hub genes were several insulin
202  signaling pathway components, including insulin-like growth factor (IGF) receptor IGF1R, IGF
203  binding protein IGFBPS, insulin receptor substrate /RS2 as well as CBL-associated SORBS1
204  (Figure 4D, Supplementary Table 9). Insulin signaling is associated with multiple
205 neurodevelopmental disorders, including monogenetic ASD syndromes such as Rett and Phelan-
206  McDermid syndromes (46-49). Our results provided direct molecular-level evidence that insulin

207  signaling was altered in ASD neurons.

208 Among all five significantly disrupted modules, none were enriched for ASD common variants and

209  only one upregulated module (Neu-M16) showed enrichment in highly confident ASD risk genes,

9
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210 as well as in several other curated gene sets (Figure 4A). Neu-M16 was enriched in synaptic
211 functions (Figure 4E, Supplementary Table 10). Further, cell-type analysis showed that Neu-M16
212  was also highly enriched in excitatory neurons (Figure 4B), with CAMK2A and CAMK2B among
213 its hub genes (Supplementary Table 9). The upregulation of Neu-M16 suggested elevated

214  excitatory signal in ASD neurons.

215  We further tested if significantly disrupted neuronal modules were enriched in any neuron
216  subtypes. Upregulated neuronal modules in ASD were only enriched in excitatory neuron
217  subtypes while enrichment of inhibitory neurons was only observed for downregulated modules
218  (Figure 4B). This provides additional evidence for altered neuronal activity in ASD neurons,

219  consistent with the findings in our DGE analysis.

220 Small non-coding RNAs are selectively down-regulated in ASD neurons and correlate with

221  altered local splicing

222  When investigating the genes downregulated in ASD neurons more closely, we noticed a striking
223  pattern that, 51 out of the 59 neuron-expressed small nucleolar RNA (snoRNA) (50) genes were
224  down-regulated in ASD neurons, and 13 were significantly down-regulated at p-value < 0.05
225  (Figure 5A, Supplementary Table 6). Dysregulation of snoRNAs was not observed in bulk tissue
226  (Supplementary Table 1), and snoRNAs were undetectable in a recent ASD single-cell study (13).
227  snoRNAs are involved in the modification and maturation of ribosomal RNAs (rRNAs) and small
228 nuclear RNAs (snRNAs) (51). Interestingly, both ribosome and spliceosome components were
229 among the most downregulated in ASD neurons (Figure 3E). Moreover, snRNAs were also
230 downregulated in ASD neurons, with 23 out of 24 snRNA genes down-regulated in ASD and 13

231 significantly down-regulated at p-value < 0.05 (Supplementary Figure 5, Supplementary Table 6).

10
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232  As snoRNAs and snRNAs are known to be critical regulators of alternative splicing (52-55), and
233  splicing alterations are strongly implicated in ASD and observed in LCM-captured neurons, we
234  next examined alterations in splicing events that may be associated with snoRNA dysregulation.
235  We calculated the correlation between snoRNA expression level and each local splicing event in
236  neuronal data, followed by FDR correction for multiple comparisons. We identified 835 gene loci
237  in neurons with at least one intron whose percent spliced in (PSI) was significantly correlated with
238 snoRNA gene expression (Supplementary Table 11). Of these 835 intron clusters, 196 were
239  significantly dysregulated in ASD neurons (Supplementary Table 11). Several intron clusters
240  correlated with multiple snoRNAs and corresponded to genes involved in synaptic functions
241  (Figure 5B). For example, GOT1 encodes the glutamic-oxaloacetic transaminase known to
242  function as an important regulator of glutamate level (56). PSI of intron 5 of GOT7 was highly
243  correlated with the expression level of multiple snoRNA genes (Figure 5C). GOT1 intron 5 was
244  also differentially spliced between ASD and control (Figure 5D). Differential splicing of GOT1
245 gene may change the level of glutamate, and thus leads to an imbalance of E/I in neuronal

246 communication in ASD neurons.

