

1

2 Glial dysregulation in human brain in Fragile X-related disorders

3

4

5

6

7 Caroline M. Dias^{1,2,3, #}, Maya Talukdar^{2,4}, Shyam K. Akula^{2,4}, Katherine Walsh^{2,5}

8 Christopher A. Walsh 2,3,6,7

9

10

1. Division of Developmental Medicine, Boston Children's Hospital, Boston, MA
2. Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA
3. Department of Pediatrics, Harvard Medical School, Boston, MA
4. Medical Scientist Training Program, Program in Neuroscience, Harvard Medical School/Massachusetts Institute of Technology, Boston, MA
5. Tufts University, Boston, MA
6. Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA
7. Department of Neurology, Harvard Medical School, Boston, MA

Current affiliation: Department of Pediatrics, Section of Developmental Pediatrics, Section of Genetics and Metabolism, and Denver Fragile X Clinic and Research Center, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO

27

28

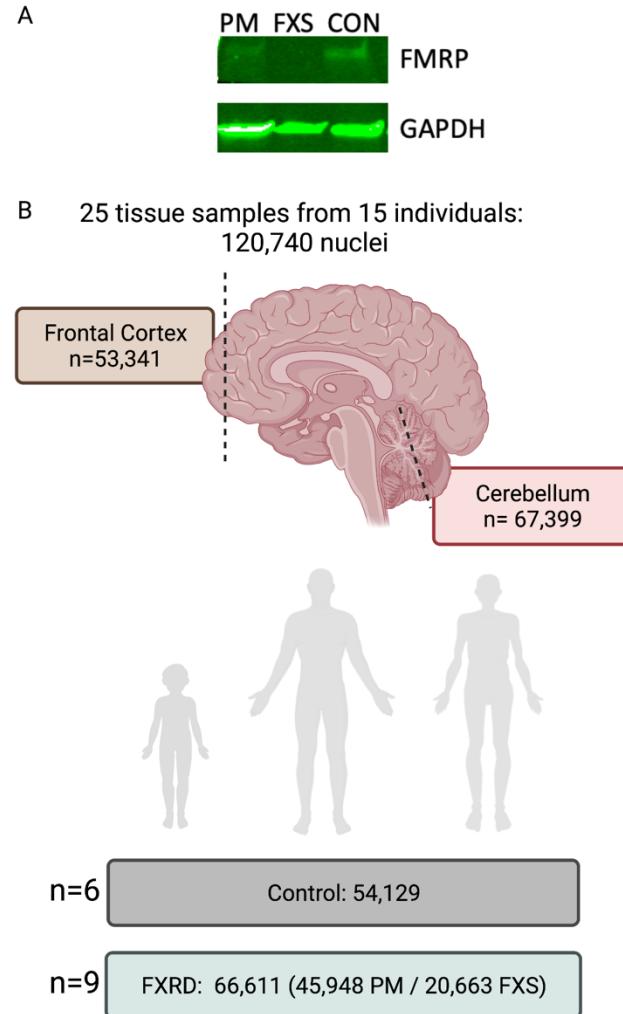
29

30

31 **Abstract:** While large trinucleotide repeat expansions at the *FMR1* locus cause Fragile
32 X Syndrome (FXS), smaller “premutations” are associated with the late-onset condition
33 Fragile X-associated tremor/ataxia syndrome (FXTAS), which shows very different
34 clinical and pathological features, with no clear molecular explanation for these marked
35 differences. One prevailing theory posits that the premutation uniquely causes
36 neurotoxic increases in *FMR1* mRNA (i.e., 4-8-fold increases), but evidence to support
37 this hypothesis is largely derived from analysis of peripheral blood. We applied single-
38 nucleus RNA-sequencing to post-mortem frontal cortex and cerebellum from 9
39 individuals with Fragile X mutations as well as age and sex matched controls (n=6) to
40 assess cell-type specific molecular neuropathology. We found robust reduction of *FMR1*
41 mRNA in FXS as expected, with modest but significant upregulation (~1.3 fold) of *FMR1*
42 in glial clusters associated with premutation expansions. In premutation cases we
43 identified alterations in glia number in cortex and cerebellum. Differential expression
44 analysis demonstrated altered cortical oligodendrocyte development, while gene
45 ontology analysis revealed alterations in neuroregulatory roles of glia, such as glial
46 modulation of neurotransmission and synaptic structure. We identified significant
47 enrichment of known *FMR1* protein target genes in differentially expressed gene lists in
48 FXS as well as the premutation, suggesting *FMR1* protein target pathways may
49 represent a shared source of dysfunction in both conditions despite opposite *FMR1*
50 mRNA changes. These findings challenge existing dogma regarding FXTAS and
51 implicate glial dysregulation as a critical facet of premutation pathophysiology,
52 representing novel therapeutic targets directly derived from the human condition.

53 **Introduction:** *FMR1* related disorders contribute to neurologic dysfunction across the
54 lifespan (Leehey, 2009; Hagerman et al., 2017). Large trinucleotide (CGG) expansion
55 (i.e., full mutations, FM) in the 5' UTR of the *FMR1* gene are associated with the
56 neurodevelopmental disorder Fragile X Syndrome (FXS) while smaller, premutations
57 (PM) are associated with Fragile X-associated tremor and ataxia syndrome (FXTAS), a
58 late onset condition characterized by executive functioning decline and progressive
59 cerebellar ataxia, presenting in 40-70% of PM carriers (Fu et al., 1991; Pieretti et al.,
60 1991; Verkerk et al., 1991; Jacquemont et al., 2003; Grigsby et al., 2016). In the latter,
61 neuropathological and imaging studies have identified intranuclear neuronal and
62 astrocytic inclusions, prominent white matter abnormalities including myelin pallor and
63 spongiosis, and characteristic T2 white matter hyperintensities on MRI (Jacquemont et
64 al., 2003; Tassone et al., 2004; Cohen et al., 2006; Greco et al., 2006; Schwartz et al.,
65 2021). In contrast, in Fragile X syndrome, an early-onset neurodevelopmental disorder
66 characterized by intellectual disability, autistic symptoms and characteristic facial
67 features (Martin & Bell, 1943; Turner et al., 1975), only subtle functional changes in
68 white matter in humans have been identified on imaging (Hallahan et al., 2011;
69 Sandoval et al., 2018; Swanson et al., 2018). The molecular correlates of these white
70 matter findings in both conditions are unknown.

71 The FM is associated with hypermethylation and transcriptional silencing of the
72 *FMR1* locus, and absence of FMR1 protein (FMRP), while the PM has been reported to
73 be paradoxically associated with increases in FMR1 mRNA, particularly in blood, with
74 only variable reductions in FMRP levels (Fu et al., 1991; Oberle et al., 1991; Pieretti et
75 al., 1991; Verkerk et al., 1991; Tassone et al., 1999; Tassone, Hagerman, Chamberlain,


76 et al., 2000; Tassone, Hagerman, Taylor, et al., 2000; Kenneson et al., 2001). Although
77 individuals with the PM may present with alterations in typical neurodevelopment, FXS
78 patients generally do not present with features of FXTAS. These divergent clinical and
79 molecular phenotypes have led to the hypothesis that the clinical symptomatology
80 associated with FXTAS is related to a neurotoxic effect of increased levels of FMR1
81 mRNA in the nervous system. This argument is bolstered by findings of a 4-8 fold
82 increase of FMR1 mRNA in peripheral blood cells of individuals with the PM (Tassone,
83 Hagerman, Taylor, et al., 2000). However, prior bulk studies of human post-mortem
84 brain tissue from individuals with the PM have revealed more modest ~0.9-1.5 fold
85 changes in FMR1 mRNA (Tassone et al., 2004; Pretto et al., 2014). Prior studies in
86 post-mortem human brain in both FXS and FXTAS have focused on bulk cellular
87 analysis, which does not resolve cell-type specific molecular alterations. Whereas it is
88 possible that the cellular heterogeneity of the human CNS may mask toxic levels of
89 FMR1 mRNA, other hypotheses, including an inappropriate DNA damage response,
90 mitochondrial stress, and polyglycine-containing peptide accumulation, have been put
91 forth as alternative hypotheses to explain the pathophysiology of FXTAS (Garcia-
92 Arocena & Hagerman, 2010; Sellier et al., 2017; Schwartz et al., 2021). It is also
93 possible that reduced FMRP contributes to PM pathology in a developmentally distinct
94 manner from the total loss that occurs in FXS. Finally, while studies of the impact of
95 *FMR1* disruption have been focused on post-mitotic neurons, there is increasing
96 evidence implicating important roles for *FMR1* in a diversity of cellular subtypes at
97 multiple points in nervous system development, including in glia (Giampetrucci et al.,
98 2013; Martínez Cerdeño et al., 2018; Doll et al., 2020; Doll et al., 2021; Raj et al., 2021).

99 Despite these gaps in knowledge, there has been no cell-type specific analysis of
100 transcriptional changes related to Fragile X in human brain to date.

101 To understand the molecular and
102 cellular perturbations associated with
103 Fragile X expansion in human brain
104 across the lifespan with an unbiased
105 approach, we applied single nuclei RNA-
106 sequencing (snRNA-seq) to post-mortem
107 frontal cortex and cerebellar hemisphere
108 of individuals with *FMR1* PMs and FXS.

109 We identified changes in *FMR1*
110 expression, cellular proportion, and global
111 gene expression that challenge current
112 assumptions about molecular
113 mechanisms underlying FXTAS
114 pathogenesis, and specifically implicate
115 glial dysregulation as critical in Fragile X
116 molecular neuropathology.

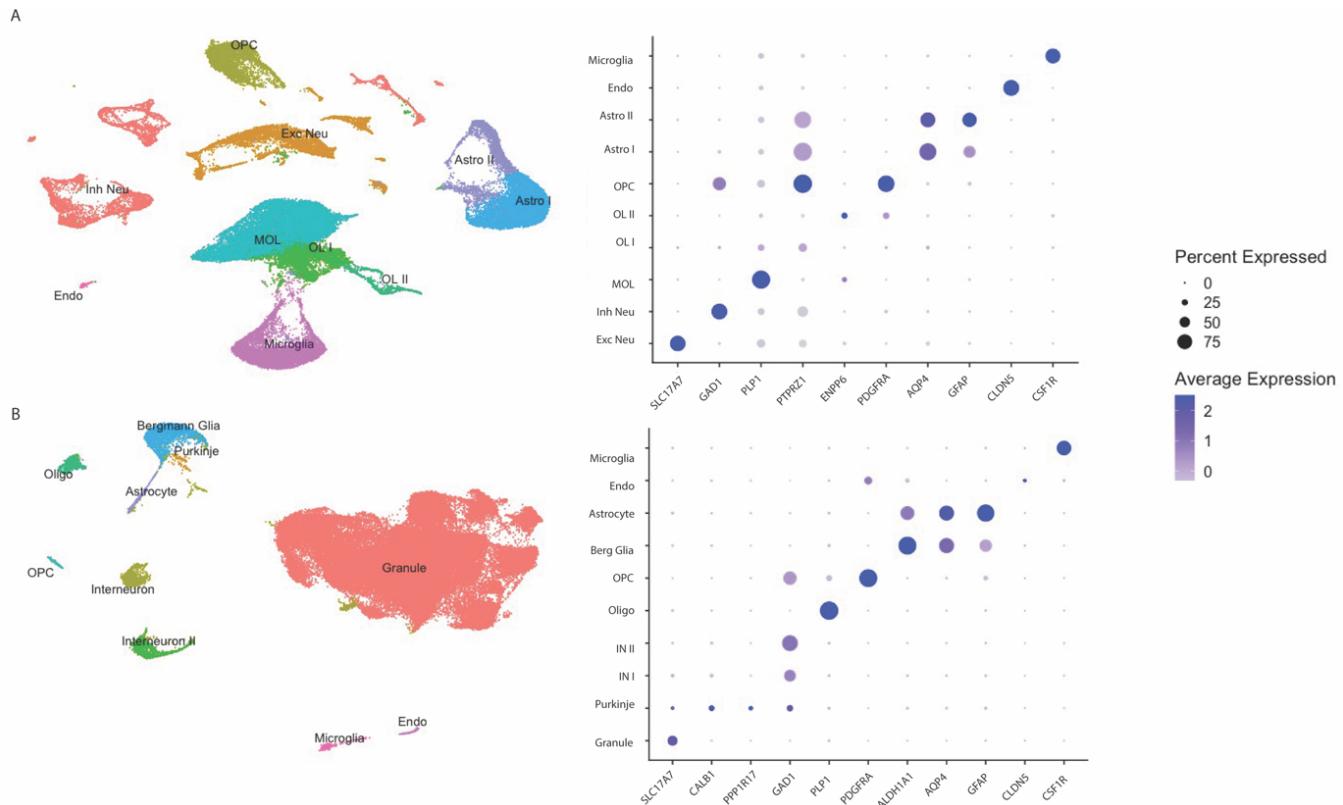
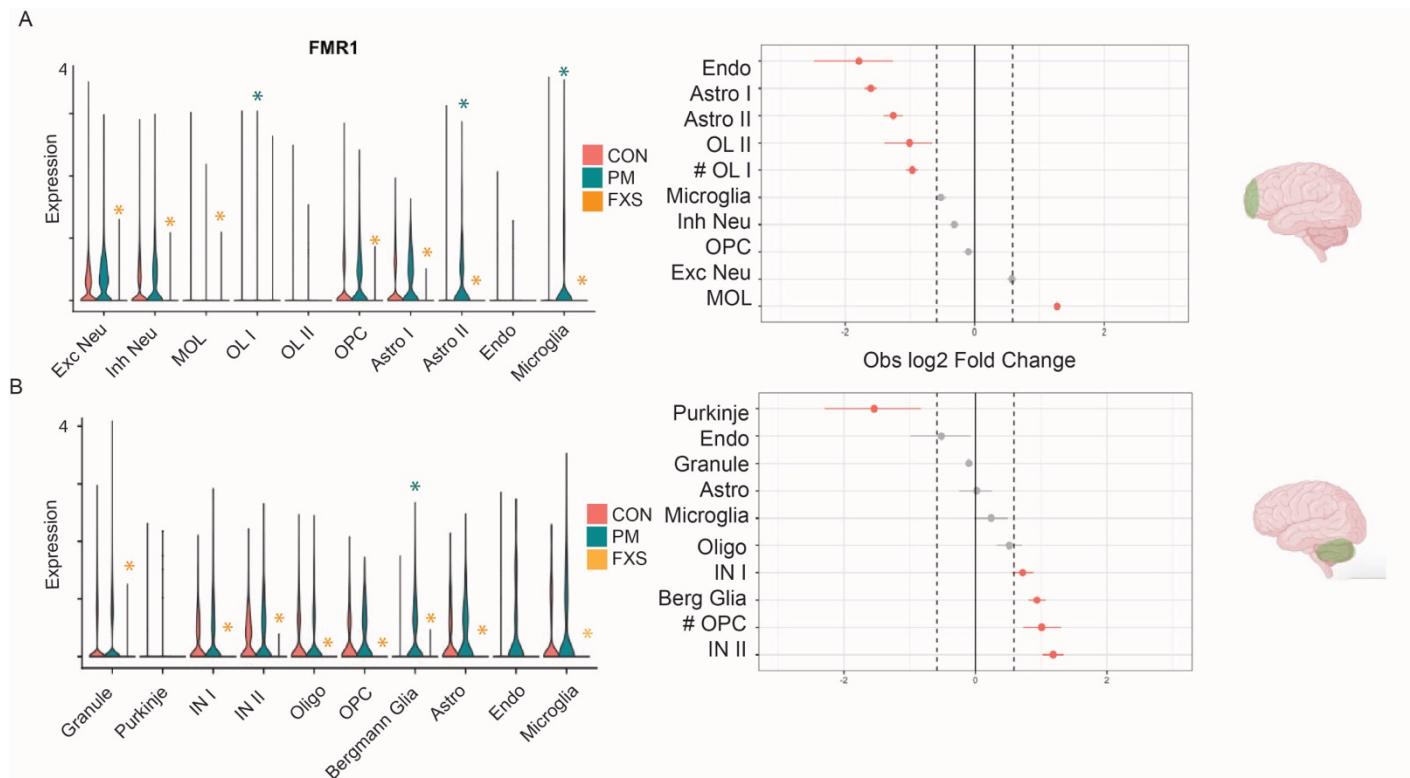

117 **Results:** Prior to tissue processing we
118 reviewed available medical records to
119 ensure that clinical and neuropathological
120 data were consistent with genetic diagnoses

Figure 1: Tissue validation and sample size overview. A. Representative western blot of frontal cortex protein lysate demonstrating absent FMRP in FXS and variably reduced FMRP in PM case. B. Summary of sample size and final filtered nuclei number per condition and region, representing samples from across the lifespan in all conditions. FXRD: Fragile X related disorders.

