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Social Learning of a Spatial Task by Observation Alone
Thomas Doublet™, Mona Nosratit and Clifford G. Kentros!

! Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Trondheim, Norway

ABSTRACT

Interactions between conspecifics are central to the acquisition of useful memories in the real world.
Observational learning, i.e., learning a task by observing the success or failure of others, has been reported in
many species, including rodents. However, previous work in rats with NMDA-receptor blockade has shown that
even extensive observation of an unexplored space through a clear barrier is not sufficient to generate a stable
hippocampal representation of that space. This raises the question of whether rats can learn a spatial task in a
purely observed space from watching a conspecific, and if so, does this somehow stabilize their hippocampal
representation? To address these questions, we designed an observational spatial task in a two-part environment
that is nearly identical to that of the aforementioned electrophysiological study, in which an observer rat watches
a demonstrator animal to learn the location of a hidden reward. Our results demonstrate that rats do not need to
physically explore an environment to learn a reward location, provided a conspecific demonstrates where it
is. We also show that the behavioral memory is not affected by NMDA receptor blockade, suggesting that the
spatial representation underlying the behavior has been consolidated by observation alone.

Keywords: spatial memory, social behavior, learning by observation, memory, social memory.

INTRODUCTION

In humans and many animals, new behaviors may 47 learning successful strategies from conspecific
be learned through the observation of a 48 experience in various spatial tasks (Morris water
conspecific's experience. Observational learning 49 mazes). Takano claimed that rats can learn efficient
has been reported in invertebrates (Worden and 50 strategies for success in a spatial task from
Papaj, 2005), vertebrates such as birds and fish 51 inefficient experiences of conspecifics navigating
(Dawson and Foss, 1965) (Laland and Williams, 52 in a known space. Finally, Bem showed that
1998), mammals (Bunch and Zentall, 1980) and 53 observing a conspecific lead to more relevant
humans (Bandura, Ross and Ross, 1961). 54 search strategies. Furthermore, Bem showed that
55 observing an experienced demonstrator is
56 beneficial only when what is observed is relevant
57 or novel enough to complement existing
58 knowledge. Unfortunately, none of these studies
59 indicate whether it is possible to develop a stable
60 representation of an observed, unexplored space.

Rodents can adjust their behavior to the behavior of
conspecifics using visual information (Worden and
Papaj, 2005) (Keum and Shin, 2019). By observing
a conspecific, rodents can more quickly learn
complex tasks such as pressing a lever to obtain
rewards or cooperative behavior in social games
(Zentall and Levine, 1972) (Heyes and Dawson, 61 Rodents can independently remember locations in
1990) (Viana et al., 2010). Interestingly, observing 62 a radial arm maze (Olton, 1977) or find a hidden
a conspecific's failure to succeed is more 63 platform in a water maze (Morris, 1984). Tolman
informative for learning a task through observation 64 theorized that animals may have an internal spatial
than observing its success (Templeton, 1998). 65 map that could represent geometric coordinates of
66 the environment and effectively aid navigation
67 even when visiting a space for the first time
68 (Tolman et al., 1946) (Tolman, 1948). The spatial
69 firing fields of the hippocampus and associated
! o 70 cortices has been proposed to be the neural
al., 2000) (Leggio et al., 2003) (Petrosini et al, 71 instantiation of the cognitive map of space theory

2003). (Takano et al., 2017) (Bem et al, 2018.)' 72 (Fyhn et al., 2004) (Buzséki and Moser, 2013)
Leggio demonstrated the role of the cerebellum in 73 (Moser, Moser and McNaughton, 2017)

All known studies on observational learning of a
spatial task imply the learning of efficient strategies
to accomplish the task or include subjects with
previous self-experience of that space (Leggio et
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These spatial firing fields include place cells 126 MATERIALS AND METHODS

(O'Keefe and Dostrovsky, 1971) (O'Keefe and
Nadel, 1978) (Wilson and McNaughton, 1993),
grid cells (Hafting et al., 2005) (Sargolini et al.,
2006) (Barry et al., 2007), border cells (Solstad et
al., 2008) (Savelli, Yoganarasimha and Knierim,
2008), and head-direction cells (Ranck, 1985)
(Taube, Muller and Ranck, 1990). Place cells, for
example, are hippocampal neurons that are
selectively activated when an animal occupies a
particular location of a particular environment,
referred to as its place field. The processes that
control the generation of a hippocampal
representation of an environment remain poorly
understood, including whether they can be formed
in spaces that are simply observed or whether direct
experience of the space is necessary. The difficulty
with this is that one cannot know that a cell has a
place field at a particular location until the animal
visits that location.

