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Abstract  
The effective transverse relaxation rate (R2*) is sensitive to the microstructure of the human brain, e.g. 

the g-ratio characterising the relative myelination of axons. However, R2* depends on the orientation 

of the fibres relative to the main magnetic field degrading its reproducibility and that of any 

microstructural derivative measure. To decipher its orientation-independent part (R2,iso*), a second-

order polynomial in time (M2) can be applied to single multi-echo gradient-recalled-echo (meGRE) 

measurements at arbitrary orientation. The linear-time dependent parameter, β1, of M2 can be 

biophysically related to R2,iso* when neglecting the signal from the myelin water (MW) in the hollow 

cylinder fibre model (HCFM). Here, we examined the effectiveness of M2 using experimental and 

simulated data with variable g-ratio and fibre dispersion. We showed that the fitted β1 effectively 

estimates R2,iso*when using meGRE with long maximum echo time (TEmax ≈ 54 ms) but its microscopic 

dependence on the g-ratio was not accurately captured. This error was reduced to less than 12% when 

accounting for the MW contribution in a newly introduced biophysical expression for β1.  We further 

used this new expression to estimate the MW fraction (0.14) and g-ratio (0.79) in a human optic 

chiasm. However, the proposed method failed to estimate R2,iso* for a typical in-vivo meGRE protocol 

(TEmax ≈ 18 ms). At this TEmax and around the magic angle, the HCFM-based simulations failed to explain 

the R2*-orientation-dependence. In conclusion, estimation of R2,iso* with M2 in vivo requires meGRE 

protocols with very long TEmax ≈ 54 ms. 
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Glossary 
A. Acronyms 

a. Biophysical terms and model acronyms: 
AWF  (Intra-)Axonal water fraction 
EWF  Extra-axonal water fraction 
FVF  Fibre volume fraction 
HCFM  Hollow cylinder fibre model 
ICVF  Intra-cellular volume fraction (from NODDI) 
MWF  Myelin water fraction 
 

b. Magnetic resonance imaging and sequence acronyms: 
dMRI  Diffusion-weighted Magnetic Resonance Imaging 
DWI  Diffusion-weighting Imaging 
GRE  Gradient-recalled echo 
meGRE  Multi-echo gradient-recalled echo 
OC  Optic chiasm 
R2*  Effective transverse relaxation rate 
R2,iso*  Orientation independent or isotropic part of R2* 
TE  Echo time 
TEmax  Maximal echo time 
 

c. Hollow cylinder fibre model relevant acronyms: 
SA  Signal of the intra-axonal compartment 
SE  Signal of the extra-axonal compartment 
SM  Signal of the myelin compartment 
SN  Sum of the signals of the non-myelinated (SA and SE) compartments 
SC  Sum of all the signal compartments (SA, SE and SM) 
R2A  Transverse relaxation rate of the intra-axonal compartment 
R2E  Transverse relaxation rate of the extra-axonal compartment 
R2N Transverse relaxation rate of the non-myelinated compartments (R2A 

= R2E = R2N) 
R2M  Transverse relaxation rate of the myelin compartment 
 

B. Symbols 

a. In silico and ex vivo data 
𝜃𝜇⃗⃗   Angular orientation of the mean fibre bundle 

𝜃0  First angular orientation or angular offset 

𝐵0
⃗⃗ ⃗⃗    Main magnetic field 
κ  Coefficient of dispersion (from Watson Distribution and NODDI) 
𝜇   Vector of the mean fibre bundle 
𝑥   Vector of the individual cylinder in the simulated in silico data 
𝑇𝐷𝑖𝑓𝑓,𝐺𝑅𝐸 Transformation matrix from dMRI to GRE images 

𝑇𝐺𝑅𝐸:𝑖,1 Transformation matrix from GRE images at the i-th angular orientation 
measurement to the first angular orientation measurement 

 
b. Model parameters and analysis 

α0  Intercept parameter of M1 
α1  Slope or linear parameter of M1 
β0  Intercept of M2 
β1  Slope of linear parameter of M2 
β1,nm  β1 ground-truth value without myelin signal contribution (Equation 3) 
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β1,m  β1 ground-truth value with myelin signal contribution (Equation 4) 
β2  Quadrature or second order parameter of M2 
ε Relative difference between fitted β1 and  β1,theory (Equation 9) 
εm  Relative difference between fitted β1 and  predicted β1,nm 
εnm  Relative difference between fitted β1 and predicted β1,m 
nRMSD  Normalised root-mean-squared deviation (Equation 7) 
ΔRMSD  Normalised root-mean-squared deviation difference (Equation 8) 
M1  Log-linear model (Equation 2) 
M2  Log-quadratic model (Equation 1) 
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1. Introduction 
 

The effective transverse relaxation rate (R2* = 1/T2*) is a nuclear magnetic resonance (NMR) 

relaxation property (Tofts, 2004) that enables non-invasive characterisation of the microstructure of 

the human brain (Does, 2018; MacKay et al., 2006; Weiskopf et al., 2021). The microstructural 

sensitivity of R2* makes it particularly interesting for neuroscience and clinical research studies 

(Callaghan et al., 2014; Draganski et al., 2011; Kirilina et al., 2020; Langkammer et al., 2010). This is 

because R2* is sensitive not only to free and myelin water pools in the brain (Dula et al., 2010a; MacKay 

et al., 2006; Weiskopf et al., 2021) but also to microscopic perturbations in the main magnetic field 

(𝐵0
⃗⃗ ⃗⃗ ) (Chavhan et al., 2009). These microscopic perturbations are caused by the different magnetic 

susceptibilities of biological structures (Duyn and Schenck, 2017) like the diamagnetic myelin sheath 

(Alonso-Ortiz et al., 2018; Duyn, 2014; Kucharczyk et al., 1994; Lee et al., 2017) and paramagnetic iron 

deposits in glial cells (Li et al., 2009; Ordidge et al., 1994; Yao et al., 2009). Moreover, it has been shown 

that R2* is also strongly dependent on the angular orientation of the white matter fibre tracts relative 

to 𝐵0
⃗⃗ ⃗⃗  (Lee et al., 2011,2012) confounding the mapping of R2* to the underlying microstructure. The 

angular orientation dependence of R2* can be decomposed into an isotropic, i.e. angular-independent, 

component (R2,iso*) and an angular-dependent component using either gradient-recalled echo (GRE) 

acquisitions at several angular orientations (Oh et al., 2013; Rudko et al., 2014; Wharton and Bowtell, 

2013) or hybrid diffusion weighted imaging (DWI) and GRE acquisitions with reduced numbers of 

distinct angular-orientations (Gil et al., 2016). However, both methods are impractical for clinical 

research due to the constrained and inconvenient positioning of the patient’s head in the 

radiofrequency receiver coil needed to achieve the required distinct angular orientations. 

Recently, it was shown that R2,iso*, with interpretable microstructural information of the 

myelinated fibres, can be obtained from a single multi-echo GRE (meGRE) measurement (Papazoglou 

et al., 2019). In this work, they used the hollow cylinder fibre model (HCFM, (Wharton and Bowtell, 

2013, 2012)) to derive a second-order approximation of the logarithm of the time-dependent signal 

where the linear component in time (β1) was a proxy for R2,iso* and the orientation-dependent part 

was regressed out by the second-order term in time (β2). In the following, this model is denoted as the 

log-quadratic model (M2) to be distinguished from the classical log-linear model (M1, (Elster, 1993; 

Peters et al., 2007; Weiskopf et al., 2014)), where the linear parameter in time (α1) contains 

contributions from both R2,iso* and the angular-dependent part of R2*. 

 Since the M2-proxy for R2,iso* (i.e. the β1 parameter) is based on the HCFM, it can be directly 

related to microscopic tissue properties. In the HCFM model, the dephasing is caused by the hollow-

cylinder fibre and is mainly driven by its g-ratio, which is defined as the ratio between the inner and 

the outer radii of a myelinated axon (Rushton, 1951). In this model, all potential other perturbers are 

ignored (e.g. non-local effects of susceptibility inhomogeneities due to cavities, vessels, and iron 

molecules). Thus, the predicted β1 parameter depends only on the transverse relaxation rate of the 

free water molecules of the non-myelinated compartments (R2N), i.e. inside (intra-) and outside (extra-

) of the axonal cell. A counter-intuitive prediction of M2 is that its β1 parameter is independent of any 

changes associated with the myelin water signal, e.g., changes in the myelin water fraction (MWF).  

This independence of the β1 parameter to MWF could contradict the hypothesis that R2,iso* can be 

biologically modelled via β1, since R2,iso* has been shown to be linearly dependent on MWF, see (Kirilina 

et al., 2020; Lee et al., 2017). Moreover, M2 assumes that axonal fibres are perfectly aligned or even 

described by one representative axon. However, most of the fibre bundles in the human brain possess 
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a diverse range of topographies, i.e. show fanning and bending, or mildly to acute crossing, e.g. 

(Jeurissen et al., 2019; Schmahmann et al., 2009, 2007) and different levels of relative myelination, e.g. 

(Mohammadi et al., 2015). Besides that, the performance of M2 in estimating R2,iso* via β1 has only 

been tested with data incorporating very long maximum echo times of ≈ 54 ms  (Papazoglou et al., 

2019). Such a long maximum echo time, is unusual for in vivo meGRE measurements with whole-brain 

coverage (Weiskopf et al., 2013; Ziegler et al., 2019) because it increases the total scan time as well as 

the propensity for bulk and physiological motion. 

This work explores the potential and pitfalls of using M2 to estimate R2,iso* via β1, from a single-

orientation meGRE, while varying biological fibre properties and maximum echo times. Moreover, it 

tests the counter-intuitive hypothesis, based on M2, that the estimated β1 is independent of the MWF. 

To this end, we use simulated (hereafter in silico) data and ex vivo MRI. The in silico data were 

simulated using the HCFM to generate realistic meGRE datasets from an ensemble of myelinated 

axons, for which the ground truth biophysical parameters (i.e., g-ratio, fibre dispersion and angular 

orientation) are known and can be varied. The ex vivo dataset combines high-resolution DWI and multi-

orientation meGRE imaging of a human optic chiasm to generate gold-standard datasets where the 

fibre orientation and dispersion are known. Both datasets are used to perform the following analyses: 

First, we assess the capability of M2 to estimate R2,iso* via β1 for varying g-ratio values and fibre 

dispersions. Second, we assess the microstructural interpretability of β1. To this end, we test the 

hypothesis that β1 is independent of MWF by evaluating the deviation between fitted β1 using the in 

silico data and the biophysically-predicted β1 by M2. Additionally, we perform the same comparison 

as above using a novel heuristic expression that incorporates the MWF dependence into the predicted 

β1. Third, we demonstrate that the heuristic expression for β1 can be used to calculate MWF and the 

g-ratio from the β1 of the ex vivo data. And, fourth, we assess the capability of M2 to estimate R2,iso* 

via β1 for shorter maximal echo times more typical of in vivo meGRE applications. 
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2. Background 
 

2.1 Overview of the hollow cylinder fibre model and the approximated log -quadratic 

model. 

The hollow cylinder fibre model (HCFM, (Wharton and Bowtell, 2013, 2012)) proposes an 

analytical approximation describing the dependence of the GRE signal on the angular orientation (𝜃𝜇⃗⃗ ) 

defined as the angle between the main magnetic field 𝐵0
⃗⃗ ⃗⃗  and the hollow-cylinder fibre (𝜇 ). This 

approximation establishes that the total MR signal comes from water molecules in an infinitely long 

hollow cylinder affected by the diamagnetic myelin sheath (Liu, 2010). The diamagnetic myelin sheath 

magnetically perturbs the water molecules in three distinct compartments: (1) the intra-axonal (SA), 

(2) myelin (SM) and (3) extra-cellular (SE) compartments (details in Appendix, section 9.1). When the 

signal of the water molecules in the myelin compartment is neglected, the signal magnitude of the 

HFCM can be approximated by a log-quadratic model (M2) in time (Papazoglou et al., 2019): 

 𝑀2: 𝑙𝑛(|𝑆𝑁(𝑡, 𝜃𝜇⃗⃗ )|) ≈ 𝛽0 − 𝛽1𝑡 − 𝛽2(𝜃𝜇⃗⃗ )𝑡
2 (1) 

, where 𝛽0,1,2 are the model parameters and SN is the non-myelin signal (i.e., SN = SA + SE).  In this model, 

the slope β1 is considered as a proxy for R2,iso* because it does not possess any 𝜃𝜇⃗⃗  dependence 

(Equations A16b), whereas β2 contains all the 𝜃𝜇⃗⃗  dependent information of R2* (Equations A16c, 

details in Appendix, section 9.3). 

