

Natural variation identifies new effectors of water use efficiency in *Arabidopsis*.

Govinal Badiger Bhaskara¹, Jesse R Lasky², Samsad Razzaque¹, Li Zhang¹, Taslima Haque¹, Jason E Bonnette¹, Guzide Zeynep Civelek¹, Paul E Verslues³, Thomas E Juenger¹

¹Department of Integrative Biology, University of Texas, Austin, Texas 78712

²Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802

³Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan

Corresponding authors: Govinal Badiger Bhaskara, Thomas E Juenger.

Email: bhaskar@utexas.edu, tjuenger@utexas.edu

Abstract

Water use efficiency (WUE) is the ratio of biomass gained per unit of water consumed; thus, it can be altered by genetic factors that affect either side of the ratio. In the present study, we exploited natural variation for WUE as an unbiased approach to discover loci affecting either biomass accumulation or water use as factors affecting WUE. Genome-wide association (GWAS) analysis using integrated WUE measured through carbon isotope discrimination ($\delta^{13}\text{C}$) of *Arabidopsis thaliana* accessions identified genomic regions associated with WUE. Reverse genetic analysis of 70 candidate genes selected based on the GWAS results and transcriptome data identified 25 genes affecting WUE as measured by gravimetric and $\delta^{13}\text{C}$ analyses. Mutants of four genes had higher WUE than wild type, while mutants of the other 21 genes had lower WUE. The differences in WUE were caused by either altered biomass or water consumption (or both). Stomatal density was not a primary cause of altered WUE in these mutants. Leaf surface temperatures indicated that transpiration differed for mutants of 16 genes, but generally biomass accumulation had greater effect on WUE. The genes we identified are involved in diverse cellular processes including hormone and calcium signaling, meristematic activity, photosynthesis, flowering time, leaf/vasculature development, and cell wall composition; however, none of them had been previously linked to WUE or traits related to plant water relations. Thus, our study successfully identified new effectors of WUE that can be used to understand the genetic basis of WUE and improve crop productivity.

Keywords: Genome wide association mapping, carbon isotope discrimination, reverse genetics, stomatal density, Leaf temperatures.

1 **Introduction**
2

3 Plants move large amounts of water through the soil-plant-atmosphere continuum from water
4 uptake by roots to loss of water to the atmosphere through stomatal pores. Plants can limit water
5 loss by closing stomata or by having fewer or smaller stomata. However, this must be balanced
6 with the need to maintain sufficient gas exchange for CO₂ to enter the leaf for photosynthesis (1).
7 If gas exchange through the stomata is too restricted, depletion of internal leaf CO₂ can limit
8 photosynthesis and hence, plant biomass and productivity (2). Globally, agriculture accounts for
9 over 80% of freshwater use (3). Therefore, improving WUE or enhancing water productivity (i.e.,
10 more yield per unit of water consumed) is important for crop improvement (4). However, efforts
11 to improve WUE have met with limited success thus far (5).

12 Molecular approaches have demonstrated that reduced stomatal conductance (g_s) can
13 improve WUE without reducing biomass accumulation (6, 7). Since abscisic acid (ABA) is key
14 inducer of stomatal closure, several studies have targeted ABA signaling genes to reduce g_s .
15 Several transgenic strategies to alter ABA sensitivity led to increased WUE while maintaining
16 high biomass and grain yield under progressive drought (8–10). Ectopic expression or mutation of
17 genes which regulate stomatal development can also lead to increased WUE via effects on
18 stomatal density (6). While these studies successfully increased WUE by manipulating previously
19 described regulatory genes, other approaches are needed to allow an unbiased and broader search
20 for new effectors of WUE. Particularly, the studies mentioned above focused on manipulating
21 the transpiration side of WUE by changing stomatal density or altering stomatal opening and
22 closing behavior. It is less clear whether changing the other side of WUE, biomass accumulation,
23 can also be a path to increased WUE. Because of the complexity of plant growth regulation, this
24 side of the WUE is less amenable to manipulation by targeting *a priori* candidate genes.

25 Plants exhibit natural genetic variation in WUE (11–17). This includes both variation in
26 the transpiration (stomatal behavior and density) as well as the biomass (biomass and plasticity of
27 biomass during water limitation) sides of WUE (7). Quantitative trait loci (QTL) mapping has
28 identified many QTL driving variation in $\delta^{13}\text{C}$ (the ratio of ¹³C to ¹²C), a widely used proxy for
29 integrated WUE (7). One such study found that a single amino acid change in *Mitogen-Activated*
30 *Protein Kinase 12 (MPK12)* is responsible for variation in stomatal conductance and WUE in a
31 number of *Arabidopsis* accessions (18, 19). Another QTL analysis discovered that *ERECTA*, a
32 gene involved in stomatal development, contributes to variation in $\delta^{13}\text{C}$ and transpiration
33 efficiency (20). Genome wide association (GWAS) using large panels of natural accession is an

34 attractive alternative to bi-parental linkage mapping. In *Arabidopsis*, there is substantial natural
35 variation in many water use and drought-related traits (21–24) and the decay of linkage
36 disequilibrium occurs over a relatively short interval. Thus, once SNPs associated with a
37 particular trait are identified, testing only a few candidate genes in the vicinity of strongly
38 associated SNPs, or cluster of moderately associated SNPs, can find gene(s) affecting the trait of
39 interest (23, 24). Integrating other information, such as transcriptome data, can further assist in
40 identifying the most promising candidate genes (25). The combination of GWAS and reverse
41 genetic testing of candidate genes allows for an open-ended search for effector genes. This is
42 particularly useful for traits, such as WUE, where it is difficult to apply traditional forward
43 genetic screening. To date, only a few studies have employed GWAS to identify candidate loci
44 affecting WUE (25–29) and there is relatively little data on validation of candidate genes
45 identified by GWAS for the drought-related traits (23, 24).

46 We applied GWAS and reverse genetic testing to discover loci affecting WUE plasticity
47 whereby *Arabidopsis* accessions increase, or fail to increase, WUE in response to soil drying.
48 Such an approach allowed us to find genes that had not been previously implicated in WUE
49 including genes affecting the biomass accumulation side of WUE rather than the transpiration
50 side. Indeed, the largest effect we observed was in mutants of *Plant Cysteine Oxidase 5 (PCO5)*,
51 which affects WUE mainly by allowing increased biomass production. Our study identified
52 several new WUE effector genes that offer new routes to manipulate and improve this key trait

53 **Results**

54

55 **GWAS Analysis to Identify Genomic Regions Associated with Variation in WUE Plasticity.**

56 We leveraged the measurements of integrated WUE as $\delta^{13}\text{C}$ of above ground biomass of well-
57 watered plants or plants subjected to terminal drought from Kenney et al. (22). We reanalyzed the
58 core subset of 185 accessions (dataset S1). Most accessions had a higher WUE in the drought
59 treatment (higher $\delta^{13}\text{C}$, $F = 42.89$, $p < 0.0001$; Fig. 1A). Only a few accessions had decreased or
60 unchanged WUE in the drought treatment compared to the unstressed control (Fig. 1A). GWAS
61 was performed using the plasticity of WUE (Fig. 1B; Plasticity = drought –well-watered control;
62 mean of -0.585, and range -3.35 to 1.75) as well as the WUE of the well-watered control and
63 drought treatments (Fig. S1). While all three sets of GWAS data identified potentially interesting
64 associations, we focused on the WUE plasticity GWAS for further study since the ability to
65 change WUE in response to changing environmental conditions is thought to be an important
66 adaptive trait whose regulation is poorly understood. The SNPs most significantly associated with
67 WUE plasticity were distributed across several genomic regions (Fig. 1C). As GWAS generates
68 many candidates, selecting the most promising genes for the follow-up functional study is
69 challenging. Thus, we used several layers of data to identify and prioritize candidate genes (Fig.
70 S2A). We first generated a list of candidate genes for which any part of the gene body (UTRs,
71 introns and exons) was within 5 kb of one or more of the top 500 lowest- P - value SNPs (nominal
72 $P = 4.37 \times 10^{-5}$ to 4.2×10^{-3}). The 1058 genes so identified (Dataset S2) were then categorized
73 based on their stress-induced gene expression to further determine which genes were most likely
74 to be involved in WUE plasticity. Stress-responsive changes in gene expression were identified
75 by referring to transcriptomic studies (30, 31, Dataset S3 and S4) that examined gene expression
76 during acclimation to an extended duration of non-lethal drought stress conditions similar to those
77 used to measure WUE plasticity in the current study. This analysis identified 198 genes that were
78 associated with the top 500 WUE plasticity SNPs and that were upregulated during drought stress
79 (Fig. S2B, Dataset S5). These genes were further subjected to Gene Ontology (GO) enrichment
80 analysis which identified 10 significant functional annotation terms (Fig. S2C and S3, Dataset
81 S6). To incorporate a range of gene functions into our validation experiments, we selected the top
82 10 genes from each enriched GO term based on lowest- P - values of their associated SNPs. We
83 also included all 19 genes from the transcriptional regulation GO cluster. This filtering identified
84 72 candidate genes (Dataset S7). One limitation of this approach is that it may discard poorly
85 annotated genes. We found 29 such genes annotated as proteins of unknown functions associated

86 with the top 500 SNPs and were transcriptionally responsive to stress (Dataset 5: genes
87 highlighted in red). Thus, we also included those 29 genes in our functional study.

88 **Reverse Genetic Analysis of Prioritized Genomic Regions.**

89 We isolated 88 homozygous T-DNA insertion lines covering 70 candidate genes (we were unable
90 to obtain homozygous T-DNA lines for the other 31 prioritized genes. See methods for the
91 details). These homozygous lines were tested for their effect on WUE by gravimetric analysis
92 using a high throughput system (Fig. 1D and B, Fig. S4A and B). This first round of screening
93 identified mutants for 27 genes that significantly differed from wild type for WUE (Fig. S4A,
94 Dataset S9 and S10). Among these 27 genes, only 9 genes had previously known roles in abiotic
95 stress (Dataset S11).