However, the only electrophysiological study to
directly examine whether rats can create a stable
place cell map of an unexplored space found the
opposite (Rowland, Yanovich and Kentros, 2011).
Rats were trained in 2 concentric boxes, with the
inner box made of clear plexiglass and the outer
box containing the only available cues. During
observational training in the inner box, they could
see the outer box but could not physically explore
it. On the test day, the animals were able to explore
the entire environment either with or without
NMDA receptor blockade, which prevents
stabilization of a newly formed place cell map but
does not destabilize a previously formed one
(Kentros et al., 1998). This allowed them to show
quite clearly that the map was stabilized only after
direct exploration (i.e., the place fields of the drug
animals were stable in the inner box but unstable in
the outer box, while the saline ones were stable
everywhere).

However, this raises the question as to whether a
rat cannot learn spatial information purely by
observation, or whether they simply had no reason
to do so. We therefore modified this maze by
adding 12 pebble-covered food wells to the outer
box, one of which contained a hidden reward. The
animal in the inner box had to learn the goal
location purely by observation of a trained
conspecific’s behavior in the inaccessible outer
box. Thus, this novel observational learning task
combines both spatial and social learning in one.
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Animals

Animals were bred locally at NTNU. They were
kept in a 12 h LD light cycle and fed ad libitum.
They were housed in environmentally enriched
cages in a humidity and temperature-controlled
environment. 45 male Long Evans rats were
included in the present study (3-7 months old at the
time of testing). All procedures took place during
the light cycle.

All procedures were approved by the National
Animal Research Authority of Norway. They were
performed in accordance with the Norwegian
Animal Welfare Act and the European Guidelines
for the Care and Use of Laboratory Animals
(directive 2010/63/UE).

Experimental Design

We tried to keep the experimental design as similar
to that previously reported with place cell
recordings (Rowland, Yanovich, and Kentros,
2011), only adding the social transmission of the
spatial task. Thus, experiments were conducted in
a customized behavioral apparatus that consisted of
two square boxes: a transparent Plexiglas inner box
(50 x 50 cm) within an opaque outer box (100 x
100 cm) with asymmetric spatial cues available to
the animal. Additionally, twelve symmetrically
distributed wells were included in the outer space
between the two boxes. An equal number of
pebbles covered each well to hide the potential
reward (chocolate loops, Nestle). Before each
animal was introduced into the apparatus, the
pebbles that had a cue were replaced with new
ones. An accessible but not visible reward was
placed in one of the wells. Rewards were also
placed evenly under the entire perforated floor of
the apparatus to ensure a uniform odor in all wells
and to minimize the possibility that a rat could
identify the correct well by odor. The reward had
an 8.3% probability of being found by the rats by
chance.

Behavioral Testing

All rats were familiarized to the experimental
environment daily for at least three sessions of
thirty minutes each. During this time, the rats were
confined in the transparent inner box, which was
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located within the outer box (as shown in Figure
1). This allowed the inner box to be experienced
directly, while the outer box could only be
observed. At the end of each familiarization
session, the rat was returned to its home cage for at
least 8 hours. The floor, pebbles, and walls of the
maze were cleaned with 90% ethanol after each
session. Animals were habituated to the reward in
their home cage daily before the start of the
experiment.