In contrast to M2,  the slope (α1) in the classic log-linear model (M1, (Elster, 1993)) of R2* is a 

function of R2,iso*  and the 𝜃𝜇⃗⃗  dependent components of R2* (e.g. see (Lee et al., 2012b, 2011)): 

 𝑀1: 𝑙𝑛(|𝑆(𝑡)|) ≈ 𝛼0 − 𝛼1(𝜃𝜇⃗⃗ )𝑡 (2) 

 

2.2. Myelin dependence of β1 parameter as predicted by the log-quadratic model (M2) 

The slope β1 of M2, which is considered to be a proxy for R2,iso*, is derived from the HCFM of a 

two-pool system in the slow-exchange regime: a fast decaying water pool consisting of the myelin 

water with a relaxation rate 𝑅2𝑀 and a slow decaying water pool with a relaxation rate 𝑅2𝑁 consisting 

on the intra and extra cellular water. In this model, the only source of dephasing is caused by the 

hollow-cylinder fibre and all potential other perturbers are ignored (e.g. non-local effects of 

susceptibility inhomogeneities due to cavities, vessels, and iron molecules). Consequently in the 

approximation of M2 (Equation A16b, section 9.3), the predicted 𝛽1 parameter (hereafter 𝛽1,𝑛𝑚) is 

given by the transverse relaxation rate of the non-myelin water pool (𝑅2𝑁):  

 𝛽1 ≈ 𝛽1,𝑛𝑚 = 𝑅2𝑁 (3) 

We hypothesise here that for realistic tissue composition (i.e. g-ratio equal to or smaller than 

0.8), where the myelin compartment cannot be neglected, Equation 3 is invalid. This hypothesis is 

supported by previous observations showing that R2,iso* depends on the myelin water fraction, MWF 

(e.g.(Lee et al., 2017; Weber et al., 2020)).  

Here, we propose an alternative heuristic biophysical expression of the predicted β1 parameter 

(hereafter 𝛽1,𝑚), also based on the HCFM (Equation A17) but without assuming the myelin 
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compartment to be negligible. In this case, the expected dependence of R2,iso* on variation in the MWF 

remains: 

 𝛽1 ≈ 𝛽1,𝑚 = (1 − 𝑀𝑊𝐹)𝑅2𝑁 + 𝑀𝑊𝐹𝑅2𝑀 (4) 

where 𝑅2𝑀 is the relaxation rate of the myelin water pool. It follows from the heuristic model that the 

fitted β1 is a weighted sum of the relaxation rates of the two pools, and that Equation 3 (𝛽1,𝑛𝑚) is a 

special case of Equation 4 (𝛽1,𝑚) when the MWF is equal to 0. 

Based on our hypothesis, we expect that the heuristic expression for 𝛽1,𝑚 can better describe the fitted 

β1 when varying the g-ratio, and thus is a better proxy of R2,iso*. 

Finally, we describe the dependence of MWF on the g-ratio by redefining the compartmental volumes: 

intra-axonal VA, extra-axonal VE and myelin VM (Equation 18a), as a function of the gratio and fibre 

volume fraction (FVF) as: VA = FVF ∙ g2
ratio, VE = 1 – FVF, and VM = FVF ∙ (1 – g2

ratio). If the proton densities 

of the non-myelinated compartments are equal (ρA = ρE = ρN), then the MWF can be rewritten as: 

 
𝑀𝑊𝐹(𝑔𝑟𝑎𝑡𝑖𝑜) =

𝜌𝑀

𝜌𝑁

𝐹𝑉𝐹 ⋅ 𝑔𝑟𝑎𝑡𝑖𝑜
2

(1 − 𝐹𝑉𝐹 ⋅ 𝑔𝑟𝑎𝑡𝑖𝑜
2 ) + (

𝜌𝑀
𝜌𝑁

) ⋅ 𝐹𝑉𝐹 ⋅ 𝑔𝑟𝑎𝑡𝑖𝑜
2

 
(5) 

 

Therefore, the g-ratio could be estimated from the MWF if the proton densities and FVF were known. 
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3. Methods 
 

This section explains the approaches used for data acquisition, data analysis and for comparing the 

results obtained from the ex vivo data and the findings derived from the in silico data.  

3.1. Ex-vivo: Optic chiasm 

3.1.1. Sample and data acquisition   

A human optic chiasm (OC) from a patient without any diagnosed neurological disorder was 

measured (male, 59 years, multi‐organ failure, 48 hours postmortem interval, ~80 days of fixation in 

phosphate buffered saline (PBS) pH 7.4 with 0.1% sodium acide NaN3 containing 3% PFA + 1% GA) with 

prior informed consent (Ethical approval #205/17-ek). Two MR techniques were used: R2*-weighted 

GRE and diffusion-weighted MRI (dMRI).  

All R2*-weighted GRE acquisitions were performed on a 7 T Siemens Magnetom MRI scanner 

(Siemens Healthcare GmbH, Erlangen, Germany) using a custom 2‐channel transmit/receive circularly 

polarised (CP) coil with a diameter of 60 mm. The OC sample was fixed within an acrylic sphere of 60 

mm diameter filled with agarose (1.5% Biozym Plaque low melting Agarose, Merck, Germany) 

dissolved in PBS (pH 7.4 + 0.1% sodium) and scanned at sixteen orientations (covering a solid angle, 

with azimuthal and elevation angles from 0° to 90°, Figure 1A) using the 3D multi-echo GRE (meGRE) 

MRI (hereafter: GRE dataset). For each angular meGRE measurement, sixteen echoes were acquired 

at equally spaced echo times (TE) ranging from 3.4 to 53.5 ms (increment 3.34 ms) with a repetition 

time (TR) of 100 ms, a field of view (FoV) of (39.00 mm)3, a matrix size of 1123, resulting in an isotropic 

voxel resolution of (0.35 mm)3, non-selective RF excitation with a flip angle of 23° and a gradient 

readout bandwidth of 343 Hz/px. The acquired MR data are the same as reported in (Papazoglou et 

al., 2019).  

Additionally, multi-shell dMRI data (hereafter: dMRI dataset), suitable for NODDI analysis, 

were acquired on a 9.4 T small animal MR system (Bruker Biospec 94/20; Bruker Biospin, Ettlingen, 

Germany) using a 2-channel receiver cryogenically cooled quadrature transceiver surface RF coil 

(Bruker Biospin, Ettlingen, Germany) and a gradient system with Bmax = 700 mT/m per gradient axis. 

This dataset was acquired with a slice-selective (2D) pulsed-gradient spin-echo (PGSE) technique, 

consisting of four diffusion-weighting shells (number of directions) of b = 1000 s/mm2 (60), 4000 s/mm2 

(60), 8000 s/mm2 (60) and 12000 s/mm2 (60) with 35 non-diffusion-weighted volumes (~ 0 s/mm2). 

The fixed diffusion parameters were diffusion time Δ = 13 ms, diffusion gradient duration δ = 6 ms. The 

remaining sequence parameters were TE = 27 ms, TR = 30 s (to acquire all the slices), FoV = 20.75 x 

16.00 x 12.50 mm3, matrix size = 83 x 64 x 50, isotropic voxel resolution = (0.25 mm)3, slice selective 

pulses with flip angles of 90° (excitation) and 180° (refocusing) and receiver bandwidth of 9411 Hz/px. 
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Figure 1: Acquisition of the multi-angular multi-echo gradient recalled echo (meGRE) ex vivo data. (A) An illustration of the 
different angular measurements performed on the optic chiasm (OC) specimen. The red dots show the position of the optical 
tracts (see inset) for the different measurements. The different coordinates (spatial, x-y-z and anatomical, anterior-head-right, 
A-H-R) are shown. (B) Illustration of the first echo meGRE image acquired at the first and last angular measurement. The 3D 

view shows the specimen position to the main magnetic field 𝐵0
⃗⃗⃗⃗   and the position of the optical tract (red dot). The yellow line 

shows the same coronal slice image. 

3.1.2. Dispersion and mean fibre orientation estimation from dMRI dataset  

To incorporate the voxel-wise information regarding the angular orientation of the fibres to 

𝐵0
⃗⃗ ⃗⃗  and fibre’s dispersion, the dMRI datasets were analysed with two diffusion models: Neurite 

Orientation Dispersion and Density Imaging (NODDI) (Zhang et al., 2012) and Diffusion Tensor Imaging 

(DTI) (Basser et al., 1994). The NODDI toolbox was adjusted for ex vivo analysis (Wang et al., 2019) and 

used all the diffusion shells. The main neurite (hereafter fibre) orientation (𝜇 ), a measure of the fibre 

dispersion (κ), and fibre density (volume fraction of the intracellular compartment, ICVF) maps were 

estimated from this analysis. The DTI model used the first two diffusion shells (b-values: 1000 s/mm2 

and 4000 s/mm2) and only the fractional anisotropy (FA) map was estimated, because this map was 

used only for diffusion-to-GRE coregistration (section 3.1.3). 

3.1.3 Coregistration of the GRE angular measurements and dMRI results 

To establish a voxel-to-voxel relationship between the meGRE signal at different angular 

orientations and the properties estimated from dMRI, i.e., κ, 𝜇  and ICVF, we coregistered the angular 

meGRE measurements and the dMRI measurement. To this end, we estimated two sets of 

transformation matrices: first, transformation matrices that coregister the angular measurements in 

GRE space (see Figure 1A); and second, a transformation matrix that coregister from GRE space to 

dMRI space (see Figure 1B). The coordinate system of GRE space was defined by the first meGRE 

angular measurement. 

To estimate the transformation matrices that coregister the angular meGRE measurements to 

the first angular meGRE measurement, a manual coregistration was performed and refined later with 

an automatic coregistration. This pair of coregistrations resulted in the transformation matrix 𝑇𝐺𝑅𝐸:𝑖,1 

(i = 2 … 16). When aligning the meGRE volumes, the respective 𝐵0
⃗⃗ ⃗⃗  directions had to be adjusted 

accordingly. This was done by aligning the 𝐵0
⃗⃗ ⃗⃗  direction of the 𝑖-th meGRE using the respective 

transformation matrix 𝑇𝐺𝑅𝐸:𝑖,1 (see insets). Both coregistrations were performed using the 3D Slicer 

software (http://www.slicer.org and (Fedorov et al., 2012)). 

To estimate the transformation matrix from GRE to dMRI space, the FA map from the DTI 

analysis (section 3.1.2) was coregistered to the first meGRE angular measurement (Figure 1B). This 

transformation matrix, 𝑇𝐷𝑖𝑓𝑓,𝐺𝑅𝐸, was applied to coregister the NODDI results, i.e., κ, 𝜇  and ICVF, to 

the GRE space. However, this transformation matrix was also used to align the sixteen new 𝐵0
⃗⃗ ⃗⃗  

A B

Z (H-F)

X (L-R)

Y (A-P)

Same coronal slice at 1st and last GRE angular measurements (1st echo)

(1)
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estimated from the angular meGRE coregistration to the dMRI space (section 3.1.4). This GRE-to-

diffusion transformation was performed using the coregistration module in SPM 12 

(http://www.fil.ion.ucl.ac.uk/spm). 

 

Figure 2: Coregistration of the ex vivo GRE and dMRI measurements. (A) A transformation matrix (TGRE) is obtained by 
coregistering all other multi-echo gradient-recall-echo (meGRE) datasets (I2...16) to the first measurement (I1, TGRE: i,1). This 
transformation matrices not only align, voxel-wise, the images of the meGRE datasets (I’2...16) to the first dataset, but also 

adjusts the directions of the main magnetic field (𝐵0
⃗⃗⃗⃗  ) per angular measurement to preserves their relative orientation with 

respect to the first meGRE dataset. (B) A transformation matrix (TDiff,GRE) is obtained by coregistering the diffusion MRI (dMRI) 
image to the first angular GRE measurement. This transformation will allow the coregistration of the NODDI analysis results 
to the GRE data.  

3.1.4. Voxel-wise estimation of the angular orientation, 𝜃𝜇⃗⃗ , between fibres and 𝐵0
⃗⃗ ⃗⃗ :  

The angular orientation 𝜃𝜇⃗⃗  between fibres and 𝐵0
⃗⃗ ⃗⃗  for each meGRE angular measurement was 

calculated in dMRI space by computing the arccosine of the inner product between 𝐵0
⃗⃗ ⃗⃗ (𝜃𝑖) and 𝜇 , i.e., 

𝜃𝜇⃗⃗ = 𝑎𝑐𝑜𝑠⁡(𝐵0
⃗⃗ ⃗⃗ (𝜃𝑖) ∙ 𝜇 ) (Figure 3C). In this computation, 𝐵0

⃗⃗ ⃗⃗ (𝜃𝑖) is the resulting 𝐵0
⃗⃗ ⃗⃗  after the 

transformation from the i-th meGRE angular measurement to the first meGRE angular measurement 

(𝑇𝐺𝑅𝐸:𝑖,1), and the transformation from GRE to dMRI space (𝑇𝐷𝑖𝑓𝑓,𝐺𝑅𝐸
−1 ) (Figure 3A). The main fibre 

direction was obtained by the 𝜇  map from the NODDI analysis (Figure 3B).  