96 These mutants were further analyzed for their effect on WUE by two independent
97 gravimetric analyses using larger containers (237 mL) to allow the plants a larger rooting volume
98 and space for rosette biomass (Fig. S4C). We also measured $\delta^{13}\text{C}$ of aboveground biomass, leaf
99 surface temperatures, stomatal density (SD) and stomatal index (SI). This set of measurements
100 included *mitochondrial editing factor11* (*mef11-5*) and *open stomata kinase* (*ost1-3*; *OST1* is also
101 referred to as *SnRK2.6*) mutants as controls known to affect water loss. *mef11-5* is hypersensitive
102 to ABA-mediated stomatal closure and exhibits elevated leaf temperatures and reduced water loss
103 under water stress (32, 33). In contrast, *ost1-3* has reduced ABA sensitivity leading to reduced
104 stomatal closure, greater leaf water loss, and reduced leaf temperature (34, 35). Note that mutants
105 for two genes, *Cytochrome P 450 family 76* (*CYP76C2*) and *AT3G58660* did not germinate for
106 unknown reasons, and so we were unable to include them in our further study. We found a
107 significant positive correlation ($R^2=0.627$, $P < 0.001$) for WUE between smaller containers (high
108 throughput system) and larger containers for these mutants (Fig. S5A).

109 These experiments identified genes that altered either side (biomass accumulation or
110 transpiration) of WUE (Fig.2A). For example, *plant cysteine oxidase 5* (*pco5-1*, *pco5-2*) had a
111 strongly significant (adjusted $P < 0.05$) increase in biomass which gave it a higher WUE despite
112 the fact that it consumed substantially more water than the Col-0 wild type (Fig.2A, purple
113 circles). A few other mutants had no change in biomass but showed moderately (significant based
114 on nominal P value) reduced water consumption, leading to increased WUE (Fig.2A, blue
115 circles). Several other mutants had moderately decreased WUE mainly due to decreased biomass
116 accumulation with no significant change in water consumption (Fig. 2, green circles). We also

117 found mutants with strong reduction in biomass as well as water consumption. However, changes
118 in biomass had a relatively larger impact on WUE in these mutants (Fig. 2A, orange circles). The
119 two control mutants *mef11-5* and *ost1-3* showed high and low WUE respectively (Fig. 2A),
120 consistent with their effects on ABA sensitivity. Interestingly, *mef11-5* was the only mutant in our
121 analysis where decreased biomass was associated with increased WUE. Across these mutants,
122 there was a strong correlation between above ground biomass gain and water consumption (Fig.
123 2B; $R^2 = 0.89, P < 0.001$). We also found that WUE was moderately correlated with biomass
124 (Fig. 2C, $R^2 = 0.628, P < 0.001$) and weakly correlated with water consumption (Fig. 2D, $R^2 =$
125 0.364, $P < 0.001$), suggesting that the majority of mutants analyzed primarily altered the biomass
126 side of the WUE ratio. In addition, we found a relatively weak correlation between WUE and
127 stomatal density (SD, Fig. 2E, $R^2 = 0.142, P < 0.017$), and no significant relationship between
128 WUE and stomatal index (SI, Fig. S5B, $R^2 = 0.083, P < 0.057$) suggesting that changes in SD or
129 SI were not the main driver of altered WUE in our set of mutants. The correlation between
130 gravimetrically determined WUE and $\delta^{13}\text{C}$ was significant and positive (Fig. 2F; $R^2 = 0.546, P <$
131 0.001). We discuss sets of discovered genes based on their impact on WUE, biomass, and water
132 consumption below.

133 Genes that act as negative effectors of WUE

134 We found that mutants of *Plant cysteine oxidase 5 (pc05-1 and 2)*, *Defective UGE in root (dur-1)*,
135 *Calcium-dependent protein kinase 23 (cpk23)*, and *Nuclear speckle localized RNAa (nsra-1 and*
136 *2)* had increased WUE, indicating that the proteins encoded by these genes have a negative effect
137 on WUE (Fig. 3). None of these mutants affected SD (Fig. S6A). Two mutant alleles of
138 *PCO5* had a strongly significant increase in gravimetric WUE and $\delta^{13}\text{C}$ while also producing
139 more biomass and consuming more water. (Fig. 2F, purple circles). Thus, mutants of *PCO5* were
140 more water productive despite having significantly reduced leaf temperatures (Fig. 3 and Fig. S7)
141 indicative of a higher transpiration rate. Since *pc05* mutants had no effect on SD, the reduced leaf
142 temperature suggests that stomatal size regulation of stomatal aperture may instead be altered.
143 *PCO5* is one of five cysteine oxidases involved in N-end rule protein degradation and hypoxia
144 response (36).

145 Mutants of three other genes in this category, *cpk23*, *dur-1* and both *nsra* alleles, had
146 significantly increased WUE. These mutants had no effect on biomass but showed moderately
147 reduced water consumption suggesting that they altered the transpiration side of WUE (Fig. 3 and

148 Fig. 2F: blue circles). Among these, *cpk23* had the strongest effect on WUE. *dur-1* had a
149 marginally non-significant ($P = 0.08$) increase in $\delta^{13}\text{C}$ consistent with the gravimetric analysis.
150 *cpk23* and *dur-1* had elevated leaf temperatures whereas *nsra-1* and *nsra-2* had decreased leaf
151 temperatures compared to wild type (Fig.3 and Fig. S7). The control mutant *mef11-5* had a
152 moderate decrease in biomass and strongly reduced water consumption leading to increased
153 WUE. It had no effect on SD (Fig. S6A) but did have elevated leaf temperature (Fig. 3 and
154 Fig.S7), consistent with previous reports (32, 33). The elevated leaf temperatures of *cpk23*, *dur-1*
155 and *mef11-5* are consistent with their reduced water consumption but the decreased leaf
156 temperatures for the *NSRa* mutants contrasts with their reduced water consumption. It is possible
157 that although *NSRa* mutants did not have significantly reduced biomass, they may have had
158 reduced leaf area that could explain the apparent mismatch between water consumption and leaf
159 temperature. *DUR* encodes a UDP glucose epimerase (UGE) involved in UDP-arabinose
160 biosynthesis, possibly affecting cell wall properties (37). *NSRa* is a RNA binding protein with no
161 previous information to connect it to stress responses or stomatal development. *NSRa*, and related
162 *NSRs*, affect alternative splicing and thus could influence activity of downstream genes leading to
163 increased WUE.

164 **Mutants related to hormone, calcium or stress signaling had decreased growth leading to
165 decreased WUE and water consumption.**

166 Mutants of 13 genes had a strong decrease in WUE mainly due to a strong reduction in
167 biomass even though their water consumption was also reduced (Fig.4, and Fig. 2A, orange
168 circles). None of these mutants affected SD (Fig. S6B). Mutants of first five genes in this
169 category *mterf defective in Arabidopsis* (*mda1-3*), *cytochrome P450, family 7070a3* (*cyp707a3-3*),
170 *dehydration responsive element-binding protein 2a* (*dreb2a-1 and 2*), *general control non-*
171 *repressible 20* (*gcn20-2*), and a hypothetical protein with unknown function (*at1g49170*) had
172 strong decrease in biomass as well as strongly reduced water consumption (Fig. 4). However,
173 biomass was more strongly reduced, leading to substantial decrease in WUE in these mutants. The
174 decreased $\delta^{13}\text{C}$ in these mutants was consistent with the gravimetric WUE. *MDA1*, *CYP707A3*
175 and *DREB2a*, were previously reported to affect ABA and water stress signaling whereas *GCN20*
176 has roles in hormone signaling (38). *MDA1* encodes for mitochondrial transcription termination
177 factor (mTERF). *mda1* was previously shown to enhance salt and osmotic stress tolerance
178 probably due to reduced sensitivity to ABA (39). *CYP707A3* acts as an ABA 8'-hydroxylase
179 involved in ABA catabolism (40). *cyp707a3-3* had elevated leaf temperatures (Fig. 4, Fig. S8)

180 consistent with its reduced water consumption and with previous observation of lower stomatal
181 conductance and higher basal ABA levels in unstressed *cyp707a3* plants (40). *DREB2a* is a
182 transcription factor that functions in both water and heat-stress responses (41). Of the two *dreb2a*
183 alleles we examined, *dreb2a-3* had stronger effect than *dreb2a-4* consistent with *dreb2a-4* being a
184 knockdown, rather than knockout (42). Both mutant alleles of *DREB2a* had decreased leaf
185 temperatures (Fig. 4 and Fig. S8), indicating that they may affect WUE by controlling stomatal
186 aperture. *GCN20* encodes an ABC transporter family protein. Mutants of *GCN20* were defective
187 in MAMP/bacterium-triggered stomatal closure but respond normally to salicylic acid (SA) and
188 ABA (38). *gcn20-2* had decrease in leaf temperatures and no change in SD, consistent with
189 previous report (38). The *AT1G49170* mutant also had decreased leaf temperature (Fig. 4, Fig.
190 S8).

191 Mutants of the next six genes in this category include *osmosensitive calcium-permeable*
192 *cation channel 3.1/early responsive to dehydration 4* (*osca3.1/erd4*), *jasmonic acid* (JA)
193 *transporter 4* (*jat4/atjat4*), *histone acetyl transferase* (*hac5*), *suppressor of max2 1 – like 5*
194 (*smxl5*), *AT1G03687*, and *grana deficient chloroplast 1* (*gdc1*) had strong decrease in biomass
195 with moderately reduced water consumption, indicating that biomass was the driver for the
196 decreased WUE of these mutants (Fig. 2A, orange circles). OSCA3.1 and JAT4 have known or
197 highly probable roles in stress or hormone signaling (43, 44) and the mutants of *OSCA3.1* and
198 *JAT4* showed strong decrease in WUE. Similarly, *hac5-6*, *smxl5-2*, mutants of *AT1G03687*, and
199 *gdc1-2* all had strongly decreased WUE. HAC5 functions in the transcriptional repression of
200 genes related to flowering time and floral development (45). *hac5-6* had marginally non-
201 significant decrease in leaf temperatures ($P = 0.09$) (Fig. 4, Fig. S9). SMXL5 promotes secondary
202 phloem formation (46) and *smxl5-2* had decreased $\delta^{13}\text{C}$ consistent with gravimetric WUE. The
203 altered WUE in *smxl5-2* might be due to upregulation of several stress related pathways in this
204 mutant (46). The function for *AT1G03687* is unknown. Both mutants of *AT1G03687* had strong
205 decrease in $\delta^{13}\text{C}$ consistent with gravimetric WUE. GDC1 is a ankyrin domain containing
206 chloroplast protein essential for grana formation (47). *gdc1-2* had marginally non-significant
207 decrease in water consumption ($P = 0.08$) and $\delta^{13}\text{C}$ ($P = 0.057$) and showed increased leaf
208 temperature. Consistent with previous reports, *gdc1-2* exhibited pale green leaves, and ceased
209 growth at the vegetative stage (47), indicating that this mutant had decreased WUE because of
210 impaired photosynthesis.

