

1 Social Learning of a Spatial Task by Observation Alone

2 Thomas Doublet^{1*}, Mona Nosrati¹ and Clifford G. Kentros¹

3 ¹ Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Trondheim, Norway

4 5 ABSTRACT

6 Interactions between conspecifics are central to the acquisition of useful memories in the real world.
7 Observational learning, i.e., learning a task by observing the success or failure of others, has been reported in
8 many species, including rodents. However, previous work in rats with NMDA-receptor blockade has shown that
9 even extensive observation of an unexplored space through a clear barrier is not sufficient to generate a stable
10 hippocampal representation of that space. This raises the question of whether rats can learn a spatial task in a
11 purely observed space from watching a conspecific, and if so, does this somehow stabilize their hippocampal
12 representation? To address these questions, we designed an observational spatial task in a two-part environment
13 that is nearly identical to that of the aforementioned electrophysiological study, in which an observer rat watches
14 a demonstrator animal to learn the location of a hidden reward. Our results demonstrate that rats do not need to
15 physically explore an environment to learn a reward location, provided a conspecific demonstrates where it
16 is. We also show that the behavioral memory is not affected by NMDA receptor blockade, suggesting that the
17 spatial representation underlying the behavior has been consolidated by observation alone.

18 Keywords: spatial memory, social behavior, learning by observation, memory, social memory.

19 20 INTRODUCTION

21 In humans and many animals, new behaviors may
22 be learned through the observation of a
23 conspecific's experience. Observational learning
24 has been reported in invertebrates (Worden and
25 Papaj, 2005), vertebrates such as birds and fish
26 (Dawson and Foss, 1965) (Laland and Williams,
27 1998), mammals (Bunch and Zentall, 1980) and
28 humans (Bandura, Ross and Ross, 1961).

29 Rodents can adjust their behavior to the behavior of
30 conspecifics using visual information (Worden and
31 Papaj, 2005) (Keum and Shin, 2019). By observing
32 a conspecific, rodents can more quickly learn
33 complex tasks such as pressing a lever to obtain
34 rewards or cooperative behavior in social games
35 (Zentall and Levine, 1972) (Heyes and Dawson,
36 1990) (Viana et al., 2010). Interestingly, observing
37 a conspecific's failure to succeed is more
38 informative for learning a task through observation
39 than observing its success (Templeton, 1998).

40 All known studies on observational learning of a
41 spatial task imply the learning of efficient strategies
42 to accomplish the task or include subjects with
43 previous self-experience of that space (Leggio et
44 al., 2000) (Leggio et al., 2003) (Petrosini et al.,
45 2003) (Takano et al., 2017) (Bem et al., 2018).
46 Leggio demonstrated the role of the cerebellum in

47 learning successful strategies from conspecific
48 experience in various spatial tasks (Morris water
49 mazes). Takano claimed that rats can learn efficient
50 strategies for success in a spatial task from
51 inefficient experiences of conspecifics navigating
52 in a known space. Finally, Bem showed that
53 observing a conspecific lead to more relevant
54 search strategies. Furthermore, Bem showed that
55 observing an experienced demonstrator is
56 beneficial only when what is observed is relevant
57 or novel enough to complement existing
58 knowledge. Unfortunately, none of these studies
59 indicate whether it is possible to develop a stable
60 representation of an observed, unexplored space.

61 Rodents can independently remember locations in
62 a radial arm maze (Olton, 1977) or find a hidden
63 platform in a water maze (Morris, 1984). Tolman
64 theorized that animals may have an internal spatial
65 map that could represent geometric coordinates of
66 the environment and effectively aid navigation
67 even when visiting a space for the first time
68 (Tolman et al., 1946) (Tolman, 1948). The spatial
69 firing fields of the hippocampus and associated
70 cortices has been proposed to be the neural
71 instantiation of the cognitive map of space theory
72 (Fyhn et al., 2004) (Buzsáki and Moser, 2013)
73 (Moser, Moser and McNaughton, 2017).

74 These spatial firing fields include place cells
75 (O'Keefe and Dostrovsky, 1971) (O'Keefe and
76 Nadel, 1978) (Wilson and McNaughton, 1993),
77 grid cells (Hafting et al., 2005) (Sargolini et al.,
78 2006) (Barry et al., 2007), border cells (Solstad et
79 al., 2008) (Savelli, Yoganarasimha and Knierim,
80 2008), and head-direction cells (Ranck, 1985)
81 (Taube, Muller and Ranck, 1990). Place cells, for
82 example, are hippocampal neurons that are
83 selectively activated when an animal occupies a
84 particular location of a particular environment,
85 referred to as its place field. The processes that
86 control the generation of a hippocampal
87 representation of an environment remain poorly
88 understood, including whether they can be formed
89 in spaces that are simply observed or whether direct
90 experience of the space is necessary. The difficulty
91 with this is that one cannot know that a cell has a
92 place field at a particular location until the animal
93 visits that location.