247 Discussion

248  Altered neuronal processes and synaptic function are consistent findings in transcriptomic
249  analyses of ASD brain (7, 8, 11). However, transcriptomic studies of autistic brains are mostly
250 limited to bulk tissue (7, 8, 11). Cell-type-specific molecular alterations in neurons are still largely
251 unexplored. A recent single-cell RNA-seq study sheds light on the cell-type-specific transcriptomic
252  changes in ASD (13), however, due to technology limitations, single-cell studies currently cannot
253  reliably quantify low-expressed genes and local splicing events. Thus, in this study, we performed

254  comprehensive analyses of gene expression and alternative splicing by short-read paired-end

11
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255 RNA-seq on both bulk tissue and LCM-isolated neurons from the STG brain region in a cohort of

256 59 human brains ranging from 2-73 years of age.

257  Bulk tissue transcriptome findings reveal downregulated neuronal and synaptic function
258 processes, upregulation of heat shock proteins, and unfolded protein response in ASD

259 temporal cortex

260  Our bulk tissue analyses revealed a potential causal role of downregulated neuronal processes
261 and synaptic functions in ASD etiology, consistent with findings from previous bulk-tissue
262 transcriptomic studies on the same brain region (7). Previous studies also reported dysregulated
263  alternative splicing events in ASD brain (8, 57). Differential splicing analysis in bulk STG found
264  several synaptic genes, including CANCA2D1, CAMK4, CLASP2, CNTNAP1, EPHB1, KALRN,
265 NRXN3, SOS2 and SYNGAP1, differentially spliced in ASD. SYNGAP1 isoforms have been
266  shown to differentially regulate synaptic plasticity and dendritic development (58). This further

267  signifies the importance of studying alternatively spliced isoforms in ASD brain.

268 We also observed a coordinated upregulation of multiple HSPs and HSP-related chaperones in
269 ASD STG. HSPs can serve as activators and regulators of the immune system (18), and
270  upregulated HSPs may induce immune responses in ASD brain. They also play a role in
271  facilitating alternative RNA splicing (24). Previous studies found that both immune response and
272  RNA splicing are upregulated in ASD brain (7, 8, 11), and our results signify that upregulated
273  HSP-related pathways are a potential contributor to these observations. HSPs and HSP-related
274  chaperones are normally induced in response to stress. The upregulation of HSPs in ASD
275 neurons may relate to elevated endoplasmic reticulum (ER) stress since both unfolded protein
276 response (UPR) and apoptosis are also upregulated in our ASD bulk data (Figure 2D). ASD-linked
277  rare or de novo mutations in synaptic genes can lead to misfolded proteins and cause ER stress

278  (59), itself coupled to heightened inflammation and neurotoxic cell death (60). ER stress-related

12
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279 genes are also dysregulated in the middle frontal cortex of subjects with ASD (61). Our data
280 suggest that ER stress serves as a major response to ASD genetic mutations, and ER stress
281  activates UPR, including the production of HSPs and chaperones. UPR further induces multiple
282  downstream processes such as inflammation and immune response (62). Limiting the effect of

283 ER stress and UPR may be a promising therapeutic avenue for ASD.

284  ASD neuronal transcriptome reveals upregulated neuroinflammation and altered

285  neuronal activity

286  We observed a strong upregulation of AP-1 transcription factor components in ASD neurons. AP-
287 1 subunits FOS, JUN and JUNB were upregulated at FDR < 0.05, and FOSL2 was upregulated
288 at nominal p < 0.05. AP-1 regulated gene expression in response to a variety of stimuli, including
289  cytokines, growth factors, stress signals, infections and inflammation/neuroinflammation (31). In
290 ASD neurons, it is likely that AP-1 activation induces broad inflammatory response, since several
291  immune and inflammation-related genes were also strongly upregulated. These included NFKBID
292  and BCL10, both of which were involved in the NF-kB pathway and were upregulated at FDR <
293  0.05. In addition, the interferon regulatory factor IRF3 is upregulated at p < 0.05, and /RF3 is co-
294  expressed with AP-1 subunits. The simultaneous upregulation of AP-1 subunits, NFkB-related
295 genes and interferon regulatory factors suggested that immune and inflammation responses were
296 activated in ASD neurons. Upregulated immune response and neuroinflammation have been
297  consistently observed in ASD patients by bulk tissue transcriptomic studies largely implicating
298  (lial cells (7, 8). However, our results demonstrated that immune/neuroinflammatory response
299 was clearly activated in ASD neurons, and may be mediated by transcription factor AP-1. In
300 addition, analysis of the potential upstream regulators of the observed changes in the ASD

301 neuronal transcriptome with Ingenuity Pathway Analysis predicted their activation. This includes
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302 MTORC2 member RICTOR, growth factors FGF2 and BMP4, and OSM cytokine, most of which

303  were implicated in ASD (63).