211 The next gene in this category was *IQ-domain 11 (IQD11)*, another Ca^{2+} responsive
212 protein involved in regulation of microtubule orientation (48). Among two T-DNA alleles, only
213 *iqd11-1* showed strong decrease in WUE, biomass and $\delta^{13}\text{C}$, while *iqd11-2* had a more moderate
214 effect on these phenotypes and was not significant for $\delta^{13}\text{C}$. *iqd11-2* has a T-DNA insertion in the
215 5' untranslated region (UTR) and thus is likely a knockdown rather than knockout mutant
216 (Dataset S11). Note that, *iqd11-1* had marginally non-significant decrease in water consumption
217 ($P = 0.058$). Both mutants of *IQD11* had decreased leaf temperatures (Fig. 4, Fig. S9). *Parallel*
218 *I/Nucleoline-1 (PARL1/NUC1)* is involved many aspects of ribosomal biogenesis and affects leaf
219 venation (49). *parl1-2* is the only mutant in this category that had a moderate decrease in WUE. It
220 had decreased $\delta^{13}\text{C}$ consistent with gravimetric WUE and showed elevated leaf temperature (Fig.
221 4, Fig. S9).

222 The changes in leaf temperatures for mutants in this category suggests their role in
223 stomatal response ((Fig. 4, Fig. S8 and S9). The elevated leaf temperatures found for *cyp707a3-3*,
224 *gdc1-2* and *parl1-2* was consistent with their reduced water consumption; however, decreased
225 leaf temperatures found for mutants of *DREB2a*, *GCN20*, *HAC5* and *IQD11* contrasts with their
226 reduced water consumption. Here again, change in leaf area or rosette architecture may explain
227 the seeming mismatch between leaf temperature and water consumption.

228 **Mutants with reduced WUE and biomass but with little effect on total water consumption.**

229 Mutants for six genes, *With No Lysine (WNK11)*, *Plethora 1 (PLT1)*, *AT2G45460*, *AT3G62220*,
230 *Basic Penta Cysteine (BPC2)* and *Carbon Catabolite Repressor 4b (CCR4b)*, had decreased
231 WUE and reduced biomass but no significant change in water consumption (Fig.5 and Fig. 2A:
232 green circles) or SD. *WNK11* belongs to WNK protein kinase family that are involved in various
233 processes, such as ABA sensitivity, proline accumulation, regulation of flowering time and
234 intracellular signalling through G protein (50); however, the function of *WNK11* itself is
235 unknown. *wnk11-1* had strongly decreased WUE and biomass while others had moderate effects
236 in this category. The decreased $\delta^{13}\text{C}$ in *wnk11-1* was consistent with gravimetric analysis. *PLT1* is
237 a negative regulator in ABA inhibition of root growth (51). *plt1* had marginally non-significant (P
238 = 0.054) decrease in $\delta^{13}\text{C}$ consistent with gravimetric WUE. *BPC2* functions in negative
239 regulation of osmotic stress tolerance and it also determines β -1,4-galactan accumulation in
240 response to salt stress (52, 53). *bpc2* also had decreased $\delta^{13}\text{C}$ consistent with gravimetric WUE. It

241 is possible that WNK11, PLT1 and BPC2 affect WUE through mechanisms related to ABA or
242 osmotic stress signalling.

243 *AT2G45460* and *AT3G62220* encode proteins of unknown function. For *AT3G62220*, we
244 observed disparate results for two independent T-DNA lines; only *at3g62220-1* (promoter
245 insertion) had a significant effect on biomass, while *at3g62220-2* (exonic insertion) had
246 marginally non-significant ($P = 0.08$) effect. Conversely, *at3g62220-2* had significant effect on
247 leaf temperature and SD while *at3g62220-1* had no significant effect (Fig 5, Fig. S6C and S10).
248 *ccr4b-1* had marginally non-significant decrease in WUE ($P = 0.08$) and it had decreased leaf
249 temperatures. CCR4b determines the poly (A) length of transcripts related to starch metabolism
250 and may also affect degradation of stress responsive RNAs via its interaction with Pumilio RNA-
251 binding protein 5 (54). The control mutant *ost1-3* had moderate effect on WUE and biomass,
252 strong decrease in $\delta^{13}\text{C}$ and expected decrease in leaf temperatures (Fig. 5 and Fig S10).
253 Surprisingly the altered leaf temperatures did not affect the overall water consumption in these
254 mutants and none of these mutants influenced SD except for *at3g62220-2* that had increased SD
255 (Fig. S6C). There is no prior information for genes in this category to link them to WUE or traits
256 related to plant water relations.

257 Finally, we found mutants of Natural resistance associated macrophage protein 4
258 (NRAMP4) and Carbamoylphosphate synthetase subunit B/Venosa3 (*CarB/VEN3*) had
259 marginally non-significant decreases in WUE without significantly affecting final biomass or
260 water consumption (Fig. S11 and Fig. 2A: grey circles). In addition, these mutants did not affect
261 $\delta^{13}\text{C}$ or SD (Fig. S11 and S6D) and *carb* did not affect $\delta^{13}\text{C}$ or leaf temperatures (Fig. S11 and
262 S11). NRAMP4 is functionally redundant with NRAMP3 in maintaining photosynthesis under
263 cadmium and oxidative stress (55). CarB is involved in the conversion of ornithine into citrulline
264 in arginine biosynthesis, however *carB* mutant used in this study is a knockdown mutant that
265 expresses reduced level of carB (56) suggesting that a *carB* knockout mutant may have greater
266 effect on WUE.

267 **Discussion**

268 Our strategy of combining GWAS results and gene expression generated a broader set of
269 candidates for reverse genetic tests. We found 25 genes with significant differences in WUE
270 (Dataset S9 and S11). The success rate is moderate [positive rate of 0.35 (25/70 discovered
271 candidates)]. However, the lack of phenotype in T-DNA mutants cannot conclusively rule out a

273 candidate gene as the source of the GWAS association since knockout mutants might not
274 recapitulate gain-of-function or altered function natural alleles. Also, gene redundancy could be
275 another mitigating factor making the impact of knockouts of some of our candidate genes.
276 Construction of higher order mutants including close homologs or the generation of
277 overexpression lines might reveal phenotype for these genes where T-DNA mutants did not alter
278 WUE. Despite this caveat, a combined GWAS and reverse genetic approach proved to be an
279 effective way to discover new genes influencing WUE without relying on assumptions about
280 underlying mechanisms, as it has been for other stress-related traits (23, 24). The candidate genes
281 we validated belong to a range of gene families such as histone acetyl transferases, mitochondrial
282 transcription factors, mechanosensitive ion channels, ABC transporter G family, ankyrin repeat-
283 domain containing proteins, cytochrome P450, family 707A. Strikingly, a recent GWAS study
284 also identified genes belongs to these families as some of the most promising candidates for
285 WUE related traits in sorghum (25).

286 Since WUE is a ratio of biomass accumulated per unit of water consumed, it can be
287 influenced by factors that alter either side of the ratio (or affect one side of the ratio more than the
288 other side). Our approach allowed us to find mutants affecting either side of the WUE ratio and to
289 parse out which aspect of WUE was most affected by each mutant. Interestingly, we found
290 mutants affecting both sides of the WUE ratio, thus demonstrating that changes in growth are as
291 likely to influence WUE as changes in transpiration. In addition, we did not find any mutants
292 where decreased biomass was associated with increased WUE. Thus, contrary to what may be a
293 common assumption, our data shows that simply decreasing biomass was not sufficient to
294 increase WUE. This pattern also supports the hypothesis that our approach identified specific
295 effectors of WUE, as opposed to merely finding plants that cannot grow well. Our data identified
296 more mutants with decreased WUE than with increased WUE, suggesting that WUE is under
297 positive regulation as part of mechanisms balancing net carbon assimilation to water use. None of
298 the genes we identified would likely have been predicted to affect WUE *a priori* (with possible
299 exception of *CYP707a3*).

300 While the new WUE effector genes we identified may at first look seem to be a random
301 assortment of genes, they can in fact be grouped into several categories that make their potential
302 roles in WUE clearer. The first group of genes we identified are genes involved, or potentially
303 involved, in stress-related signaling or hormone metabolism but not previously connected to
304 WUE. The most prominent of these is *PCO5*. The *pc05-1* and *pc05-2* mutants had the strongest

305 increase of WUE of any mutants we examined because of their strongly increased biomass
306 production. PCOs are components of the N-end rule pathway which act as redox status sensors.
307 Several PCOs act as oxygen or redox status sensors that regulate stability of the Group VII
308 ethylene response factors (ERF-VII) via N –end rule pathway of targeted proteolysis in response
309 to hypoxia (57). PCO5 activity towards ERF-VII destabilization was demonstrated *in vitro*, but
310 it's *in planta* function remains to be established (58). Interestingly, Proteolysis 6 (PRT6) and
311 other N-end rule components were shown to affect ABA accumulation and ABA sensitivity (24,
312 59). Thus, our data provide another piece of evidence that the N-end rule pathway influences
313 many types of environmental responses in addition to the hypoxia responses where it has been
314 best characterized. Whether or not the increased biomass and WUE of *pco5* mutants is dependent
315 on ERF-VII protein stability or other targets of N-end rule degradation will be of interest for
316 future studies.

317 Our data also implicates calcium-dependent signaling in WUE. Our finding that
318 OSCA3.1 had strongly reduced WUE and biomass is especially interesting as there has so far
319 been little physiological data to link the short-term calcium responses mediated by OSCAs to
320 longer-term acclimation to water limitation or other environmental conditions. Also, mutants of
321 the calcium responsive protein IQD11 had similar effect on WUE and biomass as *osca1.3*
322 mutants. As most IQDs are also microtubule binding proteins, IQD11 could also affect WUE via
323 effects on microtubule stability or organization that alter stomatal function or affect biomass (60,
324 61). Mutation in one of the calcium dependent protein kinases, *cpk23* led to increased WUE in
325 our growth conditions. It is surprising that *cpk23* had increased WUE rather than decreased WUE
326 as seen in *ost1* (*snrk2.6*) because CPKs and SnRK2 can both activate the guard cell slow anion
327 channel-associated 1(SLAC1) by phosphorylating distinct sites on SLAC1 (62). While this
328 suggests a similar function of CPK23 and SnRK2s, our results are consistent with another study
329 which found that *cpk23* had slower water loss and reduced stomatal aperture (63) Together, these
330 findings that OSCA3.1, IQD11 and CPK23 all strongly affected WUE, but affected it in different
331 ways, suggests that multiple calcium-dependent changes in guard cell function or regulation of
332 growth (biomass) can alter WUE. Consistent with this idea, the genes associated with the top 500
333 GWAS SNPs also included CPK8 and several other types of calcium binding proteins (Dataset
334 S2).

