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Abstract
Phasing of heterozygous alleles is critical for interpretation of cis-effects of disease-relevant variation. For population studies, phase
is often inferred from external data but read-based phasing approaches that span long genomic distances would be more accurate
because they enable both genotype and phase to be obtained from a single dataset. To demonstrate how read-based phasing can
provide functional insights, we sequenced 477 individuals with Cystic Fibrosis (CF) using linked-read sequencing. We benchmark
read-based phasing with different short- and long-read sequencing technologies, prioritize linked-read technology as the most in-
formative and produce a benchmark phase call set from reference sample HG002 for the community. The 477 samples display an
average phase block N50 of 4.39 Mb. We use these samples to construct a graph representation of CFTR haplotypes, which facilitates
understanding of complex CF alleles. Fine-mapping and phasing of the chr7q35 trypsinogen locus associated with CF meconium
ileus demonstrates a 20 kb deletion and a PRSS2 missense variant p.Thr8Ile (rs62473563) independently contribute to meconium
ileus risk (p=0.0028, p=0.011, respectively) and are PRSS2 pancreas eQTLs (p=9.5e-7 and p=1.4e-4, respectively), explaining the
mechanism by which these polymorphisms contribute to CF. Phase enables access to haplotypes that can be used for genome graph
or reference panel construction, identification of cis-effects, and for understanding disease associated loci. The phase information
from linked-reads provides a causal explanation for variation at a CF-relevant locus which also has implications for the genetic basis
of non-CF pancreatitis to which this locus has been reported to contribute.
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Introduction1

Current genetic epidemiological studies often fail to capture the complete diploid nature of the human genome (1) largely2

because of a reliance on genotyping arrays and short-read whole genome sequencing (WGS). These technologies can identify3

heterozygous alleles but provide little to no information regarding the cis or trans phase relationships of their heterozygous4

allele pairs. Accurate haplotype information can be essential in informing phenotype-genotype relationships. One of the most5

well-known examples come from compound heterozygosity in monogenic disorders such as cystic fibrosis (CF) (2).6

CF is caused by mutations in the CF transmembrane conductance regulator (CFTR) (3). Over 2,100 variants have been identified7

in CFTR (4), greater than 400 of these have been shown to be disease causing while others are reported to have varying8

clinical consequence and are CF-causing only when in cis with another deleterious variant (5). Meanwhile, individuals with9

identical CF-causing alleles display variable disease severity and response to CFTR-targeting therapies (6). CF co-morbidities10

and variation in disease severity are complex genetic traits (7), presumed to be due to the impact of other genes beyond CFTR,11

referred to as modifier genes. For example, genome-wide association studies (GWAS) of CF meconium ileus (MI), an intestinal12

obstruction seen at birth in 13–21% of individuals with CF (8), have identified associated loci (9)(10)13

By design, the GWAS arrays mostly contain common SNPs in easily accessible regions of the genome. The MI associated14

SNPs do not appear in high linkage disequilibrium (LD) with protein coding variations, suggesting their impact is through gene15

regulation. However, much remains to be learned about the variation that is in cis with these associated SNP risk alleles or16

whether combinations of multiple cis-acting variants contribute to MI risk; for this, genotype data at the associated loci must17

be phased.18

In a typical epidemiological study, data external to the target individual is used to reconstruct maternal and paternal haplotypes.19

Pedigree-based phasing offers a high degree of accuracy (11) but requires a family-based experimental design and cannot20

resolve phase for variants that are heterozygous for all members. Population-based phasing is a cost-effective alternative that21

exploits shared ancestry information and linkage disequilibrium (LD) patterns to statistically infer haplotypes. However, the22

statistical nature of population-based phasing makes it vulnerable to frequent switch errors: accidental transitions from maternal23

to paternal haplotypes between neighbouring heterozygous sites (1). Phasing rare variants can also be problematic, requiring24

inference when few or no copies of that rare variant are present within the reference population.25

In contrast, individual-level phasing approaches determine phase relationships for a target individual without reliance on an26

external dataset. Sequencing reads that overlap multiple heterozygous sites are phase informative (12) but the maximum phase27

distance is restricted by the size of the sequencing read which makes short-read data ineffective when attempting to phase over28

non-trivial distances. Long-read sequencing technologies such as Pacific Biosciences (PacBio) SMRT sequencing and Oxford29

Nanopore generate longer reads capable of phasing longer distances, but these technologies are often error-prone, very costly30

or both. Other alternatives utilize a standard short-read sequencing pipeline with an additional experimental step that introduces31

long-range information into the read data. For example, the 10x Genomics (10XG) linked-read technology (13) and Universal32

Sequencing Technologies TELL-Seq (14) tag reads derived from a single DNA molecule with a shared nucleotide barcode,33

enabling otherwise independent reads to be linked and capable of long-distance phasing.34
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Here, we benchmark the phasing capabilities of different sequencing technologies using public data from the well-studied35

individual NA12878 with the practical goal of scaling to sample sizes large enough to quantify haplotype distributions for36

statistical analysis. This work guides our choice of 10XG as a technology to apply to the Canadian CF Gene Modifier Study37

Consortium (CGMS) cohort. We sequenced 477 individuals with CF from the CGMS using 10XG linked-read technology at38

approximately 30x coverage and leverage the data to improve understanding of a MI associated locus.39

MI GWAS has identified three genome-wide significant loci and a suggestive intergenic locus within the T-cell receptor beta40

region (chr7q35) (9) that was replicated in independent samples (10). Early sequencing work in the chr7q35 region identified41

five trypsinogen paralogs with approximately 90-91% nucleotide similarity which were annotated as T4 to T8 (15). Cationic42

trypsinogen PRSS1 (T4) and anionic trypsinogen PRSS2 (T8) are major forms of trypsin found in the pancreas, one of the43

earliest affected organs in CF (16). The other three genes are pseudogenes: PRSS3P1 (T5), PRSS3P2 (T6) and TRY7 (T7); of44

the three, there is only evidence for PRSS3P2 transcription but no known evidence of a protein product (17). The GRCh3845

reference genome only include three of these genes (T4, T5, T8) which is an accurate representation of a common deletion46

polymorphism that removes T6 and T7. This approximately 20 kb deletion appears to have arisen via non-allelic homologous47

recombination (18) and this represents a common variation found in approximately 41% of individuals with European ancestry48