94 However, the only electrophysiological study to
95 directly examine whether rats can create a stable
96 place cell map of an unexplored space found the
97 opposite (Rowland, Yanovich and Kentros, 2011).
98 Rats were trained in 2 concentric boxes, with the
99 inner box made of clear plexiglass and the outer
100 box containing the only available cues. During
101 observational training in the inner box, they could
102 see the outer box but could not physically explore
103 it. On the test day, the animals were able to explore
104 the entire environment either with or without
105 NMDA receptor blockade, which prevents
106 stabilization of a newly formed place cell map but
107 does not destabilize a previously formed one
108 (Kentros et al., 1998). This allowed them to show
109 quite clearly that the map was stabilized only after
110 direct exploration (i.e., the place fields of the drug
111 animals were stable in the inner box but unstable in
112 the outer box, while the saline ones were stable
113 everywhere).

114 However, this raises the question as to whether a
115 rat *cannot* learn spatial information purely by
116 observation, or whether they simply had no reason
117 to do so. We therefore modified this maze by
118 adding 12 pebble-covered food wells to the outer
119 box, one of which contained a hidden reward. The
120 animal in the inner box had to learn the goal
121 location purely by observation of a trained
122 conspecific's behavior in the inaccessible outer
123 box. Thus, this novel observational learning task
124 combines both spatial and social learning in one.

125

126 MATERIALS AND METHODS

127 Animals

128 Animals were bred locally at NTNU. They were
129 kept in a 12 h LD light cycle and fed ad libitum.
130 They were housed in environmentally enriched
131 cages in a humidity and temperature-controlled
132 environment. 45 male Long Evans rats were
133 included in the present study (3-7 months old at the
134 time of testing). All procedures took place during
135 the light cycle.

136 All procedures were approved by the National
137 Animal Research Authority of Norway. They were
138 performed in accordance with the Norwegian
139 Animal Welfare Act and the European Guidelines
140 for the Care and Use of Laboratory Animals
141 (directive 2010/63/UE).

142

143 Experimental Design

144 We tried to keep the experimental design as similar
145 to that previously reported with place cell
146 recordings (Rowland, Yanovich, and Kentros,
147 2011), only adding the social transmission of the
148 spatial task. Thus, experiments were conducted in
149 a customized behavioral apparatus that consisted of
150 two square boxes: a transparent Plexiglas inner box
151 (50 × 50 cm) within an opaque outer box (100 ×
152 100 cm) with asymmetric spatial cues available to
153 the animal. Additionally, twelve symmetrically
154 distributed wells were included in the outer space
155 between the two boxes. An equal number of
156 pebbles covered each well to hide the potential
157 reward (chocolate loops, Nestle). Before each
158 animal was introduced into the apparatus, the
159 pebbles that had a cue were replaced with new
160 ones. An accessible but not visible reward was
161 placed in one of the wells. Rewards were also
162 placed evenly under the entire perforated floor of
163 the apparatus to ensure a uniform odor in all wells
164 and to minimize the possibility that a rat could
165 identify the correct well by odor. The reward had
166 an 8.3% probability of being found by the rats by
167 chance.

168

169 Behavioral Testing

170 All rats were familiarized to the experimental
171 environment daily for at least three sessions of
172 thirty minutes each. During this time, the rats were
173 confined in the transparent inner box, which was

174 located within the outer box (as shown in **Figure 1**). This allowed the inner box to be experienced
175 directly, while the outer box could only be
176 observed. At the end of each familiarization
177 session, the rat was returned to its home cage for at
178 least 8 hours. The floor, pebbles, and walls of the
179 maze were cleaned with 90% ethanol after each
180 session. Animals were habituated to the reward in
181 their home cage daily before the start of the
182 experiment.