335 Other signaling genes we found to impact WUE include several genes that may have
336 been expected to have some effect on WUE. Nevertheless, the actual mutant phenotypes we

337 found were still surprising in several ways. CYP707A3 is involved in ABA catabolism and the
338 simplest expectation may be that even a slight increase of endogenous ABA levels of *cyp707a3*
339 would enhance stomatal closure and increase WUE. We saw no evidence of this but instead
340 observed that *cyp707a3* had decreased WUE driven by a strong decrease in biomass
341 accumulation. This suggests that the biomass inhibition caused by disrupted ABA metabolism in
342 *cyp707a3* was too substantial to be overcome by any increase of stomatal closure. Similarly,
343 *PLT1* mutant had enhanced ABA inhibition of root growth but *plt1* had decreased WUE and
344 biomass similar to *cyp707a3*. The WNK kinase family is known to affect ABA sensitivity but
345 there is no specific information on WNK11 (50). JAT4 is involved in JA translocation and there
346 are a number of indications that JA affects ABA sensitivity (and vice versa) and that the ratio of
347 endogenous JA to ABA accumulation is important for various stress response.

348 While several of the genes mentioned above have a connection to ABA signaling, it is
349 perhaps surprising that we did not find more ABA-related genes among our GWAS candidates.
350 Moreover, the only mutant that we observed to have decreased biomass and increased WUE was
351 the ABA-hypersensitive mutant *meff11-5* which was used as a control. This suggests that
352 knockout mutants where stomata remain sufficiently closed to limit photosynthesis are relatively
353 rare compared to other loci with more moderate, or indirect effects on WUE. It is also possible
354 that the core ABA signaling components that have strong effects on ABA sensitivity have
355 relatively little natural variation among the accessions used in our GWAS analysis and thus were
356 not detected in our list of top candidate genes. Similarly, another type of gene which may be
357 expected to affect WUE is developmental regulators that determine stomatal density or size.
358 Surprisingly, our GWAS analysis did not find any known regulators of stomatal development that
359 show strong association with $\delta^{13}\text{C}$. The only known stomatal development genes among the
360 candidate genes identified by GWAS was *SCREAM1/ICE1* (associated with the 21st ranked SNP)
361 and *CKB1* associated with the 59th ranked SNP (Dataset S2). However, these were not analyzed
362 further as they were not among the stress up-regulated genes in the two transcriptome data sets
363 we used to select stress up-regulated candidate genes. Other stomatal regulators may have limited
364 effect on the WUE plasticity that was the basis of our GWAS or may have limited natural
365 variation in the group of accessions studied. The mutants we did find to affect WUE generally
366 had no effect on stomatal density (Dataset S6), further indicating that, at least in the population of
367 *Arabidopsis* accessions used for our GWAS, stomatal development was not a key driver of WUE
368 variation. An alternative explanation would be that key genes involved in hormone responses or

369 core components of cell fate and development are under strong purifying selection due to
370 potential pleiotropic costs (64). It may be that there is more standing genetic variation in more
371 specialized or modular aspects of physiology or growth that lead to the observed natural genetic
372 variation in WUE

373 Maximizing the amount of biomass, or other components of yield, produced per amount
374 of water input can be a beneficial agronomic trait in many environments. However, increasing
375 WUE at the expense of biomass production may not be as useful. Even by focusing solely on
376 reverse genetic, loss of function analysis, we could find numerous new genes that maybe useful
377 for more targeted study and manipulation of WUE without negative effects on biomass
378 accumulation. For example, *PCO5* mutants have strongly increased biomass accumulation
379 leading to dramatic increase in WUE. Conversely, we found several mutants that decrease WUE
380 without affecting biomass. These would be good candidates for gain of function analysis. In any
381 case, these results uncover several new pathways that may be used to influence WUE.

382
383 **Materials and Methods**
384

385 **GWAS-mapping:**

386
387 GWAS was performed using the plasticity of WUE (plasticity = drought – well watered control)
388 as well as the WUE of the well-watered control and drought treatments. The data set of WUE
389 ($\delta^{13}\text{C}$) covering 185 accessions (Dataset S1) was linked to published genomic data on accession
390 from 250K SNP chip and were used in association analyses. These data were previously analyzed
391 at the phenotypic level in Kenney et al. (1). We implemented a genome-wide association study
392 for WUE ($\delta^{13}\text{C}$) using a linear mixed-model approach (1). The model included random effects for
393 each observation that were constrained to a correlation structure by the genome-wide kinship
394 matrix (identity-in-state). We included SNPs with a minor allele frequency of at least 0.1.

395
396 **Water use efficiency ($\delta^{13}\text{C}$) estimation.**

397 The details for the growth condition and experimental design can be found in Kenney et al. (2). In
398 brief, natural accessions of *Arabidopsis* were grown in green house conditions (16h light/ 8h dark,
399 $1000 \mu\text{mol m}^{-2} \text{S}^{-1}$, 18-21°C) in the cone containers (164 ml soil volume capacity). Plants were
400 treated identically until week 4 before altering the water regime. Then, watering was continued
401 for well-watered wet treatment plants and ceased for drought treatment until week 6. At the end
402 of the experiment, most plants had completed flowering and many were senescent. The above

403 ground material of the entire shoot from available replicates from each accessions was pooled and
404 course ground in centrifuge tubes. After that, subsamples were fine ground in microcentrifuge
405 tubes. Two mg of finely ground tissue was loaded into a tin capsule and analyzed at the UC Davis
406 Stable Isotope Facility (<http://stableisotopefacility.ucdavis.edu>). Data are presented as carbon
407 isotope ratios relative to the V-PDB standard (R_{PDB}), where $\delta^{13}\text{C}$ (‰) = $(R_{\text{sample}}/R_{PDB}-1)*1000$.
408 These values are expressed per mil (‰).

409 We followed the same procedure as above to estimate $\delta^{13}\text{C}$ for T-DNA mutants from the
410 large container experiments in the current study except that we estimated $\delta^{13}\text{C}$ for each available
411 replicates of T-DNA mutants instead of pooling them together as it was done in Kenney et al. (1)
412 for natural accessions. See details below for experimental design and growth conditions.

413 **Prioritization of GWAS candidates and enrichment analysis**

414 Prioritization of GWAS candidates for the functional validation is explained in details in the
415 result section. In brief, we ranked the genome for candidate genes impacting WUE plasticity by
416 sorting the SNPs by nominal p-value. We focused on the genomic regions tagged by the top 500
417 SNPs and gene space in tight LD (corresponding to an LD window of 5 Kb on either side of tag
418 SNPs). This effort identified 1058 SNPs. Using existing drought stress transcriptome data (2,3),
419 we identified 198 genes in these genomic intervals that were drought upregulated (Dataset S5).
420 These 198 genes were further subjected to Gene Ontology (GO) enrichment using DAVID
421 (Database for Annotation, visualization, and Integrated Discovery) bioinformatics resources v6.8
422 with high classification stringency (3, 4) to identify the most relevant biological terms of this
423 candidate set. We retrieved 10 significant functional annotation terms listed according to their
424 enrichment (adjusted $P < 0.05$) (Fig. S2C and S3).

425

426 **T-DNA screening**

427 T-DNA insertion lines were obtained from the Arabidopsis Biological Resource Center (ABRC).
428 We sought to obtain multiple T-DNA lines for each candidate gene and further prioritized the
429 lines with a T-DNA insertion in the exonic region of a gene to increase the possibility of
430 retrieving knockout mutants. However, obtaining multiple lines and lines with exonic insertion
431 was not always possible due to lack of suitable T-DNA mutants or inability to isolate
432 homozygous individuals (Dataset S8). In total, we prioritized 101 genes for functional follow up
433 (See the main text for details). Of these selected genes, T-DNA mutants for 15 genes were found
434 to be associated with multiple loci or ABRC stocks were not available (Dataset S8, red

435 highlighted). So, we screened a total of 152 T-DNA lines of 85 genes (Dataset S8) and identified
436 88 homozygous lines covering 70 candidate genes. We used CELLSTAR® 48 well cell culture
437 plates (Greiner Bio-one, North America, Inc) for screening homozygous T-DNA lines. The plates
438 were prepared by pipetting 0.5 ml of autoclaved half-strength Murashige-Skoog (half-MS)
439 medium to each well. We planted one seed per well, and 24 seeds were initially used per T-DNA
440 lines for genotyping. After planting seeds, the plates were sealed using MicrosporeTM Surgical
441 Tape; 3M Health Care, USA) to hold the plate lid and the base, and the entire setup was cold
442 stratified for four days in a 4°C refrigerator. Plates were then moved to the growth chamber (16h
443 light period, 23°C, light intensity of 100–120 $\mu\text{mol m}^{-2} \text{s}^{-1}$). After 2 weeks or when plants were
444 at the 4-leaf stage, one small leaf was collected in 1.5 ml tube containing 200 μL of Edward's
445 buffer (200 mM Tris HCl pH 7.5, 250 mM NaCl, 25 mM EDTA, 0.5% SDS). The tissue was
446 macerated using disposable polypropylene pestles to obtain a pale green-colored homogenate.

447 Further, 1 μL of this homogenate was included in PCR analysis. We followed the PCR
448 genotyping of T-DNA insertion as described in O'Malley et al. (5), and primers for genotyping
449 were generated by the SIGnAl web resource; <http://signal.salk.edu/tdnaprimers>. Homozygous
450 lines were then transferred from plates to the soil. Plants were grown to maturity for seed
451 harvesting. To homogenize the age of seeds, we again grew all homozygous lines at once to
452 harvest seeds for phenotypic analysis.