Note that 𝜃𝜇⃗⃗  was computed in dMRI space instead of GRE space to avoid undersampling and 

interpolation because of transforming  𝜇   to GRE space. These sources of error do not occur by 

transforming 𝐵0
⃗⃗ ⃗⃗  to dMRI space, i.e. computing 𝑇𝐷𝑖𝑓𝑓,𝐺𝑅𝐸

−1 ⋅ 𝑇𝐺𝑅𝐸:𝑖,1 ⋅ 𝐵0
⃗⃗ ⃗⃗ , for each GRE angular 

measurement, since it is a global rather than a per-voxel measure. Finally, the 𝜃𝜇⃗⃗  maps together with 

the ICVF and κ maps (not shown in Figure 3) were transformed using 𝑇𝐷𝑖𝑓𝑓,𝐺𝑅𝐸. Exemplary 𝜃𝜇⃗⃗  maps in 

GRE space are shown in Supplementary Material, Figure S1 (first row). 
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Figure 3: Estimation of the voxel-wise angular 𝜃𝜇⃗⃗  map. This estimation needed the B0 direction per angular GRE measurement 

(𝐵0
⃗⃗⃗⃗  (𝜃𝑖)) in diffusion space and the main fibre direction. (A) The 𝐵0

⃗⃗⃗⃗  (𝜃𝑖) was estimated by applying to 𝐵0
⃗⃗⃗⃗  , first, the 

transformation matrix between GRE volumes (TGRE:i,1) and later from GRE-to-diffusion (T-1
Diff,GRE). (B) The main fibre direction 

(𝜇 ) was acquired by analysing the dMRI data with the NODDI model. (C) Then, the voxel-wise 𝜃𝜇⃗⃗  per angular measurement 

was computed by the arccosine of the scalar product between the projected 𝐵0
⃗⃗⃗⃗  (𝜃𝑖) and the main diffusion direction (𝜇 ), 𝜃𝜇⃗⃗ =

𝑎𝑐𝑜𝑠⁡(𝐵0
⃗⃗⃗⃗  (𝜃𝑖) ∙ 𝜇 ). This sketch shows the steps for the last GRE angular measurement. 

3.1.5. Masking and pooling the ex vivo data  

 Before analysis, the ex vivo data required further pre-processing to remove outliers and to 

ensure a robust assessment of the effect of fibre dispersion and 𝜃𝜇⃗⃗  on R2*. For that, the ex vivo data 

were masked using the coregistered ICVF map and later pooled across the sixteen coregistered meGRE 

angular measurements. 

In this process, all voxels in the OC with an ICVF > 0.8 were selected and pooled across all the 

meGRE angular measurements, hereafter referred to as cumulated data. The ICVF threshold was used 

because the extra-axonal space in the ex vivo specimen is reduced, e.g. (Stikov et al., 2011). The 

application of this threshold reduced the number of voxels in the OC by a 7.2% (~ 600 over 8744 

voxels). By pooling the data, the resulting cumulated data has the signal decays as a function of TE but 

also of 𝜃𝜇⃗⃗ , and fibre dispersion assessed by κ. 

 

3.2. Simulated R 2* signal decay from the HCFM 

R2* signal decay was simulated as ground truth (hereafter, in silico data) to assess the impact 

on M2 of variable fibre orientation, dispersion and myelination (i.e. g-ratio). For that, an averaged MR 

signal was calculated from an ensemble of 1500 hollow cylinders. The cylinders were evenly distributed 

on a sphere with defined spherical coordinates: an azimuthal angle φ rotating counter-clockwise from 

0° to 359° starting at +X axis, and elevation angle θ rotating from 0° (+Z) to 180° (-Z). The signal 

contribution per hollow cylinder was modelled with the hollow cylinder fibre model (HCFM) for all the 

compartments, SC (Equation A1). 

In this work, two considerations were taken. First, the 𝐵0
⃗⃗ ⃗⃗  was fixed and oriented parallel to +Z 

(Figure 4A). Second, the approximated piece-wise function (Equation A8) of DE (Equation A5) in the SE 

signal (Equation A2b) was replaced by its analytical solution (Equation A9), because a discontinuity in 
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this piece-wise function was observed in the so-called critical time (Wharton and Bowtell, 2013; 

Yablonskiy and Haacke, 1994). See section 9.2 for a detailed discussion. 

To incorporate the effect of fibre dispersion in the in silico data, the ensemble-average signal 

was calculated by weighting Sc with the Watson distribution (W, (Sra and Karp, 2013) and Equation 6b). 

This weight from the Watson distribution was calculated using the position of each simulated cylinder, 

𝑥𝑖⃗⃗  ⃗, and a mean fibre orientation 𝜇 , both defined with spherical coordinates (φ, θ) and (𝜙𝜇⃗⃗ , 𝜃𝜇⃗⃗ ), 

respectively. For simplification, 𝜇  was restricted to an azimuthal angle of zero (𝜙𝜇⃗⃗  = 0°). Then, the 

analytical expression of the ensemble-average signal, SW, is defined as follows: 

 
𝑆𝑊(𝜅, 𝑡, 𝜃𝜇⃗⃗ ) =

∑ (𝑆𝐶(𝑡, 𝜃𝑖)[𝑊(𝜅, 𝜃𝜇⃗⃗ , 𝜙𝑖, 𝜃𝑖)])𝑖

∑ 𝑊(𝜅, 𝜃𝜇⃗⃗ , 𝜙𝑖, 𝜃𝑖)𝑖

 
(6a) 

 
where 𝑊(𝜅, 𝜃𝜇⃗⃗ , 𝜃𝑖, 𝜙𝑖) = 𝐶1 (

1

2
,
3

2
, 𝜅)

−1
𝑒

𝜅(𝜇⃗⃗ (𝜃𝜇⃗⃗ )⋅𝑥𝑖⃗⃗  ⃗(𝜙𝑖,𝜃𝑖))
2

 
(6b) 

In Equation 9b, 𝐶1() is the confluent hypergeometric function, which is the normalisation factor 

of the Watson distribution, and the exponent holds the norm of the inner product between each 

individual i-th cylinder 𝑥𝑖⃗⃗  ⃗ and 𝜇 . The level of dispersion was modulated by the parameter κ (Sra and 

Karp, 2013; Zhang et al., 2012) as shown in Figure 4B for a few cases. It is important to note that the 

notation 𝜃𝜇⃗⃗  for the elevation angle of 𝜇  used here is equal to the one used to describe the fibre’s 

angular orientation in the ex vivo data (section 3.1.4). This is intentional since they stand for the same 

concept for both datasets. This simulation approach was used in previous conference publications 

(Fritz et al., 2020) and (Fritz et al., 2021). 

 

Figure 4: Schematics of the simulated in silico data: (A) Simulation: 1500 hollow cylinders, each of them defined by the vector 
𝑥𝑖⃗⃗  ⃗, were distributed evenly on a sphere (see the blue dots). A mean orientation 𝜇  of the cylinders is defined, with the external 

magnetic field ( 𝐵0
⃗⃗⃗⃗  ) oriented parallel to the Z-axis. The signal contribution per cylinder was modelled using the Hollow Cylinder 

Fibre Model (HCFM) with the intra-axonal (SA), extra-axonal (SE) and myelin (SM) compartments (inset). (B) Addition of 
cylinder’s dispersion: the dispersion effect was added by weighting the signal coming from the cylinders by the parameter κ 
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from the Watson distribution and 𝜇  (Equation 9b). The parameter κ is limited from κ = 0 for isotropically dispersed to κ = 

infinity to fully parallel fibres. Here, 𝜇  is parallel to 𝐵0
⃗⃗⃗⃗  . 

With the ensemble averaged signal equation (Equation 6a), R2*-weighted signal decay can be 

created. In this work, the R2*-weighted signal decay was dependent on 𝜃𝜇⃗⃗ , κ and g-ratio, as a function 

of time. The values used are reported in Appendix (Table A3). The remaining fixed parameters required 

by the ensemble-averaged equation were obtained from (Dula et al., 2010a; Wharton and Bowtell, 

2013) and are listed in section 9.4 in Appendix (Table A1 and A2). 

Finally, each simulated R2*-weighted signal decay was replicated 5000 times with an additive 

Gaussian complex noise (Gudbjartsson and Patz, 1995) to approximate the SNR of the experimental ex 

vivo data (see section 9.4). The experimental SNR was calculated by dividing the MR signal acquired at 

the first echo by the standard deviation of the background voxels of its corresponding image (Kellman 

and McVeigh, 2005), resulting in a mean SNR across the selected voxels of the OC of 112 (section 3.1.4). 

 

3.3. Data analysis  

3.3.1. Data fitting and binning 

The ex vivo data (section 3.1) and in silico data (each of 5000 replicas per simulated R2*-

weighted signal decay, section 3.2) were analysed with the log-linear and log-quadratic models, M1 

(Equation 2) and M2 (Equation 1), respectively. In both models, the α’s (α0
 in arbitrary units, α1 in units 

of 1/s) from M1, and β’s (β0
 in arbitrary units, β1 in units of 1/s and β2 in units of 1/s2) from M2, 

hereafter referred to as the α-parameters and β-parameters, were fitted as a function of TE. To fit the 

data, ordinary Least Square (OLS) optimization was used for both models in a custom-made Matlab 

code. Three fittings were performed at three different maximum TE values: TEmax = 54 ms (all 16 time 

points), TEmax = 36 ms (first 10 points) and TEmax = 18 ms (first 5 time points). Exemplary α1 and β1 maps 

obtained by fitting at TEmax = 54 ms on the ex vivo specimen are shown in Supplementary Figure S1 

(middle and bottom row). 

To compare the α- and β-parameters between datasets as a function of fibre dispersion (κ) and 

𝜃𝜇⃗⃗ , the fitted parameters were binned and averaged for the ex vivo cumulated data (section 3.1.5) and 

the in silico data. However, the in silico data required two extra averages on the fitted parameters: 

first, across the 5000 replicas and, second, across the κ values used for simulation. The average across 

κ was performed in such a way that it resembled the frequency distribution of κ observed in the ex 

vivo cumulated data (for more detail, see section 9.4). 

In the binning process, both datasets were distributed first as a function of κ, and later as a 

function of 𝜃𝜇⃗⃗ . The first distribution was performed to ensure a similar degree of fibre dispersion as 

observed in Figure 4B and in the work of (Fritz et al., 2020). For that, three different fibre dispersion 

ranges were defined as a function of κ: κ < 1 for the highly dispersed fibres, 1 ≤ κ < 2.5 for the mildly 

dispersed fibres, and κ ≥ 2.5 for the negligibly dispersed fibres. Coincidentally, these fibre dispersion 

ranges depicted specific areas in the OC (Figure 5A). 

After separating the fitted parameters per fibre dispersion range for both datasets, the data 

was irregularly binned per 𝜃𝜇⃗⃗  bin per defined κ range. This was performed to avoid any bias due to 

effect size, since a non-uniform distribution of voxels was found in the ex vivo cumulated data as a 

function of 𝜃𝜇⃗⃗  (Figure 5B, blue bars). To estimate the irregular 𝜃𝜇⃗⃗  bin, a cumulated 𝜃𝜇⃗⃗  distribution of 
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voxels was estimated and divided into 20 equally populated bins (Figure 5B, orange bars). The mean 

of the first angular irregular bin was defined as the angular offset 𝜃0. The range of 𝜃𝜇⃗⃗  values contained 

in each irregular bin and the 𝜃0 values are shown in Table A.4 in section 9.4. 

 

Figure 5: Preparation of the ex vivo data for analysis. (A) The cumulated ex vivo data was distributed first as a function of κ 

parameter, to ensure similar fibre dispersion. Heuristically it was divided in highly dispersed (κ < 1), mildly dispersed (1 ≤ κ < 

2.5) and negligibly dispersed (κ ≥ 2.5) fibres. Coincidentally, this division enclosed specific areas in the OC (red, green and blue 

ROIs). (B) After division, the cumulated data were binned irregularly as a function of the estimated voxel-wise angular 
orientation (𝜃𝜇⃗⃗ ) per κ range (orange bars), to avoid a possible effect size bias caused by its non-uniform distribution (blue 

bars). The first angular irregular bin or angular offset 𝜃0 was obtained and showed to be κ range dependent (Table A4, section 
9.4). 