Rats were tested for task success (i.e., number of
erroneous attempts) and time taken to find the
reward (i.e., latency) during their first direct
exploration of the outside space. Subjects were
divided into naive (n=27) and trained animals
(n=18). Naive animals were tested for the ability to
find the reward without any observational training.
After at least twenty consecutive successful trials,
the naive animals became demonstrator animals
(see Figure Supp. 1). Observer animals were
trained on the location of the reward by the
demonstrator animals. During training sessions,
each observer animal was paired with the same
demonstrator animal, and the reward was always in
the same single well (see Figure 1A-B).
Observational training consisted of five rewards
(for the demonstrator) daily for five consecutive
days (see Figure 1C). Each new reward was made
available five minutes after the previous reward
was discovered. Animals were not removed during
rebaiting to avoid stress and disengagement on the
task (Cloutier, 2015). Instead, all wells were
manipulated with obscured vision for the animals.
Observational training was completed after 25
rewards were found by the demonstrator animal in
the presence of the paired observer located in the
plexiglass inner box. After observational training
was completed, the observer rat was allowed to
explore the outside space and find the reward itself.
As in our previous study (Rowland, Yanovich, and
Kentros, 2011), the outside space was entered
through the opening of a plexiglass wall opposite
the reward well. The reward well was in a different
location for each pair of animals to mix up the cues.
To increase social interaction, the animal pairs
were siblings housed in adjacent home cages.
Finally, the NMDA receptor antagonist CPP [(£)-
3-(2-carboxypiperazin-4-yl) propyl-1-phosphonic
acid, 10 mg/kg, Sigma] was injected
intraperitoneally in a subset of 5 observer animals
before the first direct exploration of the outside
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space (but after the observation stage was
complete).

Success and latency of observer and naive groups
were compared. A trial was considered successful
if the animal made no mistakes prior to digging in
the correct well. A mistake was counted as active
digging in an unrewarded well. Pebble removal that
was not performed with the head or front limbs or
while the animal was running was not counted as
active digging. Evaluation of animal performance
by experimenters was confirmed by video analysis
of two blinded students independent of the study
who reached identical conclusions (2 students
quantified trials of 10 animals). A separate cohort
of observer animals was tested with no reward
present during the initial outside direct exploration
(see Figure 1C). A third cohort of observer animals
was tested one hour after CPP injection, with no
reward present during the first outside direct
exploration (see Figure 1C).

Data Analysis

All data were analyzed using the average time
taken to find the reward from entering the outside
space, the total number of mistakes made, and the
percentage of successful animals for each trial. All
values were expressed as mean + standard error of
the mean (SEM). All behavioral data were
analyzed using the Pearson chi square test and the
unpaired mean difference between control and test,
as indicated, using SPSS software (IBM) and
MATLAB (Ho, 2019). All tests were two-tailed
tests. For the unpaired mean difference between
control and test, 5000 bootstrap samples were
taken, and the confidence interval is bias-corrected
and accelerated. Reported P values are the
likelihoods of observing the effect size if the null
hypothesis of zero difference is true. Effect sizes
and confidence intervals (CI) are reported as:
Effect size [CI width lower bound; upper bound].

Cohort and sample sizes were reported in the text
and figures. Statistical significance was set at p <
0.05 ““*”, p<0.01 ““x+>” and p <0.001 ““*x*x"",

RESULTS
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Experiment 1: Learning a reward location in
naive rats

Previous studies in rodents have found that learning
a spatial task follows a logarithmic curve of success
until a plateau is reached. Our task described in
Figure 1 followed the same rule. Figure 2A shows
the progression of success for a naive animal in this
task. A success is counted if the animal found the
reward on the first try without digging in other
wells. The probability of finding the reward was
8.3% (1 well out of 12). The probability of success
on the first reward for naive animals is comparable
to chance (12.5%). The percentage of successful
naive animals at the first 15 rewards were,
respectively: (1) 12.5% £ 8.5 (mean percentage +
SEM); (2) 55.6% £ 12.1; (3) 83.3% = 9.0; (4)
81.3% £ 10.1; (5) 92.9% £ 7.1; (6) 89.5% + 7.2; (7)
94.7% + 5.3; (8) 100%; (9) 100%; (10) 100%; (11)
94.7% + 5.3; (12) 100%; (13) 100%; (14) 100%
and (15) 100% (n=14). Success at the first direct
exploration was statistically different from the
second (Pearson chi-square = 6.88, 99.9%
confidence, n1= 16 and n.= 18). Similarly, success
at the second direct exploration was statistically
different compared to the third (Pearson chi-square
= 3.27, 95% confidence, no= 18 and n3= 18).

Figure 2B shows the reduction of mistakes across
15 reward retrievals. A mistake was counted as
actively digging in a non-target well, with a
maximum number of mistakes per trial of 11. This
figure shows that naive animals stopped making
errors after 11 trials (n=14 rats). Mistakes are
shown here relative to the first direct exploration.
Animals were monitored until 20 consecutive
successes, but only the first fifteen rewards were
shown in Figure 2. Recall that a naive rat was
considered a demonstrator rat after at least 20
consecutive successful trials, and thus the observer
rats were effectively exposed to the perfect
performance of the task by the demonstrator
animal.