453

454 **WUE measurement by gravimetric analysis.**

455

456 We isolated 88 homozygous T-DNA insertion lines covering 70 candidate genes (Dataset S9 and
457 S10). Water use efficiency for all homozygous T-DNA lines was determined by gravimetric
458 analysis. To accommodate all replicates in two growth chambers, we initially grew plants in 50
459 ml falcon tubes as a small container experimental system (Fig. S4B). This system was effectively
460 used to determine water use efficiency in *Arabidopsis* (6, 7), and we adapted the system with few
461 modifications. In brief, a standard potting mix was combined with 20% Turface and soil was well
462 moistened to grow plants for six weeks without further supply of water. We used a ratio of soil
463 (8): Turface (2): water (6) to prepare an evenly mixed, well-moistened soil mixture. Tubes were
464 filled with the soil mixture to the brim. Tubes were then capped and wrapped with aluminum foil
465 to prevent algal growth. Next, 4-6 seeds were placed in a hole (approximately 2 mm wide) made
466 in the cap by drilling. The tubes were randomized and placed in racks (25tubes/rack). The racks
467 were then placed in a closed transparent container with a water-covered bottom. The entire setup
468 was moved to a walk-in cold chamber for cold stratification of the seeds. After 4 days, racks were

469 moved to a short day growth chamber (8h light period, 23°C, light intensity of 100–120 $\mu\text{mol m}^{-2}$
470 s^{-1}). Racks were cycled within and between the chambers every two days to minimize the impact
471 of microenvironment variation. Excess seedlings were thinned on the 7th day to leave one
472 seedling per tube, and tube weight was measured and recorded as W0. After 4 weeks, rosettes
473 were decapitated and dried for 3 days at 65 °C oven. After removing the rosette, tube weight was
474 recorded as W. Water loss was calculated as W0 (g) – W(g). For water, 1 g is equal to 1 ml.
475 Water use efficiency was calculated as a dry aboveground biomass (mg) over ml of water used
476 (biomass/water consumed).

477 After the initial screening, T-DNA lines differing in WUE compared to were tested for
478 WUE in large plastic cups (237 ml soil volume) as a large container experimental system (Fig.
479 S4C), more details are given in the results section). Our goal was to provide more soil nutrients
480 and a larger growing surface and test whether the WUE phenotype previously observed was
481 stable to growth conditions. Larger containers with lids also allowed us to easily use thermal
482 imaging to capture rosette temperatures by avoiding complications caused by soil background.
483 We performed two independent experiments with 5 biological replicates per genotype. The
484 methods and growth conditions were largely similar to the small container system with a few
485 modifications. In brief, seeds were incubated at 4 °C in 1.5 ml tubes containing 1 ml of water.
486 After 4 days. A 237 ml plastic cup was filled with a soil mixture (soil (8): turfase (2): water(6),
487 and 5-10 seeds were planted in the hole made to center of the lid using a forged steel hollow
488 punch (W.W. Grainger, Inc, USA). The containers were randomly distributed in the growth
489 chamber and shuffled within and between the chambers every two days. Growth condition and
490 duration of the experiment was similar to the small container system. At the end of the
491 experiment, we sampled one randomly selected fully grown leaf for stomatal density
492 measurements before decapitating the rosette for biomass weight. We collected thermal imagery
493 of rosettes before harvesting only for the 2nd independent experiment, before collecting samples
494 for stomatal density and biomass measurements. Note that, we dried rosettes for 4 days at 65 °C
495 rather than 3 days as mentioned for the small container system. WUE was calculated as
496 mentioned above.

497

498 **Stomatal density and stomatal index measurements**

499

500 Images to evaluate the number and size of stomata and mesophyll cells were captured with a Nikon
501 Eclipse Ni microscope equipped with a Nikon DS-Ri2 color camera at 20x magnification. One
502 randomly selected fully grown leaf of the same developmental stage was sampled to prepare each

503 slide for epidermis phenotyping. Clear nail polish was applied to the abaxial surface of leaf and
504 allowed to dry for 10 minutes at room temperature. The dried nail polish area was peeled off with
505 clear tape to prepare slides for microscopy. Images were analyzed with ImageJ software to measure
506 cell length and width in μm , which were then used to calculate stomatal and epidermal cell area.
507 We measured one randomly selected stomata and epidermal cell from each leaf. Stomatal area and
508 epidermal cell area were calculated using the following equation:

509 Cell Area (μm^2) = Cell Length x Cell Width. We then counted every stomata and epidermal cells
510 observed under the microscope field and also measured the area of the total view of the microscope
511 field. We calculated total stomatal cell and epidermal cell area by multiplying the total number of
512 cells under a microscopic field by the single cell area. The ratio between stomatal to epidermal cell
513 area was calculated by dividing total stomatal area by total epidermal cell area. The following
514 measurements were used to calculate other leaf anatomy traits:

515 Stomatal density = number of stomata in entire FOV / area of total microscope field (μm^2)
516 Stomatal Index (%) = Stomatal density *100/Stomatal density + Epidermal cell density["]

517
518 **Thermal imaging and leaf temperatures measurement**
519

520 Plants from the second large container experiments were used for thermal imaging and leaf
521 temperatures measurement. For imaging, biological replicates of a mutant were gathered with
522 Col-0 wild type to comprise a single field of view of the camera and images were taken using a
523 FLIR A325sc thermal camera. Leaf temperature was measured using FLIR ResearchIR Max
524 software. We used the freehand ROI (Region of Interest) tool to trace the entire rosette carefully
525 to avoid background and obtained the mean temperature for individual rosettes.

526
527 **Statistical analysis**
528

529 WUE data of T-DNA mutants from the small container experiment was analyzed by fitting a
530 linear mixed model using the “lmer” function in the “lme4” package in R (8). We included T-
531 DNA insertion lines nested in gene as fixed effect and used container racks as a random effect.
532 Estimated marginal means (EMMs, also known as least-squares means) were derived from the
533 result of the mixed model and significance of T-DNA insertion line was tested using planned
534 contrasts on each gene level versus Col-0 wild type using R package “emmeans”
535 (<https://github.com/rvlenth/emmeans>). The Type-1 error rate (alpha=0.05) for multiple testing
536 was controlled using a strict Bonferroni correction (Dataset S9). Results for the data analysis at

537 the T-DNA level (EMMs and statistical significance for each T-DNA lines), where T-DNA was
538 used as fixed effect is given in Dataset S10.

539

540 For the phenotypic measurements (WUE, biomass, water consumed, $\delta^{13}\text{C}$, Stomatal
541 density), from the large container system, we used a similar analysis approach as above. We
542 simply used individual T-DNA as a fixed effect and experiment cohort as a random effect, and
543 the pairwise comparison with Col-0 wild type as reference was conducted at the T-DNA level
544 (Dataset S12)

545 Linear regression was performed in R using “lm” function for all the correlation analysis.
546 T-test for leaf temperatures data of each mutant against Columbia wild type was performed in R
547 using “compare means” function.

548 **Supplemental data files**

549

550 Figures S1 to S12

551

552 Datasets S1 to S12

553

554 **Author Contributions:** G.B.B., and T.E.J., designed research; G.B.B., S.R., L.Z., T.H., G. Z.C.,
555 and J.E.B. performed research. G.B.B., J.R.L., S.R., and T.H. analyzed data. G.B.B., P.E.V., and
556 T.E.J. wrote the paper, with input from J.R.L. T.H., and S.R. contributed to writing.

557 **Acknowledgments**

558

559 We thank Dr. Annie Marion-Poll (Institut Jean-Pierre Bourgin, INRA), for *mef11* seeds; Dr.
560 Shuhua Yang (China Agricultural University) for *ost1-3* seeds. We also thank Dr. Ying-Jiun C.
561 Chen and all our lab members for critical reading and constructive comments on the manuscript.
562 This work was supported by funding from the National Science Foundation (DEB-0420111) and
563 (IOS-0922457) to T.E.J.

564

565 **Conflict of Interest Statement:** The authors declare no conflict of interest

566 **References**

567

- 568 1. W. J. Davies, S. Wilkinson, B. Loveys, Stomatal control by chemical signalling and the
569 exploitation of this mechanism to increase water use efficiency in agriculture. *New
570 Phytologist* **153**, 449–460 (2002).
- 571 2. G. D. Farquhar, T. D. Sharkey, Stomatal Conductance and Photosynthesis. *Annual Review*

- 572 of *Plant Physiology* **33**, 317–345 (1982).

573 3. J. I. L. Morison, N. R. Baker, P. M. Mullineaux, W. J. Davies, Improving water use in
574 crop production. *Philosophical Transactions of the Royal Society B: Biological Sciences*
575 **363**, 639–658 (2008).

576 4. A. D. B. Leakey, *et al.*, Water Use Efficiency as a Constraint and Target for Improving the
577 Resilience and Productivity of C 3 and C 4 Crops. *Annual Review of Plant Biology* **70**,
578 781–808 (2019).

579 5. J. Flexas, Genetic improvement of leaf photosynthesis and intrinsic water use efficiency in
580 C3 plants: Why so much little success? *Plant Science* **251**, 155–161 (2016).

581 6. L. T. Bertolino, R. S. Caine, J. E. Gray, Impact of stomatal density and morphology on
582 water-use efficiency in a changing world. *Frontiers in Plant Science* **10** (2019).

583 7. A. D. B. Leakey, *et al.*, Water Use Efficiency as a Constraint and Target for Improving
584 the Resilience and Productivity of C 3 and C 4 Crops . *Annual Review of Plant Biology* **70**,
585 781–808 (2019).

586 8. Z. Yang, *et al.*, Leveraging abscisic acid receptors for efficient water use in Arabidopsis.
587 *Proceedings of the National Academy of Sciences of the United States of America* (2016)
588 <https://doi.org/10.1073/pnas.1601954113>.

589 9. R. Mega, *et al.*, Tuning water-use efficiency and drought tolerance in wheat using abscisic
590 acid receptors. *Nature Plants* **5**, 153–159 (2019).

591 10. Z. Yang, *et al.*, Abscisic acid receptors and coreceptors modulate plant water use
592 efficiency and water productivity. *Plant Physiology* **180**, 1066–1080 (2019).

593 11. J. Nienhuis, G. R. Sills, B. Martin, G. King, Variance for water-use efficiency among
594 ecotypes and recombinant inbred lines of *Arabidopsis thaliana* (Brassicaceae). *American
595 Journal of Botany* **81**, 943–947 (1994).

596 12. M. S. Heschel, K. Donohue, N. Hausmann, J. Schmitt, Population differentiation and
597 natural selection for water-use efficiency in *Impatiens capensis* (Balsaminaceae).
598 *International Journal of Plant Sciences* **163**, 907–912 (2002).

599 13. C. M. Caruso, H. Maherli, A. Mikulyuk, K. Carlson, R. B. Jackson, Genetic variance and
600 covariance for physiological traits in *Lobelia*: Are there constraints on adaptive evolution?
601 *Evolution* **59**, 826–837 (2005).

602 14. L. A. Donovan, S. A. Dudley, D. M. Rosenthal, F. Ludwig, Phenotypic selection on leaf
603 water use efficiency and related ecophysiological traits for natural populations of desert
604 sunflowers. *Oecologia* **152**, 13–25 (2007).

605 15. H. M. Easlon, *et al.*, The physiological basis for genetic variation in water use efficiency
606 and carbon isotope composition in *Arabidopsis thaliana*. *Photosynthesis Research* **119**,
607 119–129 (2014).