184 Rats were tested for task success (i.e., number of
185 erroneous attempts) and time taken to find the
186 reward (i.e., latency) during their first direct
187 exploration of the outside space. Subjects were
188 divided into naive (n=27) and trained animals
189 (n=18). Naive animals were tested for the ability to
190 find the reward without any observational training.
191 After at least twenty consecutive successful trials,
192 the naive animals became **demonstrator** animals
193 (see **Figure Supp. 1**). **Observer** animals were
194 trained on the location of the reward by the
195 demonstrator animals. During training sessions,
196 each observer animal was paired with the same
197 demonstrator animal, and the reward was always in
198 the same single well (see **Figure 1A-B**).
199 Observational training consisted of five rewards
200 (for the demonstrator) daily for five consecutive
201 days (see **Figure 1C**). Each new reward was made
202 available five minutes after the previous reward
203 was discovered. Animals were not removed during
204 rebaiting to avoid stress and disengagement on the
205 task (Cloutier, 2015). Instead, all wells were
206 manipulated with obscured vision for the animals.
207 Observational training was completed after 25
208 rewards were found by the demonstrator animal in
209 the presence of the paired observer located in the
210 plexiglass inner box. After observational training
211 was completed, the observer rat was allowed to
212 explore the outside space and find the reward itself.
213 As in our previous study (Rowland, Yanovich, and
214 Kentros, 2011), the outside space was entered
215 through the opening of a plexiglass wall opposite
216 the reward well. The reward well was in a different
217 location for each pair of animals to mix up the cues.
218 To increase social interaction, the animal pairs
219 were siblings housed in adjacent home cages.
220 Finally, the NMDA receptor antagonist CPP [(\pm)-
221 3-(2-carboxypiperazin-4-yl) propyl-1-phosphonic
222 acid, 10 mg/kg, Sigma] was injected
223 intraperitoneally in a subset of 5 observer animals
224 before the first direct exploration of the outside

225 space (but after the observation stage was
226 complete).

227 Success and latency of observer and naive groups
228 were compared. A trial was considered successful
229 if the animal made no mistakes prior to digging in
230 the correct well. A mistake was counted as active
231 digging in an unrewarded well. Pebble removal that
232 was not performed with the head or front limbs or
233 while the animal was running was not counted as
234 active digging. Evaluation of animal performance
235 by experimenters was confirmed by video analysis
236 of two blinded students independent of the study
237 who reached identical conclusions (2 students
238 quantified trials of 10 animals). A separate cohort
239 of observer animals was tested with no reward
240 present during the initial outside direct exploration
241 (see **Figure 1C**). A third cohort of observer animals
242 was tested one hour after CPP injection, with no
243 reward present during the first outside direct
244 exploration (see **Figure 1C**).

245

246 **Data Analysis**

247 All data were analyzed using the average time
248 taken to find the reward from entering the outside
249 space, the total number of mistakes made, and the
250 percentage of successful animals for each trial. All
251 values were expressed as mean \pm standard error of
252 the mean (SEM). All behavioral data were
253 analyzed using the Pearson chi square test and the
254 unpaired mean difference between control and test,
255 as indicated, using SPSS software (IBM) and
256 MATLAB (Ho, 2019). All tests were two-tailed
257 tests. For the unpaired mean difference between
258 control and test, 5000 bootstrap samples were
259 taken, and the confidence interval is bias-corrected
260 and accelerated. Reported P values are the
261 likelihoods of observing the effect size if the null
262 hypothesis of zero difference is true. Effect sizes
263 and confidence intervals (CI) are reported as:
264 Effect size [CI width lower bound; upper bound].

265

266 Cohort and sample sizes were reported in the text
267 and figures. Statistical significance was set at $p <$
268 0.05 “*”, $p < 0.01$ “**” and $p < 0.001$ “***”.

269

270 **RESULTS**

271 **Experiment 1: Learning a reward location in 272 naive rats**

273 Previous studies in rodents have found that learning
274 a spatial task follows a logarithmic curve of success
275 until a plateau is reached. Our task described in
276 **Figure 1** followed the same rule. **Figure 2A** shows
277 the progression of success for a naive animal in this
278 task. A success is counted if the animal found the
279 reward on the first try without digging in other
280 wells. The probability of finding the reward was
281 8.3% (1 well out of 12). The probability of success
282 on the first reward for naive animals is comparable
283 to chance (12.5%). The percentage of successful
284 naive animals at the first 15 rewards were,
285 respectively: (1) $12.5\% \pm 8.5$ (mean percentage \pm
286 SEM); (2) $55.6\% \pm 12.1$; (3) $83.3\% \pm 9.0$; (4)
287 $81.3\% \pm 10.1$; (5) $92.9\% \pm 7.1$; (6) $89.5\% \pm 7.2$; (7)
288 $94.7\% \pm 5.3$; (8) 100%; (9) 100%; (10) 100%; (11)
289 94.7% \pm 5.3; (12) 100%; (13) 100%; (14) 100%
290 and (15) 100% (n=14). Success at the first direct
291 exploration was statistically different from the
292 second (Pearson chi-square = 6.88, 99.9%
293 confidence, n₁= 16 and n₂= 18). Similarly, success
294 at the second direct exploration was statistically
295 different compared to the third (Pearson chi-square
296 = 3.27, 95% confidence, n₂= 18 and n₃= 18).