Finally, the time it took the naive animals to find
each reward (Figure 3B, blue curve) decreased
similarly from the first reward and reached a
plateau after 4 rewards. The time taken by naive
animals to find each of the first five rewards was:
(1) 1515.6 + 484.4; (2) 277.3 £ 89.5; (3) 347.6 +
189.3; (4) 64.9 + 15.5 and (5) 110.9 + 30.7 seconds
(n=17).
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From this we can conclude that the task needs
experience to be completed and cannot be achieved
without it.

Experiment 2: Learning the location of a
reward through social observation

To investigate whether learning the location of a
hidden reward is possible through social
observational training, we trained observer rats to
find the location of a hidden reward using
demonstrator animals (5 trials daily for 5
consecutive days). We then had the observer
animals go out to explore the observed space and
find the reward (see Figure 1). The observer group
successfully found the reward in 100% of the
animals without error during their first direct
exploration of the outside space (N=6) (Figure
3A). All subsequent direct explorations were also
100% successful (n=15 trials, 5 animals).
Performance on the first direct exploration was
statistically different from that of the naive animals
(Pearson chi-square = 14.44, 99.9% confidence,
nn= 16 and no= 6). Performance across trials did not
differ significantly between observer animals.

While latency towards reward is a common
measure of spatial performance, it is not
particularly informative in this case because the
animals invariably first explore the novel space
prior to engaging with the spatial task. Still, there
was an appreciable difference between trained and
untrained animals. The animals in the observer
group required much less time to find the first
rewards (Figure 3B, red curve). It was around half
the time it took for naive animals (Figure 3B, blue
curve). Thus, time to reward was significantly
different between the naive and observer groups for
the first two rewards. The unpaired mean
difference between naive and observer animals was
-1.17+10° [99.9% CI -2.31+10%, -4.12+107] for the
first trial and -1.85+107 [95.0% CI -3.85+102, -20.1]
for the second trial. The latency of observers was
not significantly more than for demonstrators
(Figure 3B, green curve), The unpaired mean
difference between observer and demonstrator
animals was 1.44e+02 [95.0% CI -1.17-107
2.85+107] for the first trial and 49.0 [95.0% CI -
18.1, 1.66+10?] for the second trial. So far as errors
go, the observer and demonstrator groups
performed comparably even during the first two
trials (1) -1.44+10? [95.0% CI -2.87+102, 1.09+10%]
and (2) 49.0 [95.0% CI -16.5, 1.67~107]. The time
it took the naive and demonstrator rat groups to
obtain the rewards was significantly different for
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all first five rewards (1) -1.32«10° [99.9% CI -
2.65:10%, -5.99-107; (2) -3.04+10? [99.9% CI -
8.6+102, -35.4]; (3) -3.37+10% [99.9% CI -1.08+10°,
-37.8]; (4) -56.6 [99.9% CI -1.17+102, -19.4] and
(5) -1.04+102 [99.9% CI -2.35+102, -46.6]).

Thus, unlike the naive animals, the observer and
demonstrator groups did not make mistakes in
accomplishing the task. In addition, the time it took
the observer animals to successfully complete the
task was comparable to that of the demonstrators,
but both groups were statistically faster than the
naive animals. Observer animals tend to explore
the maze once or twice before engaging in the task.
The time required to learn and successfully
complete the task is coherent with the literature for
such a naturalistic social learning task (no food
deprivation, no time limit). This task is very time
consuming, and the latency required for the
animals to find the reward makes time less
meaningful than success or failure in the task.

We controlled for cleaning quality to ensure that
odor was not a factor for animals to navigate to the
reward via olfaction. When two naive rats explored
the outside area for the first time within 30 minutes,
the first well dug by the second animal was
compared to the reward location of the previous
animal. Among the 12 pairs of animals, the second
rat never dug the first animal's reward well first.
This result confirmed that cleaning within two
sessions was effective and had no undesirable
effect on the outcome of the next animal.

Experiment 3: Is the behavior dependent on
olfactory cues?