After binning, the average and standard deviation (sd) was calculated per irregular 𝜃𝜇⃗⃗  bin in 

the ex vivo cumulated data. For the in silico data, the average and sd were obtained by weighting the 

distribution of 𝜃𝜇⃗⃗  in each bin in a similar way to that seen in the irregular bins in the ex vivo cumulated 

data (for more detail, see section 9.4). 

3.3.2. Quantitative analysis 

Four different analyses were performed for both datasets in order to study: (1) the effect of g-

ratio and fibre dispersion, via κ, on the estimated angular-independent β1 using M2, (2) the 

microstructural interpretability of β1 via the deviation between fitted β1 and its predicted counterparts 

from M2 (β1,nm, Equation 3) and from the heuristic expression (β1,m, Equation 4), (3) the possibility of 

calculating the MWF and g-ratio from the fitted β1 using the heuristic expression β1,m (Equation 4), and 

(4) the effect of TE on the performance of M2 in estimating R2,iso* from β1.  The first two analyses were 

aimed to test whether β1 can be used as a proxy of R2,iso*.  

For the first analysis, the capability of M2 to estimate an orientation-independent effective 

transverse relaxation rate, R2,iso*, via the β1 parameter was assessed. Since R2,iso* by definition is the 

angular independent part of R2 * and according to the HCFM should be given by β1 parameter at 𝜃𝜇⃗⃗ =

0 ≡ 𝜃0, we assessed the residual 𝜃𝜇⃗⃗  dependence of the β1 parameter with respect to 𝜃0⁡and compared 

it with its counterpart for α1, i.e. the proxy for the 𝜃𝜇⃗⃗  dependent R2*.  
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For this, we first calculated the 𝜃𝜇⃗⃗  dependence of each parameter with respect to 𝜃0⁡using the 

normalized-root-mean-squared deviation (nRMSD): 

where 𝜃0 varied slightly for each κ range (sub-index j) but was close to zero (see Table A.4 in section 

9.4). 

To compare the nRMSD of each parameter, we calculated the difference between them, ΔnRMSD, as: 

in percentage-points (%-points). If the ΔnRMSD is positive or higher than 0 %-points, this implies that 

the 𝜃𝜇⃗⃗  dependency of β1 is similar or higher, in magnitude, to α1. The latter says therefore that M2 

failed in estimating an angular-independent parameter, or disentangling the 𝜃𝜇⃗⃗  dependency from R2*. 

A negative ΔnRMSD in turn implies that the 𝜃𝜇⃗⃗  independence of 𝛽1(𝜅𝑗) has been reduced. A perfect 

orientation independence is achieved if 𝑛𝑅𝑀𝑆𝐷 (𝛽1(𝜅𝑗)) = 0 and, consequently, Δ𝑛𝑅𝑀𝑆𝐷(𝜅𝑗) =

⁡−𝑛𝑅𝑀𝑆𝐷 (𝛼1(𝜅𝑗)). 

For the second analysis, the microstructural interpretation of β1 was quantitatively assessed 

by comparing the relative difference (ε) between estimated β1 at the angular orientation 𝜃𝜇⃗⃗  for the 

fitted in silico data (𝛽1(𝜃𝜇⃗⃗ )) and the predicted β1 equivalence (𝛽1,𝑝) using M2 (Equation 3) or the 

heuristic expression (Equation 4):  

 
𝜖(𝜃𝜇⃗⃗ , 𝜅𝑗)𝑝

= (1 −
𝛽1(𝜃𝜇⃗⃗ ,𝜅𝑗)

𝛽1,𝑝
) ⋅ 100%,  

(8) 

Where 𝑝 ∈ {𝑛𝑚,𝑚} and 𝛽1,𝑛𝑚 and 𝛽1,𝑚 as defined in Equation 3 and 4. Additionally, the mean 

𝜖(𝜃𝜇⃗⃗ , 𝜅𝑗)𝑝
 across angles was calculated as ⟨𝜖(𝜅𝑗)𝑝

⟩ ≡
1

𝑁
∑ 𝜖(𝜃𝑙, 𝜅𝑗)𝑝

𝑁
𝑙=1 . 

The above analyses were performed per g-ratio across κ range using the same values as for in 

silico data (Tables A1, A2 and A3, section 9.4). For the third analysis, β1,m (Equation 4) was rearranged 

to estimate MWF from the fitted β1 in ex vivo data. For that, the R2 values of the non-myelinated (R2N) 

and myelinated (R2M) compartments are reported in Table A1. After estimating the MWF, the g-ratio 

values were also estimated by rearranging Equation 5. For that, the fibre volume fraction, FVF, and 

proton density values, ρN and ρM, required for this calculation are reported in Table A1.  

For the last analysis, the effect of TE on the capability of M2 to estimate R2,iso* via β1 was 

assessed by comparing the ex vivo dataset and the in silico data with similar g-ratio, obtained from the 

previous analysis. For that, α1 and β1 from M1 and M2 were compared once again as in the first 

analysis. However, now the models were fitted to meGRE datasets with different longest echo times 

(TEmax): 54 ms, 36 ms and 18 ms. Again, the ΔnRMSD was calculated to assess the residual 𝜃𝜇⃗⃗  

dependence of β1 in comparison to the 𝜃𝜇⃗⃗  dependence of α1. 

In the following sections, the dependency of the parameters under study, i.e. nRMSD(𝛼(𝜅𝑗)), 

nRMSD(𝛽(𝜅𝑗)), ΔnRMSD (𝜅𝑗), α1(𝜃𝜇⃗⃗ , 𝜅𝑗), β1(𝜃𝜇⃗⃗ , 𝜅𝑗) (Equations 7a-b), 𝜖(𝜃𝜇⃗⃗ , 𝜅𝑗)𝑝
 (Equation 8) and 

 

𝑛𝑅𝑀𝑆𝐷 (𝛾(𝜅𝑗)) =

√
∑

(𝛾(𝜅𝑗,𝜃0)−𝛾(𝜅𝑗,𝜃𝑙))
2

𝑁−1
𝑁−1
𝑙=1 ⁡

𝛾(𝜅𝑗,𝜃0)
 with 𝛾 ∈ {𝛼1, 𝛽1} 

(7a) 

 Δ𝑛𝑅𝑀𝑆𝐷(𝜅𝑗) = ⁡𝑛𝑅𝑀𝑆𝐷 (𝛽1(𝜅𝑗)) − 𝑛𝑅𝑀𝑆𝐷 (𝛼1(𝜅𝑗)) (7b) 
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⟨𝜖(𝜅𝑗)𝑝
⟩, to 𝜃𝜇⃗⃗  and 𝜅 were simplified for readability purposes. Therefore, the aforementioned 

parameters will be hereafter nRMSD(α1), nRMSD(β1), ΔnRMSD, α1, β1, 𝜖𝑝 and ⟨𝜖𝑝⟩, respectively.  
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4. Results 
 

4.1. First analysis: Capability of M2 to obtain the angular-independent β1 parameter for varying 

g-ratio and fibre dispersion values  

Figure 6 and 7 show the capability of M2 to estimate R2,iso* via β1 for variable g-ratio and fibre 

dispersion. To visualise this, the 𝜃𝜇⃗⃗  dependency of α1 from M1 was compared to the residual 𝜃𝜇⃗⃗  

dependency β1 from M2 (Figure 6A and 6B). Both 𝜃𝜇⃗⃗  dependencies were quantified in Figure 7A and 

7B using their respective nRMSD (Equation 7a) and the ΔnRMSD in Figure 7C (Equation 7b). The results 

are from the analysis performed on the in silico and ex vivo data. 

The capability of M2 to reduce the 𝜃𝜇⃗⃗  dependency of β1 varied with g-ratio and fibre dispersion, 

the 𝜃𝜇⃗⃗  dependency of α1 was also strongly influenced by g-ratio and fibre dispersion: smaller g-ratio 

values and reduced fibre dispersion increased the 𝜃𝜇⃗⃗  dependency of α1 and (the residual 𝜃𝜇⃗⃗  

dependency) of β1 (Figure 6A and 6B, respectively).  

 

Figure 6: Orientation dependence of linear model parameters (α1 and β1) for varying g-ratio and fibre dispersion values. (A-B) 

Depicted is the α1 parameter of M1 (proxy for R2*) and β1 parameter of M2 (proxy for the isotropic part of R2*) as a function 

of the angle between the main magnetic field and the fibre orientation (𝜃𝜇⃗⃗ ) for different fibre dispersion and g-ratio values. 

The different columns depict different dispersion regimes: highly dispersed (κ < 1, first column), mildly dispersed (1 ≤ κ < 2.5, 

second column) and negligibly dispersed (κ ≥ 2.5, third column) fibres. The distinct colours distinguish between in silico data 

with variable g-ratios (0.66 in blue curve, 0.73 in yellow curve, and 0.8 in red curve) and ex vivo data (olive curve). Note that 

the smallest angle (𝜃0) varied across dispersion regimes: 17.3° (κ < 1), 20.4° (1 ≤ κ < 2.5) and 22.9° (2.5 ≤ κ). This was caused 

by the irregular binning (see section 3.1.4). 

The fibre dispersion affected the performance of M2 differently between in silico and ex vivo 

datasets. For the ex vivo data, the nRMSD(β1) was the lowest for the negligibly dispersed fibres 

A

B
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(nRMSD(β1): 1.3% at κ ≥ 2.5) but less so for the highly dispersed fibres (nRMSD(β1) : 4.1% at κ < 1). For 

the in silico data, the nRMSD(β1) was the lowest for the highly dispersed fibres and for a g-ratio of 0.73 

(nRMSD(β1): 0.1% to 2.7% with decreasing fibre dispersion). The nRMSD(β1) was higher, but still below 

12%, for g-ratios of 0.66 and 0.8. The 𝜃𝜇⃗⃗  dependency of α1 on fibre dispersion was the same between 

in silico and ex vivo datasets: the lower the dispersion the higher the nRMSD(α1). The 𝜃𝜇⃗⃗  dependency 

of α1 increased the lower the g-ratio was. When comparing the residual 𝜃𝜇⃗⃗  dependency of β1 with the 

𝜃𝜇⃗⃗  dependency of α1, the improvement is large for negligible dispersion (from ΔnRMSD = -11.9%-points 

to ΔnRMSD = -37.4%-points) for both datasets.  

 

Figure 7: Quantifying orientation dependence of linear model parameters (α1 and β1) for varying g-ratio and fibre dispersion 

values. (A-B) Depicted is the normalised root-mean-squared deviation (nRMSD, Equation 7a in %) of the α1 parameter of M1 

(proxy for R2*) and β1 parameter of M2 (proxy for the isotropic part of R2*) for different fibre dispersion and g-ratio values. 

(C) Depicted is ΔnRMSD (Equation 7b in % points) comparing the residual 𝜃𝜇⃗⃗  dependency of β1 with the 𝜃𝜇⃗⃗  dependency of α1 

(negative values mean M2 reduced the 𝜃𝜇⃗⃗  dependency of R2*). The four coloured bars (i.e. [blue, red, yellow, olive]) per 

dispersion ranges (highly dispersed, κ < 1; mildly dispersed, 1 ≤ κ < 2.5; and negligible dispersed, κ ≥ 2.5 fibres) distinguish 

between in silico data with variable g-ratios (0.66 in blue bar, 0.73 in yellow bar, and 0.8 in red bar) and ex vivo data (olive 
bar). 

 

4.2. Second analysis: Assessment of the microstructural interpretability of β1 

Figure 8A and 8B report the angular-orientation (𝜃𝜇⃗⃗ ) dependent relative differences (𝜖𝑛𝑚 and 𝜖𝑚, 

Equation 8) between the fitted β1 from the in silico data and its predicted counterparts using M2 

(Equation 3) and the heuristic expression (Equation 4). Figure 8C shows the mean and standard 

deviation of 𝜖𝑛𝑚 and 𝜖𝑚 across angles. 
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𝜖𝑛𝑚 was large, between -100% and -40%, and varied strongly with g-ratio and fibre dispersion. 

Even more, 𝜖𝑛𝑚 showed an 𝜃𝜇⃗⃗  dependence where the largest deviation was observed for the smallest 

g-ratio (0.66) and the lowest fibre dispersion (Figure 7A). By contrast, 𝜖𝑚 was smaller, between -20% 

and 20%, and showed a smaller 𝜃𝜇⃗⃗  dependence, which was largest for the smallest g-ratio and lowest 

fibre dispersion. On average, we found that negligibly dispersed fibres showed the smallest 𝜖𝑛𝑚 and 

𝜖𝑚. 