304 We also observed strong downregulation in ASD STG neurons of GAD7 and GAD2 genes,
305 involved in the biosynthesis of the inhibitory neurotransmitter GABA. In contrast, CAMK2A and
306 CAMK2B genes, which are essential for aspects of plasticity at glutamatergic excitatory synapses,
307 are upregulated at nominal significance. In addition, co-expressed gene modules that were
308  upregulated in ASD neurons were mainly enriched in excitatory neurons, while the downregulated
309 module was primarily enriched in inhibitory neurons. These data provided further support for the
310  hypothesis that ASD reflects imbalance of E/I in neuronal communication, also reported in several
311  brain regions in ASD (19, 20, 41). To our knowledge this is the first report providing molecular-

312  level evidence for imbalance of E/l in neuronal communication specifically in STG neurons in ASD.

313  Multiple insulin signaling pathway components, such as IGFBP5, IRS2 and SORBS1, are
314  coordinately upregulated in ASD neurons. Insulin signaling pathway is implicated in several
315  neurodevelopmental disorders, likely due to its role in protein homeostasis and synaptic plasticity
316 (46-49). Although the insulin-like peptide IGF-1 is currently in clinical trial for ASD, the direction
317  of change in ASD brain is still controversial (49). In our data, the expression level of IGF-1 is
318 downregulated in ASD neurons at nominal significance; upregulation of the aforementioned
319 insulin signaling pathway components may reflect a compensatory reaction to the lack of IGF-1

320 ligand.

321 Future studies will focus on the role of snoRNAs in ASD neurons, as well as other long and small
322  modulatory non-coding RNAs. Given the emerging role of snoRNAs as alternative splicing
323 regulators (54, 55), we hypothesize that a coordinated downregulation of multiple snoRNAs
324  correlates with elevated dysregulation of local splicing events in ASD neurons. Our data provide

325  evidence supporting this hypothesis, however no causal relationship can be determined. It will be
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326  critical to determine if snoRNA dysregulation plays a causal role in ASD etiology, and if so,
327  pinpoint the underlying mechanism and possibly relate to transcript isoforms driving ASD brain

328 and neuronal phenotype.

329 Age-associated differential expression in STG points to altered neuronal activity in ASD

330 Age-dependent gene expression changes have been observed in the ASD brains (64, 65). We
331  previously reported age-dependent miRNA alterations in the superior temporal sulcus (STS) and
332  adjacent primary auditory cortex (PAC) (64). In this study, a number of genes show varying age

333 trajectories in ASD bulk tissue and isolated neurons.

334  In bulk tissue, genes involved in GABAergic signaling (GAD1 and GADZ2) were upregulated with
335 age in controls, while downregulated with age in ASD. Multiple lines of evidence have pointed to
336  reduced neuronal inhibitory signal as a hallmark of ASD, including decreased number of
337  GABAergic interneuron (especially Parvalbumin neurons) (66) and reduced density of GABA
338 receptors (67-70). These cellular phenotypes are mainly observed in adults. Our findings
339 indicated that the reduction of GAD7 and GAD2 mRNA levels in ASD brain became more
340 profound with increasing age, consistent with the observations at cellular level. In addition,
341  SLC38A1, involved in neurotransmission at glutaminergic and GABAergic synapses (71), was
342  downregulated in ASD relative to control STG. SLC38A1 is implicated in Rett Syndrome (72) and
343  mitochondrial disorders, and its decrease may contribute to the observed alterations in synapse

344  formation and neural connectivity.