Even though reward odor was distributed
throughout the maze, it is possible that the rats were
still capable of using olfactory gradients to solve
the task without observational spatial learning. To
investigate the influence of reward odor on animal
navigation, we compared the ability of naive
animals to dig in the correct well with and without
reward. Figure 4A shows the average number of
mistakes on the first trial (how many incorrect
wells were dug before the correct one) for the
rewarded and non-rewarded naive animals. For the
latter animals, no accessible reward was hidden, so
we can rule out navigation by smell to the correct
well. Thus, for this group, the number of mistakes
made before digging in a given well would be
completely random, so we can control for whether
the smell of the hidden chocolate loop might
provide a cue to reduce the number of mistakes
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made. The difference between the two naive groups
was significant, indicating that the reward odor
could reduce the number of errors made by the
animals in the rewarded condition (Pearson chi
square = 15.44, 95% confidence, nr = 16 and nnr=
7). The number of mistakes made in the first
exposure was 4.4 (SEM = 0.8) for unrewarded
naive animals and 2.0 (SEM = 0.3) for rewarded
animals. However, the number of successful
animals appeared to be independent of the presence
of a reward for naive animals. Both groups were
close to chance (8.3%) at the first direct exploration
with 12.5% (nr =16, SEM = 8.5) and 0% (nnr=7)
for rewarded and non-rewarded animals,
respectively (Figure 3A for naive rewarded and
Figure 4B for naive non rewarded). The difference
between the two naive groups was not statistically
significant (Pearson chi square = 0.98, nr= 16, and
nnr= 7). The time required to find the reward at
first exposure was also not significantly different,
1515.6 £+ 484 and 1404 + 744 seconds, respectively
(unpaired mean difference is -1.12e+02 [95% CI -
2.04e+03, 3.25e+03])).

To preclude localization of the reward by the sense
of smell of the observer animals, the reward was
removed after observational training but before the
first outside direct exploration for a cohort of
observer animals. Each of these observer animals
was trained with a paired demonstrator that
performed 25 trials, similar to previously
described. Observer animals that explored the
outside environment without reward after
observational training were 87.5% successful on
their first direct exploration (n= 8 animals, SEM =
12.5), see Figure 4B. Only one observer animal
made an error in the task, and he made 6 mistakes
during his first direct exploration. The percentage
of success on the first trial was not statistically
different between the rewarded and non-rewarded
observer cohorts (Pearson square= 0.81, nr = 6 and
nnr= 8, respectively), nor was the number of
mistakes (unpaired mean difference is 0.75 [95%
CI1 0.0, 3.75]). The difference in mistakes between
the unrewarded naive and observer groups was
statistically significant, as was the difference in
mistakes between the rewarded groups (Pearson
square= 10.50, 99.9% confidence, n= 7 and n= 8,
respectively). Rewarded and unrewarded observer
animals showed similar performance, ruling out a
possible olfactory influence on task success.

Experiment 4: A stable representation of space
is formed before the first direct exploration
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To confirm that a stable representation of space can
be formed before the first physical direct
exploration of a space, we injected CPP (an NMDA
receptor antagonist). CPP prevents stabilization of
a newly formed hippocampal representation of an
environment but does not destabilize an already
formed one (Kentros et al., 1998). Interestingly,
observer animals that explored the observed space
one hour after an injection of the NMDA receptor
antagonist CPP performed similarly to animals that
did not receive an injection (Figure 4B).

These observer animals with CPP that explored the
outside environment without reward were 100%
successful on their first direct exploration (n= 5
animals). The three observer cohorts (observer,
observer unrewarded and observer unrewarded
with CPP) share comparable chances of success in
the task.

During these unrewarded experiments
(Experiments 3 and 4), the animals performed the
task only once because of extinction of the
memory.

For all animals, the percentage of success on the
first trial was statistically different when the naive
and observer groups were compared (Pearson chi
square= 23.25, 99.9% confidence, n=23 and n=19,
respectively). The percentage of success on the first
trial was 8.7% (SEM = 6.0) for naive animals and
92.3% (SEM =7.7) for observer animals, clearly
indicating knowledge of the goal location from
observation alone

DISCUSSION

The behavioral studies presented are to our
knowledge the first to directly investigate the
performance of rodents in a spatial task in an
unexplored space with training exclusively based
on observation of a conspecific performing that
task. We found that this observation led to highly
significant improvements in both accuracy and
latency towards the goal as compared to naive
animals, even though the structure and operant
nature of the task means that the observer animals’
native tendency to explore a novel space (the outer
box) competes with their engagement with the
digging task.