297 **Figure 2B** shows the reduction of mistakes across
298 15 reward retrievals. A mistake was counted as
299 actively digging in a non-target well, with a
300 maximum number of mistakes per trial of 11. This
301 figure shows that naive animals stopped making
302 errors after 11 trials (n=14 rats). Mistakes are
303 shown here relative to the first direct exploration.
304 Animals were monitored until 20 consecutive
305 successes, but only the first fifteen rewards were
306 shown in **Figure 2**. Recall that a naive rat was
307 considered a demonstrator rat after at least 20
308 consecutive successful trials, and thus the observer
309 rats were effectively exposed to the perfect
310 performance of the task by the demonstrator
311 animal.

312 Finally, the time it took the naive animals to find
313 each reward (**Figure 3B**, blue curve) decreased
314 similarly from the first reward and reached a
315 plateau after 4 rewards. The time taken by naive
316 animals to find each of the first five rewards was:
317 (1) 1515.6 ± 484.4 ; (2) 277.3 ± 89.5 ; (3) $347.6 \pm$
318 189.3 ; (4) 64.9 ± 15.5 and (5) 110.9 ± 30.7 seconds
319 (n= 17).

320 From this we can conclude that the task needs
321 experience to be completed and cannot be achieved
322 without it.

323 **Experiment 2: Learning the location of a 324 reward through social observation**

325 To investigate whether learning the location of a
326 hidden reward is possible through social
327 observational training, we trained observer rats to
328 find the location of a hidden reward using
329 demonstrator animals (5 trials daily for 5
330 consecutive days). We then had the observer
331 animals go out to explore the observed space and
332 find the reward (see **Figure 1**). The observer group
333 successfully found the reward in 100% of the
334 animals without error during their first direct
335 exploration of the outside space (N=6) (**Figure**
336 **3A**). All subsequent direct explorations were also
337 100% successful (n=15 trials, 5 animals).
338 Performance on the first direct exploration was
339 statistically different from that of the naive animals
340 (Pearson chi-square = 14.44, 99.9% confidence,
341 n₁= 16 and n₀= 6). Performance across trials did not
342 differ significantly between observer animals.

343 While latency towards reward is a common
344 measure of spatial performance, it is not
345 particularly informative in this case because the
346 animals invariably first explore the novel space
347 prior to engaging with the spatial task. Still, there
348 was an appreciable difference between trained and
349 untrained animals. The animals in the observer
350 group required much less time to find the first
351 rewards (**Figure 3B**, red curve). It was around half
352 the time it took for naïve animals (**Figure 3B**, blue
353 curve). Thus, time to reward was significantly
354 different between the naive and observer groups for
355 the first two rewards. The unpaired mean
356 difference between naive and observer animals was
357 $-1.17 \cdot 10^3$ [99.9% CI $-2.31 \cdot 10^3$, $-4.12 \cdot 10^2$] for the
358 first trial and $-1.85 \cdot 10^2$ [95.0% CI $-3.85 \cdot 10^2$, -20.1]
359 for the second trial. The latency of observers was
360 not significantly more than for demonstrators
361 (**Figure 3B**, green curve). The unpaired mean
362 difference between observer and demonstrator
363 animals was $1.44 \cdot 10^2$ [95.0% CI $-1.17 \cdot 10^2$,
364 $2.85 \cdot 10^2$] for the first trial and 49.0 [95.0% CI
365 -18.1 , $1.66 \cdot 10^2$] for the second trial. So far as errors
366 go, the observer and demonstrator groups
367 performed comparably even during the first two
368 trials (1) $-1.44 \cdot 10^2$ [95.0% CI $-2.87 \cdot 10^2$, $1.09 \cdot 10^2$]
369 and (2) 49.0 [95.0% CI -16.5 , $1.67 \cdot 10^2$]. The time
370 it took the naive and demonstrator rat groups to
371 obtain the rewards was significantly different for

372 all first five rewards (1) -1.32×10^3 [99.9% CI -
373 2.65×10^3 , -5.99×10^2]; (2) -3.04×10^2 [99.9% CI -
374 8.6×10^2 , -35.4]; (3) -3.37×10^2 [99.9% CI -1.08×10^3 ,
375 -37.8]; (4) -56.6 [99.9% CI -1.17×10^2 , -19.4] and
376 (5) -1.04×10^2 [99.9% CI -2.35×10^2 , -46.6]).

377 Thus, unlike the naive animals, the observer and
378 demonstrator groups did not make mistakes in
379 accomplishing the task. In addition, the time it took
380 the observer animals to successfully complete the
381 task was comparable to that of the demonstrators,
382 but both groups were statistically faster than the
383 naive animals. Observer animals tend to explore
384 the maze once or twice before engaging in the task.
385 The time required to learn and successfully
386 complete the task is coherent with the literature for
387 such a naturalistic social learning task (no food
388 deprivation, no time limit). This task is very time
389 consuming, and the latency required for the
390 animals to find the reward makes time less
391 meaningful than success or failure in the task.