The mean across angles for 𝜖𝑛𝑚, ⟨𝜖𝑛𝑚⟩, was smaller than 85% whereas the mean across angles for 

𝜖𝑚, ⟨𝜖𝑚⟩,was smaller than 12% (Figure 8C). On average across all g-ratios and fibre dispersion 

arrangements, ⟨𝜖𝑛𝑚⟩ was approximately 8 to 9 times larger than ⟨𝜖𝑚⟩. Both relative mean differences 

decreased with increasing g-ratio and decreasing fibre dispersion for almost all  ⟨𝜖𝑛𝑚⟩ and ⟨𝜖𝑚⟩. ⟨𝜖𝑚⟩ 

for the negligibly dispersed fibres at g-ratio 0.66 was close to 2% but accompanied by a large standard 

deviation across 𝜃𝜇⃗⃗ , indicating strong 𝜃𝜇⃗⃗ -dependency of the corresponding fitted 𝛽1 parameters. For 

both 𝜖𝑛𝑚 and 𝜖𝑚, the variability (Figure 8C) across different 𝜃𝜇⃗⃗  values, 𝑠𝑑(𝜖𝑛𝑚) and 𝑠𝑑(𝜖𝑚) 

respectively, was highest when the fibre dispersion and g-ratio were lowest.  

 

Figure 8: Assessment of the microstructural interpretability of β1 by the deviation between fitted and biophysically predicted 

β1. The relative difference (ε, Equation 8) was calculated between the fitted β1 to the in silico data and two biophysically-

modelled expressions for β1 based on the HCFM. The two expressions for β1 values were calculated from the original expression 

for M2, β1,nm (Equation 3, resulting in εnm) and the heuristic expression, β1,m (Equation 4, resulting in εm). This was calculated 

per g-ratio and fibre dispersion. (C) The corresponding mean, <ε>, and standard deviation, sd(ε), of the relative differences 
across the angular orientations (𝜃𝜇⃗⃗ ) were estimated.  

4.3. Third analysis: Myelin water fraction (MWF) and g-ratio estimation from ex vivo data using 

the heuristic expression of R2,iso* via β1,m   

Figure 9 reports the MWF estimated from the ex vivo data by inverting the heuristic expression for 

β1,m (Equation 4). Figure 9A shows the estimated MWF as a function of 𝜃𝜇⃗⃗  while Figure 9B shows the 

median and standard deviation (sd) of the estimated MWF across 𝜃𝜇⃗⃗ .  
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The estimated MWF was larger with decreasing fibre dispersion (Figure 9A). Moreover, there was 

a trend towards larger estimated MWF for larger 𝜃𝜇⃗⃗ . On average across 𝜃𝜇⃗⃗  (Figure 9B), the estimated 

median ex vivo MWF decreased by 98% from highly dispersed fibres (MWF: 0.0028) and by 50.8% from 

mildly dispersed fibres (MWF: 0.069) in comparison to negligibly dispersed fibres (MWF: 0.14). The 

standard deviation across MWF was similar for different fibre dispersions, ranging from 0.0068 to 

0.0104.  

 

Figure 9: Dependence of the MWF estimation on angular orientation for three different fibre dispersion ranges in ex vivo data. 

(A) The MWF was estimated by using the heuristic analytical expression of β1 (β1,m, Equation 4) and the fitted β1 for the ex 

vivo data using the compartmental R2 values in Table A2. This calculation was performed per angle (𝜃𝜇⃗⃗ ) and for the three 

different fibre dispersion ranges: highly dispersed (green olive), mildly dispersed (cyan) and negligibly dispersed (magenta). 
(B) The corresponding median and standard deviation (sd) were estimated across 𝜃𝜇⃗⃗  per fibre dispersion range. 

With the estimated median MWF, a median g-ratio can be estimated using Equation 5. The 

estimated median g-ratios were 0.996, 0.895 and 0.785 for highly, mildly and negligibly dispersed 

fibres, respectively. 

4.4. Fourth analysis: the effect of echo time on the performance of M2  

Figures 10A and 10B show the 𝜃𝜇⃗⃗  dependency of α1 and β1 as a function of TEmax for the ex vivo 

data and the in silico data, for the negligibly dispersed fibres (i.e., κ ≥ 2.5). Figures 11A and 11B show 

the corresponding nRMSD (Equation 7a) for both parameters at different TEmax, while Figure 11C shows 

the difference between both nRMSD (ΔnRMSD, Equation 7b). Note that only negligibly dispersed fibres 

and the in silico data at g-ratio of 0.8 are studied here, because it is known from the results in Figure 8 

that those possess the smallest relative difference and sd to the model predictions.  

At the largest TEmax ex vivo and in silico data showed the same trend (Figure 10, first column). M2 

could greatly reduce the 𝜃𝜇⃗⃗  dependency of β1 when compared to the 𝜃𝜇⃗⃗  dependency of α1 (Figure 11A-

B): nRMSD(α1) of 15.7% (in silico) and 37.9% (ex vivo) was reduced to 3.8% (in silico) and 1.3% (ex vivo). 

At smaller TEmax (36 ms and smaller), M2 was less effective (Figures 10, second and third column).  Even 
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an increased 𝜃𝜇⃗⃗  dependency was observed for β1 when compared to α1 (Figure 11C): ΔnRMSD = 5.3%-

points at 36 ms (in silico) and ΔnRMSD = 14.1%-points at 18 ms (ex vivo). Moreover for the smallest 

TEmax (18 ms), an atypical 𝜃𝜇⃗⃗  dependence of β1 (and α1) was found in the ex vivo data: β1 (and α1) 

decreased with increasing 𝜃𝜇⃗⃗  up to approximately 55° (magic angle, dashed blue lines in Figure 10A 

and 10B) and then slightly increased again. The 𝜃𝜇⃗⃗  dependency up to the magic angle was not observed 

in the in silico data at any investigated TEmax. Moreover, the 𝜃𝜇⃗⃗  dependency of α1 in the ex vivo data 

decreased with decreasing TEmax also this trend was not observable in the in silico data (Figure 10A).  

 

 

Figure 10: Effect of the maximal echo time on the 𝜃𝜇⃗⃗  dependency of α1 and β1. (A and B) Angular orientation (𝜃𝜇⃗⃗ ) dependence 

of α1 in M1 and β1 in M2 for varying maximum TE (TEmax: 54 ms, 36 ms and 18 ms). Two datasets are compared: ex vivo 

(magenta curve) and in silico (red curve) data at g-ratio of 0.8 which is closest to the estimated g-ratio of the ex vivo data. 

Moreover, only datasets of the negligibly dispersed fibres (κ ≥ 2.5) are presented. The blue vertical lines in some of the subplots 

indicates the magic angle (𝜃𝜇⃗⃗  = 55°).  
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Figure 11: Quantifying the effect of the 𝜃𝜇⃗⃗  dependency of α1 and β1 for three different maximal echo times (TEmax). (A-B) 

Depicted is the normalised root-mean-squared deviation (nRMSD, Equation 7a in %) of the α1 parameter of M1 (proxy for R2*) 

and β1 parameter of M2 (proxy for the isotropic part of R2*) for different TEmax values (54 ms, 36 ms and 18 ms), respectively. 

The distinct colours distinguish between in silico data at g-ratio of 0.8 (red bar) and ex vivo data (magenta bar), both for 
negligible dispersed fibres (κ ≥ 2.5). (C) Depicted is ΔnRMSD (Equation 7b in %-points) comparing the residual 𝜃𝜇⃗⃗  dependency 

of β1 with the 𝜃𝜇⃗⃗  dependency of α1 (negative values mean M2 reduced the 𝜃𝜇⃗⃗  dependency of R2*),  
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5. Discussion 
 

This work quantitatively explored the efficiency of the log-quadratic model (M2) in deciphering the 

orientation-independent part of R2* (R2,iso*) via its linear parameter, β1, from a single-orientation 

multi-echo GRE (meGRE) while varying microstructural fibre properties, i.e. fibre dispersion and g-

ratios. Our findings demonstrated that M2 was effective in estimating R2,iso* via β1 when using meGRE 

with long maximum echo time (TEmax ≈ 54 ms) for all investigated microscopic arrangements in both 

simulations and ex vivo measurements. Moreover, we confirmed our hypothesis that the fitted β1 of 

the meGRE signal from tissue with different g-ratios cannot be predicted using the biophysical relation 

in M2, which is derived from the hollow cylinder fibre model (HCFM) and neglects the contribution of 

the myelin water compartment. We proposed a heuristic expression that predicts β1 to be a weighted 

sum of the relaxation rates of the myelin and non-myelin water pools and showed that this expression 

can better describe the data. Using the heuristic expression we estimated the MWF and the g-ratio 

from the fitted β1 of the ex vivo data achieving plausible results. Lastly, we found that M2 was not 

capable of estimating R2,iso* correctly when using shorter maximum echo times (TEmax < 36 ms) that 

are typical of whole-brain in vivo protocols. We made another unexpected observation at the shortest 

investigated TEmax (18 ms): Here, the orientation-dependency of the classical R2* showed the highest 

deviation between ex vivo and in silico data for angles below the magic angle (55°) indicating that at 

short echo times the mechanism for this orientation-dependency of R2* is not captured by the HCFM-

based simulation used here. 

 

Capability of M2 to estimate the angular independent β1 for varying g-ratio and fibre dispersion 

values  

M2 has the potential to estimate R2,iso* from a single-orientation meGRE via β1. By assessing the 

residual 𝜃𝜇⃗⃗  dependency of β1 we found that M2 was effective although its capability varied for 

different g-ratios and fibre dispersions (Figure 6). Nevertheless, the residual 𝜃𝜇⃗⃗  dependency of β1 was 

always less than 12% even if the 𝜃𝜇⃗⃗  dependency of the original R2* (via the α1 parameter of M1) was 

up to 50% (Figure 7A). The residual 𝜃𝜇⃗⃗  dependence of β1 was smallest at a g-ratio of 0.73 (Figure 7B). 

The highest performance of M2 was found for negligibly dispersed fibres at the lowest g-ratio (0.66, 

Figure 7C), where an original 𝜃𝜇⃗⃗  dependence of R2* (i.e. via the α1 parameter of M1) of almost 50% 

was reduced to less than 12% in the 𝜃𝜇⃗⃗  dependency of β1. Note that the g-ratio value at which the 

performance of M2 is maximal might also depend on the compartmental R2 values. In the simulations, 

we used the R2 values from (Dula et al., 2010b) (Table A2). It is possible that using different R2 values 

would result in a different g-ratio values for which the model’s performance was maximal. 

 

Assessment of the microstructural interpretability of β1 

M2 is derived from the biophysical HCFM (Wharton and Bowtell, 2013, 2012) and thus the fitted 

β1 parameter can be related to microscopic tissue parameters (Equation 16b, section 9.3). We found 

an error of up to 85% (Figure 8C) between the β1 obtained by fitting M2 to the in silico data and the 

predicted β1 parameter using the biophysical relations in M2 (Equation 3). This confirms our hypothesis 

that neglecting the myelin contribution in the derivation of M2 results in an invalid biophysical 

expression for β1. We showed that the proposed heuristic expression for β1 is better suited for 
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biophysical interpretation than the original version from M2, resulting in a relative error that was less 

than 12% (Figure 8C). The newly found heuristic expression for β1 implies that in the slow-exchange 

regime, the linear time-dependent component of the logarithm of the meGRE signal can be described 

as a sum of the relaxation rates of the myelin and non-myelin water pools weighted by their signal 

fractions (Equation 4). This can be understood when considering that the β1 parameter in M2 captures 

the contribution of the linear component of the logarithmic–signal decay, which is the equivalent to 

an effective mono-exponential decay. The effective relaxation rate of a mono-exponential decay, 

however, can be expressed as the sum of compartmental relaxation rates weighted by their 

corresponding signal fractions as is well-known from the fast exchange regime. In other words, we 

showed here that when approximating the logarithm of the signal of a two-pool model in the slow-

exchange regime by a second order polynomial in time, the first-order term in time captures the fast-

exchange regime behaviour of the signal decay whereas the second-order term in time accounts for 

deviations from the linear (i.e. mono-exponential) signal decay. 

Note that the proposed heuristic correction does not account for the effect of fibre dispersion 

which might explain why the accuracy of the prediction was reduced with increasing fibre dispersion. 

While the influence of fibre dispersion has been successfully incorporated into M2 in another study 

(Fritz et al., 2020), it remains an open task for future studies to do this as well for the heuristic 

expression of β1. 