608 16. C. P. Pignon, A. D. B. Leakey, S. P. Long, J. Kromdijk, Drivers of Natural Variation in
609 Water-Use Efficiency Under Fluctuating Light Are Promising Targets for Improvement in

- 610 Sorghum. *Frontiers in Plant Science* **12**, 1–16 (2021).

611 17. J. K. McKay, J. H. Richards, T. Mitchell-Olds, Genetics of drought adaptation in
612 *Arabidopsis thaliana*: I. Pleiotropy contributes to genetic correlations among ecological
613 traits. *Molecular Ecology* **12**, 1137–1151 (2003).

614 18. D. L. D. Marais, *et al.*, Variation in MPK12 affects water use efficiency in *Arabidopsis*
615 and reveals a pleiotropic link between guard cell size and ABA response. *Proceedings of
616 the National Academy of Sciences of the United States of America* **111**, 2836–2841 (2014).

617 19. T. E. Juenger, *et al.*, Identification and characterization of QTL underlying wholeplant
618 physiology in *Arabidopsis thaliana*: $\delta^{13}\text{C}$, stomatal conductance and transpiration
619 efficiency. *Plant, Cell and Environment* **28**, 697–708 (2005).

620 20. J. Masle, S. R. Gilmore, G. D. Farquhar, The ERECTA gene regulates plant transpiration
621 efficiency in *Arabidopsis*. *Nature* **436**, 866–870 (2005).

622 21. J. N. Ferguson, M. Humphry, T. Lawson, O. Brendel, U. Bechtold, Natural variation of
623 life-history traits, water use, and drought responses in *Arabidopsis*. *Plant Direct* **2**, e00035
624 (2018).

625 22. A. M. Kenney, J. K. Mckay, J. H. Richards, T. E. Juenger, Direct and indirect selection on
626 flowering time, water-use efficiency (WUE, $\delta^{13}\text{C}$), and WUE plasticity to drought in
627 *Arabidopsis thaliana*. *Ecology and Evolution* **4**, 4505–4521 (2014).

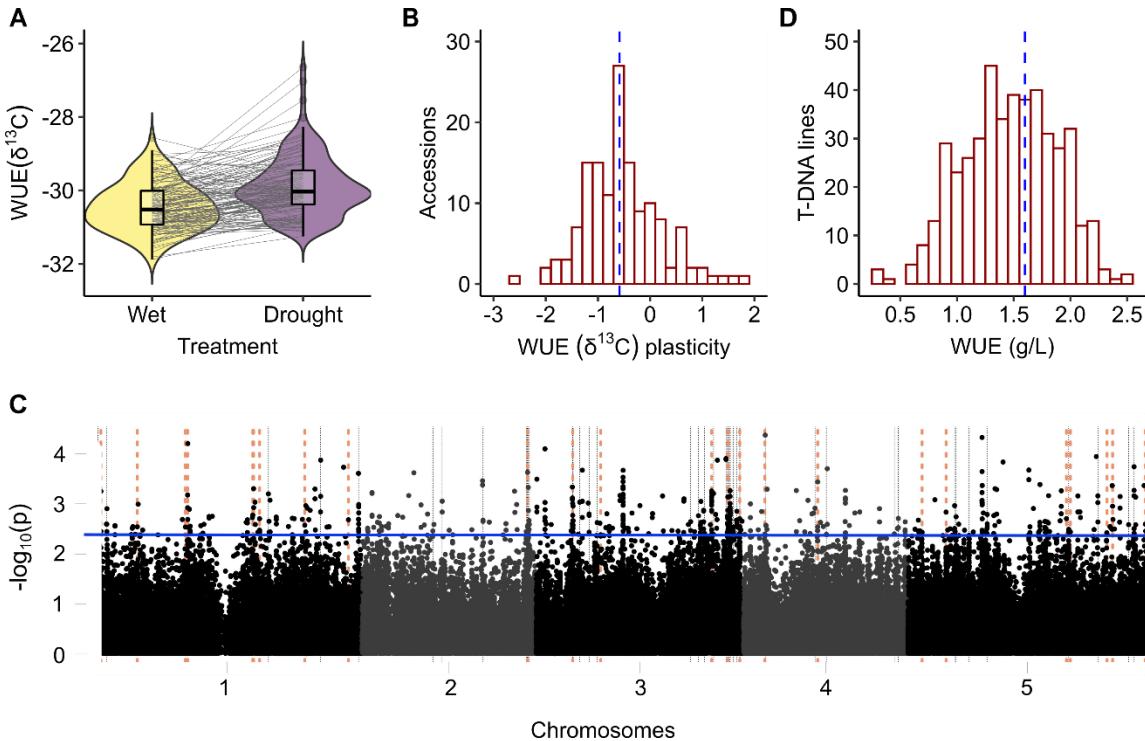
628 23. P. E. Verslues, J. R. Lasky, T. E. Juenger, T. W. Liu, M. Nagaraj Kumar, Genome-wide
629 association mapping combined with reverse genetics identifies new effectors of low water
630 potential-induced proline accumulation in *Arabidopsis*. *Plant Physiology* **164**, 144–159
631 (2014).

632 24. R. Kalladan, *et al.*, Natural variation identifies genes affecting drought-induced abscisic
633 acid accumulation in *Arabidopsis thaliana*. *Proceedings of the National Academy of
634 Sciences of the United States of America* **114**, 11536–11541 (2017).

635 25. C. P. Pignon, *et al.*, Phenotyping stomatal closure by thermal imaging for GWAS and
636 TWAS of water use efficiency-related genes. *Plant Physiology* (2021)
637 <https://doi.org/10.1093/plphys/kiab395>.

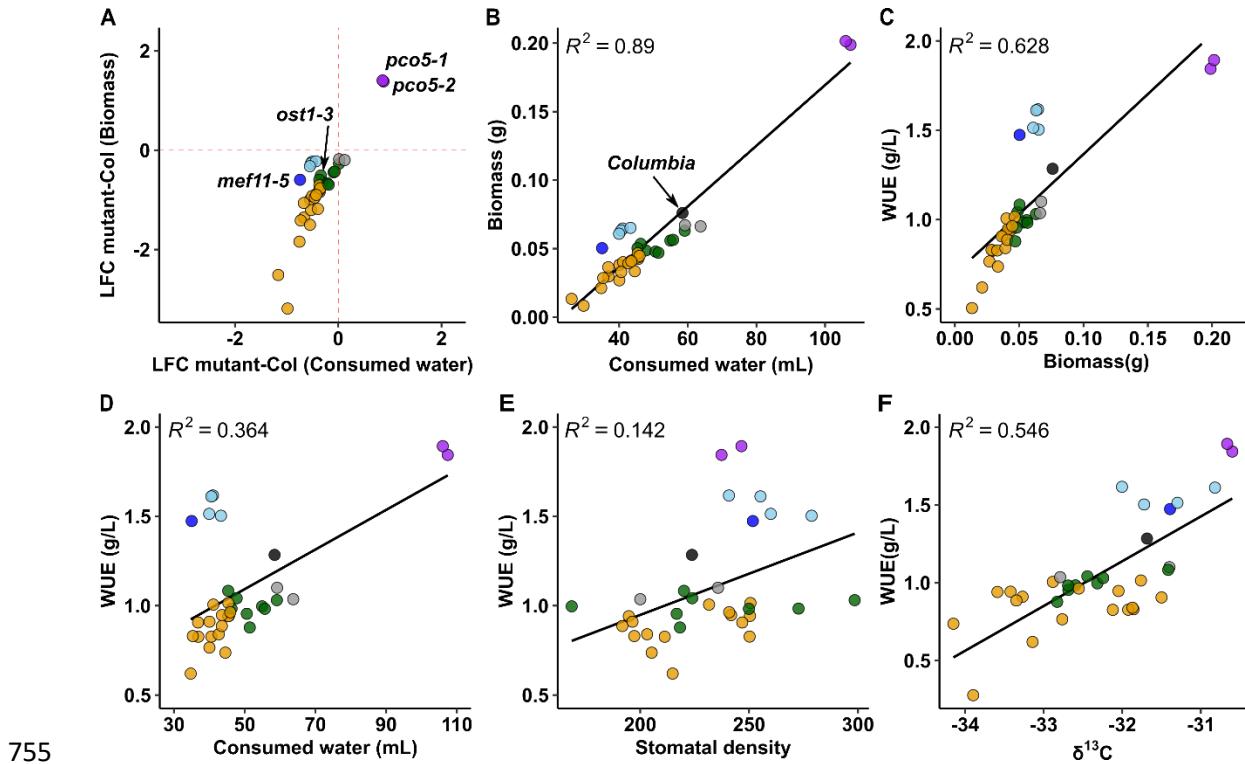
638 26. A. P. Dhanapal, *et al.*, Genome-wide association study (GWAS) of carbon isotope ratio
639 ($\delta^{13}\text{C}$) in diverse soybean [*Glycine max* (L.) Merr.] genotypes. *Theoretical and Applied
640 Genetics* **128**, 73–91 (2014).

641 27. Y. Kang, *et al.*, Genome-wide association of drought-related and biomass traits with
642 HapMap SNPs in *Medicago truncatula*. *Plant, Cell and Environment* **38**, 1997–2011
643 (2015).


644 28. M. M. Arab, *et al.*, Combining phenotype, genotype, and environment to uncover genetic
645 components underlying water use efficiency in Persian walnut. *Journal of Experimental
646 Botany* **71**, 1107–1127 (2020).

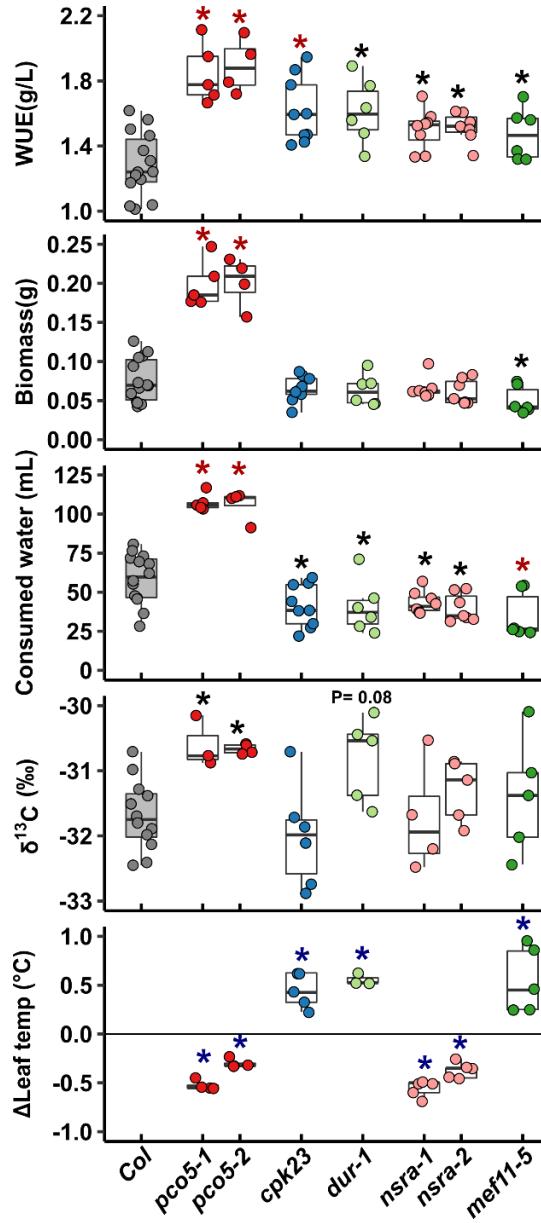
647 29. H. Dittberner, *et al.*, Natural variation in stomata size contributes to the local adaptation of
648 water-use efficiency in *Arabidopsis thaliana*. *Molecular Ecology* **27**, 4052–4065 (2018).