345 In LCM neurons, the expression of HTRA2 was higher below age 30 and decreases with age in
346  control neurons, while lower at younger ages and increasing with age in ASD neurons. HTRAZ2 is
347  important in maintaining mitochondrial homeostasis (73) and inducing apoptosis. It is implicated
348 in pathogenesis of neurodegeneration, hypoxic-ischemic damage, and is proposed as a potential

349  treatment target in neurological diseases (74). These findings further support the hypothesis of
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350 altered neuronal E/I activity, neuroinflammation, cell death, and mitochondrial dysfunction,
351 implicated in ASD (75) and suggest treatment windows to target specific genes to alter their

352  expression trajectories with age.

353 Closing

354  Our study examined both bulk cortical tissue and isolated neurons from STG of autism and

355  control brain. We found expression patterns in neurons that are not detectable when aggregate
356  transcriptomes of multiple cells are profiled. In both cases, transcriptomic evidence suggested
357 alteration in E/I balance could contribute to asynchronous activity in the brain which may be a
358  contributing factor to autism in early development. Neuronal transcriptomes revealed further and
359  more specific evidence of divergent activity and molecular signaling pathways. Future studies
360  will need to examine the roles of other cell types in the brain and their contribution to ASD

361  phenotype. As research into ASD continues to focus on more precise data, it is apparent that
362 the complexity of factors that produce an ASD phenotype are slowly becoming clearer. As

363  recent technologies are applied to the valuable collections of banked brain tissue, better

364  definitions of specific subsets of ASD will become possible.

365 Figure Legend

366  Figure 1 Overview of experiment design and data analysis pipeline

367  Figure 2 Transcriptomic difference between ASD cases and controls in bulk tissue STG.

368 A, Distribution of fold-change of differential expression for 194 differentially expressed genes.
369  Case:control fold-changes for upregulated genes are plotted in gold (N = 143, positive values)
370 and control:case fold-changes for downregulated genes in blue (N = 51, negative values). B, Co-

371  expressed gene modules that were significantly disrupted in ASD. Modules were hierarchically
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372  clustered by module eigengene. Module-diagnosis associations were shown on the right of each
373 module (*FDR < 0.05). Additional enrichment analyses were also shown for each module,
374  including: Enrichment for ASD GWAS common variants (30)(*FDR < 0.1); Enrichment for major
375  CNS cell types(76)(*FDR < 0.05); Enrichment against literature-curated gene lists (*FDR < 0.05)
376 including pre- and postsynaptic marker genes (77), genes with likely-gene-disruption (LGD) or
377 LGD plus missense de novo mutations(DNMs) found in patients with neurodevelopmental
378  disorders(78), genes with probability of loss-of-function intolerance (pLI) > 0.99 as reported by
379 the Exome Aggregation Consortium (28), mutationally constrained genes(27), vulnerable ASD
380 genes(79), CHDS targets(29), FMRP targets (80), syndromic and highly ranked (1 and 2) genes
381  from SFARI Gene database. Abbreviations: Per, pericytes; OPC, oligodendrocyte progenitor cells;
382 InNeu, inhibitory neuron; ExcNeu, excitatory neuron; Oligo, oligodendrocytes; Endo, endothelial
383 cells; Astro, astrocytes. C, Volcano plot showing significantly up- (gold) and down-regulated (blue)
384  genes (FDR < 0.05). Genes discussed in the main text are colored red. D, Functional enrichment
385 of differentially expressed genes in ASD cases compared to controls. Top ten significantly
386  enriched up- and down-regulated categories were shown. Categories were ranked by normalized
387  enrichment score (NES), and NES for down-regulated categories were set to negative for
388  displaying purpose solely. The color of each dot reflects FDR-corrected g-value, and the size of
389 each dot reflects the number of overlapped genes between our gene list and the corresponding
390 GO category. E, Age trajectory of GAD1 (left) and GAD2 (right) gene expression, stratified by
391 ASD diagnosis. F, Quantile-quantile plot of observed p-values vs expected p-values for
392  differentially spliced intron clusters. Significant DS events (FDR < 0.05) were colored red, and

393  overlapping gene names were labeled for top clusters.
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394  Figure 3 Differential gene expression and differential splicing between ASD cases and

395 controls in LCM neurons from STG.