392 We controlled for cleaning quality to ensure that
393 odor was not a factor for animals to navigate to the
394 reward via olfaction. When two naive rats explored
395 the outside area for the first time within 30 minutes,
396 the first well dug by the second animal was
397 compared to the reward location of the previous
398 animal. Among the 12 pairs of animals, the second
399 rat never dug the first animal's reward well first.
400 This result confirmed that cleaning within two
401 sessions was effective and had no undesirable
402 effect on the outcome of the next animal.

403 **Experiment 3: Is the behavior dependent on 404 olfactory cues?**

405 Even though reward odor was distributed
406 throughout the maze, it is possible that the rats were
407 still capable of using olfactory gradients to solve
408 the task without observational spatial learning. To
409 investigate the influence of reward odor on animal
410 navigation, we compared the ability of naive
411 animals to dig in the correct well with and without
412 reward. **Figure 4A** shows the average number of
413 mistakes on the first trial (how many incorrect
414 wells were dug before the correct one) for the
415 rewarded and non-rewarded naive animals. For the
416 latter animals, no accessible reward was hidden, so
417 we can rule out navigation by smell to the correct
418 well. Thus, for this group, the number of mistakes
419 made before digging in a given well would be
420 completely random, so we can control for whether
421 the smell of the hidden chocolate loop might
422 provide a cue to reduce the number of mistakes

423 made. The difference between the two naive groups
424 was significant, indicating that the reward odor
425 could reduce the number of errors made by the
426 animals in the rewarded condition (Pearson chi
427 square = 15.44, 95% confidence, $n_R = 16$ and $n_{NR} =$
428 7). The number of mistakes made in the first
429 exposure was 4.4 (SEM = 0.8) for unrewarded
430 naive animals and 2.0 (SEM = 0.3) for rewarded
431 animals. However, the number of successful
432 animals appeared to be independent of the presence
433 of a reward for naive animals. Both groups were
434 close to chance (8.3%) at the first direct exploration
435 with 12.5% ($n_R = 16$, SEM = 8.5) and 0% ($n_{NR} = 7$)
436 for rewarded and non-rewarded animals,
437 respectively (**Figure 3A** for naive rewarded and
438 **Figure 4B** for naive non rewarded). The difference
439 between the two naive groups was not statistically
440 significant (Pearson chi square = 0.98, $n_R = 16$, and
441 $n_{NR} = 7$). The time required to find the reward at
442 first exposure was also not significantly different,
443 1515.6 ± 484 and 1404 ± 744 seconds, respectively
444 (unpaired mean difference is -1.12×10^2 [95% CI -
445 2.04×10^3 , 3.25×10^3]).

446 To preclude localization of the reward by the sense
447 of smell of the observer animals, the reward was
448 removed after observational training but before the
449 first outside direct exploration for a cohort of
450 observer animals. Each of these observer animals
451 was trained with a paired demonstrator that
452 performed 25 trials, similar to previously
453 described. Observer animals that explored the
454 outside environment without reward after
455 observational training were 87.5% successful on
456 their first direct exploration ($n = 8$ animals, SEM =
457 12.5), see **Figure 4B**. Only one observer animal
458 made an error in the task, and he made 6 mistakes
459 during his first direct exploration. The percentage
460 of success on the first trial was not statistically
461 different between the rewarded and non-rewarded
462 observer cohorts (Pearson square = 0.81, $n_R = 6$ and
463 $n_{NR} = 8$, respectively), nor was the number of
464 mistakes (unpaired mean difference is 0.75 [95%
465 CI 0.0, 3.75]). The difference in mistakes between
466 the unrewarded naive and observer groups was
467 statistically significant, as was the difference in
468 mistakes between the rewarded groups (Pearson
469 square = 10.50, 99.9% confidence, $n = 7$ and $n = 8$,
470 respectively). Rewarded and unrewarded observer
471 animals showed similar performance, ruling out a
472 possible olfactory influence on task success.

473 **Experiment 4: A stable representation of space 474 is formed before the first direct exploration**

475 To confirm that a stable representation of space can
476 be formed before the first physical direct
477 exploration of a space, we injected CPP (an NMDA
478 receptor antagonist). CPP prevents stabilization of
479 a newly formed hippocampal representation of an
480 environment but does not destabilize an already
481 formed one (Kentros et al., 1998). Interestingly,
482 observer animals that explored the observed space
483 one hour after an injection of the NMDA receptor
484 antagonist CPP performed similarly to animals that
485 did not receive an injection (**Figure 4B**).