(19). The GRCh38 alternative contig, KI270803.1 (20), represents the non-deleted haplotype and contains genes T4-T8. This49

is further complicated by reference assembly GRCh37 being erroneously structured (T4, T5, T6) and excluding PRSS2; a50

correction was later released (chr7_gl582971_fix) that included all five genes.51

In the present study, we provide a phasing benchmark using different technologies, summarize the phasing quality achievable52

across the 477 individuals with CF and use the phase information to unravel the complex genomic architecture at the chr7q3553

modifier locus.54

Results55

Comparison of phasing potential between read technologies. Here we consider the phasing quality of four different56

sequencing technologies: 10XG linked-reads, PacBio continuous long-reads (CLR), PacBio circular consensus sequence (CCS;57

branded as HiFi), and Nanopore reads. Phased variant calls for reference individual NA12878 is assessed for each technology58

(data sources listed in Supplementary Table 1). Variant calls fall into discrete phase blocks: a set of variants that are phased59

with respect to each other. Nanopore and 10XG technologies demonstrate longer, more contiguous phase blocks than PacBio60

CLR or CCS (Figure 1a). Phase blocks for chromosomes 1-3 are shown in Supplementary Figure 1 and additional statistics are61

available in Supplementary Table 2.62

We assess phase accuracy by comparison with the NA12878 Platinum Genomes phase calls generated from a 17-member63

pedigree (21). Figure 1b shows disagreements with the benchmark as flip errors (a single variant on the wrong haplotype)64

and switch errors (a contiguous block of variants on the wrong haplotype). Nanopore demonstrates the lowest accuracy with65

97.28% of assessed variant pairs agreeing with the benchmark. PacBio CLR and CCS show higher accuracy (99.12% and66

99.82%, respectively) but 10XG has the best performance with 99.97% accuracy and only 659 flip and switch errors total67

across all assessed variant pairs. The phasing accuracy of PacBio and 10XG specifically has been previously reported (22).68
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Fig. 1. Benchmarking phased calls using four different sequencing technologies against NA12878. Phased VCFs produced for reference individual NA12878 using
Nanopore, 10XG, PacBio CLR and PacBio CCS. a Distribution of phase block lengths for each technology. N50 is annotated as dotted line. Nanopore: 1231 blocks, N50=5.41
Mb; 10XG: 2021 blocks, N50=4.19 Mb; PacBio CLR: 24129 blocks, N50=110 kb; PacBio CCS: 27407 blocks, N50=80 kb. b Number of flip and switch errors identified by
comparison to Platinum Genomes benchmark using pairs of heterozygous variants. c Phase accuracy shown as a function of the distance between variant pairs in kb. A
variant pair is deemed correctly phased if the phase configuration agrees with the Platinum Genome truth set; a variant pair could also disagree with the truth set (black) or
have no phase call made (grey).

The relationship between phase quality and the distance between pairs of neighbouring variants is presented in Figure 1c.69

Nanopore and 10XG technologies are capable of phasing variant pairs spanning tens of kilobases, correctly phasing 75% and70

84% of adjacent heterozygous variants in the range of 28-30 kb, respectively. In contrast, the CLR and CCS PacBio data show71

a significant drop-off in the ability to phase heterozygous variant pairs that are greater than 10 kb apart, corresponding to the72

expected read lengths of these technologies. PacBio CLR technology correctly phases 2% of the variants within the 10-20 kb73

range compared to 2.7% for CCS.74

The accuracy of short-reads in conjunction with the long-range information offered by 10XG linked-reads creates long phase75

blocks while maintaining a low error rate relative to the other technologies. Although Nanopore reads generate a more contigu-76

ous set of phase blocks, it comes at a cost of a higher error rate. It is critical to minimize incorrect phase calls because even a77

single switch error produces a multitude of misleading pairwise variant relationships by splitting a consistent phase block into78

two completely out-of-phase parts. With this consideration, 10XG produces the highest quality phase calls of the technologies79

assessed.80

The insight into the strengths and weaknesses of each technology motivates an approach to combine multiple technologies and81

improve phase quality. We devised a pipeline to combine phased phased variant call format (VCF) files from multiple sources82

to generate a consensus phase set and benchmark the results against the NA12878 Platinum Genomes truth set. Supplementary83

Figure 2 shows the effect different combinations of sequencing technologies has on phase properties. Using all four technologies84

in combination, 99.93% of variants are phased in 894 phase blocks (N50=13.24 Mb) with an accuracy of 99.59% (complete85

statistics in Supplementary Table 3).86
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We apply this consensus phasing strategy to create a high-quality phased VCF for the well-studied individual HG002. The87

Genome in a Bottle (GIAB) Consortium provides phased benchmark calls for small variants in HG002 (23) generated from88

parental genotypes and Strand-seq data. However, many phasing errors can be detected in the GIAB release VCF by manual89

assessment of the read data (Supplementary Figure 3). In release version 4.2, 28.2% of heterozygous variants remain unphased90

in the release VCF. To improve this resource, we generate a consensus by combining the following data: Strand-Seq, 10XG91

linked-reads, PacBio CCS, PacBio CLR, Nanopore and include the pedigree phase information available in the GIAB release92

VCF for HG002. The consensus of the six sources of phase information phases 99.996% of heterozygous variants within 8193

phase blocks with N50 of 90.3 Mb across the entire genome. This data is available at (24).94