- 649 30. D. L. des Marais, *et al.*, Physiological genomics of response to soil drying in diverse
650 Arabidopsis accessions. *Plant Cell* **24**, 893–914 (2012).
- 651 31. G. B. Bhaskara, T. T. Nguyen, P. E. Verslues, Unique drought resistance functions of the
652 highly ABA-induced clade a protein phosphatase 2Cs. *Plant Physiology* **160** (2012).
- 653 32. A. Plessis, *et al.*, New ABA-hypersensitive Arabidopsis mutants are affected in loci
654 mediating responses to water deficit and *Dickeya dadantii* infection. *PLoS One* **6**, e20243
655 (2011).
- 656 33. J. Sechet, *et al.*, The ABA-deficiency suppressor locus HAS2 encodes the PPR protein
657 LOI1/MEF11 involved in mitochondrial RNA editing. *Molecular Plant* **8**, 644–656
658 (2015).
- 659 34. P. K. Hsu, G. Dubeaux, Y. Takahashi, J. I. Schroeder, Signaling mechanisms in abscisic
660 acid-mediated stomatal closure. *Plant Journal* **105**, 307–321 (2021).
- 661 35. A. C. Mustilli, S. Merlot, A. Vavasseur, F. Fenzi, J. Giraudat, Arabidopsis OST1 protein
662 kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of
663 reactive oxygen species production. *Plant Cell* **14**, 3089–3099 (2002).
- 664 36. N. Masson, *et al.*, Conserved N-terminal cysteine dioxygenases transduce responses to
665 hypoxia in animals and plants. *Science* **364**, 65–69 (2019).
- 666 37. C. Zhao, *et al.*, Arabinose biosynthesis is critical for salt stress tolerance in Arabidopsis.
667 *New Phytologist* **224**, 274–290 (2019).
- 668 38. W. Zeng, *et al.*, A genetic screen reveals Arabidopsis Stomatal and/or apoplastic defenses
669 against *pseudomonas syringae* pv. *tomato* DC3000. *PLoS Pathogens* **7** (2011).
- 670 39. P. Robles, J. L. Micó, V. Quesada, Arabidopsis MDA1, a nuclear-encoded protein,
671 functions in chloroplast development and abiotic stress responses. *PLoS ONE* **7** (2012).
- 672 40. T. Umezawa, *et al.*, CYP707A3, a major ABA 8 α -hydroxylase involved in dehydration
673 and rehydration response in *Arabidopsis thaliana* <https://doi.org/10.1111/j.1365-313X.2006.02683.x>.
- 675 41. Y. Sakuma, *et al.*, Dual function of an Arabidopsis transcription factor DREB2A in water-
676 stress-responsive and heat-stress-responsive gene expression. *Proceedings of the National
677 Academy of Sciences of the United States of America* **103**, 18822–18827 (2006).
- 678 42. M. Zhou, A. L. Paul, R. J. Ferl, Data for characterization of SALK_084889, a T-DNA
679 insertion line of *Arabidopsis thaliana*. *Data in Brief* **13**, 253–258 (2017).
- 680 43. F. Yuan, *et al.*, OSCA1 mediates osmotic-stress-evoked Ca²⁺ increases vital for
681 osmosensing in *Arabidopsis*. *Nature* (2014) <https://doi.org/10.1038/nature13593>.
- 682 44. M. Li, *et al.*, Importers Drive Leaf-to-Leaf Jasmonic Acid Transmission in Wound-
683 Induced Systemic Immunity. *Molecular Plant* **13**, 1485–1498 (2020).
- 684 45. J. Guo, *et al.*, The CBP/p300 histone acetyltransferases function as plant-specific
685 MEDIATOR subunits in *Arabidopsis*. *JIPB Journal of Integrative Plant Biology* (2020)

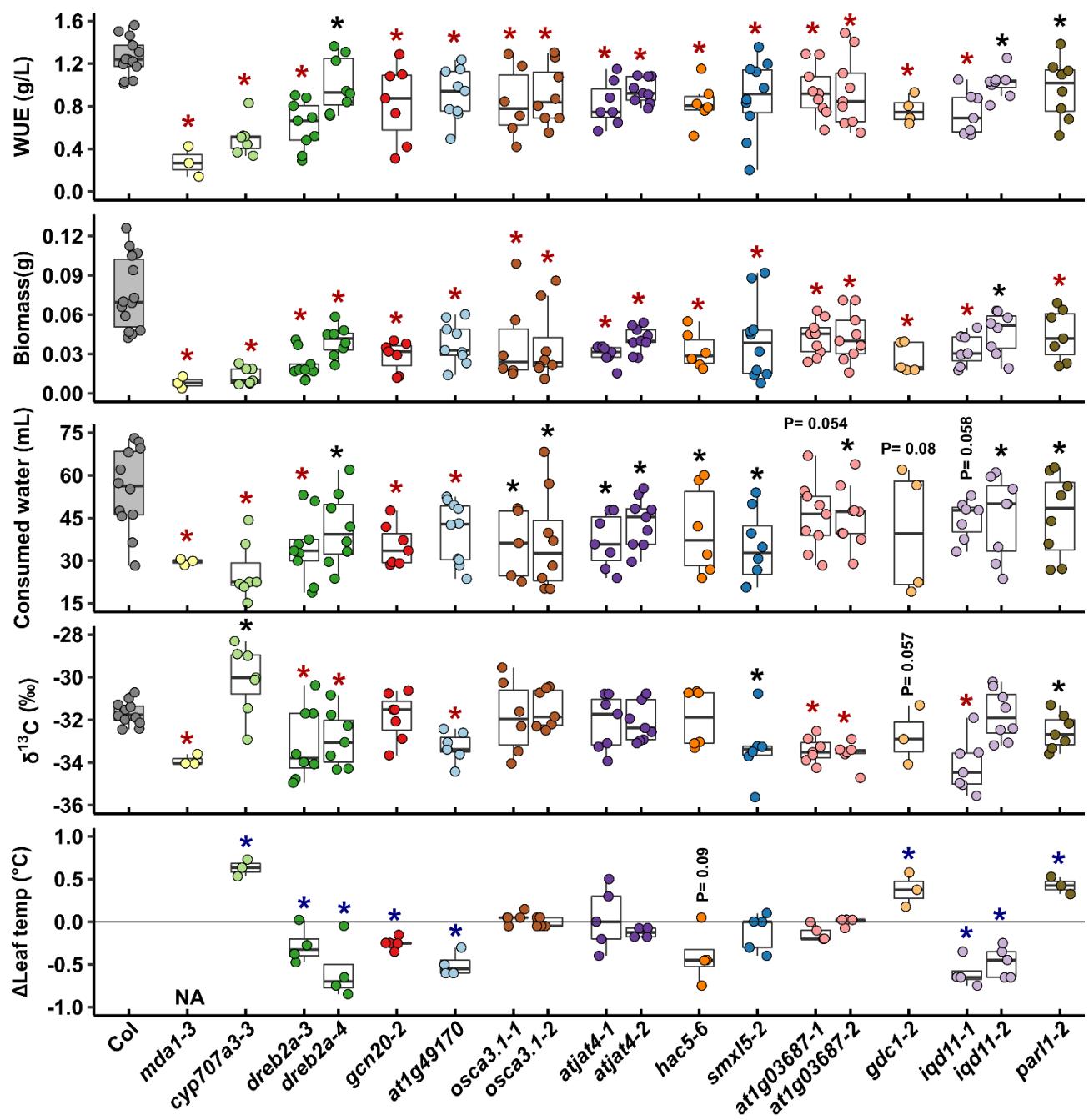

- 686 https://doi.org/10.1111/jipb.13052 (January 28, 2022).
- 687 46. E. S. Wallner, N. Tonn, D. Shi, V. Jouannet, T. Greb, SUPPRESSOR OF MAX2 1-LIKE
688 5 promotes secondary phloem formation during radial stem growth. *Plant Journal* **102**,
689 903–915 (2020).
- 690 47. Y. L. Cui, *et al.*, The GDC1 gene encodes a novel ankyrin domain-containing protein that
691 is essential for grana formation in arabidopsis. *Plant Physiology* **155**, 130–141 (2011).
- 692 48. K. Bürstenbinder, *et al.*, The IQD family of calmodulin-binding proteins links calcium
693 signaling to microtubules, membrane subdomains, and the nucleus. *Plant Physiology* **173**,
694 1692–1708 (2017).
- 695 49. J. J. Petricka, T. M. Nelson, Arabidopsis nucleolin affects plant development and
696 patterning. *Plant Physiology* **144**, 173–186 (2007).
- 697 50. A. H. Cao-Pham, D. Urano, T. J. Ross-Elliott, A. M. Jones, Nudge-nudge, WNK-WNK
698 (kinases), say no more? *New Phytologist* **220** (2018).
- 699 51. L. Yang, *et al.*, ABA-Mediated ROS in Mitochondria Regulate Root Meristem Activity by
700 Controlling PLETHORA Expression in Arabidopsis. **10** (2014).
- 701 52. Q. Li, M. Wang, L. Fang, BASIC PENTACysteine2 negatively regulates osmotic
702 stress tolerance by modulating LEA4-5 expression in Arabidopsis thaliana. *Plant
703 Physiology and Biochemistry* **168**, 373–380 (2021).
- 704 53. J. Yan, *et al.*, Cell wall b -1 , 4-galactan regulated by the BPC1 / BPC2-GALS1 module
705 aggravates salt sensitivity in Arabidopsis thaliana. *Molecular Plant* **14**, 411–425 (2021).
- 706 54. T. Arae, *et al.*, Identification of Arabidopsis CCR4-NOT Complexes with Pumilio RNA-
707 Binding Proteins, APUM5 and APUM2. *Plant and Cell Physiology* **60**, 2015–2025
708 (2019).
- 709 55. H. Molins, *et al.*, Mutants impaired in vacuolar metal mobilization identify chloroplasts as
710 a target for cadmium hypersensitivity in Arabidopsis thaliana. 804–817 (2013).
- 711 56. F. Potel, *et al.*, Assimilation of excess ammonium into amino acids and nitrogen
712 translocation in Arabidopsis thaliana-roles of glutamate synthases and
713 carbamoylphosphate synthetase in leaves. *The Authors Journal compilation* ^a **276**, 4061–
714 4076 (2009).
- 715 57. M. D. White, *et al.*, Plant cysteine oxidases are dioxygenases that directly enable arginyl
716 transferase-catalysed arginylation of N-end rule targets. *Nature Communications* **8** (2017).
- 717 58. M. D. White, J. J. A. G. Kamps, S. East, L. J. Taylor Kearney, E. Flashman, The plant
718 cysteine oxidases from Arabidopsis thaliana are kinetically tailored to act as oxygen
719 sensors. *Journal of Biological Chemistry* **293**, 11786–11795 (2018).
- 720 59. T. J. Holman, *et al.*, The N-end rule pathway promotes seed germination and
721 establishment through removal of ABA sensitivity in Arabidopsis. *Proceedings of the
722 National Academy of Sciences of the United States of America* **106**, 4549–4554 (2009).