486 These observer animals with CPP that explored the
487 outside environment without reward were 100%
488 successful on their first direct exploration (n= 5
489 animals). The three observer cohorts (observer,
490 observer unrewarded and observer unrewarded
491 with CPP) share comparable chances of success in
492 the task.

493 During these unrewarded experiments
494 (Experiments 3 and 4), the animals performed the
495 task only once because of extinction of the
496 memory.

497 For all animals, the percentage of success on the
498 first trial was statistically different when the naïve
499 and observer groups were compared (Pearson chi
500 square= 23.25, 99.9% confidence, n= 23 and n= 19,
501 respectively). The percentage of success on the first
502 trial was 8.7% (SEM = 6.0) for naïve animals and
503 92.3% (SEM = 7.7) for observer animals, clearly
504 indicating knowledge of the goal location from
505 observation alone

506

507 DISCUSSION

508 The behavioral studies presented are to our
509 knowledge the first to directly investigate the
510 performance of rodents in a spatial task in an
511 unexplored space with training exclusively based
512 on observation of a conspecific performing that
513 task. We found that this observation led to highly
514 significant improvements in both accuracy and
515 latency towards the goal as compared to naïve
516 animals, even though the structure and operant
517 nature of the task means that the observer animals'
518 native tendency to explore a novel space (the outer
519 box) competes with their engagement with the
520 digging task.

521 The performance improvement followed a learning
522 curve similar to that described in classical learning
523 theory (Wright, 1936) (Anzanello and Fogliatto,

524 2011). In this model, performance on a repetitive
525 task improves through repetition. A learning period
526 is then followed by a learned period in which
527 performance reaches a plateau. **Figure 2** shows the
528 success rate of naïve animals in the task for each
529 trial. We can then track performance in the task as
530 experience increases. The percentage of successful
531 animals increases significantly from reward one to
532 reward two and from reward two to reward three
533 and so on.

534 **Figure 3** compares the success rate (digging in the
535 right well) in the first trial for naïve versus observer
536 animals. The observer group clearly outperforms
537 the naïve group of animals (100% success versus
538 12%; chance is 8.3%). The situation is similar for
539 the second reward. Moreover, the same conclusion
540 can be drawn for the time taken to find the reward
541 in the first two trials. Furthermore, the observer
542 animals did not make a mistake in the next thirteen
543 trials and thus do not fit a learning curve.

544 These results imply that the observer animals
545 learned the goal location by watching a
546 conspecific, as they were able to find the reward
547 successfully from the first trial. While certainly
548 some of the performance difference between
549 observers and naïve animals had to do with
550 observing nonspatial features of the task (e.g. the
551 fact there is a reward that you have to dig for), the
552 goal location as well was learned by observation
553 because 1) the observer animals outperformed the
554 naïve animals from the first trial and not after
555 several trials and 2) there is no improvement by
556 additional exploratory learning in the observer
557 animals, which contradicts previously described
558 cases involving efficient strategies (Leggio et al.,
559 2000) (Leggio et al., 2003) (Takano et al., 2017)
560 (Bem et al., 2018). Comparison between rewarded
561 and non-rewarded observer animals (**Figures 3**
562 and **4**) shows no difference between the two
563 cohorts in initial direct exploration of the observed
564 space, ruling out the possibility that the animals'
565 sense of smell could help them navigate to the
566 reward.

567 This suggests that animals trained by observation
568 have a representation of the reward location before
569 its first direct exploration. This is in sharp contrast
570 to our previous study which clearly showed the
571 opposite result: a stable hippocampal
572 representation of a space required its direct
573 experience (Rowland, Yanovich, and Kentros,
574 2011). The destabilization of the place fields in this

575 task was caused by CPP injections as well, which
576 have consistently destabilized newly formed place
577 fields (Kentros et al., 1998) (Rowland, Yanovich,
578 and Kentros, 2011) (Dupret et al., 2010) (O'Neill
579 et al., 2010) but did not affect performance in this
580 observational task. Since the only difference was
581 the observational learning of a spatial goal location,
582 this means that either the observed space was
583 stabilized by observation alone, or that a stable
584 place cell representation is not necessary for spatial
585 task performance.