Phasing 477 Canadians with cystic fibrosis. We performed whole genome sequencing of DNA for 477 individuals from95

the CGMS cohort (10) using the 10XG linked-read technology at 30x depth (25x after trimming the 10XG barcode). The96

phasing distance of 10XG linked-reads is limited by the size of DNA molecules extracted. We investigated different extraction97

methods and found MagAttract produces the best results, consistent with the publicly available NA12878 sample (Figure 2a-98

d). Mean molecular length averages 58.7 kb (range: 32.6-95.4 kb) across 463 MagAttract extracted samples and is a strong99

predictor of the quality of the phasing. The average MagAttract extracted sample is phased in 2444 blocks, with N50 of 4.39100

Mb and a mean of 1428 variants per block. The largest phase block across all samples is 247.97 Mb and all but two samples101

have >97% of all genes shorter than 100 kb phased in a single block. Additional statistics can be found in Supplementary Table102

4.103

To complement genome-wide statistics, we assess the local phasing of a 389 kb region encompassing the CF causal gene,104

CFTR (GRCh38 chr7:117379963-117768665; CFTR plus 100 kb on both sides). The most common CF-causing variant is105

p.Phe508del; 241 individuals homozygous for this variant comprise about half of the sequenced samples. Due to a conserved106

haplotype, individuals homozygous for p.Phe508del possess high levels of homozygosity along the entire CFTR gene which107

makes it difficult to phase. The median p.Phe508del homozygous individual has 10 heterozygous variant calls within the108

assessed region (one per ∼40 kb) compared to 236 heterozygous variants (one per ∼1.6kb) for the median individual with109

heterozygous CF-causing alleles. Consequently, 152 of the 199 individuals with heterozygous CF-causing variants have a110

single phase block spanning the complete 389kb region. This demonstrates how the phasing of causal loci in disease cohorts111

with a recessive mode of inheritance could pose unique challenges for read-based phasing techniques but also highlights the112

potential to identify complex alleles that may explain disease variation (7).113

We construct a graph representation of the phased sequence at the CFTR locus from 449 individuals with CF to provide a visual114

understanding of the 10XG-derived haplotypes (Figure 2e). The graph includes the multiallelic poly-T tract polymorphism115

to highlight how a graph representation of haplotypes can inform disease phenotypes. Variation at the poly-T tract results in116

altered splicing and can cause CF if in cis with specific CFTR mutations (25); p.R117H in phase with a short poly-T is CF-117

causing while the clinical manifestations for those with longer poly-T sequence is less certain. Nine different poly-T alleles are118

visualized and their phase is shown with respect to downstream variants including p.Phe508del.119
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Fig. 2. Genome-wide phasing statistics versus mean molecular length for CGMS samples and NA12878 sequenced by 10XG. DNA from CGMS cohort extracted
using either MagAttract (blue circle), Autopure (green square) or Puregene (purple triangle). GIAB data for NA12878 (orange diamond) was down-sampled to a comparable
coverage (30x). Statistics are compared against mean molecular length reported by Long Ranger (13) a Phase block N50; b Proportion of phased genes with length less
than 100 kb; c Total number of phase blocks; d Size of longest phase block in base pairs. e Graph representation of exonic variants for 898 CFTR haplotypes. The graph is
composed of nodes representing sequence and haplotype groups as colored edges. The complete haplotype sequence can be reconstructed by concatenating the nodes
along a path. The thickness of each edge denotes the haplotype frequency in the dataset. Nodes belonging to exons are annotated and colored black. f The intronic poly-T
tract is included in the graph representation. Nine different poly-T alleles are visualized here and shown with respect to three SNPs downstream from the poly-T tract.
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Analyzing the chr7q35 trypsinogen CF modifier locus. The MI GWAS-suggestive locus on chr7q35 has five duplicated120

trypsinogen paralogs (PRSS1, PRSS3P1, PRSS3P2, TRY7 and PRSS2) but is structurally variable across reference assemblies121

(Figure 3a). The GRCh38 chr7 sequence includes a large deletion polymorphism that removes PRSS3P2 and TRY7. Reads from122

individuals who carry a non-deleted haplotype align spuriously to GRCh38, resulting in false variant calls (Supplementary123

Figure 4). Realignment of 10XG reads to alternative contig KI270803.1 improves the calling and phasing of variation and124

enables the large deletion polymorphism to be unambiguously called (Supplementary Figure 5). Among individuals with125

European ancestry, we find almost no variation within the deletion boundary on haplotypes lacking the deletion (Supplementary126

Figure 6). A simple genotype coding of the deletion sufficiently captures the genetic variation contained in this subregion and127

is used for all subsequent analysis.128

424 of 477 10XG samples are completely phased in a single block across a conservative 200 kb region surrounding the PRSS1-129

PRSS2 locus (KI270803.1:700000-900000). This phase information elucidates the LD structure of this locus for the CGMS130

cohort and is shown alongside MI GWAS summary statistics in Figure 3b. Two association peaks centered at rs3757377131

(KI270803.1:750284C>T) and rs1799886 (KI270803.1:823812T>C) are present in different LD blocks. The rs3757377 risk132

allele "T" has a frequency of 41% in the 10XG calls. We phase this SNP with respect to other variants of interest within the133

same LD block, the two major haplotypes account for 94.7% of the observed data (Figure 3c).134

The second peak centered at rs1799886 has a similar minor allele frequency of 43.5% but is not in strong LD with the deletion135

polymorphism (D’=-0.55, r²=0.19). A search for variants in cis with rs1799886 reveals a nonsynonymous PRSS2 variant136

(p.Thr8Ile), rs62473563 (KI270803.1:793978C>T), with 10.7% minor allele frequency and a high D’ with rs1799886 (D’=-137

0.98, r²=0.09). The rs1799886 "T" allele is in cis with p.Thr8Ile for 100 out of 101 haplotypes. The GWAS signal is tagging138

this protein-coding SNP; this relationship was not uncovered in the original analysis of the GWAS results due to the absence of139