121 (Table 1, Methods). All cases here have been previously presented in prior published
122 work (Lohith et al., 2013; Esanov et al., 2016; Tran et al., 2019). Although we focus on
123 the PM, we also included two known cases of FXS, to assess whether well-known
124 effects on *FMR1* expression were present in our dataset. One case of FXS due to a
125 deletion of *FMR1* was included given the known shared molecular consequences of
126 *FMR1* deletion and trinucleotide expansion (Gedeon et al., 1992). Neither FXS case
127 had neuropathological abnormalities noted, consistent with expectations. The majority
128 of PM cases had either clinical and/or neuropathological evidence of FXTAS. We
129 identified one case that in the past was mistakenly categorized as FXS, but whose
130 clinical records and genetic testing revealed it to be a PM (see Table 1). We validated
131 functional effects of Fragile X disruption with western blotting of FMRP directly on frontal
132 cortex tissue (Figure 1A) and obtained expected results: absent FMRP in FXS in both
133 the FM and gene deletion, and variably reduced FMRP in PM cases.

134 Following unsupervised clustering of single nuclei, and filtering, we obtained over
135 120,000 high quality nuclei for further analysis across samples, including nuclei from 6
136 age- and sex-matched controls (Figure 1B, Table 2). We applied known cell type-
137 specific markers to assess the specificity and accuracy of unsupervised clustering (Fig
138 2). For both prefrontal cortex and cerebellar hemisphere we identified specific
139 classification of cellular subtypes for both neurons and glia. To further validate our
140 annotation, we also identified layer-specific excitatory neurons and inhibitory neuron
141 subclusters in the frontal cortex which were consistent with broader categorizations and
142 prior annotations (Figure 2 figure supplement 1) (Lake et al., 2016; Hodge et al., 2019;

Figure 2: snRNA-seq of frontal cortex and cerebellum. Unsupervised clustering and visualization in Seurat visualized with UMAP (left) as well dot plot of cell type specific gene expression (right) in frontal cortex (A) and cerebellum (B) reflects accurate and specific cell type classification. Sample size as in Figure 1. Abbreviations: Astro: astrocyte, endo: endothelial, OPC: oligodendrocyte progenitor, OL: oligodendrocyte lineage, MOL: mature cortical oligodendrocyte, Inh: inhibitory, Exc: excitatory, Berg glia: Bergmann glia, Oligo: mature cerebellar oligodendrocyte, IN: cerebellar interneuron.

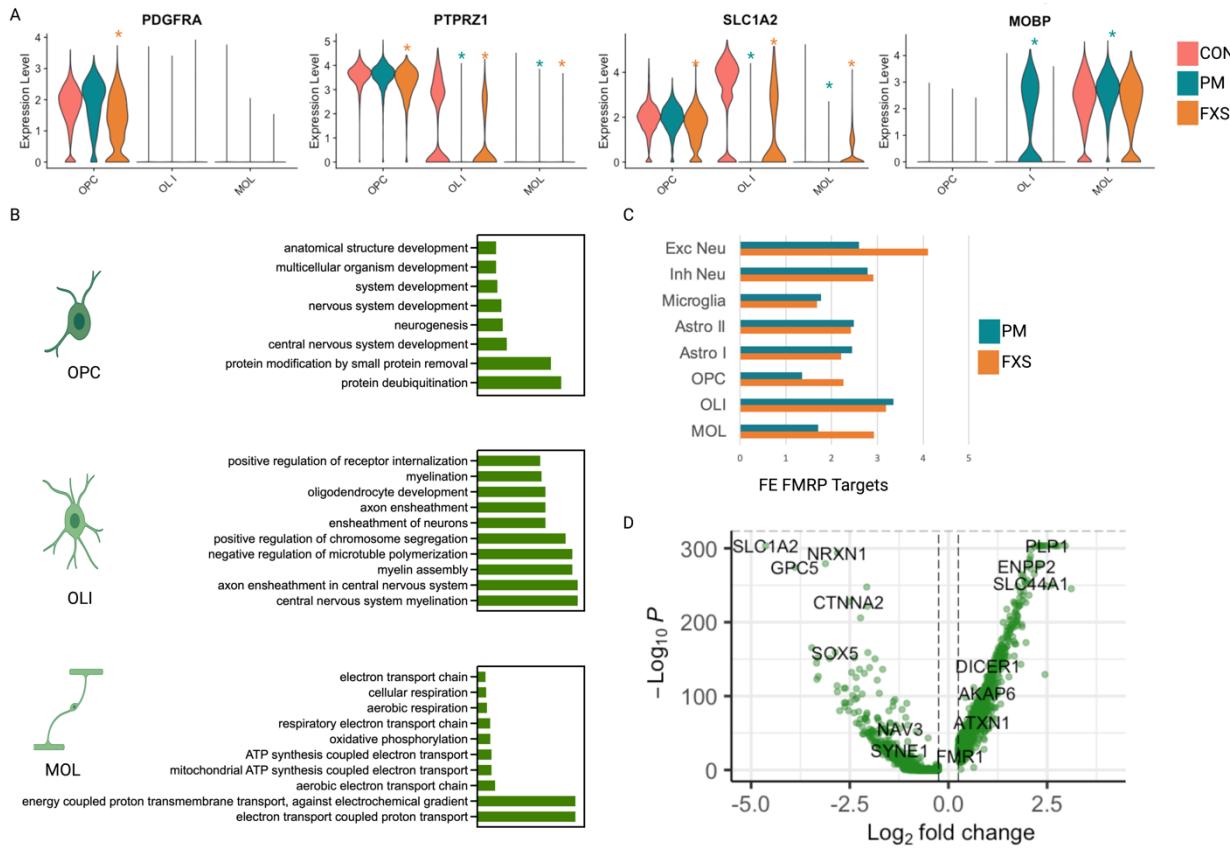

143 Velmeshev et al., 2019; Langseth et al., 2021) We chose to group excitatory subtypes,
 144 and group inhibitory subtypes respectively, to maximize power for downstream analysis.

145 There were distinctions between cerebellum and cortex in overall glial cell
 146 composition. In frontal cortex we identified several distinct clusters appearing to reflect
 147 different states of oligodendrocyte development, including PDGFRA + oligodendrocyte
 148 progenitor cells (OPCs), two intermediate clusters (OLI-ENPP6+ and OLII-TFC7L2+),
 149 and a mature myelinating oligodendrocyte (MOL) cluster. We compared the

150 transcriptional profile of OLI and OLII to oligodendrocyte lineage clusters identified in
151 mouse (Marques et al., 2016), and found that OLI gene expression resembled mouse
152 committed oligodendrocyte progenitors (COPs) and OLII resembled immature, newly
153 formed, non-myelinating oligodendrocytes. On the other hand, in the cerebellum,
154 although granule cells accounted for the majority of nuclei captured, as expected, we
155 also identified a cerebellar specific Bergmann glia cluster. OLI and OLII clusters were
156 not identified in cerebellar samples.

157 Comparison of average *FMR1* mRNA across all nuclei in frontal cortex and
158 cerebellum revealed regional differences in relative expression between neurons and
159 glia. In the frontal cortex, expression of *FMR1* was higher in excitatory and inhibitory
160 neurons compared to glia, as expected (Figure 2 figure supplement 2, Figure 3).
161 However, in the cerebellum, *FMR1* expression was expressed in more non-neuronal
162 subtypes at baseline. We used an independent harmonized single cell transcriptomic
163 resource to confirm these findings and identified similar region-specific patterns of
164 expression with higher relative glial to neuron *FMR1* mRNA expression in cerebellum.
165 (Figure 2 figure supplement 3) (Song et al., 2021).

166 Analysis of individual cluster *FMR1* expression revealed cell type-specific effects of
167 Fragile X status on *FMR1* transcription. In both cases of Fragile X syndrome, we
168 identified equal and total abrogation of *FMR1* expression, as expected (Figure 2 figure
169 supplement 4). Although our sample of FXS cases is small, this provides important
170 proof of principle that expected transcriptional signatures are present within the snRNA-
171 seq data. Indeed, despite the smaller sample size and nuclei number, reduced *FMR1*


Figure 3: FMR1 mRNA dysregulation in FXS and PM cases, and cluster proportion analysis for PM cases. Frontal cortex (A) and cerebellar (B) changes in FMR1 expression in FXS and PM (left) and cellular proportion alterations in PM cases vs control (right). A. Violin plots demonstrate reduced FMR1 mRNA expression in multiple clusters in FXS, while FMR1 mRNA is variably increased in PM clusters, primarily in glia. Cluster abbreviations as in Fig. 2. Orange *: reduced FMR1 p-value in FXS vs CON padj < .05, teal *: increased FMR1 in PM vs. CON padj < .05. Right panel shows permutation plot for PM cluster proportions demonstrating glial cell number alterations in cortex and cerebellum. Red: FDR < .05 and $\text{abs}(\text{log2FC}) > 0.58$. # indicates significance of this cluster is not robust to outlier sample removal.

172 expression was robust among different clusters in FXS in both neuronal and glial
 173 subpopulations across the brain, consistent with the large effect size of this genetic
 174 driver (Figure 2 figure supplement 4, Figure 3). The effect of the PM on FMR1
 175 expression, despite the larger sample size, was more modest and demonstrated
 176 cluster-specific heterogeneity. In PM cases, the only clusters that demonstrated
 177 significantly increased FMR1 mRNA expression in either the frontal cortex or
 178 cerebellum were non-neuronal, such as cerebellar Bergmann glia and cortical microglia

179 (Figure 3). Although the absence of significant *FMR1* upregulation in a small number of
180 clusters in PM cases may be due to inadequate power, most clusters included more
181 than enough nuclei (including frontal cortex excitatory and inhibitory neurons, as well as
182 cerebellar granule cells and interneurons) to rule this explanation out (see Methods).
183 Thus, in general, the lack of significant upregulation of *FMR1* mRNA in neuronal
184 subclusters in the PM cases is not due to a lack of power. Rather, it suggests that
185 overall, the increase in *FMR1* expression in brain caused by the PM is far more modest
186 than the 4-8 fold increase observed in blood, and shows a preferential impact on glia, in
187 the regions assessed here.

188 In the cerebellum, we identified changes in nuclei number in PM cases that
189 recapitulated past neuropathological studies, specifically previous work demonstrating
190 cerebellar Purkinje cell loss and Bergmann cell gliosis in individuals with the PM
191 (Hagerman, 2013). Consistent with this, we identified fewer Purkinje cell nuclei, and
192 greater Bergmann cell nuclei, in the cerebellum of PM carriers versus age matched
193 controls (Figure 3). This orthogonal validation of prior findings reinforces the utility of our
194 molecular approach to identify bona fide biological phenomenon.

195 We also identified changes in glial cell number in the frontal cortex (primarily BA10)
196 in association with the PM. PM cases demonstrated fewer than expected astrocytes and
197 endothelial cells, with an increase in mature oligodendrocytes compared to controls,
198 observations surprisingly consistent across samples and not reflecting the presence of
199 outliers (Figure 3, Methods). We assessed BA22 in one PM sample and identified MOL

Figure 4: Global glial transcriptional dysregulation in frontal cortex. A. Violin plots demonstrating alteration in oligodendrocyte development in PM and FXS. Orange * indicates FXS vs. CON padj < .05, teal * indicates PM vs CON padj < .05. B. GO analysis of upregulated differentially expressed genes in oligodendrocyte clusters in frontal cortex demonstrate increased metabolic stress in MOLs and upregulation of myelination in OLI. C. Significant fold enrichment (FE) of FMRP target genes across clusters and conditions, all comparisons padj < .05 except for OPC in PM cases which was non-significant. D. Volcano plot of differentially regulated genes in PM cases in OLI demonstrate 3:1 increased: decreased DEGs, genes of potential interest noted.

200 levels and astrocyte levels to be similar to control, suggesting these findings may reflect
 201 a sub-cortical specific effect. Because changes in glial number have been observed in
 202 normal aging (Peters et al., 1991; Peters & Sethares, 2004; Soreq et al., 2017; Salas et
 203 al., 2020; Xu et al., 2020) we assessed the impact of age on these clusters and did not
 204 identify a significant association with age for these clusters in control individuals (Figure
 205 3 figure supplement 1). We wondered whether age associated changes in neuronal

206 composition however might mask more subtle effects of the PM on neuronal clusters,
207 given that age-associated changes in interneuron density have also been observed
208 (Hua et al., 2008; Stanley et al., 2012; Rozycka & Liguz-Lecznar, 2017) In this case, we
209 identified a significant age-related decline in inhibitory neuron/total neuron composition
210 in frontal cortex as previously reported (Majdi et al., 2007), although there was no
211 detectable effect of Fragile X PM status on this decline (Figure 3 figure supplement 2).
212 Thus, we identified unexpected novel alterations in glial number in frontal cortex in PM
213 cases.

214 Although limited by small sample size, we also assessed cluster proportions in FXS
215 and found that alterations in cellular composition was markedly distinct from PM cases.
216 For example, frontal cortex astrocyte and endothelial cell depletion were not identified in
217 FXS. (Figure 3 figure supplement 3). In cerebral cortex in FXS there was an increase
218 in OPC proportion; this finding has previously been observed in animal models (Doll et
219 al., 2021) although to our knowledge not previously described in humans. Thus, FXS
220 and PM cases are associated with distinct alterations in the brain's cellular architecture.

221 In frontal cortex, we identified alterations in glial cell transcriptional regulation
222 indicating widespread perturbations in PM pathology (Figure 4). We focused on the
223 frontal cortex given the broader and more equitable distribution of cell types, which
224 allows for more direct comparisons between clusters. In PM cases, we identified a
225 marked trend towards increased expression of myelination markers and reduced
226 immature markers in the intermediate committed oligodendrocyte progenitor OLI cluster
227 (Figure 4A). The increase in mature markers in an intermediate progenitor offers a

228 possible explanation for the increased number of MOLs in PM frontal cortex despite no
229 change in the OPC pool number. Indeed, committed oligodendrocyte progenitors are
230 known to serve as a reservoir for rapidly generating myelinating mature
231 oligodendrocytes (Lee et al., 2012; Lecca et al., 2020). The OLI nuclei cluster was not
232 the only cluster with alterations in critical glial developmental gene expression in PM
233 cases. For example, within PM OPCs, upregulation of CSPG4 (i.e., NG2) (Ampofo et
234 al., 2017) was observed in frontal cortex (Figure 4 supplemental figure 1). Intriguingly,
235 FXS clusters also demonstrated dysregulation of several of glial markers, but with
236 distinct directionality and magnitude of changes, and preferential impact on OPCs.
237 There are thus cortical/cerebellar and condition specific patterns to glial transcriptional
238 dysregulation in Fragile X related disorders.

239 Gene ontology analysis (see Methods, Figure 4) suggested that individual gene
240 expression changes represented broader disturbances in biological functioning.
241 Interestingly, in PM cases, frontal cortex MOLs demonstrated unique evidence of
242 increased metabolic stress, consistent with neuropathological findings of
243 oligodendrocyte dysfunction. The OLI cluster in PM cases was the only group in either
244 condition or region to demonstrate myelination upregulation (Figure 4B), demonstrating
245 that the gene expression changes described above were specific to this cell cluster.
246 This is of particular interest given that several myelination related genes are known
247 FMRP targets (Wang et al., 2004; Darnell et al., 2011; Giampetrucci et al., 2013) - yet,
248 these were not ubiquitously impacted in all oligodendrocyte lineage clusters.
249 Downregulated categories in PM cases implicated dysfunction of glial regulatory roles.
250 For example, there was evidence of downregulation of synaptic organization and

251 activity, decreased neuronal cell adhesion, and downregulation of glutamatergic
252 signaling in a variety of oligodendrocyte lineage clusters (Figure 4 figure supplement 2).
253 Inspection of biological processes disturbed in PM cases in astrocytes and microglia
254 similarly revealed downregulation of several neuronal regulatory roles as well as
255 evidence of inflammation (Figure 4 figure supplement 3). There was also evidence of
256 neuronal dysfunction: neurons in PM cases demonstrated evidence of metabolic stress
257 and downregulation of critical neuronal function and structure, such as postsynaptic
258 organization and dendritic spine morphogenesis (Figure 4 figure supplement 4).
259 Inspection of differentially regulated genes in FXS revealed widespread evidence of
260 increased metabolic and energetic stress, across both neurons and glia with known
261 FMRP targets present among differentially regulated genes (Fig 4 figure supplements 5-
262 8).