586 While these possibilities can only be
587 disambiguated by electrophysiological recordings,
588 the preponderance of evidence points to the first
589 option. Bats and rats have a cognitive
590 representation of a familiar space being explored
591 by a conspecific (Omer et al., 2018) (Danjo,
592 Toyoizumi and Fujisawa, 2018). In these two
593 studies, the place cells of the observer animals fired
594 relative to the position of the observed animal's
595 location, providing a neural basis for such a thing.
596 Similarly, "preplay" suggest that rats can make a
597 spatial representation from distance (Gupta et al.,
598 2010) (Dragoi and Tonegawa, 2011) (Ólafsdóttir et
599 al., 2015). The study most similar to this one
600 showed that a trained demonstrator can only
601 "teach" an observer animal if what is being
602 observed is sufficiently relevant or novel (Bem et
603 al., 2018). In their study, the observer had already
604 physically experienced the observed space (thereby
605 creating a stable place cell map of it) and just had
606 to learn the location of the rewards in that space.
607 Moreover, it is entirely consistent with the
608 observation that increased attention to space
609 increases the stability of a hippocampal
610 representation (Kentros et al., 2004) (Muzzio et al.,
611 2009). Remote (i.e., observational) exploration of a
612 space may be far less capable of stabilizing its
613 hippocampal representation (Rowland, Yanovich,
614 and Kentros, 2011), but the rats in that study were
615 given no reason to attend to the outer box. Perhaps
616 if the animal pays enough attention to the space, it
617 will stabilize its place cells of it.

618 Of course, the possibility that stable place cells are
619 not necessary for spatial task performance cannot
620 be ruled out since the present study has no
621 electrophysiological recordings, but this would
622 contradict most studies which have examined this
623 idea. Transgenic animals with behavioral deficits in
624 spatial tasks (Renaudineau et al., 2009) (Arbab,

625 Pennartz, and Battaglia, 2018) (Rotenberg et al.,
626 1996) tend to have unstable place fields, and a
627 chemogenetic manipulation that led to
628 hippocampal remapping led to clear deficits in
629 spatial memory retrieval (Kanter et al., 2017). Still,
630 it remains possible that "third-person"
631 representations of space are formed distinct from
632 more familiar forms of hippocampal spatial firing.
633 Regardless, we have shown that rats can obtain
634 sufficient knowledge of an unexplored space to
635 successfully locate a hidden reward purely by
636 observing a conspecific's behavior. This task
637 should therefore provide a means to explore both
638 the structure of a cognitive map and the
639 representation of a conspecific's behavior.

640

641 **DATA AVAILABILITY**

642 The original contributions presented in the study
643 are included in the article/supplementary material,
644 further inquiries can be directed to the
645 corresponding author.

646 thomas.doublet@univ-amu.fr.

647

648 **AUTHOR CONTRIBUTIONS**

649 TD and CK designed the study. TD and MN
650 conducted the research. TD conducted statistical
651 analyses. TD and CK wrote the manuscript. CK and
652 TD did the project administration and supervision.
653 All authors critically revised the manuscript and
654 gave approval for publication.

655

656 **FUNDING**

657 We are grateful for the support from the Norwegian
658 University of Science and Technology (NTNU).

659

660 **ACKNOWLEDGMENTS**

661 We are grateful to Dr. David Rowland for his
662 fruitful discussions, Drs. Bartul Mimica and Tuce
663 Tombaz for their valuable discussions on the
664 statistical analyzes in this manuscript. The
665 Clawsons are thanked for their invaluable
666 assistance in writing the manuscript. Finally, we
667 thank all the members of the Kavli Institute and

668 especially the animal technicians and veterinarians
669 for their support and kindness.

670

671 **REFERENCES**

672 Anzanello, M. J. and Fogliatto, F. S. (2011).
673 Learning curve models and applications: Literature
674 review and research directions. *International*
675 *Journal of Industrial Ergonomics* 41(5), 573–583.
676 doi: 10.1016/j.ergon.2011.05.001

677 Arbab, T., Pennartz, C. M. A. and Battaglia F. P.
678 (2018). Impaired Hippocampal Representation of
679 Place in the Fmr1-Knockout Mouse Model of
680 Fragile X Syndrome. *Scientific Reports* 8 (1), 8889–
681 8898. doi: 10.1038/s41598-018-26853-z

682 Bandura, A., Ross, D. and Ross, S. A. (1961).
683 Transmission of aggression through imitation of
684 aggressive models. *The Journal of Abnormal and*
685 *Social Psychology* 63(3), 575–582. doi:
686 10.1037/h0045925

687 Barry, C., Hayman, R., Burgess, N. and Jeffery, K.
688 J. (2007). Experience-dependent rescaling of
689 entorhinal grids. *Nature Neuroscience* 10(6), 682–
690 684. doi: 10.1038/nn1905

691 Bem, T., Jura, B., Bontempi, B., Meyrand, P.
692 (2018). Observational learning of a spatial
693 discrimination task by rats: learning from the
694 mistakes of others? *Animal Behaviour* 135, 85–96.
695 doi: 10.1016/j.anbehav.2017.10.018