- 723 60. W. R. Eisinger, V. Kirik, C. Lewis, D. W. Ehrhardt, W. R. Briggs, Quantitative changes in
724 microtubule distribution correlate with guard cell function in *Arabidopsis*. *Molecular*
725 *Plant* **5**, 716–725 (2012).
- 726 61. G. B. Bhaskara, T.-N. Wen, T. T. Nguyen, P. E. Verslues, Protein phosphatase 2Cs and
727 microtubule-associated stress protein 1 control microtubule stability, plant growth, and
728 drought response. *Plant Cell* **29** (2017).
- 729 62. D. Geiger, *et al.*, Guard cell anion channel SLAC1 is regulated by CDPK protein kinases
730 with distinct Ca^{2+} affinities. *107*, 8023–8028 (2010).
- 731 63. S. Y. Ma, W. H. Wu, AtCPK23 functions in *Arabidopsis* responses to drought and salt
732 stresses. *Plant Molecular Biology* **65**, 511–518 (2007).
- 733 64. G. P. Wagner, J. Zhang, The pleiotropic structure of the genotype-phenotype map: The
734 evolvability of complex organisms. *Nature Reviews Genetics* **12**, 204–213 (2011).
- 735
- 736

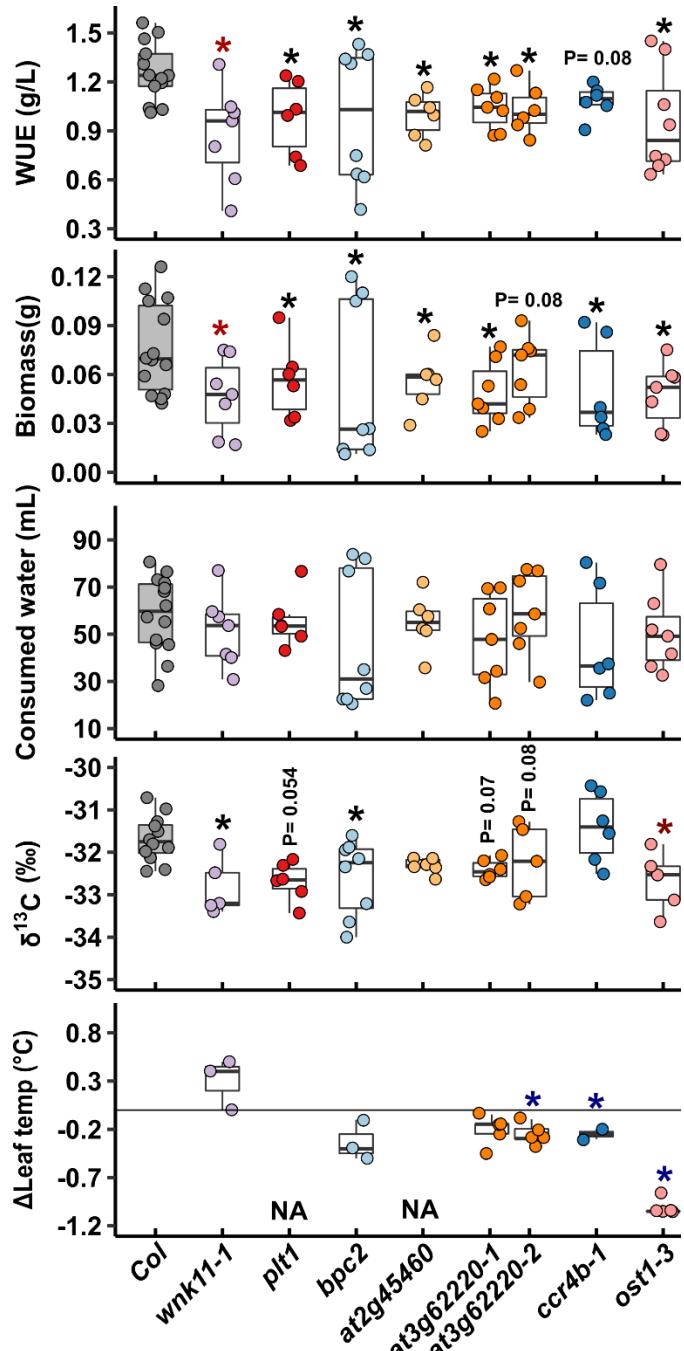
737
738


739 **Figure 1.** Natural variation, GWAS analysis, and reverse genetic tests of candidate genes for
740 WUE by gravimetric and $\delta^{13}\text{C}$ analyses. (A) Plastic response of 185 *Arabidopsis* accessions to
741 terminal drought. WUE ($\delta^{13}\text{C}$: ^{13}C isotopic composition of above ground biomass) values are
742 pooled accession values within each treatment. (B) Distribution of WUE ($\delta^{13}\text{C}$) plasticity
743 (difference in $\delta^{13}\text{C}$ between drought and wet) for 180 *Arabidopsis* accessions. Blue vertical line
744 indicates the median. (C) Manhattan plot of SNP P values from the GWAS analysis using the
745 WUE plasticity data shown in A. The blue horizontal line indicates the cutoff for the top 500 low-
746 P -value SNPs. The vertical lines indicate the genomic positions for the prioritized GWAS
747 candidates for which we analyzed WUE (biomass produced per unit of water consumed) using
748 reverse genetics. Grey lines indicate location of genes where T-DNA mutant(s) did not have
749 significantly altered WUE and orange dotted lines indicate genes where the T-DNA mutant(s) did
750 have significant effect on WUE (D) Distribution of gravimetric WUE (ratio of biomass to water
751 consumed) for 88 T-DNA mutants from high throughput screening using small containers ($n = 3$ -
752 5 biological replicates per genotype). Blue vertical line indicates the mean of Col-0 wild type.
753
754

755
756


Figure 2. Reverse genetic tests of candidate genes for WUE by gravimetric analysis using larger containers. (A) Relative contribution of biomass and consumed water of a given mutant as a factor leading to altered WUE (g/L, biomass produced per water consumed). Graph shows the Log2 fold changes (LFC) of above ground biomass and consumed water for a given mutant compared to Col-0 reference (dotted red lines). The mean value for Col-0 and individual T-DNA lines of each gene were plotted ($n = 5-10$ biological replicates for each data point). The altered WUE, changes in biomass, and consumed water is indicated by color filled circles; high WUE with increased biomass and increased water consumption (purple), high WUE with decreased biomass and reduced water consumption (dark blue), high WUE with no changes in biomass but reduced water consumption (light blue), low WUE with decreased biomass and no change in consumed water (green), low WUE with decreased biomass and reduced water consumption (orange), low WUE with no changes in biomass or water consumed (grey) (B) Association of above ground biomass with consumed water. (C) Association of WUE with above ground biomass and (D) consumed water. (E) Association of WUE with stomatal density. Note that, for a few mutants with reduced growth, the number of samples is less ($n = 3-4$ biological replicates from two independent experiments) because of difficulty in obtaining epidermal peels from those mutants. Three other mutants were omitted from this analysis for the same reason (Fig. S6). (F) Association of ^{13}C isotope composition ($\delta^{13}\text{C}$) in above ground biomass with WUE (ratio of biomass to water consumed). $\delta^{13}\text{C}$ was measured for the above ground biomass as shown in B. Colors in B to F are as in A except for the Col-0 which is represented by black filled circle.

777
778
779


780
781

782 **Figure 3.** Mutants of four genes had higher WUE than wild type. WUE, above ground biomass,
783 consumed water, $\delta^{13}\text{C}$ analysis for the above ground biomass and leaf temperatures of the plants
784 for which WUE was measured are presented. The box plots indicate the 1st and 3rd quartiles with
785 a median line and the whiskers represents the 1.5x interquartile range. Asterisks indicate
786 statistically significant difference for a comparison of mutants against Col-0 wild type (red:
787 strongly significant difference (adjusted $P < 0.05$), black: moderate effect based on nominal P
788 value (Dataset S12). P values are listed for the lines with marginally non-significant effect. Note
789 that, the leaf temperatures data was collected from the second independent experiment ($n=3-5$
790 biological replicates). The difference of leaf temperatures ($\Delta = \text{mutant} - \text{Col}$) are plotted. The
791 blue asterisks denote a significant difference ($P < 0.05$) based on t-test performed on original leaf
792 temperature values (Plots of original values and thermogram images are provided in Fig. S7)

793
794

795 **Figure 4.** Mutants of thirteen genes had reduced biomass and reduced water consumption as a
796 factor leading to decreased WUE. The data presentation format is the same as described for Fig.
797 2. Plots for original leaf temperature values and thermogram images are provided in Fig. S8 and
798 S9. NA denotes missing data (“Not available”).
799

800
801

802 **Figure 5.** Mutants of six genes that had reduced biomass as a factor leading to decreased WUE.
803 The data presentation format is the same as described for Fig. 2. Plots for original leaf
804 temperature values and thermogram images are provided in Fig. S10. NA denotes missing data
805 (“Not available”).