263 Given that we observed the presence of FMRP targets in both neuronal and glial
264 differentially expressed gene lists in both FXS and PM cases, we investigated whether
265 this reflected statistically significant enrichment (Figure 4C). We had hypothesized that
266 there would be significant enrichment of FMRP target genes in FXS but not PM cases,
267 and greater enrichment in neuronal clusters vs non-neuronal clusters. To our surprise,
268 we identified significant enrichment for FMRP targets among differentially expressed
269 genes across many cell clusters in both FXS and PM cases. Excitatory neurons
270 demonstrated the highest fold enrichment of known FMRP targets in FXS as expected,
271 but significant enrichment was observed in non-neuronal clusters in FXS as well.
272 Additionally, there was significant enrichment of FMRP target genes in differentially
273 expressed genes across most clusters in the PM cases, in many cases very similar to

274 FXS, suggesting a role for FMRP dysfunction in PM pathogenesis. The highest
275 enrichment for FMRP targets among PM clusters was not neuronal but rather the OL1
276 cluster. Interestingly, this cluster exhibited global transcriptional dysregulation similar to
277 FMRP loss in FXS in excitatory neurons including ~ 3:1 increased:decreased significant
278 differentially expressed genes (Fig 4D, Figure 4, figure supplement 9), reflecting a de-
279 repressed state. However, known FMRP targets were not restricted to the upregulated
280 list in this cluster (Figure 4D), potentially highlighting dual roles of FMRP as
281 transcriptional repressor and in mRNA stabilization (Hale et al., 2021).

282 **Discussion:**

283 We present the first cell type specific analysis of gene expression of Fragile X
284 related disorders in human brain. We identified changes in *FMR1* mRNA expression,
285 cellular proportion, and cell-type specific gene expression that sheds light on molecular
286 perturbations associated with *FMR1* and specifically highlights an important role for glial
287 molecular dysregulation in PM pathology.

288 Our data suggest that *FMR1* mRNA expression in PM cases, at least in the brain
289 regions analyzed here, is more modestly affected than has been observed in peripheral
290 blood cells and furthermore that it preferentially effects glial cells more than neurons.
291 Given the robust elimination of *FMR1* mRNA expression observed here in association
292 with FXS, regardless of the genetic driver (trinucleotide expansion vs gene deletion),
293 nuclei cluster, or brain region, we are confident in the validity of our approach. In the PM
294 cases, we identified modest upregulation of *FMR1* expression, with glial subclusters in
295 both cerebellum and cortex demonstrating the most marked increases. Rather than

296 extreme neurotoxic increases in *FMR1* mRNA, our findings suggest a more modest,
297 ~1.3 fold, increase in *FMR1* transcript levels, paralleling past studies of brain
298 homogenate (Tassone et al., 2004; Pretto et al., 2014). Although we cannot rule out that
299 neural cells expressing toxic levels of *FMR1* transcript are selectively vulnerable and
300 preferentially lost with time, our cellular proportion analysis (see below) does not
301 support this interpretation, as one would expect clusters that are disproportionately lost
302 to have relatively higher increases in *FMR1* mRNA. We also include in our analyses one
303 21 year-old PM case, whose data is very similar to the other aged PM cases, which
304 further argues against age-related loss. Finally, changes in *FMR1* expression were
305 comparable between clusters known to be vulnerable to PM associated intranuclear
306 inclusions (neurons, astrocytes) and those known to be spared (oligodendrocytes),
307 arguing against inclusion presence as being a confounding factor in *FMR1* mRNA
308 measurement. Although our work challenges the causal role of extremely elevated
309 *FMR1* mRNA in human brain, it is possible that more modest increases of CGG
310 containing *FMR1* RNA still lead to cellular dysfunction, through previously posited
311 mechanisms including trinucleotide repeat toxicity. Thus, our work provides an
312 important foundation to understanding *FMR1* mRNA levels that are relevant to
313 neurological pathophysiology in animal and human model systems and broadens the
314 scope of cellular subtypes that warrant further investigation within this context.

315 ***Cellular proportion***

316 Alterations in cell number in PM cases in both cerebellum and cortex also
317 implicated glial dysregulation. Our finding of reduced Purkinje cells and Bergmann cell

318 increases in the cerebellum in PM cases parallels well-described neuropathological
319 findings (Greco et al., 2006), and reinforces the validity of our approach, and suggests
320 that loss of Purkinje cells may contribute to FXTAS signs and symptoms. In PM cases,
321 we also identified a proportional decrease in endothelial cells and astrocytes, with
322 increases in MOLs in frontal cortex, a finding not explained by age or the presence of
323 outliers. The relationship of basal FMR1 mRNA expression, change in FMR1
324 expression, and cellular proportion was not straightforward, arguing against a simplistic
325 relationship between cellular proportion and FMR1 toxicity. For example, glial cells in
326 the frontal cortex that demonstrated modest differential expression of FMR1 also
327 demonstrated the most marked changes in cellular proportion. This may be related to
328 earlier developmental time points that are impacted, cellular extrinsic effects on survival
329 and proliferation, or both. Given the findings of global brain atrophy, white matter
330 abnormalities, and the reported decline in executive functioning deficits reported in
331 FXTAS (Brunberg et al., 2002; Greco et al., 2006; Brega et al., 2008; Grigsby et al.,
332 2008), these changes in cellular proportion warrant further exploration of the role of glia
333 in FXTAS associated cognitive decline and in other cortical areas.

334 The findings of changes in endothelial cell proportion are also interesting considering
335 the recent description of microangiopathy in FXTAS neuropathology (Salcedo-Arellano
336 et al., 2021). In fact, MRI findings in FXTAS of T2 hyperintensity have some similarities
337 to microvascular ischemia (Leehey, 2009), also suggesting cerebrovascular dysfunction
338 as an important facet of FXTAS. Past work has demonstrated that disruption of the
339 blood brain barrier can lead to increased OPC NG2 expression (Rhodes et al., 2006),
340 observed in our data in the frontal cortex in PM cases only. These findings highlight the

341 need for additional work to interrogate the developmental mechanisms and regional
342 specificity of *FMR1* effects on the endothelium on a more comprehensive level.

343 We identified global transcriptional alterations associated with PM status that
344 support the now well-established principle that glia play central roles in
345 neurodevelopment and disease (Teismann et al., 2003; Croisier & Graeber, 2006; Lee
346 et al., 2012; Liu et al., 2015). For example, OPCs are known to form synaptic like
347 structures and respond to neuronal activity (Bergles & Richardson, 2015) and glia more
348 generally are critical in neuronal development, axonal integrity and behavior (Nave,
349 2010; Fernandes et al., 2017; Nagai et al., 2021). Differential gene regulation in PM glia
350 frequently identified perturbations in glial-neuronal signaling, maintenance of synaptic
351 structure and function, and altered neurotransmission in multiple glial lineage clusters in
352 addition to evidence of energetic stress specifically in MOLs. Indeed, white matter
353 abnormalities in Fragile X related disorders more broadly, may reflect subtle disruption
354 of glial regulatory roles in neuronal homeostasis. Determination of whether these glial
355 abnormalities contribute causally to clinical symptomatology or represent a secondary
356 response to neuronal dysfunction, will require further work in human model systems.
357 Support for the former is corroborated by the fact that we identified significant
358 enrichment of FRMP target genes in differentially expressed genes in both FXS and PM
359 glial clusters. Although the magnitude of FMRP target enrichment was largest in
360 excitatory neurons in FXS, there were surprising similarities in the magnitude of
361 enrichment between FXS and PM. Although our work can not address causality, this
362 suggests that shared loss of FMRP contributes to some degree to both disorders in a
363 variety of cell types. There was also evidence of cell-type specific transcriptional

364 alterations. For example, the OLI cluster, uniquely demonstrated significant changes in
365 expression in myelin related genes (known FMRP targets) in PM cases, suggesting that
366 cellular states even within a single glial lineage may be differentially vulnerable to
367 Fragile X disruption in a context dependent manner. Thus, our findings in PM post-
368 mortem brain, in light of known neuropathological and imaging abnormalities, support
369 the interpretation of FXTAS as a disorder defined by glial dysfunction.

370 Our small sample size of Fragile X syndrome increases chances that changes in
371 cellular proportion or transcriptional dysregulation may be due to stochastic artifacts.
372 However, replication of past findings including reduced *FMR1* expression (Pieretti et al.,
373 1991; Bhattacharyya & Zhao, 2016), increased OPC proportion (Doll et al., 2021), and
374 widespread evidence of metabolic stress (Donnard et al., 2020; Kang et al., 2021),
375 corroborate known molecular neuropathology of the disorder (Licznerski et al., 2020).
376 Thus, our findings highlight the need for more comprehensive study of Fragile X in
377 human tissue directly in a variety of different cell types.

378 In conclusion, we provide compelling evidence from human brain regarding cell type-
379 specific molecular neuropathology that helps contextualize the clinical heterogeneity
380 associated with genetic variation at the *FMR1* locus in neurodevelopment and
381 neurodegeneration and specifically implicates glial dysregulation in PM pathology.

382 **Materials and Methods**

383 **Samples**

384 Post-mortem tissue was obtained from either the University of Maryland
385 Neurobiobank and for one control case, from Autism Brain Net. All tissue was from
386 deceased individuals and as such is not considered human subjects research. Fragile X
387 mutation status/repeat size was determined through direct review of de-identified clinical
388 records, and cross-referenced with prior published validation of the same cases (Table
389 1). Most of the PM cases had clinical symptomatology or neuropathological evidence of
390 FXTAS (Table 1). Samples were matched for age, sex, and PMI but no cut-offs were
391 utilized to exclude any cases (see Appendix Figure 1 for further details.)

392 ***Western Blotting***

393 ~25-50 mg frozen frontal cortex was homogenized in RIPA buffer + protease
394 inhibitors and centrifuged, total protein content was then quantified. Laemmeli sample
395 buffer was added to the protein supernatant and boiled for 5 minutes. Equal amounts
396 of protein (10 ug) were loaded onto precast SDS-Page gels with molecular weight
397 ladders. Samples were transferred to membranes, blocked with Licor block (Lincoln,
398 NE), and incubated in primary antibody overnight diluted in block at four degrees.
399 Following four washes in tris buffered saline + tween (TBS+T), blots were incubated
400 with LI-COR secondary fluorescent antibodies in the dark at room temperature for one
401 hour. After further washing including a final wash of TBS, the blots were scanned on a
402 LI-COR Odyssey imager and images analyzed with Image-J software. The following
403 primary antibodies and dilutions were used: GAPDH (Cell Signaling # 2118S) 1:15,000;
404 FMRP (Cell Signaling 4317S) 1:1,000.

405

406 **Isolation of post-mortem nuclei**

407 Frozen tissue (~ 25 mg) from either section 1 frontal cortex or section 5
408 cerebellar hemisphere (see table of demographics) was dissected at -20 and subjected
409 to dounce homogenization followed by sucrose gradient centrifugation as previously
410 described. Nuclei were filtered and incubated for 5 minutes in 1:1000 Hoechst
411 (Invitrogen H3569, Waltham MA). 10,000 Hoechst + nuclei from the suspension were
412 then sorted directly into 10x Genomics RT buffer (Pleasanton, CA) on a chilled plate
413 holder to remove doublets, debris, and dying nuclei on a FACS Aria (BD Biosciences,
414 Franklin Lakes, NJ) with low pressure nozzle (Appendix Figure 2). Following sorting,
415 reverse transcriptase enzyme was added on ice, and nuclei were immediately
416 processed for encapsulation in the 10x Chromium controller. cDNA and libraries were
417 prepared according to the 10x documentation protocol for 3' gene expression. Libraries
418 were prepared in matched batches and represent over 16 individual days of sample
419 preparation and 4 separate sequencing runs.

420 ***Sequencing and Quality Control***

421 Following pooling of samples, pools were run on a Novaseq 6000 (Illumina, San
422 Diego, CA) to obtain high coverage and saturation, and demultiplexed with bcl2fastq.
423 CellRanger Count was utilized to generate count matrices with introns included, given
424 intronic information is known to be informative for nuclear preparations. To remove
425 remaining ambient RNA and debris, and obtain a final high quality nuclei set, filtering
426 metrics were applied to nuclei in Seurat including: # UMs> 500, # Genes > 250,
427 log10GenesPerUMI (complexity measure) > 0.8, and mitoRatio < 0.1. Datasets were

428 processed with SCTransform and integrated, and potential sources of variation were
429 assessed with principal component analysis. Unsupervised clustering was performed
430 with different resolutions followed by application of known cell type markers. For
431 cerebellar Purkinjee and endothelial cells, which represented a small percentage of the
432 total nuclei sample, cell type markers (CALB1; CLDN5) were used to manually select
433 cell clusters using the SelectCells feature in Seurat.

434 ***Analysis***

435 Prism and R studio were used for analysis of demographic and single nuclei data,
436 respectively, using statistical tests as indicated in each figure. Computationally
437 intensive work was conducted on the Harvard Computing Cluster, O2. For analysis of
438 demographic data, one PM case that was extremely aged is listed as 89+ to ensure
439 sample de-identification and sample points were removed from any graphs presented
440 here to ensure de-identification. For cluster proportion analysis, scProportion package
441 (Miller et al., 2021) was used to perform a permutation test to calculate a p-value for
442 each cluster, with a confidence interval returned via
443 bootstrapping. (<https://github.com/rpolicastro/scProportionTest>). Although this approach
444 is particularly amenable to small sample sizes, the outcome could still be impacted by
445 samples with outlier cluster proportions. To assess the robustness of the data to the
446 presence of outliers, cluster proportions from each individual sample were compared,
447 and Grubb's test used to identify the presence of outliers that may have contributed to
448 significant results in scProportion. Samples which contributed to the presence of outliers
449 were then systematically removed from the dataset and scProportion rerun. We

450 identified only rare cases of outlier clusters that impacted significance of findings: One
451 young control sample had a high proportion of the committed progenitor OL I. One PM
452 sample demonstrated higher than expected OPC number. Other outliers did not impact
453 significance of findings in PM cases and include: the FXS case with the gene deletion
454 demonstrated an unusually high presence of the newly-formed, non-myelinating
455 immature OLII cluster, and a different control sample had a higher proportion of
456 endothelial cells. The plots presented represent the entire dataset with no data
457 removed. Instead, cluster changes that were not robust to the removal of outlier
458 samples are indicated on the graph with a # sign.

459 Differential expression analysis was done with the FindMarkers functionality in
460 Seurat using default settings of Wilcoxon rank sum test, FDR < .05, log fold change >
461 0.25 for all cell clusters. A priori we calculated that 400 cells/condition cluster are
462 required to detect 80% of differentially expressed genes with a false discovery rate of
463 5%. Thus, our analyses are adequately powered for the majority of cell cluster
464 comparisons. We chose to omit downsampling to preserve power. Results were
465 compared to a subset downsampled dataset for select clusters with larger nuclei
466 number, and results were found to be similar both in the pattern of differentially
467 regulated genes as well as the specific genes present in the data set (data not shown).
468 Additionally, no association between cluster cell number and number of differentially
469 expressed genes were identified. To generate a set of putative FMRP target genes in
470 humans, the list from (Darnell et al., 2011) was transformed from mouse to human gene
471 symbols resulting in a gene list of 745 predicted targets that were functionally validated
472 in animal models. A hypergeometric test was performed for each cluster and condition,

473 comparing the observed # FMRP target genes in differentially expressed lists vs
474 predicted using a total gene set defined as 20,000. Gene ontology analysis was
475 conducted with the web interface of Panther (<http://geneontology.org>) with default
476 settings for statistical significance testing, including Fisher's exact test and FDR < .05.

477 *Data and materials availability*

478 All sequencing data and code are available from dbGaP (accession number pending).

479

481 **Table 1: Demographic information for post-mortem samples used.** Repeat size if
482 applicable ascertained from clinical records and prior published work. FC: frontal cortex,
483 CBL: cerebellum

484

Cluster	CON	FXPM	FXS	Total
Cerebellum				
Granule	25067	24237	9831	
Oligo	366	542	130	
Bergmann Glia	643	1276	334	
Interneuron	497	848	155	
Interneuron II	395	930	97	
Microglia	219	268	85	
Astrocyte	263	276	104	
OPC	157	327	79	
Endothelial	87	63	20	
Purkinje	59	21	23	
Cerebellar				
Total	27753	28788	10858	67399
Cortex				
Inh Neu	3916	2049	1081	
Exc Neu	2776	2689	868	
OPC	2411	1467	1591	
OL I	3173	1058	522	
OL II	250	81	630	
MOL	4381	6890	1767	
Astro I	4264	914	1577	
Astro II	1719	468	614	
Microglia	3348	1518	1092	
Endo	138	26	63	
Cortex Total	26376	17160	9805	53341

485

486 **Table 2:** Filtered nuclei number by brain region and cluster status.