 

Myelin water fraction and g-ratio estimations from ex vivo data using the heuristic expression of β1 

Assuming an effective performance of M2 in estimating the angular-independent β1 and using the 

heuristic expression for its biophysical interpretation, MWF and g-ratio can be estimated from the 

fitted β1 of the ex vivo data (Equation 5). For the negligibly dispersed fibres we found a median (across 

orientation) MWF of 0.14 (Figure 9B), which is congruent with the mean value reported in white matter 

of 0.10 (Uddin et al., 2019). By using the FVF and proton density values from the in silico data (Table 

A1), we found a median g-ratio of 0.79. The estimated g-ratio value is higher than typical MRI-based g-

ratio values reported for the in vivo brain, which ranges between 0.65 and 0.70 (Berman et al., 2018; 

Emmenegger et al., 2021; Stikov et al., 2015) but is close to the value used in the work by (Wharton 

and Bowtell, 2013). The reason for the dissimilarity between predicted g-ratio and its counterpart from 

literature might be related to the additional assumptions that were made to estimate the g-ratio: while 

the estimation of MWF only requires knowledge of the compartmental R2 values, the g-ratio 

estimation requires additional knowledge of fibre volume fraction (FVF) and proton density values 

(Equation 6). 

In this study, we used the same parameters as reported in (Wharton and Bowtell, 2013) for the 

FVF, and the proton densities, whereas the compartmental R2 values were based on (Dula et al., 

2010b). Particularly, the value employed for the FVF (0.5, Table A1, section 9.4) is considerably lower 

than the values reported in literature, e.g. 0.75 in Stikov et al., 2011, which might explain the similarity 

between our reported g-ratio value and the one from (Wharton and Bowtell, 2013). Furthermore, we 

found that increasing the amount of fibre dispersion leads to a substantial underestimation of the 

MWF and an overestimation of the g-ratio. This might be of practical importance when using this 

method for MWF or g-ratio estimation.  
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The effect of echo time on the performance of M2  

We found that M2 is less effective in estimating R2,iso* when the maximum TE is reduced to values 

more typically used for in vivo studies (i.e., maximal TE of 18 ms) but also at intermittent echo time 

ranges (36 ms, Figure 11). This observation is at first glance in contradiction with the validity range of 

M2 because the mathematical approximations, especially the approximation of the dephasing 

component of the extra-cellular compartment DE (section 9.2, Figure A1), are valid only in the regime 

TE ≤ 36 ms (see section 9.3). This apparent contradiction can be resolved by acknowledging the 

contribution of the myelin compartment signal which is neglected in M2 but non-negligible in the short 

TE regime. For in vivo application of M2, new in vivo meGRE protocols need to be developed that allow 

for a longer maximal TE (e.g. ≥ 54 ms), where sufficient data points with dominant extra-cellular signal 

compartment are collected. However, estimating robust in vivo R2,iso* maps at these large TEmax values 

requires the correction of motion artefacts (Magerkurth et al., 2011), which is an interesting future 

project for itself. 

Interestingly, the biggest discrepancy between in silico and ex vivo results for β1 was seen for the 

smallest maximal TE value at 𝜃𝜇⃗⃗  smaller than the magic angle (55°, Figure 10B). This is because β1 and 

α1 of the measured ex vivo data showed in this 𝜃𝜇⃗⃗  range an atypical 𝜃𝜇⃗⃗  dependence: they decreased 

as a function of increasing 𝜃𝜇⃗⃗  up to the magic angle. One might suspect that this atypical 𝜃𝜇⃗⃗  

dependence of β1 has been artificially introduced by the higher-order model M2. However, the fact 

that it was also found for α1 makes it more likely that we have found a new orientation dependence of 

R2* that cannot be explained by the HCFM. A mechanism that could explain a reduction in R2* at the 

magic angle would be shortening of R2 due to the Magic Angle Effect in highly structured molecules 

like myelin sheaths (see (Bydder et al., 2007)). Since this phenomenon would be superimposed on the 

orientation dependence of R2* being investigated here, it may be particularly evident when the latter 

effect is negligible, i.e. at low 𝜃𝜇⃗⃗ .  

 

Considerations 

Two of our findings might appear contradictory, at first glance: On the one hand, M2 can effectively 

capture the orientation independent component of R2* (i.e. estimate R2,iso*) at long maximal TEs (~ 54 

ms), indicating that the myelin-water pool can be neglected in this TE range. On the other hand, M2 

cannot predict the fitted β1 whereas a heuristic expression that incorporates the contribution of the 

myelin water in β1 substantially improves the prediction. This contradiction can be resolved when 

considering the time-dependency of the orientation dependent and independent parameters of M2, 

i.e. β2 and β1 respectively (Equation 1). The β2 parameter scales with the square of time and thus 

captures the logarithm of the signal-decay at the higher-TE time-points where the contribution of the 

myelin water is negligible, whereas β1 scales linearly with time and thus captures the logarithm of the 

signal-decay at the smaller-TE time-points where the contribution of the myelin water cannot be 

neglected. Consequently, M2 can effectively separate-out the orientation dependency of R2* but at 

the same time might fail to predict β1 accurately. Future studies should aim to find a better derivation 

of M2 from the HCFM that does not neglect the contribution of the myelin water. From the perspective 

of interpretation, our heuristic expression of β1 might be particularly helpful because we found that it 

is a good proxy for the fitted β1. 

To generate the in silico data, we employed simplifications to the HCFM when extended to 

multiple cylinders contained in an MRI volume with varying degree of dispersion. We assumed that 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 29, 2022. ; https://doi.org/10.1101/2022.03.28.486076doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.28.486076
http://creativecommons.org/licenses/by/4.0/


27 
 

the signal coming from multiple dispersed hollow cylinders is a super-position of the complex signal of 

multiple single hollow cylinders with a specific orientation to an arbitrary main orientation of the 

fibres. As a result, the near-field interaction of the cylinders was neglected. Moreover, the dephasing 

due to the myelin compartment was also assumed to be negligible (i.e., DM ≈ 0). Nevertheless, the in 

silico data described the 𝜃𝜇⃗⃗  dependence of α1
 and β1

 as in the ex vivo data. This is seen across all 

dispersion regimes when using the long maximal TE protocol. As compared to previous studies where 

the dephasing process was more faithfully described in two dimensions (Hédouin et al., 2021; Xu et 

al., 2018), our model allowed for better control over the fibre dispersion in three dimensions via the 

Watson distribution parameter κ. Future work should investigate whether the validity of the in silico 

data could be improved by combining the approach of (Hédouin et al., 2021) in a three-dimensional 

simulation environment where the degree of fibre dispersion can be changed as well.  

The ex vivo data possess two issues warranting discussion: (i) the coregistration of the diffusion 

results from the NODDI model into the GRE space and (ii) the use of the Watson dispersion from the 

NODDI model as a descriptor of the different fibre arrangements in the brain. Regarding the 

coregistration of the diffusion results from NODDI (see section 3.1.4), image interpolation could 

introduce a bias on the κ and, especially, 𝜃𝜇⃗⃗  maps. The latter can be more affected in areas with strong 

angular gradients (e.g. a 0°-90° between two adjacent voxels), resulting in local over- or under-

estimation of the 𝜃𝜇⃗⃗  values. One solution is to ensure the acquisition of both MRI techniques (R2*w 

GRE and dMRI) occur with the specimen in the same MR system, with identical positioning, field-of-

view and image resolution. For our study, this was not possible because we used a preclinical MR 

system to acquire the high-resolution diffusion MRI data whereas the meGRE data were acquired on a 

human 7 T system. Regarding the use of Watson dispersion from the NODDI model, this distribution 

cannot describe all existing fibre arrangements in the brain accurately, e.g., the crossing fibre 

arrangement. In the optic chiasm specimen such arrangements were only found in a few regions, e.g. 

at the crossing of the optical tract and optic nerve. Therefore, the contribution of such crossing-fibre 

voxels with estimated κ values in the range of highly to mildly dispersed fibres will be averaged-out 

with the single-fibre orientation voxels with similar κ values during the irregular binning pre-processing 

(section 3.3.1). However, this could result in an increasing standard deviation in the estimated α-

parameters in the log-linear model and β-parameters in the log-quadratic model. 

 

6. Conclusion 
 

We showed that our recently introduced biophysical log-quadratic model of the multi-echo 

gradient-recall echo (meGRE) signal can effectively estimate the fibre-angular-orientation independent 

part of R2* (R2,iso*) for varying g-ratio values and fibre dispersions. Thus, it provides an attractive 

alternative to standard methods for deciphering the orientation-dependence of R2* that requires 

multiple acquisition with distinct positioning of the sample in the head-coil. Doing so would provide a 

more robust marker for neuroscientific studies in a broadly accessible manner. We also showed that 

the estimated linear time-dependent parameter of M2, β1, can be used to estimate the myelin water 

fraction (MWF) and g-ratio using a newly proposed heuristic expression relating β1 to microstructural 

tissue parameters including the myelin water signal. Importantly, we found that the proxy of R2,iso* 

cannot be estimated effectively with the log-quadratic model at lower echo time ranges (i.e. at 

maximal echo times smaller than 36 ms) that are typically used for whole-brain in vivo meGRE 
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experiments. To make M2 usable for in vivo applications, future studies need to develop new meGRE 

protocols with longer TEmax (54 ms) that remain time efficient and motion robust. Finally, at echo time 

ranges smaller than 18 ms, an unexpected R2* orientation-dependence was found in the ex vivo 

dataset at angles below the magic angle: a decrease of R2* for increasing angles. Our HCFM based 

simulations were not able to model this angular dependence, which points towards a distinct 

mechanism in white matter that cannot be explained by the HCFM.  
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9. Appendix 
 

9.1 Hollow cylinder fibre model in detail  

The hollow cylinder fibre model (HCFM) proposes an analytical approximation of the angular 

orientation (𝜃𝜇⃗⃗ ) dependency of the GRE signal to 𝐵0
⃗⃗ ⃗⃗ . This approximation establishes that the total MR 

signal comes from water molecules in an infinitely long hollow cylinder affected by the diamagnetic 

myelin sheath (Liu, 2010). The diamagnetic myelin sheath perturbs magnetically the water molecules 

from three distinguishable compartments: (1) the intra-axonal (SA), (2) myelin (SM) and (3) extra-

cellular (SE) compartments. Then, the total MR signal, SC, is defined as: 

 𝑆𝐶(𝑡, 𝜃𝜇⃗⃗ ) = 𝑆𝐴(𝑡, 𝜃𝜇⃗⃗ ) + 𝑆𝐸(𝑡, 𝜃𝜇⃗⃗ ) + 𝑆𝑀(𝑡, 𝜃𝜇⃗⃗ ) (A1) 

 

, where the signal decay coming from each compartment, as defined in (Wharton and Bowtell, 

2012) and (Wharton and Bowtell, 2013), are defined as a function of time (t) and 𝜃𝜇⃗⃗ : 

 𝑆𝐴(𝑡, 𝜃𝜇⃗⃗ ) ≈ 𝜌𝐴𝑉𝐴𝑒−𝑅2𝐴𝑡+𝑖𝜔𝐴(𝜃𝜇⃗⃗ )𝑡 (A2a) 

 𝑆𝐸(𝑡, 𝜃𝜇⃗⃗ ) ≈ 𝜌𝐸𝑉𝐸𝑒−𝑅2𝐸𝑡−𝐷𝐸(𝑡,𝜃𝜇⃗⃗ ) (A2b) 

 𝑆𝑀(𝑡, 𝜃𝜇⃗⃗ ) ≈ 𝜌𝑀𝑉𝑀𝑒−𝑅2𝑀𝑡+𝑖𝜔𝑀(𝜃𝜇⃗⃗ )𝑡−𝐷𝑀(𝑡,𝜃𝜇⃗⃗ ) (A2c) 

 

In these compartmental equations, ρ, R2 and V are respectively the proton density, transverse 

relaxation rate and volumes for each compartment (defined with the corresponding sub-indices). The 

functions ωA and ωM are the (local) frequency offset of the intra-axonal and myelin water molecules 

produced by the myelin susceptibility (from (Wharton and Bowtell, 2012) and (Duyn, 2014)), defined 

as: 

 
𝜔𝐴(𝜃𝑖) =

−3𝜒𝐴𝑠𝑖𝑛2(𝜃𝑖)

4
𝑙𝑛(𝑔𝑟𝑎𝑡𝑖𝑜)𝜔0 

(A3a) 

 

𝜔𝑀(𝜃𝑖) = (
𝜒𝐼

2
(
2

3
− 𝑠𝑖𝑛2(𝜃𝑖)) +

𝜒𝐴

2
((

1

4
+

3𝑔𝑟𝑎𝑡𝑖𝑜
2 𝑙𝑛(𝑔𝑟𝑎𝑡𝑖𝑜)

2(1 − 𝑔𝑟𝑎𝑡𝑖𝑜
2 )

) 𝑠𝑖𝑛2(𝜃𝑖) −
1

3
)

+ 𝐸)𝜔0 

(A3b) 

 

where χI and χA are the isotropic and anisotropic magnetic susceptibilities of the myelin sheath 

(in ppm), E is the exchange factor between compartments (in ppm) and ω0 is the Larmor frequency (= 