396 A, Distribution of fold-change of differential expression for 83 differentially expressed genes.
397  Case:control fold-changes for upregulated genes are plotted in gold (N = 52, positive values) and
398  control:case fold-changes for downregulated genes in blue (N = 31, negative values). B, Age
399 trajectory of HTRA2 gene expression, stratified by ASD diagnosis. C, Quantile-quantile plot of
400 observed p-values vs expected p-values for differentially spliced intron clusters. Significant DS
401 events (FDR < 0.05) were colored red, and overlapping gene names were labeled for top clusters.
402 DS results from bulk tissue were also plotted for comparison. D, Volcano plot showing up- (gold)
403 and down-regulated (blue) genes. Genes discussed in the main text are colored red. E, Functional
404  enrichment of differentially expressed genes in ASD cases compared to controls. Top ten
405  significantly enriched up- and down-regulated categories are shown. Categories were ranked by
406  normalized enrichment score (NES), and NES for down-regulated categories were set to negative
407  for display purposes solely. The color of each dot reflects FDR-corrected g-value, and the size of
408 each dot reflects the number of overlapped genes between our gene list and the corresponding

409 GO category.

410 Figure 4 Gene co-expression network analysis of the ASD neuronal transcriptome.

411 A, Hierarchical clustering of neuronal gene co-expression modules by module eigengenes.
412  Module-diagnosis associations were shown below each module. Enrichment for ASD GWAS
413 common variants is shown for each module. Enrichment against literature-curated gene lists is
414  shown on the bottom. B, Module enrichment for neuron subtypes. Expression profiles of neuron
415  subtypes were obtained from ref. (76). Red asterisks indicate significant enrichment. C-F,
416  Functional enrichment (top panel) and top 50 hub genes (bottom panel) for module neu-M5 (C),
417  neu-M6 (D), neu-M16 (E) and neu-M17 (F). Edges represent co-expression (Pearson correlation >
418  0.5). Co-expressed partners with evidence of protein-protein interaction were connected by solid
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419  black lines. PPI data was compiled from well-characterized PPl databases, including Bioplex,
420 HPRD, Inweb, HINT, Biogrid, GeneMANIA, STRING and CORUM. Only physical interactions and

421 co-complex associations were kept.

422  Figure 5 Coordinated dysregulation of snoRNAs in ASD neurons.

423 A, Volcano plot showing differentially expressed genes in ASD neurons compared to control.
424  snoRNA genes were colored red. B, Significant correlation between snoRNA expression (x-axis)
425 and intron PSI (y-axis). Introns are labeled with the name of overlapping gene locus. Gene loci
426  thatare correlated with more than 3 snoRNAs were shown. C, Scatter plot showing the correlation
427  between GOT1 intron 5 PSI and expression levels of multiple snoRNAs across all neuron samples.
428  Also shown were fitted regression lines with 95% confidence intervals. Intron coordinates were

429  based on GRCh37. D, PSI of GOT1 intron 5 is downregulated in ASD neurons.

430 Supplementary Figure 1

431 Binned density scatter plot comparing the t-statistics for case versus control differential
432  expression between this study and another study (De Bree et al., unpublished) comparing gene

433  expression between ASD and controls in BA41, BA42, and BA22 bulk tissues; correlation

434  Dbetween the statistics is 0.37 (P < 10 *°).

435  Supplementary Figure 2

436  Representative genes in module Block-M10. Known ASD risk genes were colored red. Synaptic

437  genes that are intolerant to LOF mutation were colored pink. Edges represent co-expression.
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438  Supplementary Figure 3
439 Binned density scatter plot comparing the t-statistics for case versus control differential

440  expression between neurons and bulk tissue; correlation between the statistics is 0.18 (P < 10 *°).

441  Supplementary Figure 4

442  Fold changes (ASD vs. CTL) of NADH:ubiquinone oxidoreductase (complex ) subunits in block

443  tissue (red) and neurons (green).

444  Supplementary Figure 5

445  Volcano plot showing differentially expressed genes in ASD neurons compared to control. sSnRNA

446  genes were colored red.