487

488

489

490 **Appendix (Supplemental Methods)**

491 We found no association between: PMI & RIN, age and PMI, and age and RIN,
492 as expected (Appendix Figure 1). There was no difference in average RIN, PMI, or age
493 between PM and controls. We did observe a reduction in RIN in the FXS samples as
494 compared to controls but not PM cases.

495 Nuclear staining and sorting was conducted to select against dying cells, debris,
496 and doublets (Appendix Figure 2).

497 **Acknowledgements:** We thank Jennifer Neil for assistance with patient sample
498 information; Robert Sean Hill, Dilenny Gonzalez and Sattar Khoshkoo for assistance in
499 reagent ordering and sample sequencing; Sara Bizzoto and Sattar Khoskkoo for
500 discussion of cell type specific markers in cortex, Ronald Mathieu and the
501 Hematology/Oncology Flow Cytometry Research Facility
502 for assistance with cell sorting; the Engle lab and the Harvard Biopolymers Facility for
503 assistance with Chromium Controller use and sequencing. Molecular genetics library
504 quantification support was provided by the Boston Children's Hospital Intellectual and
505 Developmental Disabilities Research Center Molecular Genetics Core Facility supported
506 by U54HD090255 from the NIH Eunice Kennedy Shriver National Institute of Child
507 Health and Human Development. We also thank the brain tissue donors and their
508 families, from both the UMB Neurobiobank and Autism BrainNet. Autism BrainNet is a
509 resource of the Simons Foundation Autism Research Initiative (SFARI). Autism
510 BrainNet also manages the Autism Tissue Program (ATP) collection, previously funded
511 by Autism Speaks. We are grateful and indebted to the families who donated tissue for

512 research purposes to Autism BrainNet and the ATP. Supported by the NIMH
513 (U01MH106883) and the Tan Yang Center for Autism Research at Harvard Medical
514 School. C.A.W. is an Investigator of the Howard Hughes Medical Institute. S.K.A. is
515 supported by a Paul and Daisy Soros Fellowship for New Americans. C.M.D. was
516 supported in part by NIMH Translational Post-doctoral Training Program in
517 Neurodevelopment T32MH112510.

518

519 **Competing interests:** Authors have no competing interests to disclose.

520

521 **Contributions:** C.M.D. performed the experiments, analyzed the data, and wrote the
522 manuscript draft. M.T. and K.W. contributed to single-nuclei analysis. S.K.A. performed
523 experiments. C.A.W conceptualized and supervised the project. All authors reviewed
524 and contributed to revising and editing the manuscript draft.

525

526

527

528

529

530

531

532

533

534

535 **References:**

536 Ampofo, E., Schmitt, B. M., Menger, M. D., & Laschke, M. W. (2017). The regulatory
537 mechanisms of NG2/CSPG4 expression. *Cell Mol Biol Lett*, 22, 4.
538 <https://doi.org/10.1186/s11658-017-0035-3>

539 Bergles, D. E., & Richardson, W. D. (2015). Oligodendrocyte Development and
540 Plasticity. *Cold Spring Harb Perspect Biol*, 8(2), a020453.
541 <https://doi.org/10.1101/cshperspect.a020453>

542 Bhattacharyya, A., & Zhao, X. (2016). Human pluripotent stem cell models of Fragile X
543 syndrome. *Mol Cell Neurosci*, 73, 43-51.
544 <https://doi.org/10.1016/j.mcn.2015.11.011>

545 Brega, A. G., Goodrich, G., Bennett, R. E., Hessl, D., Engle, K., Leehey, M. A., Bounds,
546 L. S., Paulich, M. J., Hagerman, R. J., Hagerman, P. J., Cogswell, J. B.,
547 Tassone, F., Reynolds, A., Kooken, R., Kenny, M., & Grigsby, J. (2008). The
548 primary cognitive deficit among males with fragile X-associated tremor/ataxia
549 syndrome (FXTAS) is a dysexecutive syndrome. *J Clin Exp Neuropsychol*, 30(8),
550 853-869. <https://doi.org/10.1080/13803390701819044>

551 Brunberg, J. A., Jacquemont, S., Hagerman, R. J., Berry-Kravis, E. M., Grigsby, J.,
552 Leehey, M. A., Tassone, F., Brown, W. T., Greco, C. M., & Hagerman, P. J.
553 (2002). Fragile X premutation carriers: characteristic MR imaging findings of adult
554 male patients with progressive cerebellar and cognitive dysfunction. *AJNR Am J
555 Neuroradiol*, 23(10), 1757-1766. <https://www.ncbi.nlm.nih.gov/pubmed/12427636>

556 Cohen, S., Masyn, K., Adams, J., Hessl, D., Rivera, S., Tassone, F., Brunberg, J.,
557 DeCarli, C., Zhang, L., Cogswell, J., Loesch, D., Leehey, M., Grigsby, J.,
558 Hagerman, P. J., & Hagerman, R. (2006). Molecular and imaging correlates of
559 the fragile X-associated tremor/ataxia syndrome. *Neurology*, 67(8), 1426-1431.
560 <https://doi.org/10.1212/01.wnl.0000239837.57475.3a>

561 Croisier, E., & Graeber, M. B. (2006). Glial degeneration and reactive gliosis in alpha-
562 synucleinopathies: the emerging concept of primary gliodegeneration. *Acta
563 Neuropathol*, 112(5), 517-530. <https://doi.org/10.1007/s00401-006-0119-z>

564 Darnell, J. C., Van Driesche, S. J., Zhang, C., Hung, K. Y., Mele, A., Fraser, C. E.,
565 Stone, E. F., Chen, C., Fak, J. J., Chi, S. W., Licatalosi, D. D., Richter, J. D., &
566 Darnell, R. B. (2011). FMRP stalls ribosomal translocation on mRNAs linked to
567 synaptic function and autism. *Cell*, 146(2), 247-261.
568 <https://doi.org/10.1016/j.cell.2011.06.013>

569 Doll, C. A., Scott, K., & Appel, B. (2021). Fmrp regulates oligodendrocyte lineage cell
570 specification and differentiation. In *Glia*.

571 Doll, C. A., Yergert, K. M., & Appel, B. H. (2020). The RNA binding protein fragile X
572 mental retardation protein promotes myelin sheath growth. In *Glia*.

573 Donnard, E., Shu, H., & Garber, M. (2020). Single cell transcriptomics reveals
574 dysregulated cellular and molecular networks in a fragile x syndrome model. In
575 *bioRxiv*.

576 Esanov, R., Andrade, N. S., Bennison, S., Wahlestedt, C., & Zeier, Z. (2016). The
577 FMR1 promoter is selectively hydroxymethylated in primary neurons of fragile X
578 syndrome patients. In *Human Molecular Genetics*.

579 Fernandes, V. M., Chen, Z., Rossi, A. M., Zipfel, J., & Desplan, C. (2017). Glia relay
580 differentiation cues to coordinate neuronal development in *Drosophila*. *Science*,
581 357(6354), 886-891. <https://doi.org/10.1126/science.aan3174>

582 Fu, Y. H., Kuhl, D. P. A., Pizzuti, A., Pieretti, M., Sutcliffe, J. S., Richards, S., Verkert, A.
583 J. M. H., Holden, J. J. A., Fenwick, R. G., Warren, S. T., Oostra, B. A., Nelson, D.
584 L., & Caskey, C. T. (1991). Variation of the CGG repeat at the fragile X site
585 results in genetic instability: Resolution of the Sherman paradox. In *Cell* (Vol. 67,
586 pp. 1047-1058): Cell Press.

587 Garcia-Arocena, D., & Hagerman, P. J. (2010). Advances in understanding the
588 molecular basis of FXTAS. *Hum Mol Genet*, 19(R1), R83-89.
589 <https://doi.org/10.1093/hmg/ddq166>

590 Gedeon, A. K., Baker, E., Robinson, H., Partington, M. W., Gross, B., Manca, A., Korn,
591 B., Poustka, A., Yu, S., Sutherland, G. R., & et al. (1992). Fragile X syndrome
592 without CCG amplification has an FMR1 deletion. *Nat Genet*, 1(5), 341-344.
593 <https://doi.org/10.1038/ng0892-341>

594 Giampetrucci, A., Carson, J. H., & Barbarese, E. (2013). FMRP and myelin protein
595 expression in oligodendrocytes. *Mol Cell Neurosci*, 56, 333-341.
596 <https://doi.org/10.1016/j.mcn.2013.07.009>

597 Greco, C. M., Berman, R. F., Martin, R. M., Tassone, F., Schwartz, P. H., Chang, A.,
598 Trapp, B. D., Iwahashi, C., Brunberg, J., Grigsby, J., Hessl, D., Becker, E. J.,
599 Papazian, J., Leehey, M. A., Hagerman, R. J., & Hagerman, P. J. (2006).
600 Neuropathology of fragile X-associated tremor/ataxia syndrome (FXTAS). In
601 *Brain*.

602 Grigsby, J., Brega, A. G., Bennett, R. E., Bourgeois, J. A., Seritan, A. L., Goodrich, G.
603 K., & Hagerman, R. J. (2016). Clinically significant psychiatric symptoms among
604 male carriers of the fragile X premutation, with and without FXTAS, and the
605 mediating influence of executive functioning. In *The Clinical Neuropsychologist*
606 (Vol. 30).

607 Grigsby, J., Brega, A. G., Engle, K., Leehey, M. A., Hagerman, R. J., Tassone, F.,
608 Hessl, D., Hagerman, P. J., Cogswell, J. B., Bennett, R. E., Cook, K., Hall, D. A.,
609 Bounds, L. S., Paulich, M. J., & Reynolds, A. (2008). Cognitive profile of fragile X
610 premutation carriers with and without fragile X-associated tremor/ataxia
611 syndrome. *Neuropsychology*, 22(1), 48-60. <https://doi.org/10.1037/0894-4105.22.1.48>

612 Hagerman, P. (2013). Fragile X-associated tremor/ataxia syndrome (FXTAS): pathology
613 and mechanisms. *Acta Neuropathol*, 126(1), 1-19.
614 <https://doi.org/10.1007/s00401-013-1138-1>

615 Hagerman, R. J., Berry-Kravis, E., Hazlett, H. C., Bailey, D. B., Moine, H., Kooy, R. F.,
616 Tassone, F., Gantois, I., Sonenberg, N., Mandel, J. L., & Hagerman, P. J. (2017).
617 Fragile X syndrome. In *Nature Reviews Disease Primers* 2017 3:1 (Vol. 3, pp. 1-
618 19): Nature Publishing Group.

619 Hale, C. R., Sawicka, K., Mora, K., Fak, J. J., Kang, J. J., Cutrim, P., Cialowicz, K.,
620 Carroll, T. S., & Darnell, R. B. (2021). FMRP regulates mRNAs encoding distinct
621 functions in the cell body and dendrites of CA1 pyramidal neurons. *eLife*, 10.
622 <https://doi.org/10.7554/eLife.71892>

624 Hallahan, B. P., Craig, M. C., Toal, F., Daly, E. M., Moore, C. J., Ambikapathy, A.,
625 Robertson, D., Murphy, K. C., & Murphy, D. G. (2011). In vivo brain anatomy of
626 adult males with Fragile X syndrome: an MRI study. *Neuroimage*, 54(1), 16-24.
627 <https://doi.org/10.1016/j.neuroimage.2010.08.015>

628 Hodge, R. D., Bakken, T. E., Miller, J. A., Smith, K. A., Barkan, E. R., Graybuck, L. T.,
629 Close, J. L., Long, B., Johansen, N., Penn, O., Yao, Z., Eggermont, J., Hollt, T.,
630 Levi, B. P., Shehata, S. I., Aevermann, B., Beller, A., Bertagnolli, D., Brouner, K.,
631 . . . Lein, E. S. (2019). Conserved cell types with divergent features in human
632 versus mouse cortex. *Nature*, 573(7772), 61-68. <https://doi.org/10.1038/s41586-019-1506-7>

633 Hua, T., Kao, C., Sun, Q., Li, X., & Zhou, Y. (2008). Decreased proportion of GABA
634 neurons accompanies age-related degradation of neuronal function in cat striate
635 cortex. *Brain Res Bull*, 75(1), 119-125.
636 <https://doi.org/10.1016/j.brainresbull.2007.08.001>

637 Jacquemont, S., Hagerman, R. J., Leehey, M., Grigsby, J., Zhang, L., Brunberg, J. A.,
638 Greco, C., Des Portes, V., Jardini, T., Levine, R., Berry-Kravis, E., Brown, W. T.,
639 Schaeffer, S., Kissel, J., Tassone, F., & Hagerman, P. J. (2003). Fragile X
640 premutation tremor/ataxia syndrome: Molecular, clinical, and neuroimaging
641 correlates. In *American Journal of Human Genetics*.

642 Kang, Y., Zhou, Y., Li, Y., Han, Y., Xu, J., Niu, W., Li, Z., Liu, S., Feng, H., Huang, W.,
643 Duan, R., Xu, T., Raj, N., Zhang, F., Dou, J., Xu, C., Wu, H., Bassell, G. J.,
644 Warren, S. T., . . . Wen, Z. (2021). A human forebrain organoid model of fragile X
645 syndrome exhibits altered neurogenesis and highlights new treatment strategies.
646 *Nat Neurosci*, 24(10), 1377-1391. <https://doi.org/10.1038/s41593-021-00913-6>

647 Kenneson, A., Zhang, F., Hagedorn, C. H., & Warren, S. T. (2001). Reduced FMRP and
648 increased FMR1 transcription is proportionally associated with CGG repeat
649 number in intermediate-length and premutation carriers. In *Human Molecular
650 Genetics*.

651 Lake, B. B., Ai, R., Kaeser, G. E., Salathia, N. S., Yung, Y. C., Liu, R., Wildberg, A.,
652 Gao, D., Fung, H. L., Chen, S., Vijayaraghavan, R., Wong, J., Chen, A., Sheng,
653 X., Kaper, F., Shen, R., Ronaghi, M., Fan, J. B., Wang, W., . . . Zhang, K. (2016).
654 Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of
655 the human brain. *Science*, 352(6293), 1586-1590.
656 <https://doi.org/10.1126/science.aaf1204>

657 Langseth, C. M., Gyllborg, D., Miller, J. A., Close, J. L., Long, B., Lein, E. S., Hilscher,
658 M. M., & Nilsson, M. (2021). Comprehensive in situ mapping of human cortical
659 transcriptomic cell types. *Commun Biol*, 4(1), 998.
660 <https://doi.org/10.1038/s42003-021-02517-z>

661 Lecca, D., Raffaele, S., Abbracchio, M. P., & Fumagalli, M. (2020). Regulation and
662 signaling of the GPR17 receptor in oligodendroglial cells. *Glia*, 68(10), 1957-
663 1967. <https://doi.org/10.1002/glia.23807>

664 Lee, Y., Morrison, B. M., Li, Y., Lengacher, S., Farah, M. H., Hoffman, P. N., Liu, Y.,
665 Tsingalia, A., Jin, L., Zhang, P. W., Pellerin, L., Magistretti, P. J., & Rothstein, J.
666 D. (2012). Oligodendroglia metabolically support axons and contribute to
667 neurodegeneration. *Nature*, 487(7408), 443-448.
668 <https://doi.org/10.1038/nature11314>

669

670 Leehey, M. A. (2009). Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS): Clinical
671 Phenotype, Diagnosis and Treatment. In *Journal of Investigative Medicine* (Vol.
672 57, pp. 830-836).