γ|𝐵0
⃗⃗ ⃗⃗ |, in MHz, with γ the gyromagnetic ratio) of the water molecules. The DE and DM functions are the 

dephasing in the extracellular and myelin compartments across the voxel. DE is defined, in the work of 

(Wharton and Bowtell, 2013), as a piece-wise function using the approximation introduced by 

(Yablonskiy and Haacke, 1994) and discussed in section 9.2. The DM function is neglected in this study. 
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9.2. Analytical expression of the dephasing component (D E) of the extracellular 

compartment (SE) 

 Yablonskiy and Haacke, (1994) proposed the analytical expression for the magnetic dephasing 

of a medium due to the presence of cylindrical dephasors (defined as cylinders with a different 

magnetic susceptibility than the medium) oriented with an angle 𝜃𝜇⃗⃗  to 𝐵0
⃗⃗ ⃗⃗  defined as: 

 
𝐷𝐸(𝑡, 𝜃𝜇⃗⃗ ) = 𝑉𝑐 ∫ (

1 − 𝐽0(𝜔𝐸(𝜃𝜇⃗⃗ , 𝑔𝑟𝑎𝑡𝑖𝑜)𝑡𝑢)

𝑢2 )𝑑𝑢
1

0

 
(A4) 

Where Vc is the cylinder’s volume (equal to the fibre volume fraction, FVF), J0 is the zeroth-

order Bessel’s function of the First Kind, u is the variable of integration and ωE is the frequency offset 

in the extracellular space. The latter is defined as: 

 𝜔𝐸(𝜃𝜇⃗⃗ ) = 2𝜋𝜒𝐸𝑠𝑖𝑛2(𝜃𝜇⃗⃗ )𝜔0 (A5) 

Where χE is the mean susceptibility of the myelin sheet, defined as (χI + 0.25 χA)(1 – g2
ratio). In 

their work, Equation A3 was approximated for two-time scales divided by the so-called critical time (α 

in (Wharton and Bowtell, 2013)), defined as: 

 𝛼 = 1.5 ⋅ 𝜔𝐸
−1 (A6) 

For times shorter than the critical time, the dephasing function is approximated by a quadratic 

function, while for times longer than the critical time this function becomes linear. The corresponding 

analytical expressions (Yablonskiy and Haacke, 1994) are: 

 

𝐷𝐸(𝑡, 𝜃𝜇⃗⃗ ) = {

𝐹𝑉𝐹

16
|𝜒𝐸|2𝑠𝑖𝑛4(𝜃𝜇⃗⃗ )𝜔0

2𝑡2 = 𝐷𝐸
 𝑡2, 𝑡 < 𝛼

𝐹𝑉𝐹 (
1

2
|𝜒𝐸|𝑠𝑖𝑛2(𝜃𝜇⃗⃗ )𝑡 − 1) = 𝐷𝐸

  𝑡 − 𝐹𝑉𝐹, 𝑡 > 𝛼

 

(A7) 

Where 𝐷𝐸
  and 𝐷𝐸

   are expressions having all the parameters that are not time dependent, 

including sin4(𝜃𝜇⃗⃗ ) and sin2(𝜃𝜇⃗⃗ ), respectively. This simplified expression, especially the quadratic 

approximation, is used later (section 9.3). However, this piecewise approximation has a discontinuity 

at this critical time, as observed in Figure A1. To avoid this discontinuity when DE overpasses the critical 

time for the in silico data, we used an analytical solution to Equation A4. This solution was performed 

in Mathematica 12 (Wolfram Research, Inc., Champaign, IL (2020)), giving the following expression: 

 𝐷𝐸(𝑡, 𝜃𝜇⃗⃗ ) = 0.5 ⋅ 𝐹𝑉𝐹 (−2 + 𝜔𝐸𝑡𝐽1(𝜔𝐸𝑡)(−2 + 𝜋𝜔𝐸𝑡𝐻0(𝜔𝐸𝑡))

+ 𝐽0(𝜔𝐸𝑡)(2 + (2 − 𝜋𝐻1(𝜔𝐸𝑡))(𝜔𝐸𝑡)2)) 

(A8) 

In where J1 is the first-order Bessel’s function of the First-Kind, and H0 and H1 are the zeroth 

and first-order Struve functions ((Struve, 1882) and (Aarts and Janssen, 2016)), respectively. The offset 

frequency in the extracellular space (ωE) is dependent on the mean angular orientation and the g-ratio, 

as defined in (Yablonskiy and Haacke, 1994) and (Wharton and Bowtell, 2012). 
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Figure A 1:  Signal decay in the extra-cellular compartment due only to dephasing (DE) using different DE functions. The signal 
decay (i.e., exp(-DE) in Equation A2b) was evaluated in function of time (in ms) and at three different angular orientations (0°, 
60° and 90°). Two expressions for the DE function (Equation A4) were used: the analytical solution given in Equation A8 
(Integrated DE, blue curve) and the piece-wise approximation proposed in the work of Yablonskiy et al. 1994 in Equation A7 
(approximated DE, orange curve). Both functions were evaluated using the simulation values (section 9.4, Tables A1 to A3). 

 

9.3. Analytical interpretation of the log-quadratic model (M2) and approximation with 

myelin compartment added 

The log-quadratic model (M2) is derived from the signal equation from the HCFM with neglected 

myelin-water signal (SM, Equation A4). This signal is neglected due to short T2 and small volume of this 

compartment (see Wharton and Bowtell, 2013). The magnitude of the remaining signal of the non-

myelin compartments (SN) is defined as: 

 |𝑆𝑁| ≈ √𝑅(𝑆𝑁)2 + 𝐼(𝑆𝑁)2 (A9) 

, where 𝑅 and 𝐼 are the real and imaginary components of SN and SN is defined as follows:  

 𝑆𝑁(𝑡, 𝜃𝜇⃗⃗ ) = 𝑆𝐴(𝑡, 𝜃𝜇⃗⃗ ) + 𝑆𝐸(𝑡, 𝜃𝜇⃗⃗ ) (A10) 

 

Evaluating Equation A10 with Equations A2a-b resulted in: 

 
|𝑆𝑁| ≈ √𝑉𝐴

2𝜌𝐴
2𝑒−2𝑅2𝐴𝑡 + 𝑉𝐸

2𝜌𝐸
2𝑒−2𝑅2𝐸𝑡−2𝐷𝐸 + 2𝑉𝐴𝑉𝐸𝜌𝐴𝜌𝐸𝑒−(𝑅2𝐴+𝑅2𝐸)𝑡𝑐𝑜𝑠(𝜔𝐴𝑡) 

(A11) 

Using the natural logarithm function (ln(x)) of the above equation results in: 
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𝑙𝑛(|𝑆𝑁|) ≈

1

2
𝑙𝑜𝑔 (𝑉𝐴

2𝜌𝐴
2𝑒−2𝑅2𝐴𝑡 + 𝑉𝐸

2𝜌𝐸
2𝑒−2𝑅2𝐸𝑡−2𝐷𝐸

+ 2𝑉𝐴𝑉𝐸𝜌𝐴𝜌𝐸𝑒−(𝑅2𝐴+𝑅2𝐸)𝑡𝑐𝑜𝑠(𝜔𝐴𝑡)) 

(A12) 

This expression can be linearised if the three functions related to time, i.e. the transverse 

relaxation rates (e.g. 𝑒−𝑅2𝑡), the frequency offset of the intra-axonal compartment (cos(ωAt)) and 

dephasing of the extra-axonal compartment (DE), are sufficiently small to be approximated using the 

1st and 2nd order of the Taylor expansion, respectively, as follows: 

 𝑒−𝑥 ≈ 1 − 𝑥 (A13a) 

 
𝑐𝑜𝑠(𝑥) ≈ 1 −

𝑥2

2
 

(A13b) 

If these conditions are fulfilled, the logarithm function of Equation A12 can be approximated by a 2nd 

order Taylor expansion in time, resulting in: 

 
𝑙𝑛(|𝑆𝑁|) ≈ 𝑙𝑜𝑔(𝑉𝐴𝜌𝐴 + 𝑉𝐸𝜌𝐸) − (

𝑉𝐸𝜌𝐸𝑅2𝐸 + 𝑉𝐴𝜌𝐴𝑅2𝐴

(𝑉𝐴𝜌𝐴 + 𝑉𝐸𝜌𝐸)
) 𝑡

−
𝑉𝐸𝜌𝐸(𝑉𝐴𝜌𝐴(𝜔𝐴

2𝑡2 + 2𝐷𝐸 − 2(𝑅2𝐸 − 𝑅2𝐴)2𝑡2) + 2𝑉𝐸𝜌𝐸𝐷𝐸)

2(𝑉𝐴𝜌𝐴 + 𝑉𝐸𝜌𝐸)2
 

(A14) 

If the quadratic approximation for DE is used (DE = 𝐷𝐸
 t2, Equation A7), this expression can be 

summarized as: 

 𝑀2: 𝑙𝑛(|𝑆𝑁|) ≈ 𝛽0 − 𝛽1𝑡 − 𝛽2𝑡
2 (A15) 

Where: 

 𝛽0 = 𝑙𝑜𝑔(𝑉𝐴𝜌𝐴 + 𝑉𝐸𝜌𝐸) (A16a) 

 
𝛽1 =

𝑉𝐸𝜌𝐸𝑅2𝐸 + 𝑉𝐴𝜌𝐴𝑅2𝐴

(𝑉𝐴𝜌𝐴 + 𝑉𝐸𝜌𝐸)
 

(A16b) 

 
𝛽2 =

𝑉𝐸𝜌𝐸(𝑉𝐴𝜌𝐴(𝜔𝐴
2 + 2𝐷𝐸

 − 2(𝑅2𝐸 − 𝑅2𝐴)2) + 2𝑉𝐸𝜌𝐸𝐷𝐸
 )

2(𝑉𝐴𝜌𝐴 + 𝑉𝐸𝜌𝐸)2
 

(A16c) 

In the scenario where R2A is equal to R2E, the analytical expression for β1 becomes 𝛽1,𝑛𝑚 

(Equation 3, section 2.2). 

The proposed heuristic analytical expression of β1 in Equation 4, 𝛽1,𝑚, was motivated by taking 

Equation A16b and incorporating the myelin compartment information (VM, ρM and R2M) in a similar 

manner, resulting in the following expression: 

This expression can also be derived as the linear component in time by keeping the 

contribution of the myelin compartment in Equation A10, i.e. using SC from Equation A9 instead of SN, 

and performing a Taylor expansion in time. While 𝛽1in Equation A17 (or 𝛽1,𝑚 in Equation 4) turned out 

to explain better the in silico fitted 𝛽1 than the 𝛽1,𝑛𝑚 (Equation 3 and A16b, see Figure 7), the validity 

range of the second-order approximation of the entire signal SC with the added myelin compartment 

is highly restrictive as a function of time and cannot be used for the experimental parameters used 

here (data not shown). 

 
𝛽1 =

𝑉𝐸𝜌𝐸𝑅2𝐸 + 𝑉𝐴𝜌𝐴𝑅2𝐴 + 𝑉𝑀𝜌𝑀𝑅2𝑀

(𝑉𝐴𝜌𝐴 + 𝑉𝐸𝜌𝐸 + 𝑉𝑀𝜌𝑀)
 

(A17) 
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Equation A17 can be re-written as a function of the myelin water fraction (MWF), axonal water 

fraction (AWF) and extra-axonal water fraction (EWF), defined as: 

 
𝑀𝑊𝐹 =

𝜌𝑀𝑉𝑀

𝜌𝐴𝑉𝐴 + 𝜌𝐸𝑉𝐸 + 𝜌𝑀𝑉𝑀
 

(A18a) 

 
𝐴𝑊𝐹 =

𝜌𝐴𝑉𝐴

𝜌𝐴𝑉𝐴 + 𝜌𝐸𝑉𝐸 + 𝜌𝑀𝑉𝑀
 

(A18b) 

 
𝐸𝑊𝐹 =

𝜌𝐸𝑉𝐸

𝜌𝐴𝑉𝐴 + 𝜌𝐸𝑉𝐸 + 𝜌𝑀𝑉𝑀
 

(A18c) 

 . Since the sum of the water fractions are equal to 1, β1 becomes: 

 𝛽1 = 𝑀𝑊𝐹 ⋅ 𝑅2𝑀 + 𝐴𝑊𝐹 ⋅ 𝑅2𝐴 + 𝐸𝑊𝐹 ⋅ 𝑅2𝐸 (A19a) 

 𝛽1 = 𝑀𝑊𝐹 ⋅ 𝑅2𝑀 + (1 − 𝑀𝑊𝐹) ⋅ 𝑅2𝑁 (A19b) 

 

Where Equation 4 (or A19b) is obtained if we assume in Equation A19a that the relaxation rate in the 

intra- and extra-cellular water is the same: 𝑅2𝐴 = 𝑅2𝐸 = 𝑅2𝑁. 