447  Supplementary Table 1

448 DGE summary statistics for block tissue

449  Supplementary Table 2

450 DGE summary statistics for age-diagnosis-interaction in block tissue

451  Supplementary Table 3

452  Gene co-expression network module membership for block tissue

453  Supplementary Table 4

454  Gene co-expression network module functional enrichment for block tissue

455  Supplementary Table 5

456 DS summary statistics for block tissue
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Supplementary Table 6

DGE summary statistics for LCM neuron

Supplementary Table 7

DGE summary statistics for age-diagnosis-interaction in LCM neuron

Supplementary Table 8

DS summary statistics for LCM neuron

Supplementary Table 9

Gene co-expression network module membership for LCM neuron

Supplementary Table 10

Gene co-expression network module functional enrichment for LCM neuron

Supplementary Table 11

Significant correlations between snoRNA gene expression and local splicing events

Supplementary Table 12

Donor information

Methods

Block tissue RNA extraction and library preparation

Human brain tissue was collected, sectioned coronally and flash frozen. STG from 32 controls
and 27 ASD cases (2-73 years old) was identified anatomically according to "Atlas of the Human
Brain" 4th edition (Maj, Majtanik, Paxinos 2015). Brain tissue (18-25 mg) was excised from the
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476  STG and put directly into 600 ul of Tri Reagent lysis buffer. Total RNA was extracted using the
477  Direct-zol RNA MiniPrep (Zymo Research #R2051) following manufacturer's protocol, with the
478  inclusion of DNase | treatment and eluted in DNase/RNase-free water. Quality and quantity of
479  RNA were determined via RNA 6000 Nano chip on 2100 Bioanalyzer (Agilent), NanoDrop 2000

480  spectrophotometer (ThermoFisher Scientific), and Qubit fluorometer (ThermoFisher Scientific).

481  From each of the 48 STG samples, 50 ng of RNA were used to create strand-specific total RNA
482  libraries with the NuGEN Ovation Universal RNA-Seq System v2 and processed in parallel on the
483  Sciclone NGS automated workstation (Perkin Elmer) according to manufacturer protocol.
484  Following second-strand cDNA synthesis, samples were sheared by sonication on the Covaris
485 E220. InDA-C (aka AnyDeplete) primers were used to target and cleave adapters from rRNA
486 transcripts before amplification of libraries through 16 cycles of PCR. Final barcoded libraries
487  were bead purified and examined for QC using 2100 BioAnalyzer DNA High Sensitivity chips.
488 Library concentration was calculated based on fragment size and normalized to 15 nM for

489  sequencing.

490 Laser capture microdissection, RNA extraction and library preparation

491 Fresh-frozen STG tissue samples from 22 controls and 18 ASD cases (8-73 years old) were
492  carefully dissected and embedded in OCT compound. The specimens were sectioned on a
493  Microm HM550 cryostat (Thermo Scientific) at 12 ym and mounted on PEN membrane slides
494  (ThermoFisher Scientific #L.CM0522). Sections were hydrated with an ice-chilled ethanol series
495  (100%, 75%, 50%) for 2 min each followed by HistoGene staining solution (ThermoFisher
496  Scientific #KIT0415) for 30 seconds, 2 rinses in nuclease-free water, and alcohol dehydration
497  (50%, 75%, 95%, 100% with molecular sieves). Slides were air dried and maintained on dry ice

498  until laser capture microdissection.
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499  Using a Leica LMD-6000 laser capture microdissection system, 100 neurons from each sample
500 were laser captured directly into lysis buffer (PicoPure RNA Isolation Kit, ThermoFisher Scientific
501  KIT0204). RNA was extracted using the PicoPure total RNA kit with inclusion of DNase | digest

502  according to manufacturer protocol.

503  Strand-specific rRNA depleted RNA libraries were prepared from 10 pl of the final neuronal RNA
504 eluate using the NuGEN Ovation SoLo Kit (NuGen #0500) for ultra-low input following
505  manufacturer protocol with final amplification of 18 PCR cycles. Barcoded bead purified libraries
506  were examined for QC using Qubit Fluorometer (ThermoFisher Scientific) and 2100 BioAnalyzer
507  DNA High Sensitivity chips. Library concentration was calculated based on fragment size and

508 normalized to 15 nM for sequencing.