PRSS2 from the GRCh37 reference.140

A query of the Genotype-Tissue Expression (GTEx) v8 data (28) was conducted to search for pancreas eQTLs with respect141

to the five trypsinogen paralogs. PRSS3P2 and TRY7 are not reported by GTEx v8 due to their absence from the GRCh38.142

PRSS3P1 does not have significant pancreas eQTLs but this is expected as it is not transcribed. Significant pancreas eQTLs are143

reported for PRSS2 (Supplementary Table 5) but not for PRSS1. This result is surprising because there is a common SNP in144

the promoter region that is reported to alter PRSS1 expression (27) but did not appear as a significant eQTL. LocusFocus (29)145

detects colocalization between MI association p-values and GTEx v8 PRSS2 pancreas eQTLs (colocalization p-value=7.1e-8,146

Supplementary Figure 7). This suggests that MI risk could be modulated by altered PRSS2 expression. The reliability of these147

results depends on accurate accounting of the 20 kb deletion polymorphism during read alignment to GRCh38. We found that148

the presence of the extra 20 kb sequence did not significantly alter the normalized gene expression counts for PRSS1 or PRSS2149

when compared with GTEx v8 counts (r² correlation of the two datasets >0.99, Supplementary Figure 8).150

To improve comparison to the predominantly European CGMS data, 252 GTEx samples with the race labelled as “white” were151

used to recalculate pancreas eQTLs. The GTEx v8 variant calls for these samples were lifted to KI270803.1 and the deletion152

polymorphism was imputed using the 10XG CGMS samples as a reference panel. Similar to the GTEx v8 results, there are153

no significant (p<0.05) eQTLs for PRSS1 (Supplementary Figure 9) but PRSS2 has pancreas eQTLs (Figure 4a). The imputed154
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Fig. 3. Characterizing the chr7q35 trypsinogen locus. a Differences between chromosome 7 reference assemblies for GRCh37, GRCh38 and alternative contig
KI270803.1. In the GRCh37 assembly, TRY7 and PRSS2 are absent. The GRCh38 assembly does not include PRSS3P2 and TRY7 because it accurately represents
a haplotype with a common ∼20 kb deletion polymorphism (highlighted in red). KI270803.1 represents a haplotype without the deletion polymorphism. b LD matrix cal-
culated from 10XG phased calls; deletion allele is denoted by orange rectangle. Haplotype blocks are drawn as black triangles, all five trypsinogen homologs are located
within a single block (KI270803.1:737033-802909). MI GWAS summary statistics lifted from GRCh37 to KI270803.1 are shown, r2 with respect to rs3757377. c Four SNPs
in the same LD block as rs3757377, phased with the deletion polymorphism. SNPs include a common pancreatitis risk allele (rs10273639) (26), a PRSS1 promoter SNP
(rs4726576) that alters expression of a reporter gene in mice (27), two synonymous PRSS1 variants (rs6666 and rs6667). Five unique haplotypes are observed in 10XG
data, the frequencies are shown as a percentage. The two major haplotypes account for 94.7% of the observed data.
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Fig. 4. Conditional association analysis reveals common association pattern for PRSS2 pancreas eQTLs and MI risk. GTEx v8 variant calls lifted to KI270803.1 and
deletion allele (red diamond) imputed from 10XG calls. a Recalculated PRSS2 pancreas eQTLs. b GTEx PRSS2 pancreas eQTLs conditioning on deletion polymorphism.
c PRSS2 pancreas eQTLs conditioning on rs62473563 (orange diamond). d GTEx PRSS2 pancreas eQTLs conditioning on both rs62473563 and deletion polymorphism.
e Association with MI was similarly performed for 309 10XG samples. f MI risk conditioning on deletion polymorphism. g MI risk conditioning on rs62473563. h MI risk
conditioning on both rs62473563 and deletion polymorphism.

deletion polymorphism appears as a strong PRSS2 pancreas eQTL (p=7.8e-5). Conditioning on the deletion polymorphism155

reveals that rs62473563 (PRSS2 missense variant, p.Thr8Ile) acts as an independent eQTL (Figure 4b). Conditioning on156

rs62473563 increases the significance of the deletion polymorphism (Figure 4c) and conditioning on both eliminates the PRSS2157

eQTL signal (Figure 4d). The presence of p.Thr8Ile and the deletion polymorphism are both associated with reduced PRSS2158

expression. This conditional analysis is summarized in Table 1.159

To understand these eQTL results in the context of MI, we analyzed genotyping array data from CGMS cohort individuals160

(n=2635, Supplementary Figure 10). The deletion polymorphism is associated with an additive increased risk of disease161

(beta=0.29, p=5.2e-4) but imputation for rs62473563 is poor. Instead, we performed fine-mapping using the 10XG sequencing162

calls for whom MI status and 10XG data were available. A similar association pattern observed for the pancreas eQTL was163

recapitulated for the MI phenotype in 337 individuals sequenced with the 10XG technology. (Supplementary Figure 11).164

Interestingly, the contribution of this locus in CF individuals with two minimal function CFTR alleles appears attenuated,165

which is likely due to their already elevated risk due to CFTR (8). Exclusion of 28 individuals with minimal function CF166

alleles produces stronger evidence of association with MI despite the smaller sample size (Figure 4e-h, Table 1). Notably, the167

PRSS2 variant p.Thr8Ile remained associated with MI after accounting for the deletion polymorphism in the model (beta=0.93,168

p=0.011). Both deletion and p.Thr8Ile are associated with a reduction in PRSS2 expression and a higher risk of MI.169

Table 1. GTEx PRSS2 pancreas eQTL analysis and association to MI risk using 10XG data under conditional analysis.