The performance improvement followed a learning
curve similar to that described in classical learning
theory (Wright, 1936) (Anzanello and Fogliatto,
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2011). In this model, performance on a repetitive
task improves through repetition. A learning period
is then followed by a learned period in which
performance reaches a plateau. Figure 2 shows the
success rate of naive animals in the task for each
trial. We can then track performance in the task as
experience increases. The percentage of successful
animals increases significantly from reward one to
reward two and from reward two to reward three
and so on.

Figure 3 compares the success rate (digging in the
right well) in the first trial for naive versus observer
animals. The observer group clearly outperforms
the naive group of animals (100% success versus
12%; chance is 8.3%). The situation is similar for
the second reward. Moreover, the same conclusion
can be drawn for the time taken to find the reward
in the first two trials. Furthermore, the observer
animals did not make a mistake in the next thirteen
trials and thus do not fit a learning curve.

These results imply that the observer animals
learned the goal location by watching a
conspecific, as they were able to find the reward
successfully from the first trial. While certainly
some of the performance difference between
observers and naive animals had to do with
observing nonspatial features of the task (e.g. the
fact there is a reward that you have to dig for), the
goal location as well was learned by observation
because 1) the observer animals outperformed the
naive animals from the first trial and not after
several trials and 2) there is no improvement by
additional exploratory learning in the observer
animals, which contradicts previously described
cases involving efficient strategies (Leggio et al.,
2000) (Leggio et al., 2003) (Takano et al., 2017)
(Bem et al., 2018). Comparison between rewarded
and non-rewarded observer animals (Figures 3
and 4) shows no difference between the two
cohorts in initial direct exploration of the observed
space, ruling out the possibility that the animals'
sense of smell could help them navigate to the
reward.

This suggests that animals trained by observation
have a representation of the reward location before
its first direct exploration. This is in sharp contrast
to our previous study which clearly showed the
opposite  result: a  stable  hippocampal
representation of a space required its direct
experience (Rowland, Yanovich, and Kentros,
2011). The destabilization of the place fields in this
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task was caused by CPP injections as well, which
have consistently destabilized newly formed place
fields (Kentros et al., 1998) (Rowland, Yanovich,
and Kentros, 2011) (Dupret et al., 2010) (O’Neill
et al., 2010) but did not affect performance in this
observational task. Since the only difference was
the observational learning of a spatial goal location,
this means that either the observed space was
stabilized by observation alone, or that a stable
place cell representation is not necessary for spatial
task performance.

While these possibilities can only be
disambiguated by electrophysiological recordings,
the preponderance of evidence points to the first
option. Bats and rats have a cognitive
representation of a familiar space being explored
by a conspecific (Omer et al., 2018) (Danjo,
Toyoizumi and Fujisawa, 2018). In these two
studies, the place cells of the observer animals fired
relative to the position of the observed animal's
location, providing a neural basis for such a thing.
Similarly, “preplay” suggest that rats can make a
spatial representation from distance (Gupta et al.,
2010) (Dragoi and Tonegawa, 2011) (Olafsdottir et
al., 2015). The study most similar to this one
showed that a trained demonstrator can only
"teach” an observer animal if what is being
observed is sufficiently relevant or novel (Bem et
al., 2018). In their study, the observer had already
physically experienced the observed space (thereby
creating a stable place cell map of it) and just had
to learn the location of the rewards in that space.
Moreover, it is entirely consistent with the
observation that increased attention to space
increases the stability of a hippocampal
representation (Kentros et al., 2004) (Muzzio et al.,
2009). Remote (i.e., observational) exploration of a
space may be far less capable of stabilizing its
hippocampal representation (Rowland, Yanovich,
and Kentros, 2011), but the rats in that study were
given no reason to attend to the outer box. Perhaps
if the animal pays enough attention to the space, it
will stabilize its place cells of it.