509 RNA sequencing

510 Library concentrations were confirmed with gPCR and pooled before RNA-Seq was performed
511  on lllumina HiSeq4000 at the Vincent J. Coates Genomics Sequencing Laboratory at the
512  California Institute for Quantitative Biosciences (QB3) at University of California, Berkeley.
513 Libraries from LCM samples and STG blocks were sequenced to about 50 million 2x150bp reads
514  per sample. For libraries prepared with the NUGEN Ovation SoLo kit a Custom R1 primer

515 (NuGEN) was used in place of the standard Illumina forward read primer.

516  Mapping, quantification of gene expression, and QC

517 RNA-seq reads were aligned to the GRCH37.p13 (hg19) reference genome via STAR (2.7.2a)
518  using comprehensive gene annotations from GENCODE (v29 lifted over to hg19). Gene-level
519 quantifications were calculated using featureCounts (v1.6.4), considering only uniquely-mapped
520 reads. Quality control metrics were calculated using PicardTools (v2.21.2).

521
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522  Gene-level counts were compiled and imported into R for downstream analyses. Expressed
523  genes were defined as genes with non-zero count in at least 80% of samples. A total of 22,729
524  and 13,458 expressed genes from block tissue and LCM neurons, respectively, were used in the
525 downstream analysis. Sample outliers were defined as samples with standardized sample
526  network connectivity Z scores < -2 (81), and were removed.

527

528 A set of 105 RNA-Seq quality control metrics from the outputs of PicardTools
529  (CollectAlignmentSummaryMetrics, CollectinsertSizeMetrics, CollectRnaSeqgMetrics,
530  CollectGeBiasMetrics, MarkDuplicates) were compiled for each group of samples (block tissue
531 and LCM neurons). These measures were summarized by the top principal components (termed
532 seqPCs), which explained a significant portion of the total variance of each dataset. These

533  seqPCs were used as potential covariates for downstream analysis.

534  Differential gene expression

535 Differential Gene Expression (DGE) analyses were performed using DESeq2 (1.22.2)(82) with
536  default parameters. For block tissue data, diagnosis, sex, age, RNA integrity number (RIN),
537  absorbance 260/280 ratio (A260/280) and top 3 seqPCs were used as covariates. For neuron
538 data, diagnosis, sex, age, RNA library batch and top 3 seqPCs were used as covariates. To
539 identify age-dependent differential expression, an interaction term between age and diagnosis

540 was added to the above DESeq2 models.

541  Differential alternative splicing

542  Local splicing analysis was performed using LeafCutter(83) as previously described(10). In brief,
543  Clusters of variable spliced introns across all samples were called first. Then differential splicing

544  between ASD and control group was identified in each data set (bulk tissue and neuron) by jointly

24


https://doi.org/10.1101/2022.03.29.486259
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.29.486259; this version posted March 29, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

545 modeling intron clusters using the Dirichlet-Multinomial generalized linear model (GLM). We

546  controlled for the same covariates as above in the DGE analysis.

547 Intron clusters were first filtered to only keep clusters supported by at least 50 split reads across
548  all samples, retaining introns of up to 100 kb and accounting for at least 1% of the total number
549  of reads in the entire cluster. This intron count file was then used in the differential splicing (DS)
550 analysis. For DS analysis, we further discarded introns that were not supported by at least one
551 read in 5 or more samples. Clusters were then analyzed for DS if at least 3 samples in each
552  comparison group (i.e. ASD or controls) had an overall coverage of 20 or more reads. P-values
553  were corrected for multiple testing using the Benjamini-Hochberg (BH) method and used to select

554  clusters with significant splicing differences (FDR < 0.1).

555  Co-expression network analysis

556  Weighted gene co-expression network analysis (WGCNA)(23) defined modules of co-expressed
557 genes from RNA-seq data. All covariates except for ASD diagnosis, sex and age were first
558  regressed out from the expression datasets. The co-expression networks and modules were
559 estimated using the blockwiseModules function with the following parameters: corType=bicorr;
560 networkType=signed; pamRespectsDendro=F; mergeCutHeight=0.1, power=8, deepSplit=2,
561 minModuleSize=40. Module eigengene/genotype associations were calculated using a linear
562  model. Significance p-values were FDR-corrected to account for multiple comparisons. Genes
563  within each module were prioritized based on their module membership (KME), defined as

564  correlation to the module eigengene. For selected modules, the top hub genes were shown.