PRSS2 pancreas eQTL MI association
n=252 n=309

Variant Conditioned on Slope (SE) P-value Beta (SE) P-value

rs62473563 - -0.24 (0.10) 0.014 0.42 (0.32) 0.19
rs62473563 Deletion -0.38 (0.097) 1.4e-4 0.93 (0.37) 0.011

Deletion - -0.24 (0.060) 7.8e-5 0.53 (0.22) 0.019
Deletion rs62473563 -0.31 (0.060) 9.5e-7 0.75 (0.25) 0.0028
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Discussion170

Phasing of genetic sequence improves understanding of causal variation at GWAS-associated loci, especially in regions of171

complex genetic architecture and when allelic heterogeneity is present. However, haplotype reconstruction is typically not a172

priority when studying disease cohorts following-up GWAS identified loci. Here we demonstrate that linked-read technology173

provides a robust and cost-effective option for epidemiological studies of complex loci.174

Benchmarking different read technology against Platinum Genomes highlights the exceptional phasing accuracy produced by175

10XG linked-reads. Large phase blocks with N50 upwards of 4 Mb are achievable with this technology – more than sufficient176

for studying targeted loci. It should be noted that the Nanopore and PacBio data used in this study were based on public177

availability and technological improvements have been made since those datasets were released. The general insights offered178

by the benchmarking comparison still apply to newer iterations of these technologies.179

While 10XG linked-reads provides high-quality phase information, we observed that the linked-reads often generated incom-180

plete phase blocks where many variants remain unphased within a block. Variants with insufficient phase-informative reads181

occur stochastically, especially in positions with low coverage. Unphased variants can also be the result of regions with low182

mappability for short reads. In contrast, long-read technologies generate more uniform coverage, improve mappability and183

produce complete phase blocks. To achieve the most reliable phase calls for a single individual, we show that an ensemble184

approach can compensate for the individual deficits of each technology by taking a consensus of multiple callsets. We have185

produced and made available a consensus VCF for the well-studied GIAB sample HG002. This consensus is a useful refer-186

ence for studies interested in benchmarking phase calls, since HG002 has one of the most well-studied genomes and, to our187

knowledge, has yet to be comprehensively phased.188

To demonstrate the practical utility of phased sequence data for a cohort, we investigated the chr7q35 trypsinogen locus that did189

not reach genome-wide significance in our largest GWAS of MI in CF to date (10). Nonetheless this locus was tantalizing due190

to the role trypsinogen plays in digestion and the specificity to the pancreas, one of the organs most significantly impacted in191

CF. The architecture of the chr7q35 trypsinogen locus requires careful analytic consideration. The region is heavily susceptible192

to reference bias, where differences between which reference assembly is used can produce misleading results. Reference bias193

in this locus has had documented clinical consequences, specifically the detection of a pathogenic PRSS1 variant called based194

on misaligned reads derived from trypsinogen pseudogenes (30)(31). We mitigated misalignments by using reference sequence195

KI270803.1 that provides a more complete representation of this locus. The reference bias issues here motivate the general need196

to transition from linear references to more comprehensive representations such as graph-based references that can capture and197

accommodate the range of variation found within a population. The construction of these graphs can also benefit from the198

read-based phasing made available through technologies such as linked-reads, as demonstrated by the CFTR graph we present199

here.200

The chr7q35 trypsinogen locus, and PRSS1 in particular, is well-studied in the context of non-CF pancreatitis. An amino201

acid substitution in PRSS1 (p.R122H) is the most common cause of hereditary pancreatitis in Europeans (32). This small202

change alters a trypsin cleavage site that is important for regulation of trypsin activity through autoinactivation of trypsinogen203
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(33). Similarly, chronic pancreatitis has been shown to be associated with a common T>C variant (rs10273639) near PRSS1204

(26), thought to be associated with altered risk by tagging a promotor SNP (rs4726576) that increases PRSS1 expression (27).205

Increased genetic risk of pancreatitis is typically manifested as increased trypsin activity, by the production of more functional206

trypsin or greater resistance to degradation via autoinactivation (34). Despite the depth of evidence supporting a relationship207

between PRSS1 and pancreatitis, there is not the same level of support for PRSS2. Transgenic human PRSS2 in mice has208

been shown to aggravate pancreatitis (35) and the PRSS2 variant p.G191R promotes degradation and provides some protection209

against chronic pancreatitis (36). This supports the hypothesis that PRSS2 activity may also contribute to pancreatitis risk.210

The data presented here suggests a more relevant role for PRSS2 over PRSS1 in MI. We identify two putatively contributing211

polymorphisms that independently alter MI risk and PRSS2 expression: a 20 kb deletion polymorphism and a non-synonymous212

variant in exon 1 of PRSS2. These polymorphisms are in cis with risk variants in two independent MI associated SNP clusters,213

confirming the evidence of allelic heterogeneity seen in our previous MI GWAS (10). The deletion polymorphism is in cis with214

the common SNP rs10273639 found to alter non-CF pancreatitis risk (26). While previous work has suggested a connection215

between this haplotype and PRSS1 expression, the results presented in this current work do not implicate PRSS1 expression as216

the mechanism. The association between rs10273639 and PRSS1 expression was initially established using 69 pancreas tissue217

samples after removal of 3 outliers (33). However, the raw data shows positive correlation between PRSS1 and PRSS2 expres-218

sion (r2=0.83) and suggestive evidence of an association between rs10273639 and PRSS2 (p=0.053, Supplementary Figure 12).219

While the data was interpreted to support PRSS1 expression as a causal explanation, it does not exclude a PRSS2 contribution.220

Given the extreme transcriptional activity of this locus in pancreatic cells, it would not be surprising that a structural change221

caused by the large 20kb deletion polymorphism upstream of the PRSS2 promoter could alter PRSS2 transcription.222