Of course, the possibility that stable place cells are
not necessary for spatial task performance cannot
be ruled out since the present study has no
electrophysiological recordings, but this would
contradict most studies which have examined this
idea. Transgenic animals with behavioral deficits in
spatial tasks (Renaudineau et al., 2009) (Arbab,
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Pennartz, and Battaglia, 2018) (Rotenberg et al.,
1996) tend to have unstable place fields, and a
chemogenetic  manipulation that led to
hippocampal remapping led to clear deficits in
spatial memory retrieval (Kanter et al., 2017). Still,
it remains possible that “third-person”
representations of space are formed distinct from
more familiar forms of hippocampal spatial firing.
Regardless, we have shown that rats can obtain
sufficient knowledge of an unexplored space to
successfully locate a hidden reward purely by
observing a conspecific’s behavior. This task
should therefore provide a means to explore both
the structure of a cognitive map and the
representation of a conspecific’s behavior.
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933 FIGURE 1 | Experimental design. (A) The experimental environment consisted of a
934 transparent inner box and an opaque outer box. The gray areas indicate the regions explored by
935 the tested rat. (B) Image of the experimental apparatus with the right wall of the transparent
936 inner box open. The reward is hidden in one of the 12 wells and covered with gravels. One of
937  the four walls of the opaque outer box is white and provides a distal cue to the animals. (C)
938  Schematic representation of the experiment. The familiarization phase, in which the
939  experimental animal is confined to the inner box, is followed by the observational training
940 phase, in which it can observe the demonstrator animal navigating the outer space (blue).
941  Finally, on the day of direct exploration, the observer animal is allowed to navigate in the
942  observed space. One session is held daily, for a total of 9 sessions (3 for familiarization, 5 for
943  observational training, and 1 for direct exploration). The red and blue areas correspond
944  respectively to the space that the observer and demonstrator animals can physically explore.
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954 FIGURE 2 | Spatial memory task learned through exploratory experience. (A) Learning
955  progress of naive rats across 15 reward retrievals (3 days) calculated as percentage of successful
956  animals for each trial (n= 14). Error bars are mean * standard error of the mean (SEM). Gray
957  dashed line represents success by chance. (B) Number of mistakes per trial by naive rats across
958  15reward retrievals (n=14). Number of mistakes is the average normalized number of mistakes
959  made for each reward, relative to the first trial.

960 *p<0.05, ***p<0.001.
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FIGURE 3 | Spatial memory task learned by observational experience in an unexplored
environment. (A) Effect of learning an unexplored space by observation by percentage of
success on the task for naive (blue) and observer animals (red) on the first direct exploration.
Performance on the first direct exploration was statistically different for the observer animals
compared to the naive animals (Pearson chi square= 14.44, 99.9% confidence, n naive = 16, n
observer = 6). Error bars are mean * standard error of the mean (SEM). Gray dashed line
represents success by chance. (B) Effect of learning the unexplored space by observation using
the average time to find the reward across trials (n naive = 17, n observer = 5). Performance on
the first and second direct explorations was statistically different in observer (red) compared
with naive animals (blue) (unpaired mean difference on first reward = -1.17*103, 99.9%
confidence; unpaired mean difference on second reward = -1.85*102, 95.0% confidence).
Demonstrator (green) for comparison. Error bars are mean + standard error of the mean (SEM).
*p <0.05, *** p <0.001.
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994

995 FIGURE 4 | Success on the spatial task is independent of olfactory cues. (A) Mean number
996  of mistakes on the first trial for rewarded and unrewarded naive animals. Performance on the
997 first direct exploration was statistically different for rewarded and non-rewarded naive animals
998  (Pearson chi-square= 15.44, 95% confidence, n naive rewarded = 16, n naive non-rewarded =
999 7). Error bars are mean + standard error of the mean (SEM). Gray dashed line represents success
1000 by chance. (B) Effect of learning an unexplored space by observation using the percentage of
1001  success in the unrewarded task for naive (blue) and observer animals (red) on the first direct
1002  exploration. Performance on the first direct exploration was statistically different for observer
1003  animals without reward (red) compared to naive animals without reward (blue) (Pearson chi-
1004  square= 10.50, 99.9% confidence, n naive animals without reward = 7, n observer without
1005  reward = 8). No statistical difference was found between unrewarded observer animal control
1006  and CPP groups (n observer non-rewarded = 8, n observer non-rewarded CPP = 5). Error bars
1007  are mean * standard error of the mean (SEM). Gray dashed line represents success by chance.

1008 *p <0.05, *** p < 0.001.
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