673 Licznerski, P., Park, H. A., Rolyan, H., Chen, R., Mnatsakanyan, N., Miranda, P.,
674 Graham, M., Wu, J., Cruz-Reyes, N., Mehta, N., Sohail, S., Salcedo, J., Song, E.,
675 Effman, C., Effman, S., Brandao, L., Xu, G. N., Braker, A., Gribkoff, V. K., . . .
676 Jonas, E. A. (2020). ATP Synthase c-Subunit Leak Causes Aberrant Cellular
677 Metabolism in Fragile X Syndrome. *Cell*, 182(5), 1170-1185 e1179.
678 <https://doi.org/10.1016/j.cell.2020.07.008>

679 Liu, L., Zhang, K., Sandoval, H., Yamamoto, S., Jaiswal, M., Sanz, E., Li, Z., Hui, J.,
680 Graham, B. H., Quintana, A., & Bellen, H. J. (2015). Glial lipid droplets and ROS
681 induced by mitochondrial defects promote neurodegeneration. *Cell*, 160(1-2),
682 177-190. <https://doi.org/10.1016/j.cell.2014.12.019>

683 Lohith, T. G., Osterweil, E. K., Fujita, M., Jenko, K. J., Bear, M. F., & Innis, R. B. (2013).
684 Is metabotropic glutamate receptor 5 upregulated in prefrontal cortex in fragile X
685 syndrome? *Mol Autism*, 4(1), 15. <https://doi.org/10.1186/2040-2392-4-15>

686 Majdi, M., Ribeiro-da-Silva, A., & Cuello, A. C. (2007). Cognitive impairment and
687 transmitter-specific pre- and postsynaptic changes in the rat cerebral cortex
688 during ageing. *Eur J Neurosci*, 26(12), 3583-3596. <https://doi.org/10.1111/j.1460-9568.2007.05966.x>

689 Marques, S., Zeisel, A., Codeluppi, S., van Bruggen, D., Mendanha Falcao, A., Xiao, L.,
690 Li, H., Haring, M., Hochgerner, H., Romanov, R. A., Gyllborg, D., Munoz
691 Manchado, A., La Manno, G., Lonnerberg, P., Floriddia, E. M., Rezayee, F.,
692 Ernfors, P., Arenas, E., Hjerling-Leffler, J., . . . Castelo-Branco, G. (2016).
693 Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous
694 system. *Science*, 352(6291), 1326-1329. <https://doi.org/10.1126/science.aaf6463>

695 Martin, J. P., & Bell, J. (1943). A Pedigree of Mental Defect Showing Sex-Linkage. *J
696 Neurol Psychiatry*, 6(3-4), 154-157. <https://doi.org/10.1136/jnnp.6.3-4.154>

697 Martínez Cerdeño, V., Hong, T., Amina, S., Lechpammer, M., Ariza, J., Tassone, F.,
698 Noctor, S. C., Hagerman, P., & Hagerman, R. (2018). Microglial cell activation
699 and senescence are characteristic of the pathology FXTAS. In *Movement
700 Disorders*.

701 Miller, S. A., Policastro, R. A., Sriramkumar, S., Lai, T., Huntington, T. D., Ladaika, C.
702 A., Kim, D., Hao, C., Zentner, G. E., & O'Hagan, H. M. (2021). LSD1 and
703 Aberrant DNA Methylation Mediate Persistence of Enteroendocrine Progenitors
704 That Support BRAF-Mutant Colorectal Cancer. In *Cancer Research* (Vol. 81, pp.
705 3791-3805): American Association for Cancer Research.

706 Nagai, J., Yu, X., Papouin, T., Cheong, E., Freeman, M. R., Monk, K. R., Hastings, M.
707 H., Haydon, P. G., Rowitch, D., Shaham, S., & Khakh, B. S. (2021). Behaviorally
708 consequential astrocytic regulation of neural circuits. *Neuron*, 109(4), 576-596.
709 <https://doi.org/10.1016/j.neuron.2020.12.008>

710 Nave, K. A. (2010). Myelination and support of axonal integrity by glia. *Nature*,
711 468(7321), 244-252. <https://doi.org/10.1038/nature09614>

712 Oberle, I., Rousseau, F., Heitz, D., Kretz, C., Devys, D., Hanauer, A., Boue, J.,
713 Bertheas, M., & Mandel, J. (1991). Instability of a 550-base pair DNA segment

714

715 and abnormal methylation in fragile X syndrome. In *Science* (Vol. 252, pp. 1097-
716 1102).

717 Peters, A., Josephson, K., & Vincent, S. L. (1991). Effects of aging on the neuroglial
718 cells and pericytes within area 17 of the rhesus monkey cerebral cortex. *Anat
719 Rec*, 229(3), 384-398. <https://doi.org/10.1002/ar.1092290311>

720 Peters, A., & Sethares, C. (2004). Oligodendrocytes, their progenitors and other
721 neuroglial cells in the aging primate cerebral cortex. *Cereb Cortex*, 14(9), 995-
722 1007. <https://doi.org/10.1093/cercor/bhh060>

723 Pieretti, M., Zhang, F., Fu, Y.-H., Warren, S. T., Oostra, B. A., Caskey, C. T., & Nelson,
724 D. L. (1991). Absence of expression of the FMR-1 gene in fragile X syndrome. In
725 *Cell* (Vol. 66, pp. 817-822).

726 Pretto, D. I., Kumar, M., Cao, Z., Cunningham, C. L., Durbin-Johnson, B., Qi, L.,
727 Berman, R., Noctor, S. C., Hagerman, R. J., Pessah, I. N., & Tassone, F. (2014).
728 Reduced EAAT1 and mGluR5 expression in the cerebellum of FMR1
729 premutation carriers with FXTAS. In *Neurobiology of aging* (Vol. 35, pp. 1189):
730 NIH Public Access.

731 Raj, N., McEachin, Z. T., Harousseau, W., Zhou, Y., Zhang, F., Merritt-Garza, M. E.,
732 Taliaferro, J. M., Kalinowska, M., Marro, S. G., Hales, C. M., Berry-Kravis, E.,
733 Wolf-Ochoa, M. W., Martínez-Cerdeño, V., Wernig, M., Chen, L., Klann, E.,
734 Warren, S. T., Jin, P., Wen, Z., & Bassell, G. J. (2021). Cell-type-specific profiling
735 of human cellular models of fragile X syndrome reveal PI3K-dependent defects in
736 translation and neurogenesis. In *Cell Reports* (Vol. 35, pp. 108991): Cell Press.

737 Rhodes, K. E., Raivich, G., & Fawcett, J. W. (2006). The injury response of
738 oligodendrocyte precursor cells is induced by platelets, macrophages and
739 inflammation-associated cytokines. *Neuroscience*, 140(1), 87-100.
740 <https://doi.org/10.1016/j.neuroscience.2006.01.055>

741 Rozycka, A., & Liguz-Lecznar, M. (2017). The space where aging acts: focus on the
742 GABAergic synapse. *Aging Cell*, 16(4), 634-643.
743 <https://doi.org/10.1111/ace.12605>

744 Salas, I. H., Burgado, J., & Allen, N. J. (2020). Glia: victims or villains of the aging
745 brain? *Neurobiol Dis*, 143, 105008. <https://doi.org/10.1016/j.nbd.2020.105008>

746 Salcedo-Arellano, M. J., Wang, J. Y., McLennan, Y. A., Doan, M., Cabal-Herrera, A. M.,
747 Jimenez, S., Wolf-Ochoa, M. W., Sanchez, D., Juarez, P., Tassone, F., Durbin-
748 Johnson, B., Hagerman, R. J., & Martínez-Cerdeño, V. (2021). Cerebral
749 Microbleeds in Fragile X-Associated Tremor/Ataxia Syndrome. In *Movement
750 disorders : official journal of the Movement Disorder Society* (Vol. 36, pp. 1935-
751 1943): Mov Disord.

752 Sandoval, G. M., Shim, S., Hong, D. S., Garrett, A. S., Quintin, E. M., Marzelli, M. J.,
753 Patnaik, S., Lightbody, A. A., & Reiss, A. L. (2018). Neuroanatomical
754 abnormalities in fragile X syndrome during the adolescent and young adult years.
755 *J Psychiatr Res*, 107, 138-144. <https://doi.org/10.1016/j.jpsychires.2018.10.014>

756 Schwartz, J. L., Jones, K. L., & Yeo, G. W. (2021). Repeat RNA expansion disorders of
757 the nervous system: post-transcriptional mechanisms and therapeutic strategies.
758 *Crit Rev Biochem Mol Biol*, 56(1), 31-53.
759 <https://doi.org/10.1080/10409238.2020.1841726>

760 Sellier, C., Buijsen, R. A. M., He, F., Natla, S., Jung, L., Tropel, P., Gaucherot, A.,
761 Jacobs, H., Meziane, H., Vincent, A., Champy, M. F., Sorg, T., Pavlovic, G.,
762 Wattenhofer-Donze, M., Birling, M. C., Oulad-Abdelghani, M., Eberling, P.,
763 Ruffenach, F., Joint, M., . . . Charlet-Berguerand, N. (2017). Translation of
764 Expanded CGG Repeats into FMRpolyG Is Pathogenic and May Contribute to
765 Fragile X Tremor Ataxia Syndrome. In *Neuron*.

766 Song, L., Pan, S., Zhang, Z., Jia, L., Chen, W. H., & Zhao, X. M. (2021). STAB: a
767 spatio-temporal cell atlas of the human brain. *Nucleic Acids Res*, 49(D1), D1029-
768 D1037. <https://doi.org/10.1093/nar/gkaa762>

769 Soreq, L., Consortium, U. K. B. E., North American Brain Expression, C., Rose, J.,
770 Soreq, E., Hardy, J., Trabzuni, D., Cookson, M. R., Smith, C., Ryten, M., Patani,
771 R., & Ule, J. (2017). Major Shifts in Glial Regional Identity Are a Transcriptional
772 Hallmark of Human Brain Aging. *Cell Rep*, 18(2), 557-570.
773 <https://doi.org/10.1016/j.celrep.2016.12.011>

774 Stanley, E. M., Fadel, J. R., & Mott, D. D. (2012). Interneuron loss reduces dendritic
775 inhibition and GABA release in hippocampus of aged rats. *Neurobiol Aging*,
776 33(2), 431 e431-413. <https://doi.org/10.1016/j.neurobiolaging.2010.12.014>

777 Swanson, M. R., Wolff, J. J., Shen, M. D., Styner, M., Estes, A., Gerig, G., McKinstry, R.
778 C., Botteron, K. N., Piven, J., Hazlett, H. C., & Infant Brain Imaging Study, N.
779 (2018). Development of White Matter Circuitry in Infants With Fragile X
780 Syndrome. *JAMA Psychiatry*, 75(5), 505-513.
781 <https://doi.org/10.1001/jamapsychiatry.2018.0180>

782 Tassone, F., Hagerman, R. J., Chamberlain, W. D., & Hagerman, P. J. (2000).
783 Transcription of the FMR1 gene in individuals with fragile X syndrome. In
784 *American Journal of Medical Genetics - Seminars in Medical Genetics*.

785 Tassone, F., Hagerman, R. J., Garcia-Arocena, D., Khandjian, E. W., Greco, C. M., &
786 Hagerman, P. J. (2004). Intranuclear inclusions in neural cells with premutation
787 alleles in fragile X associated tremor/ataxia syndrome. In *Journal of Medical
788 Genetics* (Vol. 41, pp. e43-e43): BMJ Publishing Group Ltd.

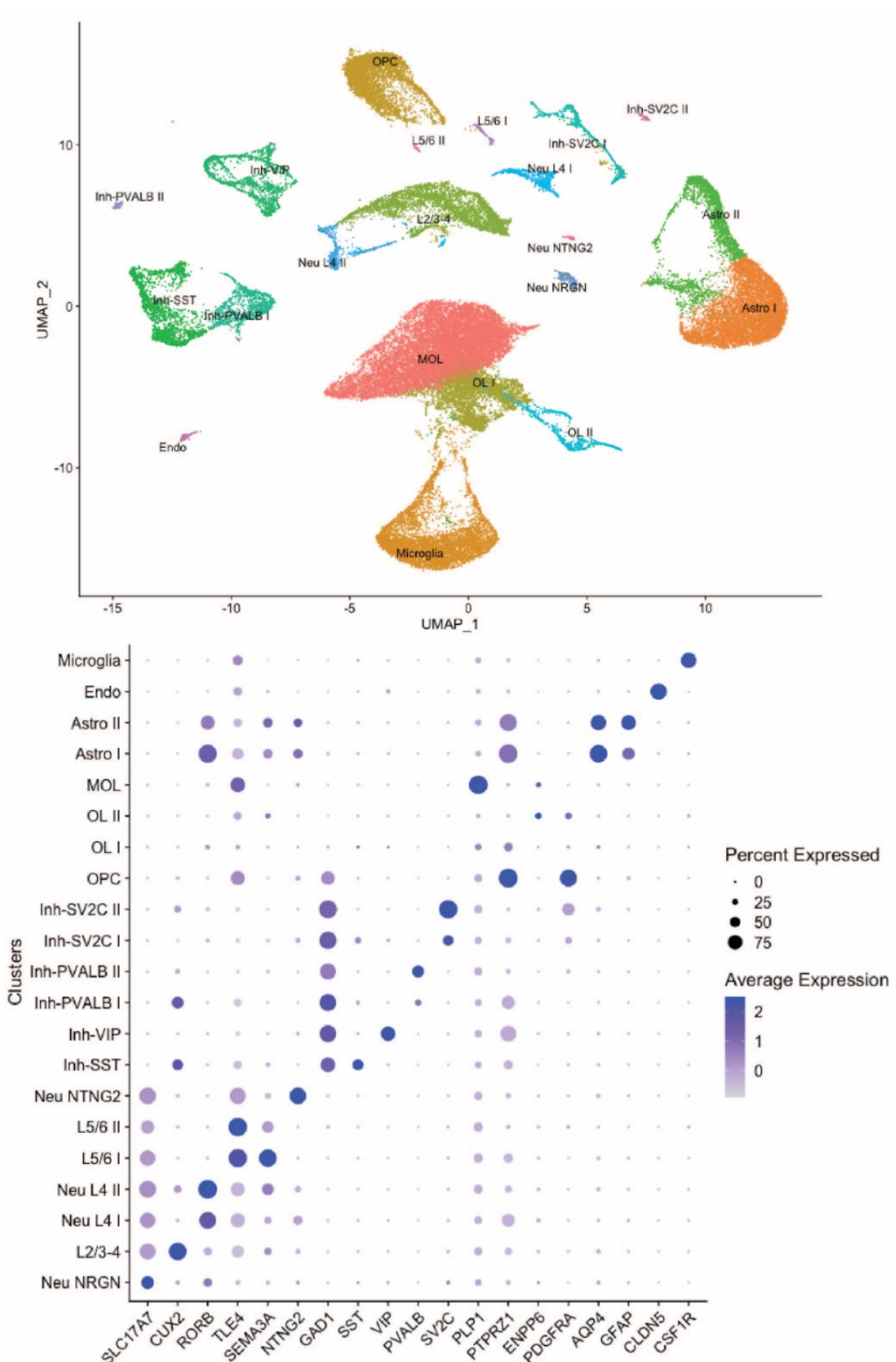
789 Tassone, F., Hagerman, R. J., Iklé, D. N., Dyer, P. N., Lampe, M., Willemsen, R.,
790 Oostra, B. A., & Taylor, A. K. (1999). FMRP expression as a potential prognostic
791 indicator in fragile X syndrome. In *American Journal of Medical Genetics*.

792 Tassone, F., Hagerman, R. J., Taylor, A. K., Gane, L. W., Godfrey, T. E., & Hagerman,
793 P. J. (2000). Elevated Levels of FMR1 mRNA in Carrier Males: A New
794 Mechanism of Involvement in the Fragile-X Syndrome. In *The American Journal
795 of Human Genetics* (Vol. 66, pp. 6-15): Am J Hum Genet.