A second MI GWAS association signal is in near-perfect linkage with the p.Thr8Ile variant in PRSS2 (rs62473563). When223

restricted to a European subset, this variant is also the most significant PRSS2 pancreas eQTL. Conditioning on the deletion224

polymorphism, p.Thr8Ile also showed evidence of increased MI risk in the 10XG samples highlighting its independent effect.225

PRSS2 trypsin operates extracellularly and therefore must be targeted for the endoplasmic reticulum (ER) during translation.226

The first 15 amino acids contain the sequence specific for binding of the signal recognition particle (SRP) targeting for the ER.227

An amino acid change here can alter SRP recognition efficiency which triggers a translation quality control (37). As p.Thr8Ile is228

a common variant found in healthy individuals, it does not seem consequential enough to cause a disease phenotype in isolation,229

but perhaps it is sufficient to modify severity of phenotypes when found in combination with disease states such as CF.230

Non-CF pancreatitis is related to increased trypsin activity, typically attributed to PRSS1 (26). For MI we see the opposite231

relationship where more trypsin activity reduces risk, and our data suggests this is due to PRSS2 expression variation. Although232

there is conflicting evidence of whether PRSS1 or PRSS2 is the relevant gene, in both contexts the haplotype with the common233

deletion polymorphism is associated with lower levels of trypsinogen. Similarly, the presence of p.Thr8Ile is associated with234

lower PRSS2 expression and higher MI risk; the effect on non-CF pancreatitis – if any – has not been reported to our knowledge.235

As MI is a neonatal intestinal blockage caused by thick and adhesive consistency of the first stool, a simple explanation is that236

higher trypsin levels in the intestine break down and discourage the formation of this blockage-causing stool, thereby reducing237

risk. In fact, it is known that the meconium of individuals with CF contain high levels of protein (38) and more active trypsin238
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could provide a protective effect against blockage.239

Conclusions240

This study demonstrates the benefit of sequencing technologies that simultaneously informs genotype and phase for a given241

individual. Construction of phased haplotypes enables greater insight into cis-effects at complex loci. Additionally, insights242

made available though LD structure, genome graphs and reference panel construction are also dependent on phase information.243

Here we identify a 20 kb deletion polymorphism and PRSS2 missense variant that alters risk of complex CF traits and is asso-244

ciated with PRSS2 gene expression. This could not have been elucidated without the phase information made available through245

10XG linked-reads. It was therefore discouraging to receive news during this study that 10x Genomics was discontinuing246

their linked-read sequencing with no intention to make it available through other providers. We hope analogous methods such247

as Universal Sequencing Technologies TELL-Seq and long-read technology such as PacBio SMRT sequencing and Oxford248

Nanopore continue to mature to allow the research community continued access to read-based phasing that is cost-effective for249

population studies. Technologies that capture phase information are paramount to a complete understanding of GWAS loci,250

contributing to a greater understanding of genetic epidemiology.251

Methods252

Retrieval and phasing of benchmark genomes. NA12878 benchmarking variant calls were downloaded from Illumina’s253

Platinum Genomes (version 2017-1.0) (21). High confidence variant calls for reference individual HG002 were downloaded254

from the Genome in a Bottle (GIAB) Consortium (version 3.3.2 and 4.1) . Sequencing datasets for both individuals were255

collected from multiple platforms including 10XG linked-reads, PacBio Circular Consensus Sequence (CCS) and PacBio Con-256

tinuous Long Reads (CLR) and Oxford Nanopore. Phased variant calls respect to the reference genome GRCh38 p.12 were257

either downloaded directly or aligned and phased. Direct links to each dataset are provided in Supplementary Table 1.258

Long Ranger 2.2.2 (13) was used to align and call variants against GRCh38 for the 10XG NA12878 sample and was down-259

sampled (-downsample 105) from 75x coverage to approximately 30x coverage. GATK 4.0.0.0 (39) was used inter-260

nally by Long Ranger to produce variant calls. RTG-Tools vcfeval 3.10.1 (40) was used to generate a VCF with the vari-261

ants intersecting NA12878 Long Ranger 2.2.2 calls and the Platinum Genomes VCF. PacBio and Nanopore reads were262

aligned using minimap2 v2.11 (41) with recommended default settings for each respective technology. WhatsHap v0.18263

(12) was to phase Platinum Genome variants (whatshap phase) with either PacBio or Nanopore reads at 20x cover-264

age (-max-coverage 20) for read-selection, which included all variants and excluded read-groups for read selection265

(-indels -ignore-read-groups) with local realignment on (-reference) GRCh38 p.12. These steps produced266

a single VCF for each sequencing technology which incorporates phase calls. Visualization of phase blocks was completed267

using karyoploteR (42).268

Each callset was then compared to the original Platinum Genomes VCF using whatshap compare to benchmark accuracy,269

where the error rate was averaged over all chromosomes. The whatshap stats command was used to generate phasing270

statistics for the four phased sets and GRCh38 p.12 chromosome lengths were provided (-chr-lengths) to calculate the271
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phase block N50. A custom python script was used to assess each individually phased VCF to quantify phasing accuracy272

of adjacent heterozygous variants. The number of heterozygous variant pairs that were either unphased, phased correctly, or273

phased incorrectly was counted and benchmarked against the NA12878 platinum genome.274

A Python script was written to combine phased VCF files generated from different technologies and output a VCF with a275

weighted consensus of the phase calls. For each adjacent heterozygous variant pair, a consensus call was generated by taking276

the most common phase configuration observed in the input VCF files. Each input VCF was weighted to allow ties to be broken.277

This script was used to generate a consensus phase callset for HG002 and the technologies included were weighted as follows:278

GIAB pedigree calls >Strand-Seq >10XG >PacBio CCS >PacBio CLR >Nanopore. This weighting scheme was based on the279

accuracy of these technologies. Python scripts can be found at (24)280

High molecular weight DNA extraction methods. Blood samples were extracted from patients with CF across Canada281