 

9.4. In silico  data setup: simulation parameters, SNR and anisotropic binning  

The in silico MR data was simulated using the HCFM for each hollow cylinder. The fixed 

parameters were obtained from (Wharton and Bowtell, 2013) and listed as follows: 

Parameter Value Parameter Value 

Anisotropic and isotropic 

susceptibilities (χA and χI) 

-0.1 ppm Larmor frequency at 7 T (ω0) 1.873 ∙ 106 rad/ms 

Exchange (E) 0.02 ppm Fibre volume fraction (FVF) 0.5 n. u. 

Proton density intra- and 

extra- axonal 

compartments (ρA and ρE)* 

5000 a. u. Proton density myelin 

compartment (ρM)* 

3500 a. u. 

Table A 1: Fixed microstructural parameters used to create the in silico data from (Wharton and Bowtell, 2013) in section 
3.2. *Proton densities were scaled by a factor of 5000 but they kept the same proton density proportion between the non-
myelinated and myelinated compartments (1:0.7).   

Other fixed parameters were obtained from (Dula et al., 2010b) and they are listed as follows: 

Parameter Value Parameter Value 

R2 intra- and extra- axonal 

compartments (R2A = R2E = 

R2N) 

18.53 s-1 R2 myelin compartment 

(R2M) 

75.41 s-1 

Table A 2: Fixed microstructural parameters used to create the in silico data (section 3.2) obtained from (Dula et al., 2010a).  

The variable parameters, or parameter space, of the in silico MR data are listed as follows: 
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Parameter Value Parameter Value 

Angular orientation (𝜃𝜇⃗⃗ ) 2°:2°:90° g-ratio  0.66, 0.73, 0.8 

Index of fibre dispersion 

(κ) 

0.001:0.1:6.0 Time 3.25:3.25:53.5 ms 

Table A 3: Variable microstructural and physical parameters, or parameter space, used to create the in silico data (section 
3.2). The two extreme values for g-ratio, 0.66 and 0.8, were found in (Emmenegger et al., 2021) and (Wharton and Bowtell, 
2013), respectively. The mean value of 0.73 was arbitrarily defined. 

To make the in silico as-similar-as possible to the ex vivo data, noise was added to the signal 

decay of the in silico data, in such a way that the in silico SNR is like the SNR seen in the ex vivo GRE 

data. For that, the ex vivo SNR was calculated by dividing the signal of the white matter region of the 

OC and the standard deviation of the background in (image) magnitude space. No noise correlation 

correction was performed in this calculation given the coil having 2 receiver channels. As a result, an 

average SNR value of 112 was obtained for this region (section 3.2), and with this SNR value, a complex 

random Gaussian noise was added to the in silico data as follows: 

 𝑆𝑠𝑖𝑙𝑖𝑐𝑜(𝑡, 𝑆𝑁𝑅 = 112)

= 𝑆𝑠𝑖𝑙𝑖𝑐𝑜(𝑡, 𝑆𝑁𝑅 = ∞) + 𝑁(0, 𝜎𝑠𝑖𝑙𝑖𝑐𝑜(𝑆𝑁𝑅 = 112))

+ (0, 𝜎𝑠𝑖𝑙𝑖𝑐𝑜(𝑆𝑁𝑅 = 112)) 

(A20) 

Where N(0,σ) is the Normal distribution with mean 0 and the standard deviation defined by: 

 
𝜎𝑠𝑖𝑙𝑖𝑐𝑜(𝑆𝑁𝑅) =

|𝑆𝑠𝑖𝑙𝑖𝑐𝑜(𝑡 = 0)|

𝑆𝑁𝑅
 

(A21) 

Where the magnitude signal is divided by the desired SNR at time 0 (|Ssilico(t = 0)|).  

 With the noise added, the magnitude of the in silico MR signal at SNR = 112 was obtained: 

 |𝑆𝑆𝑖𝑙𝑖𝑐𝑜| = √𝑅(𝑆𝑠𝑖𝑙𝑖𝑐𝑜)
2 + 𝐼(𝑆𝑠𝑖𝑙𝑖𝑐𝑜)

2 (A22) 

 

To compare the in silico data analysis across the 5000 signal decays per simulated g-ratio, 

sampled κ and 𝜃𝜇⃗⃗  to the irregularly binned ex vivo data analysis (section 3.3.1 and Figure 5B), the α-

parameters and β-parameters from the in silico data required three consecutive averaging-steps: (1) 

an averaging across the 5000 samples, resulting in the sampled-averaged 𝛼𝑖̂(𝑖: 0,1), 𝛽𝑗̂(𝑗: 0,1,2) and 

their standard deviations 𝑠𝑑(𝛼𝑖), 𝑠𝑑(𝛽𝑗) per sampled κ value and 𝜃𝜇⃗⃗ . (2) A weighted averaging across 

κ values per each 𝜃𝜇⃗⃗  irregular bin of the ex vivo data in each κ range. For that, it was obtained the 

distribution of the κ values from the voxels contained in each of the 20 defined 𝜃𝜇⃗⃗  irregular bins. The 

𝜃𝜇⃗⃗  range per bin and κ range is given in Table A.4. Then, all the obtained distributions were averaged 

per κ range (Figure A2 from A to C) to remove possible influence of the irregular 𝜃𝜇⃗⃗  bins on κ. The 

standard deviation from this average was calculated, normalised and used later (referred as the 

sd(𝑃(𝜅𝑙)) in Equation A28). Next, a probability distribution, 𝑃(𝜅𝑙), was fitted accordingly (Figure A2 

from D to F) and the weighted averaging on 𝛽𝑗̂ (the same procedure is performed for 𝛼𝑖̂) was calculated 

as follows: 

 
⟨𝛽𝑗⟩𝑃 =

∑ 𝛽𝑗̂⁡(𝜅𝑙)𝑃(𝜅𝑙)𝑙

∑ 𝑃(𝜅𝑙)𝑙
 

(A23) 
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Where the expression for 𝑃(𝜅𝑙) was heuristically chosen and varied per each fibre dispersion (κ range): 

a Beta distribution for the highly dispersed fibres (κ < 1 range, Figure A2-D), defined as: 

 
𝑃(𝜅𝑙 < 1) =

𝜅𝑙
𝑎−1(1 − 𝜅𝑙)

𝑏−1𝛤(𝑎 + 𝑏)

𝛤(𝑎)𝛤(𝑏)
 

(A24) 

 Where 𝛤(𝑐) = ∫ 𝑥𝑐−1𝑒−𝑥𝑑𝑥
∞

0
 (A25) 

Is the Gamma function. The coefficients a and b estimated for this range were 3.145 and 1.234, 

respectively. Given the clear half-shaped normal distribution, a Half-Normal distribution for the mildly 

dispersed fibres (1 ≤ κ < 2.5 range, Figure A2-E) was used, defined as: 

 
𝑃(1 ≤ 𝜅𝑙 < 2.5) =

√2

𝜎√𝜋
𝑒𝑥𝑝 (

−(𝜅𝑙 − 1)2

2𝜎2 ) 
(A26) 

. The coefficients μ and σ were 0 and 0.4498, respectively. And given the fast decay of the values at 

the beginning of the distribution, an Exponential distribution for the highly aligned fibres (2.5 ≤ κ range, 

Figure A2-F) was used, defined as: 

 𝑃(2.5 ≤ 𝜅𝑙) = 𝜆𝑒𝑥𝑝(−𝜆(𝜅𝑙 − 2.5)) (A27) 

. The coefficient λ was 0.2241. The standard deviation of ⟨𝛽𝑗⟩𝑃 was also estimated by error-propagating 

the 𝑠𝑑(𝛽𝑗) weighted by 𝑃(𝜅𝑙) and its standard deviation sd(𝑃(𝜅𝑙)), as follows:  

 

𝑠𝑑 (⟨𝛽𝑗⟩𝑃) = √∑(
𝑠𝑑 (𝛽𝑗(𝜅𝑙))𝑃(𝜅𝑙)

∑ 𝑃(𝜅𝑙)𝑙 ⁡
)

2

+ (𝛽𝑗̂(𝜅𝑙)⁡𝑠𝑑(𝑃(𝜅𝑙)))
2

𝑙

 

(A28) 

While the first squared term requires the normalisation factor (∑ 𝑃(𝜅𝑙)𝑙 ) because the weights 𝑃(𝜅𝑙) 

are not normalised, the second is not needed since sd(𝑃(𝜅𝑙)) is already normalised. Finally, the ⟨𝛽𝑗⟩𝑃 

and 𝑠𝑑 (⟨𝛽𝑗⟩𝑃), and the ⟨𝛼𝑖⟩𝑃 and 𝑠𝑑(⟨𝛼𝑖⟩𝑃) (as in Equation A28) were averaged and error-

propagated, respectively, as a function of the 𝜃𝜇⃗⃗  values for each irregular bin.  
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Figure A 2: Assembling the in silico data across the simulated κ ranges and angular (𝜃𝜇⃗⃗ ) anisotropic bins. To make the in silico 

data comparable to the ex vivo data, the frequency of voxels as a function of κ was obtained per defined 𝜃𝜇⃗⃗  irregular bin in 

the ex vivo data (Figure 3). This was performed for the 20 𝜃𝜇⃗⃗  bins (AnisoBin X, with X the corresponding bin from 1 to 20, see 

Table A.4) and per fibre dispersion (κ range): highly dispersed (κ < 1, A), mildly dispersed (1 ≤ κ < 2.5, B) and negligibly dispersed 

(κ ≥ 2.5, C) fibres. The mean and standard deviation across histograms were obtained (error bars). The means were normalised 

with respect to the cumulated value (i.e., sum of all the mean values) and fitted with a continuous function (𝑃(𝜅𝑙)) per  κ 

range, previously normalised: a beta distribution for κ < 1 (D), half-normal distribution for 1 ≤ κ < 2.5 (E) and exponential 

distribution for κ ≥ 2.5 (F). The standard deviation was also normalised by the cumulated value per κ range and used as the 

standard deviation of the continuous distributions (sd(𝑃(𝜅𝑙))).  

Dispersion range 

Irregular bin 
1 < κ 1 ≤ κ < 2.5 2.5 ≤ κ 

#1 and (  ) [0, 29.3]° 

(17.3°) 

[0, 26.5]° 

(20.4°) 

[0, 30.7]° 

(22.9°) 

#2 [29.3, 39.3]° [26.6, 36.8]° [30.8, 40.8]° 

#3 [39.4, 45.9]° [36.9, 43.5]° [40.9, 47.2]° 

#4 [45.6, 50.8]° [43.6, 48.6]° [47.3, 52.1]° 

#5 [50.9, 55.0]° [48.7, 52.9]° [52.2, 56.2]° 

#6 [55.1, 58.6]° [53.0, 56.6]° [56.3, 59.7]° 

#7 [58.7, 61.8]° [56.7, 60.0]° [59.8, 62.7]° 

#8 [61.9, 64.7]° [60.1, 63.0]° [62.8, 65.6]° 

#9 [64.8, 67.4]° [63.1, 65.9]° [65.7, 68.3]° 

#10 [67.5, 70.0]° [66.0, 68.5]° [68.4, 70.7]° 

#11 [70.1, 72.3]° [68.6, 71.0]° [70.8, 72.9]° 

#12 [72.4, 74.6]° [71.1, 73.5]° [73.0, 75.2]° 

#13 [74.7, 76.7]° [73.6, 75.7]° [75.3, 77.2]° 

#14 [76.8, 78.7]° [75.6, 77.8]° [77.3, 79.2]° 

#15 [78.8, 80.6]° [77.9, 79.8]° [79.3, 81.1]° 

#16 [80.7, 82.4]° [79.9, 81.7]° [81.2, 82.8]° 

A B C

D E F
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#17 [82.5, 84.1]° [81.8, 83.6]° [82.9, 84.4]° 

#18 [84.2, 85.7]° [83.7, 85.3]° [84.5, 85.9]° 

#19 [85.8, 87.3]° [85.4, 87.3]° [86.0, 87.4]° 

#20 [87.4, 90]° [87.4, 90]° [87.5, 90] 
Table A 4: Range of angles (𝜃𝜇⃗⃗ ) defined by [min, max] values, contained in each 𝜃𝜇⃗⃗  irregular bin per fibre dispersion (κ range) 

in the ex vivo data (section 3.3.1). The angular offset, 𝜃0 (see section 3.3.1), is defined as the angular average of the 1st 

irregular bin, resulting in 17.3° (κ < 1), 20.4° (1 ≤ κ < 2.5) and 22.9° (2.5 ≤ κ).  
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