565 Functional enrichment analysis

566  For co-expressed gene modules, enrichment for Gene Ontology (GO; Biological Process and

567  Molecular Function) was performed using gProfileR R package(84). Background was restricted
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568 to the expressed set of genes. An ordered query was used, ranking genes by kME for WGCNA
569 analyses.

570

571 For DGE, GO enrichment was performed using the GSEA algorithm as implemented in the
572  clusterProfiler R package(85). All genes were ranked by log2 fold change.

573

574  Enrichment analyses were also performed using several established, hypothesis-driven gene sets
575 including pre- and postsynaptic marker genes (77), genes with likely-gene-disruption (LGD) or
576 LGD plus missense de novo mutations(DNMs) found in patients with neurodevelopmental
577  disorders(78), genes with probability of loss-of-function intolerance (pLI) > 0.99 as reported by
578 the Exome Aggregation Consortium (28), mutationally constrained genes(27), vulnerable ASD
579  genes(79), CHDS targets(29), FMRP targets (80), syndromic and highly ranked (1 and 2) genes
580 from SFARI Gene database. Statistical enrichment analyses were performed using permutation
581  test. One thousand simulated lists with similar number of genes, gene length distribution and GC-
582  content distribution as the target gene list were generated, and the overlaps between each of the
583  simulated list and the hypothesis-driven gene sets were calculated to form the null distribution.
584  Significance p-value was calculated by comparing the actual overlap between target list and
585 hypothesis-driven gene sets to the null distribution. All results were FDR-corrected for multiple

586  comparisons.

587 Ingenuity pathway analysis

588  We performed Ingenuity Pathway Analysis (IPA®, QIAGEN) to identify significantly over-

589 represented pathways and to determine if they are activated or inhibited in ASD brain compared
590 to control brain. IPA predicts the overall direction of the pathway (activation or inhibition) using a
591  Z-score to statistically compare our datasets with expression patterns in the IPA knowledge

592  base (86). This is achieved by considering the activation state of key molecules when the
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593  Pathway is activated and the molecules’ causal relationships. Z = 2 signifies a pathway that is
594  significantly activated, while Z < -2 - significantly suppressed in ASD compared to control

595 brain.

596  Cell type enrichment analysis

597 Cell-type enrichment analysis for each co-expression module was performed using the
598  Expression Weighted Cell Type Enrichment (EWCE) package in R(87). Cell type-specific gene
599  expression data was obtained from single nucleus sequencing of adult human brains (88). The
600 specificity metric of each gene for each cell type was computed as described(87). Enrichment
601 was evaluated using bootstrapping. Z-score was estimated by the distance of the mean
602  expression of the target gene set from the mean expression of bootstrapping replicates. P-values

603  were corrected for multiple comparisons using FDR.

604 GWAS enrichment analysis

605 The most recent ASD GWAS summary statistics were obtained from Grove et al.(30) Stratified
606 LD score regression (sLDSC)(89) was used to test whether a gene set of interest is enriched for
607  SNP-heritability in a given GWAS dataset. In brief, SNPs were assigned to custom gene
608 categories if they fell within £100 kb of any gene in a set. These categories were added to a full
609 baseline model that includes 53 functional categories capturing a broad set of genomic
610 annotations. The MHC region was excluded from all analyses. Enrichment was calculated as the
611  proportion of SNP-heritability accounted for by each category divided by the proportion of total
612  SNPs within the category. Significance was assessed using a block jackknife procedure, followed

613 by Bonferroni correction for the number of gene sets.
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614 Data Availability

615 RNA-seq data will be submitted to the NCBI Sequence Read Archive (SRA), and accession

616  code will be available before publication.

617 Code Availability

618  All custom code used in this manuscript is available at

619 https://qgithub.com/gandallab/ASD STG LCM RNAseq
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