(Supplementary Table 6) and sent for processing to The Hospital for Sick Children in Toronto, Canada. Written informed282

consent was obtained from all participants, or parents/guardians/substitute decision makers. High molecular weight (HMW)283

DNA was extracted from fresh or frozen blood aliquots using the MagAttract HMW DNA Kit (Qiagen, Cat# 67563) as per284

supplier recommendations. Quantitation was determined by Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen, Cat# P11469),285

as recommended by the supplier. Quality of DNA was then further assessed by electrophoretic migration in 0.4% agarose gel,286

run at 50 V for 18 hours at 4°C in Tris-acetate buffer at pH 8.0 with comparison to Quick-Load 1 kb Extend DNA ladder287

(NEB, Cat# N3239S). Unless otherwise stated, only samples indicating that bulk DNA was larger than 50 kb (>80% by visual288

inspection of agarose gel) were submitted for sequencing.289

We also investigated three other DNA extraction methods including two Autopure methods (Maxi, 7-10 ml of blood; Midi, 3-4290

ml of blood) and Puregene (0.3-1 ml of blood, manual extraction) (Qiagen, Cat# 1057048, 949006, 949008, 949016, 949018291

and 949010). These samples were prepared as recommended by the kit supplier, but typically failed the HMW quality control292

assessment by the 0.4% agarose gel.293

Library preparation and 10x Genomics sequencing. Approximately 1 µg of genomic DNA was submitted to The Centre294

for Applied Genomics (TCAG) at the Hospital for Sick Children for genomic library preparation and whole genome sequencing.295

DNA samples were quantified using Qubit High Sensitivity Assay and sample purity was checked using Nanodrop OD260/280296

ratio. DNA was run on the Genomic Tape on Tapestation (Agilent, Cat# 5067-5365 and 5067-5366) to check DNA fragment297

size. 10 ng of DNA was used as input material for library preparation using the 10XG Library Kit (PN 120258 and 120257)298

following the manufacturer’s recommended protocol. In brief, DNA was denatured and mixed with gel beads to form emulsion299

droplets using the Chromium Controller (PN 110203); emulsion droplets were tagged with barcodes and amplified by PCR;300

emulsions were broken and DNA captured and cleaned using magnetic beads. DNA was checked on the Bioanalyzer DNA High301

Sensitivity chip to ensure fragment size, and the DNA proceeds to library preparation. DNA was end-repaired, A-tailed, ligated302

with Illumina-compatible adapters, and PCR amplified with indexed Chromium i7 primers (PN 120262). Libraries are validated303

on a Bioanalyzer DNA High Sensitivity chip to check for size and absence of primer dimers and quantified by qPCR using Kapa304

Library Quantification Illumina/ABI Prism Kit protocol (KAPA Biosystems). Validated libraries were paired-end sequenced on305
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an Illumina HiSeq X platform following Illumina’s recommended protocol to generate paired-end reads of 150-bases in length.306

Variant calling and phasing metrics for 10XG samples. Long Ranger 2.2.2 and GRCh38 reference version 2.1.0 were307

used process 10XG reads. Base calling was performed using the mkfastq command. VCF files were generated using the wgs308

command to call and phase variants; GATK 4.0.0.0 was used internally by Long Ranger to call variants. Alignment and phasing309

statistics were also generated by Long Ranger as output to the wgs command. The stats command from WhatsHap v0.18310

was applied to the Long Ranger VCF files to produce additional phasing statistics. When both Long Ranger and WhatsHap311

reported the same metric, we took the values reported by Long Ranger. For causal CF variants, chart review and manual312

inspection of the Long Ranger alignment file with IGV was performed to investigate disagreements between clinical records313

and called variants.314

Generating genome graph from haplotypes. Using a multisample VCF of 449 10XG samples (all sequenced samples315

available at the time of analysis), variants were filtered to only include 50 bp surrounding exonic CFTR variants (GRCh38316

chr7:117480087-117668359). Variants were further filtered to only include those with an rsID and of three or more. The intronic317

poly-T tract polymorphisms were manually called and phased using the 10XG sequencing reads. A graph representation of the318

haplotypes was generated using vg toolkit 1.33.0 (43) and plotted by Sequence Tube Map (44).319

10XG Realignment and Deletion Polymorphism Calling. 10XG sequencing reads aligned to the PRSS1-PRSS2 locus320

(GRCh38 chr7:142500000-143000000) and a region spanning PRSS3 (GRCh38 chr9:33700000-33900000) were extracted321

from the Long Ranger BAM file using SAMtools v1.9 (45). The extracted reads were realigned using Long Ranger 2.2.2 to322

a custom reference containing KI270803.1 and the PRSS3 locus (GRCh38 chr9:33500000-34100000). The PRSS3 locus was323

included because it shares a high base pair identity to the PRSS1-PRSS2 locus, and we observed some reads aligned to PRSS3324

map better to the chromosome 7 locus.325

To call the large deletion polymorphism observed on KI270803.1, a custom python script was used to determine the presence of326

the deletion by comparing the coverage of the deleted region (KI270803.1:771000-790000) to a flanking region of the same size327

(KI270803.1:760500-770000 and KI270803.1: 791000-800500) on both sides of the deleted region. Deletion calls were also328

visually validated using IGV. A dummy SNP was added to the VCF to encode the genotype of the deletion. An additional step329

was required to phase heterozygous deletion calls with respect to the other variants called by Long Ranger. Using haplotype-330

tagged 10XG linked reads, all heterozygous deletion calls were manually phased using IGV with respect to rs3757377 which331

lies upstream of the deletion. In the case where the deletion was heterozygous and rs3757377 was homozygous, the deletion332

was instead phased with respect to rs6666. Phase of the deletion calls in the VCF were updated using a custom script to reflect333

the phase relationship observed in the linked-reads.334

Each 10XG VCF was filtered for variants with PASS in the FILTER column. Using bcftools 1.12 (46) merge, a multi-sample335