796 Teismann, P., Tieu, K., Cohen, O., Choi, D. K., Wu, D. C., Marks, D., Vila, M., Jackson-
797 Lewis, V., & Przedborski, S. (2003). Pathogenic role of glial cells in Parkinson's
798 disease. *Mov Disord*, 18(2), 121-129. <https://doi.org/10.1002/mds.10332>

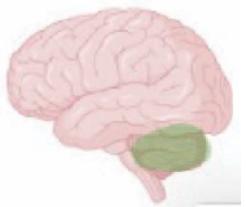
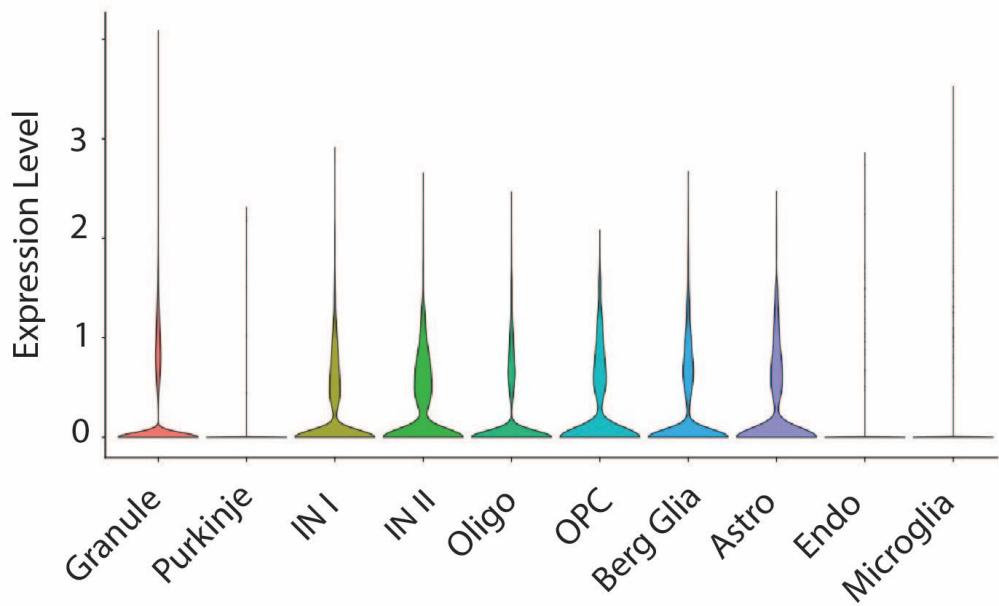
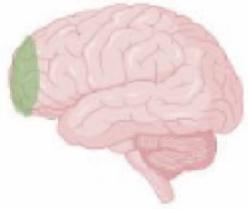
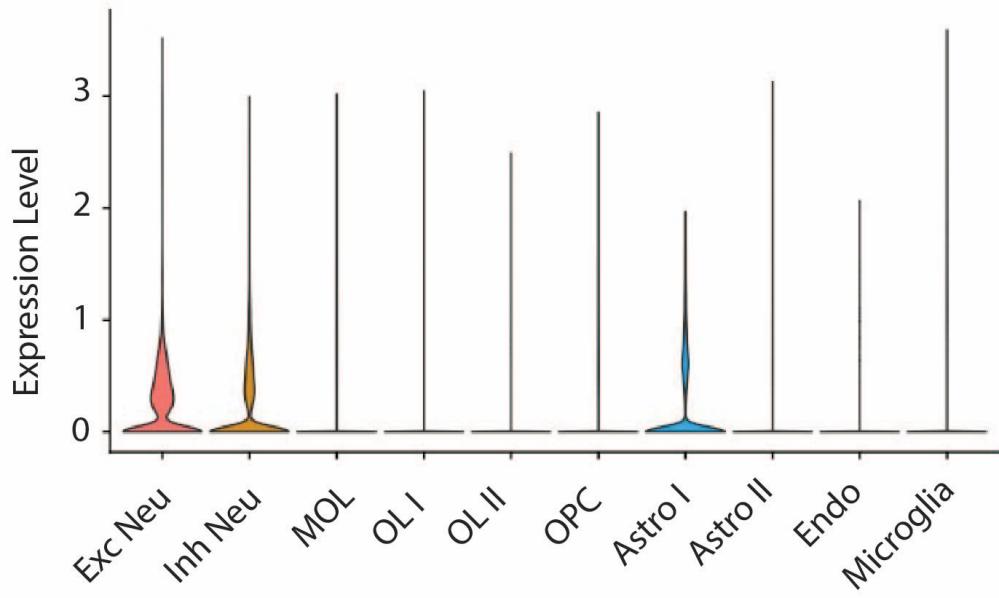
799 Tran, S. S., Jun, H. I., Bahn, J. H., Azghadi, A., Ramaswami, G., Van Nostrand, E. L.,
800 Nguyen, T. B., Hsiao, Y. E., Lee, C., Pratt, G. A., Martinez-Cerdeno, V.,
801 Hagerman, R. J., Yeo, G. W., Geschwind, D. H., & Xiao, X. (2019). Widespread
802 RNA editing dysregulation in brains from autistic individuals. *Nat Neurosci*, 22(1),
803 25-36. <https://doi.org/10.1038/s41593-018-0287-x>

804 Turner, G., Eastman, C., Casey, J., McLeay, A., Procopis, P., & Turner, B. (1975). X-
805 linked mental retardation associated with macro-orchidism. *J Med Genet*, 12(4),
806 367-371. <https://doi.org/10.1136/jmg.12.4.367>


807 Velmeshev, D., Schirmer, L., Jung, D., Haeussler, M., Perez, Y., Mayer, S., Bhaduri, A.,
808 Goyal, N., Rowitch, D. H., & Kriegstein, A. R. (2019). Single-cell genomics
809 identifies cell type-specific molecular changes in autism. *Science*, 364(6441),
810 685-689. <https://doi.org/10.1126/science.aav8130>

811 Verkerk, A. J. M. H., Pieretti, M., Sutcliffe, J. S., Fu, Y.-H., Kuhl, D. P. A., Pizzuti, A.,
812 Reiner, O., Richards, S., Victoria, M. F., Zhang, F., Eussen, B. E., van Ommen,
813 G.-J. B., Blonden, L. A. J., Riggins, G. J., Chastain, J. L., Kunst, C. B., Galjaard,
814 H., Thomas Caskey, C., Nelson, D. L., . . . Warren, S. T. (1991). Identification of
815 a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster
816 region exhibiting length variation in fragile X syndrome. In *Cell* (Vol. 65).

817 Wang, H., Ku, L., Osterhout, D. J., Li, W., Ahmadian, A., Liang, Z., & Feng, Y. (2004).
818 Developmentally-programmed FMRP expression in oligodendrocytes: a potential
819 role of FMRP in regulating translation in oligodendroglia progenitors. *Hum Mol
820 Genet*, 13(1), 79-89. <https://doi.org/10.1093/hmg/ddh009>





821 Xu, Z. X., Kim, G. H., Tan, J. W., Riso, A. E., Sun, Y., Xu, E. Y., Liao, G. Y., Xu, H., Lee,
822 S. H., Do, N. Y., Lee, C. H., Clipperton-Allen, A. E., Kwon, S., Page, D. T., Lee,
823 K. J., & Xu, B. (2020). Elevated protein synthesis in microglia causes autism-like
824 synaptic and behavioral aberrations. *Nat Commun*, 11(1), 1797.
825 <https://doi.org/10.1038/s41467-020-15530-3>

826

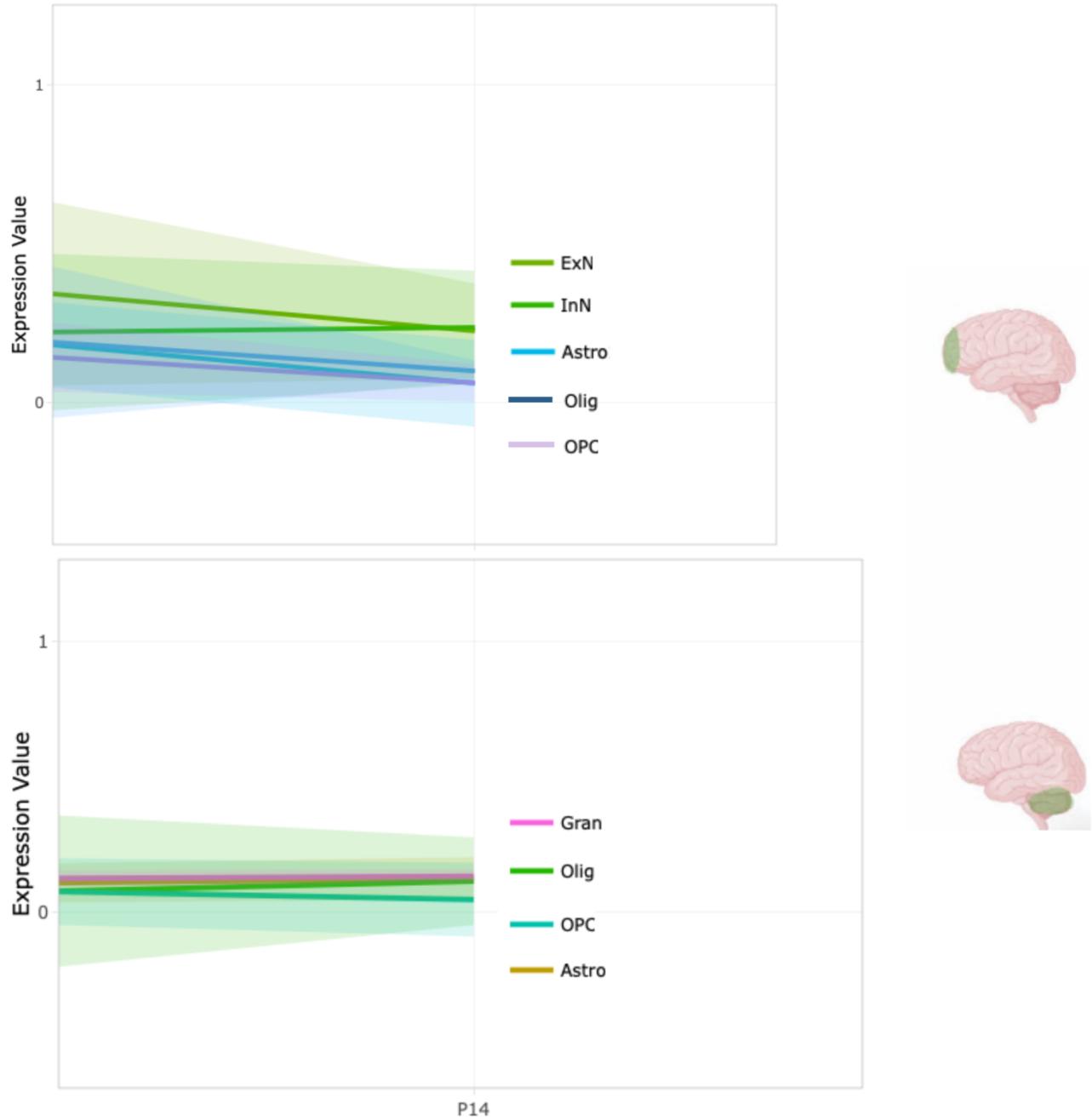
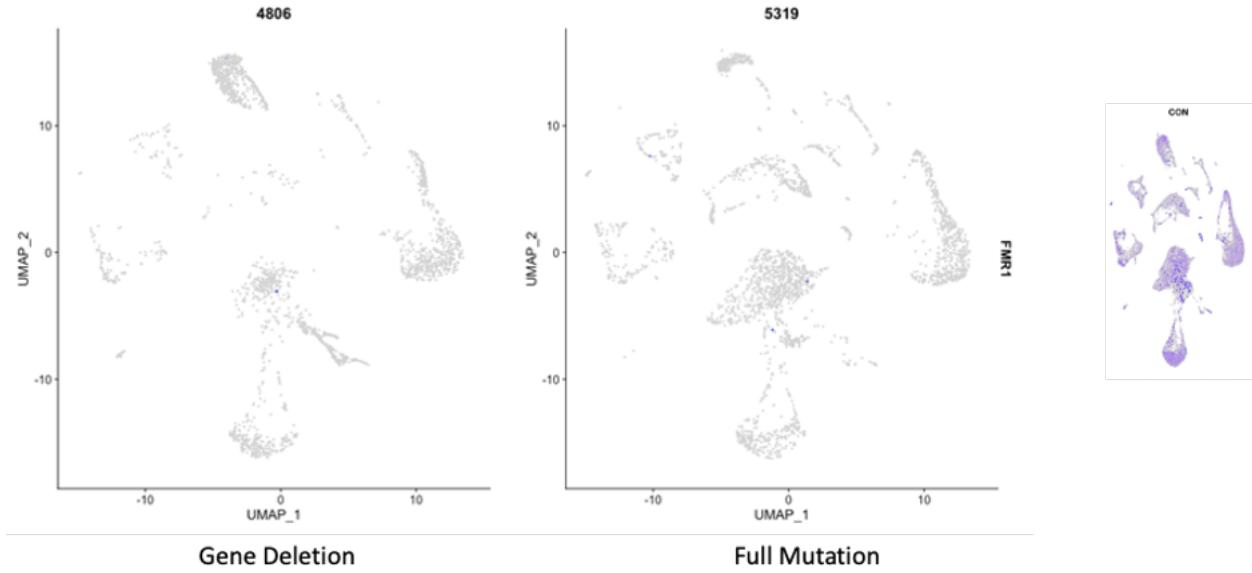
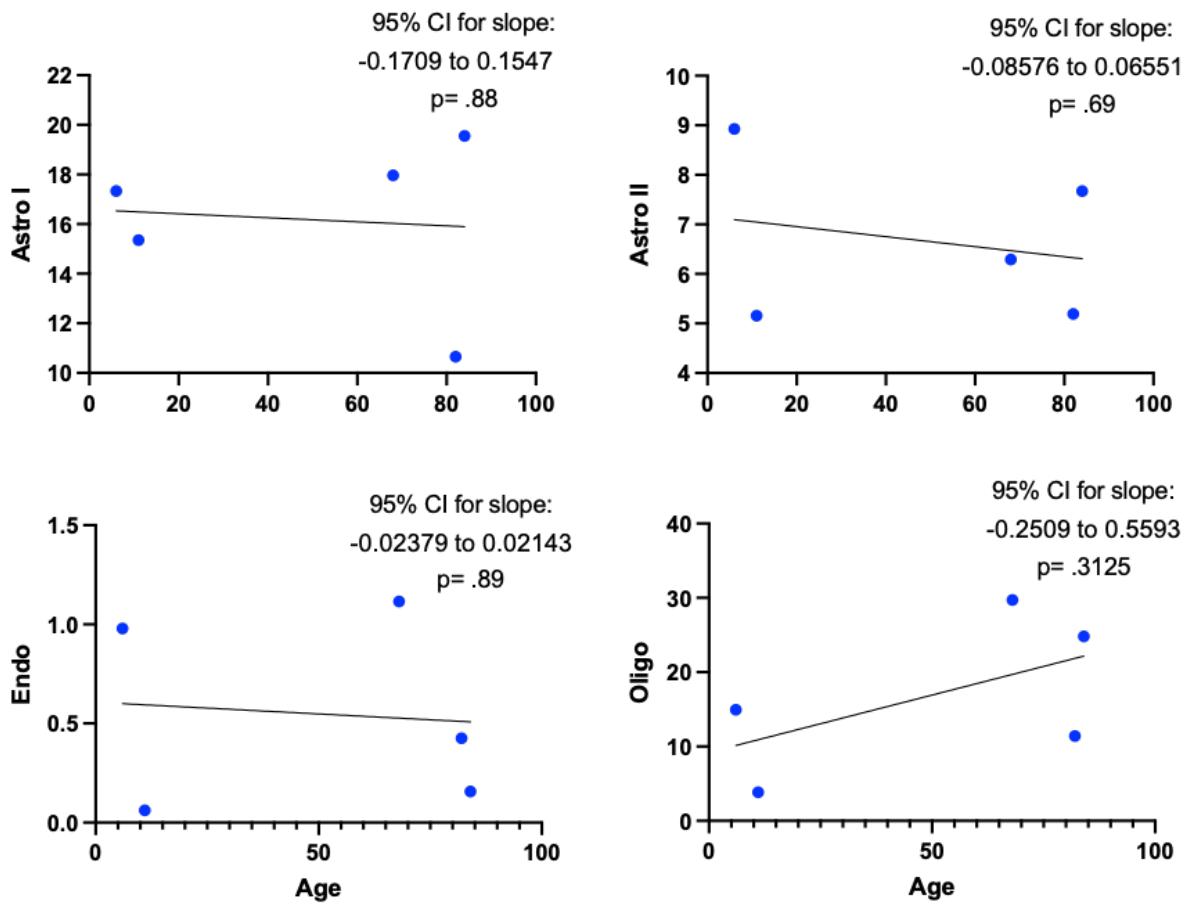
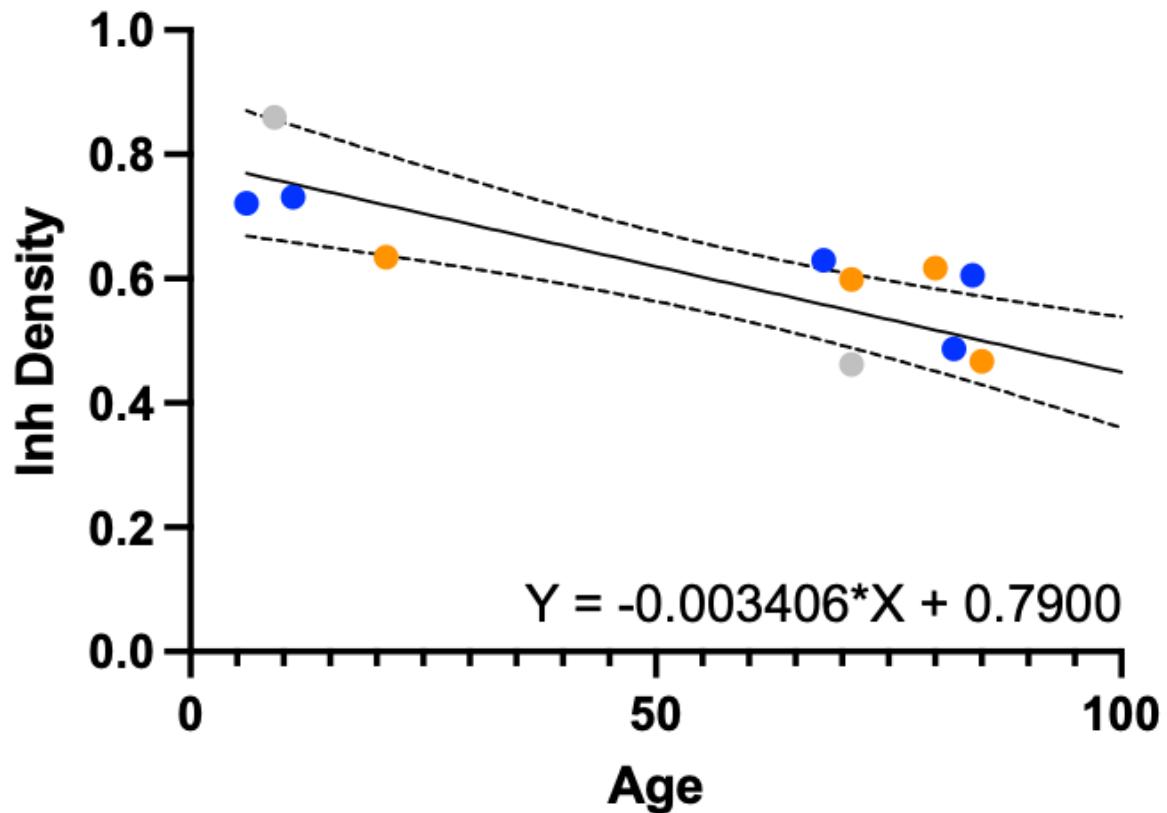
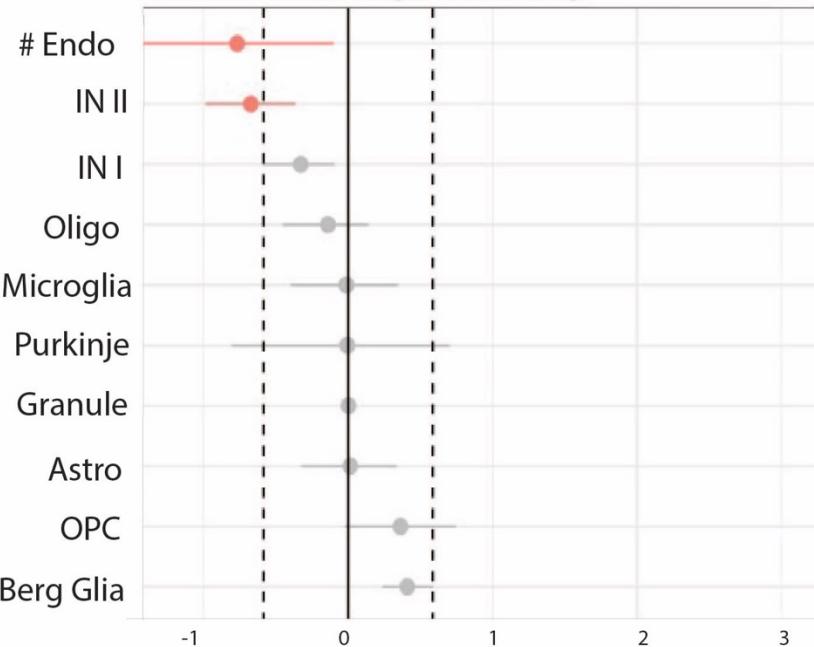
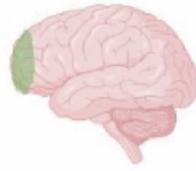
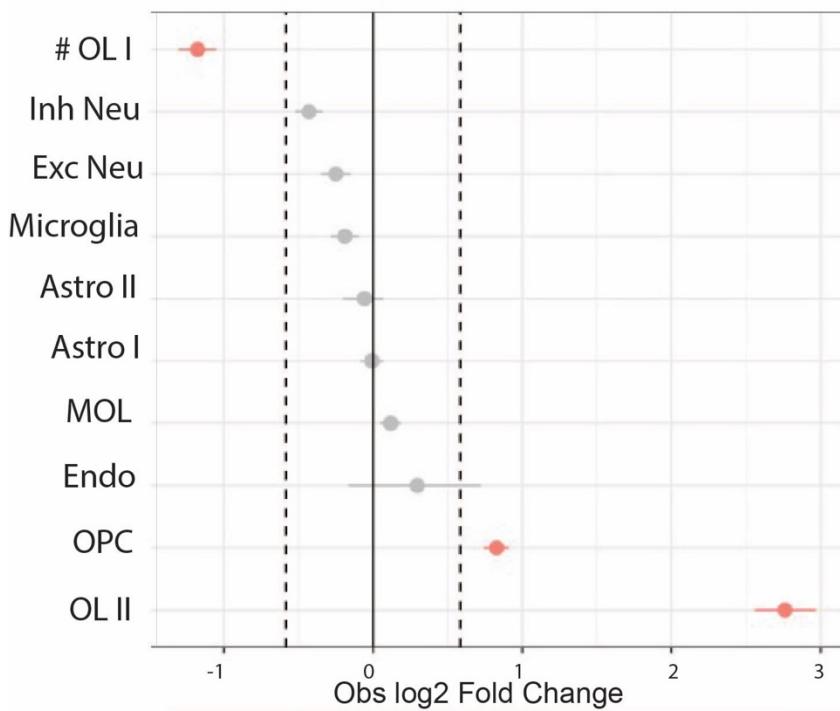