VCF was created by combining all the individual VCFs (-missing-to-ref). Variants in the multi-sample VCF called336

outside of KI270803.1 were removed. Variants with allele counts less than three, multi-allelic variants and indels longer than337

5 bases (other than the 20 kb deletion which was coded as a SNP) were removed. SHAPEIT version 4.1.2 (22) was used338
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to impute the missing variants and completely phase the multi-sample VCF to enable use as a reference panel (-use-PS339

0.0001 -sequencing). Linkage disequilibrium blocks were computed from this VCF using ldblockshow version 1.36340

(47) (-BlockType 2 -SeleVar 1).341

Illumina Genotype Arrays and Quality Control. CGMS data are genotyped on four different Illumina platform: 610Quad,342

660W, Omni2.5 and Omni5. Genotype calling was performed using GenomeStudio V2011.1. Quality control steps were343

performed separately for each platform and described in detail in (10). Briefly, PLINK (48) was used for most QC steps while344

KING (49) identified any cryptic familial relationships among all individuals and PC-AiR (50) calculated PCs. Parents in six345

parent-offspring pairs, 19 samples clustered with Hapmap3 (51) African and East Asian ethnicity and 10 samples with sex-346

mismatch were excluded. Significant PCs were selected to be included in the association based on the Tracy-Widom test result347

using the function twtable in POPGEN of Eigensoft (52).348

For colocalization of MI association with GTEx eQTLs, GWAS summary statistics (10) were reformatted as BED file and lifted349

to GRCh38 by LiftOver (53) for colocalization analysis against GTEx v8 in LocusFocus (29).350

Imputation of Genotype Data Using 10XG. Genotype array data was generated against GRCh37 and required lifting to351

alternative contig KI270803.1 before imputation. A two-step lift-over was performed using Picard LiftoverVcf (54); first from352

GRCh37 to GRCh38 using a chain file provided by UCSC and then from GRCh38 to alternative contig KI270803.1. The353

chain file from GRCh38 to KI270803.1 was created by downloading a PSL file for alternative haplotypes using the UCSC table354

browser and converting to a chain file using axtChain. Genotype array calls were organized by array platform into separate355

multi-sample VCF files and imputed by BEAGLE v5.1 (11) using the 10XG reference panel and default parameters.356

Association with MI. Variants from 2635 pancreatic insufficient individuals with BEAGLE imputation quality DR2 >0.3 were357

kept for association analysis with MI using imputation dosage of each variant, which was performed using the geeglm function358

from the R geepack package (55), with exchangeable correlation structure and binomial family. Sex, array platform and 11359

PCs were included in the model. For conditional analysis, the dosage of the deletion was added as a covariate. For association360

testing with the 10XG data, only pancreatic insufficient individuals with available MI status were considered. 10XG variant361

calls within the range KI270803.1:700000-900000 were regressed against MI status (n=337 samples) using logistic regression.362

For conditioning on deletion genotype or rs62473563, the respective dosage was included as a covariate in the model. A363

subsequent regression was conducted where 28 individuals with the highest CFTR severity score were excluded.364

Re-processing of GTEx RNA-seq data. A custom reference genome was generated by adding the alternative contig365

KI270803.1 to a GRCh38 reference FASTA file. To remove sequence redundancy, the region on the chromosome 7 main366

contig corresponding to KI270803.1 (chr7:142038121-143088503) was masked with the ambiguous base “N”. 172 RNA-367

seq GTEx samples from pancreas were downloaded and reads were aligned to our custom reference using the scripts from368

the GTEx pipeline (56). First, GENCODE v26 (57) annotations were retrieved from the GTEx Portal and annotations369

within chr7:142038121-143088503 were removed. GENCODE v35 annotations for KI270803.1 were downloaded and col-370

lapsed using collapse_annotation.py available from the GTEx pipeline. The two resulting GTF files were combined371
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into a single annotation file. We indexed our custom reference assembly with this annotation file using STAR v2.7.0 (58)372

(-sjdbOverhang 75). For each sample, we aligned RNA-seq reads using the run_STAR.py script from the GTEx373

pipeline. Transcript quantification was performed by mmquant (59) (-l 20) and read counts were normalized by conversion374

to transcripts per million (TPM).375

Recalculating GTEx Pancreas eQTL Data. Calculation of eQTLs was performed following the GTEx pipeline (56). GTEx376

v8 variant calls were filtered to chr7:142038121-143088503 and only included 252 pancreas samples with race labelled as377

“white”. Using the previously generated chain file, the GTEx multi-sample VCF and annotation BED file was lifted over378

from GRCh38 to KI270803.1. BEAGLE v5.1 was then used to impute the deletion from the 10XG reference panel into the379

GTEx VCF. Matching GTEx v8 read counts were normalized between samples using TMM (60). PEER factors were calculated380

from the normalized gene expression values using run_PEER.R from the GTEx pipeline. In addition to 15 PEER factors, the381

covariates used by GTEx v8 were included (five PCs, sex, PCR status and platform). FastQTL v2.184 (61) performed the eQTL382

analysis restricted to gene annotations on KI270803.1. For conditioning on deletion genotype or rs62473563, the respective383

dosage was included as a covariate in the model.384
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the genotype data are available from Canadian CF registry at https://www.cysticfibrosis.ca/our-programs/402

cf-registry/requesting-canadian-cf-registry-data. GTEx RNA-seq data and GTEx v8 variant calls were403

downloaded from dbGaP (accession number phs000424.v8.p) and the GTEx Portal https://www.gtexportal.org/404

home/datasets/, respectively.405

Code availability406

All code and analyses steps implemented for phasing comparison with multiple sequencing techniques are available at https:407

//github.com/strug-hub/cohort-phasing. Recalculation of GTEx eQTLs was performed following the GTEx408

pipeline: https://github.com/broadinstitute/gtex-pipeline.409
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