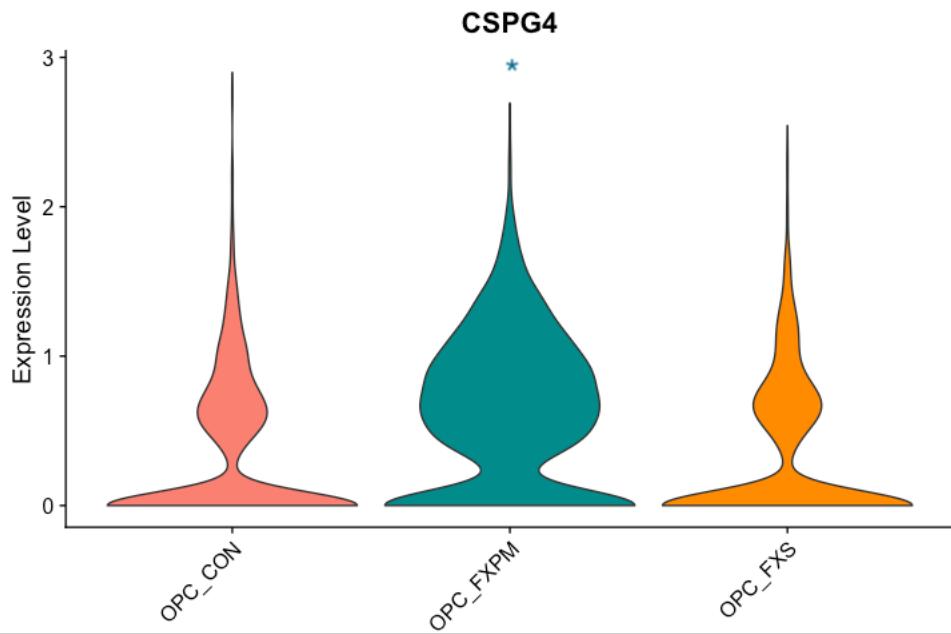
Figure 2 figure supplement 1: High resolution clustering of frontal cortex corroborates more general classification. Nuclei clustering of frontal cortex reveals accurate assignment of inhibitory neuronal subclusters and layer specific markers. Abbreviations as per Figure 2. Top panel is integrated UMAP, bottom is dot plot of cell type and layer specific marker expression by cluster.

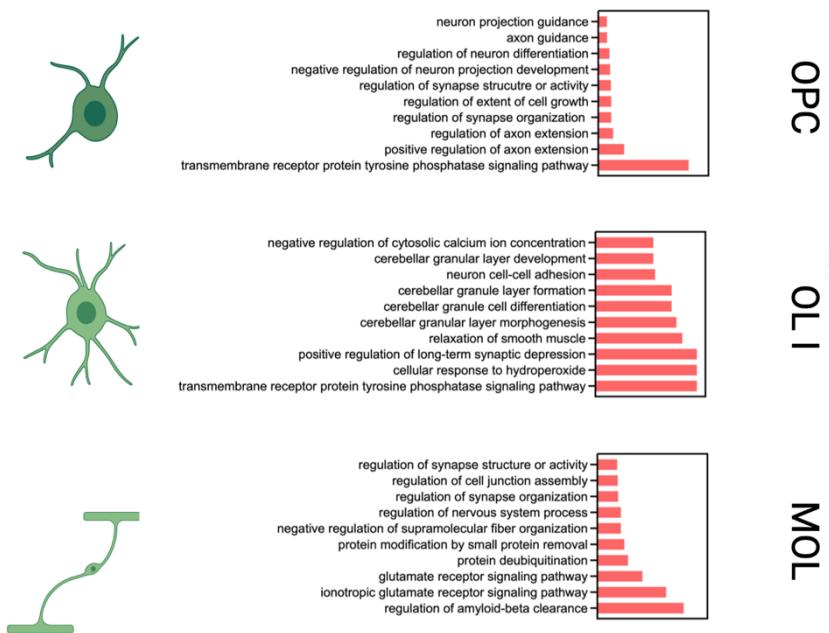

FMR1 Cluster Expression


Figure 2 figure supplement 2: Average FMR1 expression by cluster and region. Abbreviations as per Figure 2.


Figure 2 figure supplement 3: FMR1 expression in human frontal cortex (top) and cerebellum (bottom) in independent scRNA dataset replicates higher cerebellar glial expression P14: ages 40-59. Generated from stab.comp-sysbio.org on 1/8/21. Additional cell types hidden for clarity of presentation.




Figure 2 figure supplement 4: *FMR1* expression is eliminated in all cell clusters in Fragile X syndrome, regardless of genetic mechanism. Expected expression (purple) presented in right panel demonstrates average control expression. Sort cell feature in Seurat applied to visualize loss of expression. Frontal cortex UMAP is presented, results were identical in cerebellum.


Figure 3 figure supplement 1: Linear regression for cluster proportion and age revealed no significant association with age for glial subclusters. P-value on graph for non-zero slope. Astro- astrocyte, Endo- endothelial, Oligo- mature oligodendrocyte (MOL).


Figure 3 figure supplement 2: Linear regression for inhibitory/total neuron density in frontal cortex reveals significant age related decline that is not related to Fragile X status. Grey- FXS, blue- control, orange- PM. p-value of non-zero slope < .001.

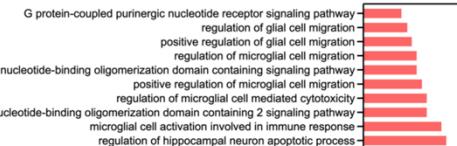
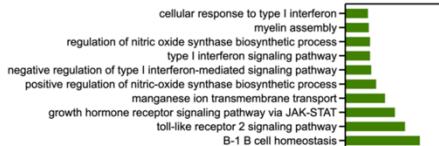
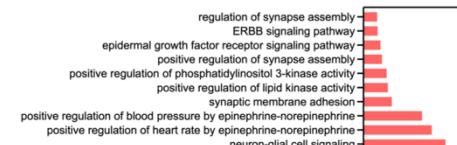
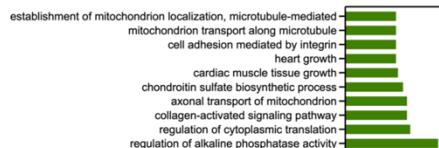
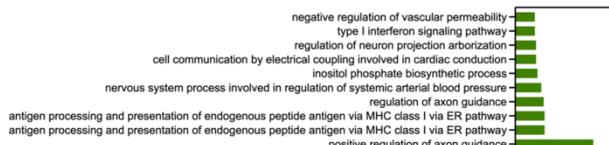
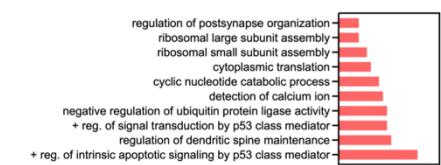
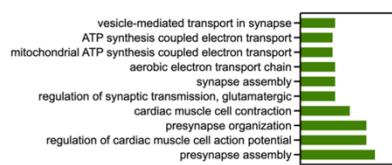
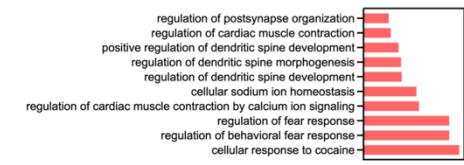
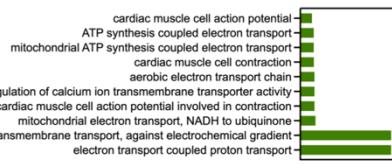





Figure 3 figure supplement 3: Alterations in cellular composition in Fragile X syndrome.
Permutation plot resulting from scProportion() with red indicating FDR < .05 and abs(log2FC) > 0.58. # indicates significance of this cluster is not robust to outlier sample removal.

Figure 4 figures supplement 1: Increased CSPG4 (NG2) expression in OPCs in PM cases in frontal cortex. * indicates comparison vs control, padj <.05.

Figure 4 figure supplement 2: GO analysis of downregulated genes in oligodendrocyte clusters in PM cases. Analysis reveals disturbances in synaptic and neuronal organization and regulation.

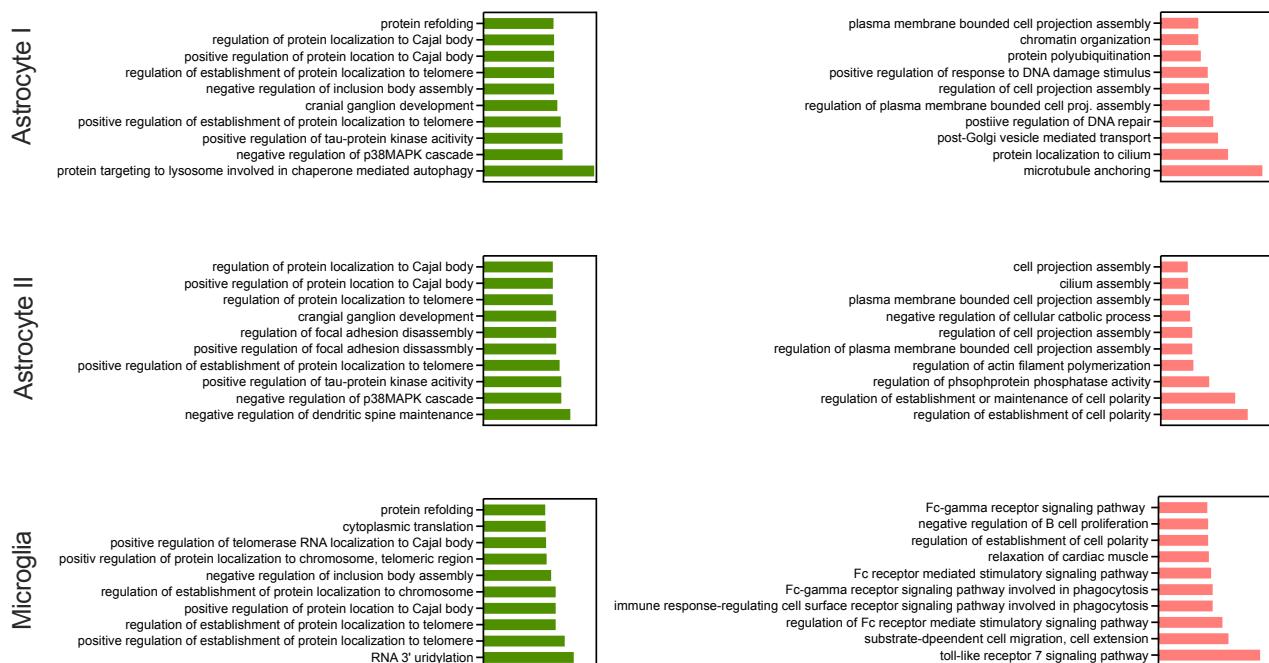
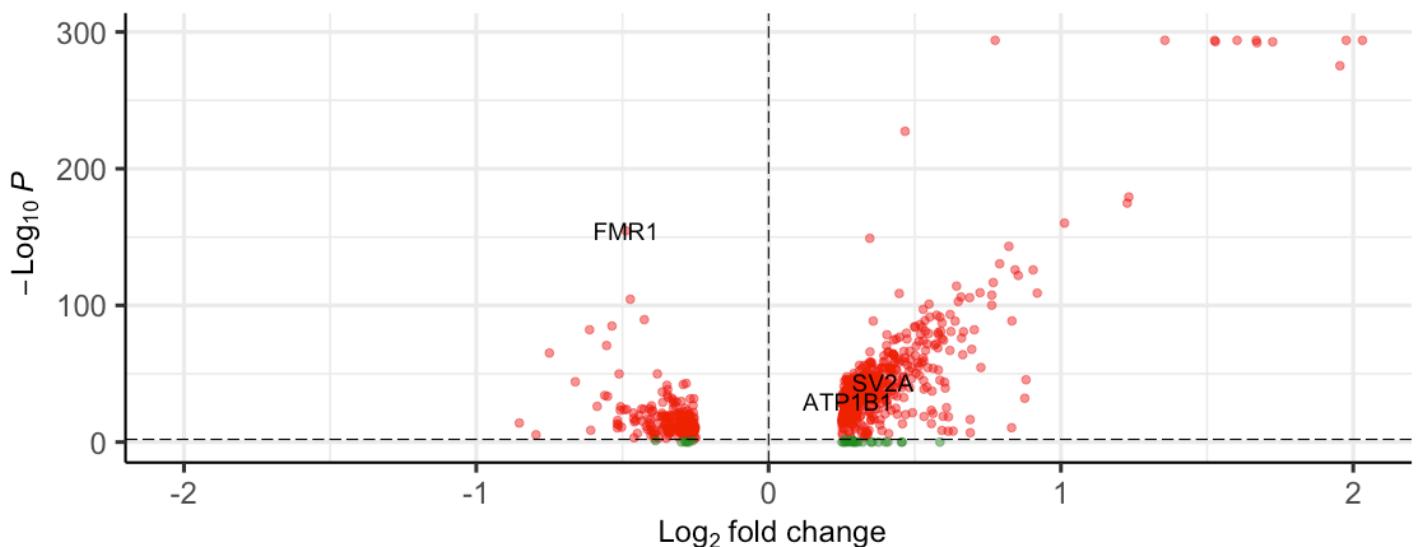



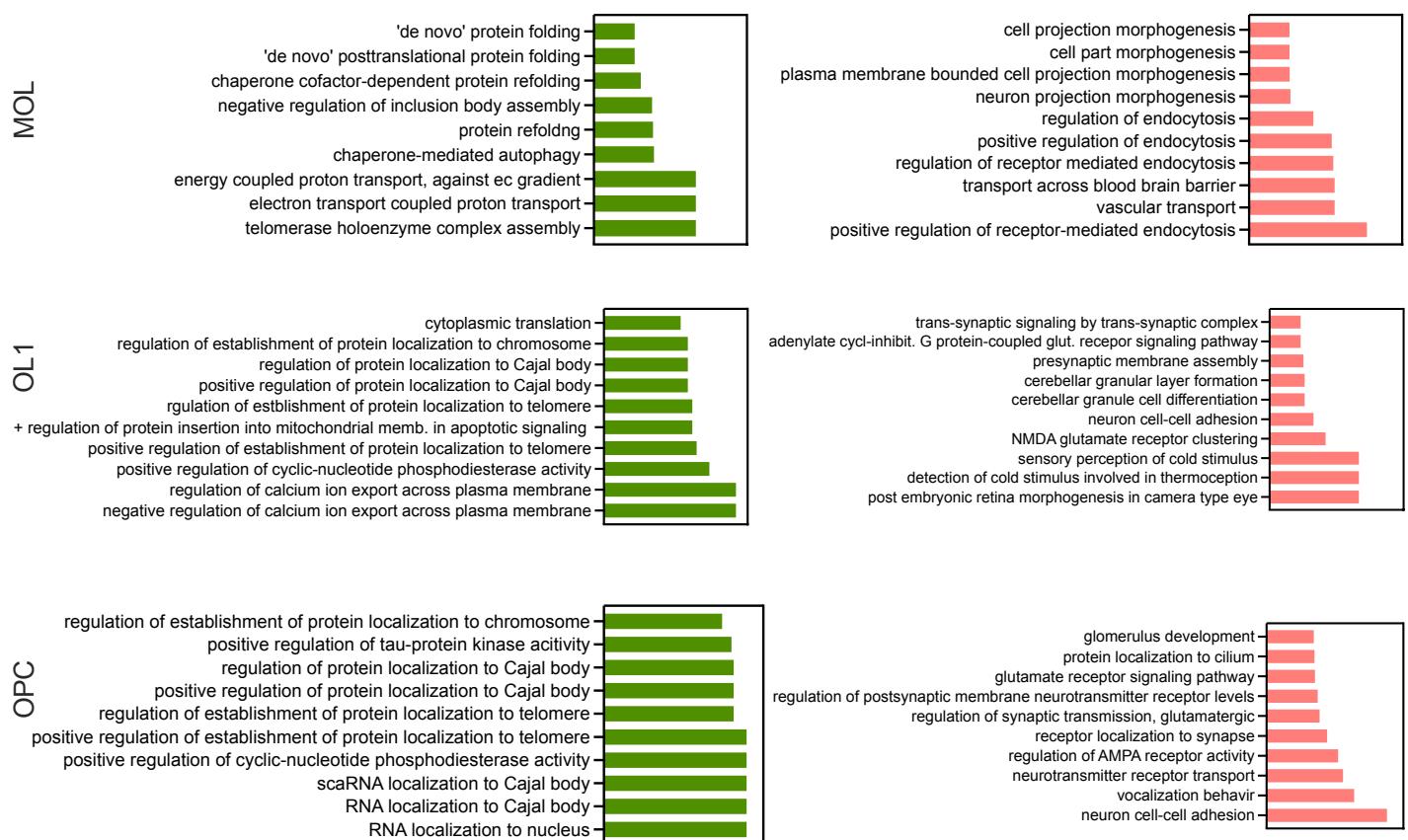
Astro I



Astro II

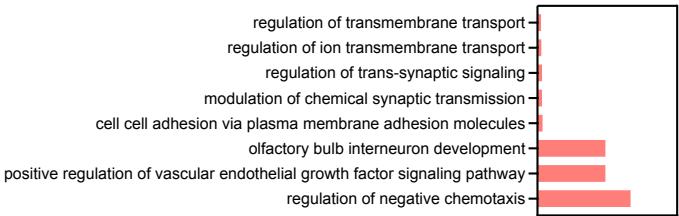
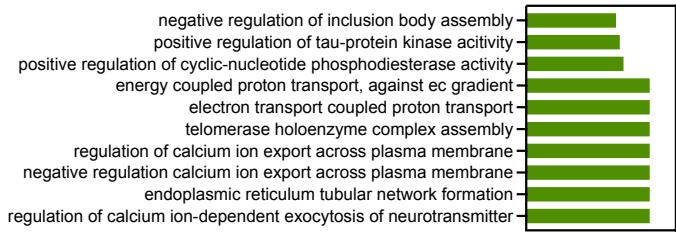
Microglia

Figure 4 figure supplement 3: GO analysis of upregulated (green) and downregulated (red) genes in astrocyte and microglia clusters in PM cases. Analysis reveal upregulation of inflammation as well as disturbances in synaptic and neuronal organization and regulation.


Excitatory

Inhibitory



Figure 4 figure supplement 4: GO analysis of upregulated (green) and downregulated (red) genes in neuronal clusters in PM cases. There is evidence of metabolic stress and downregulation of synaptic and dendritic organization and development.

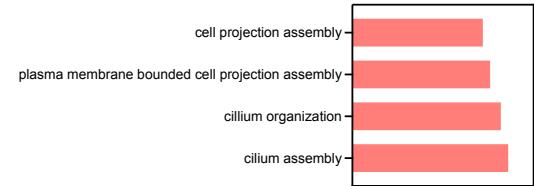
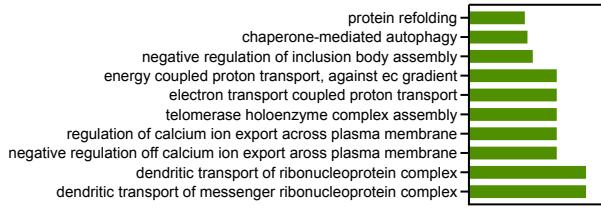
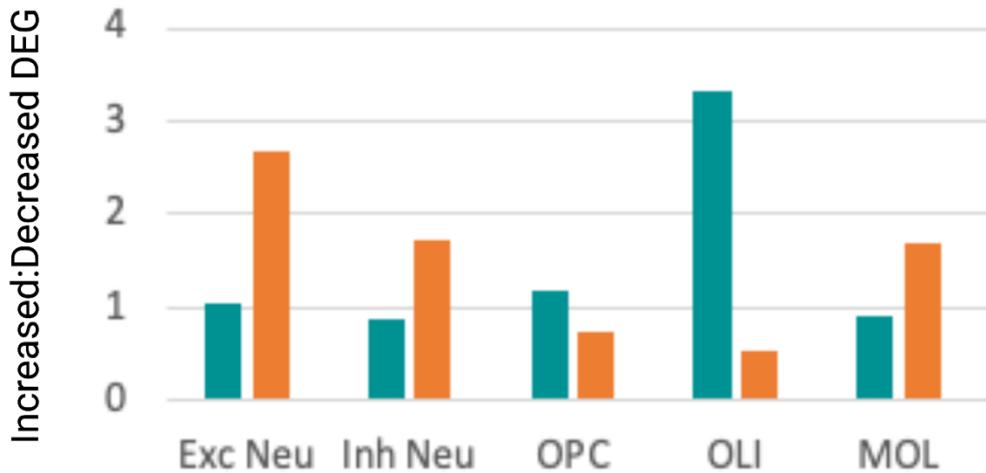



Figure 4 figure supplement 7: GO analysis of upregulated (green) and downregulated (red) differentially regulated genes in oligodendrocyte lineage in FXS.


Exc Neu

Inh Neu

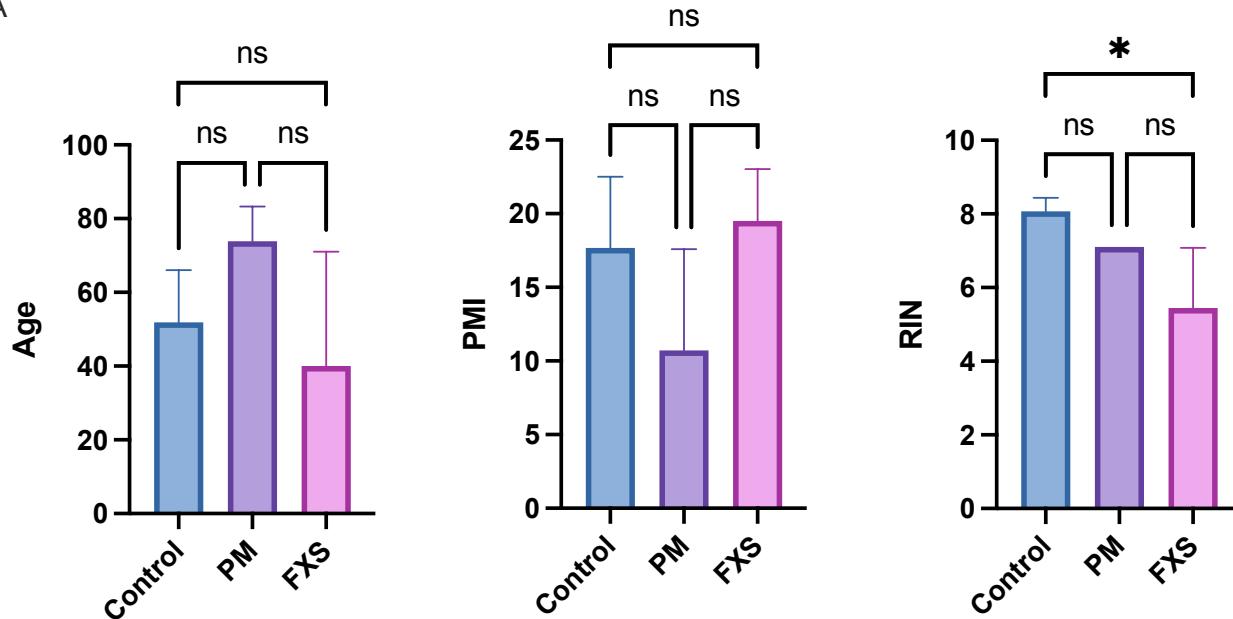


Figure 4 figure supplement 8: GO analysis of upregulated (green) and downregulated (red) differentially regulated genes in neurons in FXS.

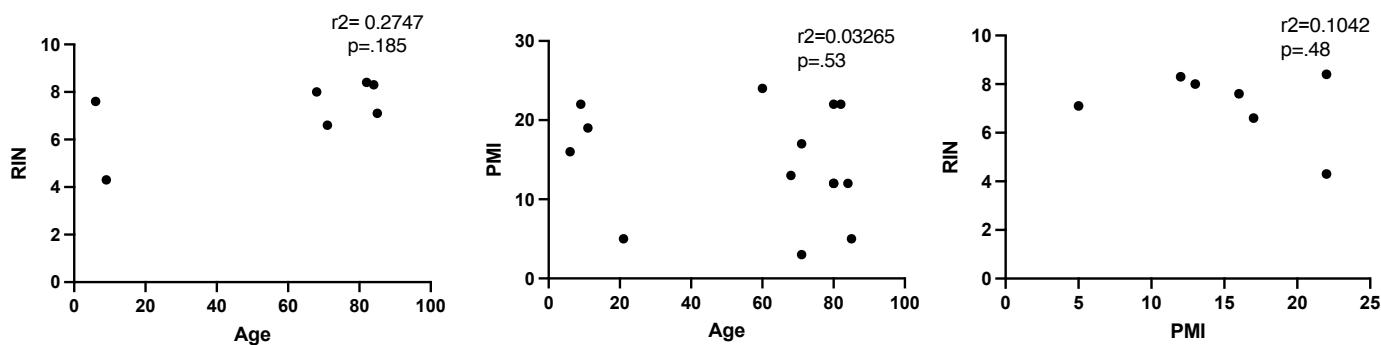
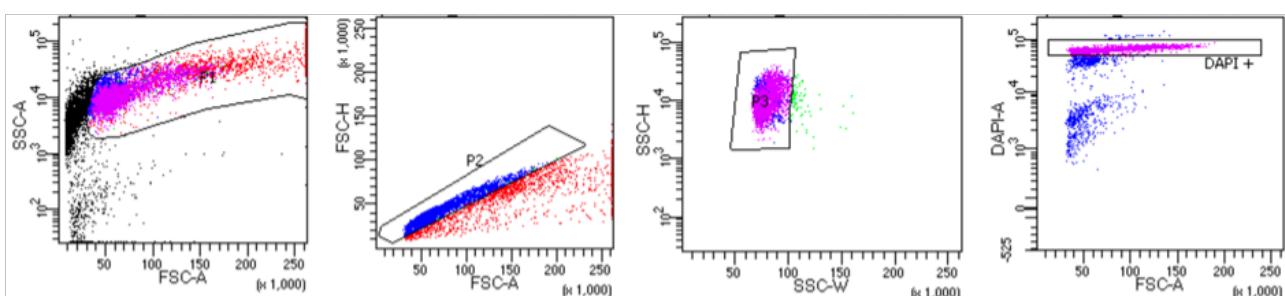


Figure 4 figure supplement 9: Comparison of ratio of increased:decreased differentially expressed genes in select clusters in PM cases (teal) and FXS (orange) reveal distinct patterns of global transcriptional dysregulation.


A

B

Appendix Fig 1: A. Age, PMI, and RIN by condition, ns= non-significant, one-way ANOVA, Tukey's multiple comparison test, * p < .05. B. No significant association between RIN and age, PMI and age, and RIN and PMI.

Appendix Fig 2: Representative flow cytometry results for nuclear selection- ~ 5-10% parent population is selected.