696 Bunch, G. B. and Zentall, T. R. (1980). Imitation of
697 a passive avoidance response in the rat. *Bulletin of*
698 *the Psychonomic Society* 15(2), 73–75. doi:
699 10.3758/BF03334469

700 Buzsáki, G. and Moser, E. I. (2013). Memory,
701 navigation and theta rhythm in the hippocampal–
702 entorhinal system. *Nature Neuroscience* (16), 130–
703 138. doi: 10.1038/nn.3304

704 Cloutier, S., Wahl, K. L., Panksepp, J., Newberry,
705 R. C. (2015). Playful handling of laboratory rats is
706 more beneficial when applied before than after
707 routine injections. *Applied Animal Behaviour*
708 *Science* (164), 81-90.
709 doi:10.1016/j.applanim.2014.12.012

710

711 Danjo, T., Toyoizumi, T. and Fujisawa, S. (2018).
712 Spatial representations of self and other in the
713 hippocampus. *Science* 359(6372), 213–218. doi:
714 10.1126/science.aoa3898

715 Dawson, B. V. and Foss, B. M. (1965).
716 Observational learning in budgerigars. *Animal*
717 *Behaviour* 13(4), 470–474. doi: 10.1016/0003-
718 3472(65)90108-9

719 Dragoi, G. and Tonegawa, S. (2011). Preplay of
720 future place cell sequences by hippocampal cellular
721 assemblies. *Nature* 469(7330), 397–401. doi:
722 10.1038/nature09633

723 Dupret, D., O'Neill, J., Pleydell-Bouverie, B. and
724 Csicsvari, J. (2010). The Reorganization and
725 Reactivation of Hippocampal Maps Predict Spatial
726 Memory Performance. *Nature Neuroscience* 13
727 (8), 995–1002. doi: 10.1038/nn.2599.

728 Fyhn, M., Molden, S., Witter, M. P., Moser, E. I.
729 and Moser, M. (2004). Spatial representation in the
730 entorhinal cortex. *Science* 305(80), 1258–1264.
731 doi: 10.1126/science.1099901

732

733 Gupta, A. S., van der Meer, M. A. A., Touretzky,
734 D. S. and Redish, A. D. (2010). Hippocampal
735 replay is not a simple function of experience.
736 *Neuron* 65(5), 695–705. doi:
737 10.1016/j.neuron.2010.01.034

738

739 Hafting, T., Fyhn, M., Molden, S., Moser, M. B.
740 and Moser, E. I. (2005). Microstructure of a spatial
741 map in the entorhinal cortex. *Nature* 436(7052),
742 801–806. doi: 10.1038/nature03721

743

744 Heyes, C. M. and Dawson, G. R. (1990). A
745 demonstration of observational learning in rats
746 using a bidirectional control. *The Quarterly journal*
747 *of experimental psychology. B, Comparative and*
748 *physiological psychology* 42(1), 59–71. doi:
749 10.1080/14640749008401871

750 Ho, J., Tumkaya, T., Aryal, S., Choi, H., Claridge-
751 Chang, A. (2019). Moving beyond P values: data
752 analysis with estimation graphics. *Nature Methods*
753 16(7), 565–566. doi: 10.1038/s41592-019-0470-3

754 Kanter, B. R., Lykken C. M., Avesar D., Weible A.,
755 Dickinson J., Dunn B. et al. (2017). A Novel
756 Mechanism for the Grid-to-Place Cell
757 Transformation Revealed by Transgenic
758 Depolarization of Medial Entorhinal Cortex Layer
759 II. *Neuron* 93 (6), 1480-1492. doi:
760 10.1016/j.neuron.2017.03.001

761 Kentros, C., Hargreaves, E., Hawkins, R. D.,
762 Kandel, E. R., Shapiro, M. and Muller, R. V.
763 (1998). Abolition of Long-Term Stability of New

764 Hippocampal Place Cell Maps by NMDA Receptor 812 Hippocampus as a Cognitive Map. Oxford
765 Blockade. *Science* 280(5372), 2121–2126. doi: 813 University Press.

766 10.1126/science.280.5372.2121

767 Kentros, C. G., Agnihotri, N. T., Streater, S., 814 Ólafsdóttir, H. F., Barry, C., Saleem, A. B.,
768 Hawkins, R. D. and Kandel, E. R. (2004). Increased 815 Hassabis, D. and Spiers, H. J. (2015). Hippocampal
769 Attention to Spatial Context Increases Both Place 816 place cells construct reward related sequences
770 Field Stability and Spatial Memory. *Neuron* 42, 817 through unexplored space. *eLife* 4, 1–17. doi:
771 283–295. doi: 10.1016/S0896-6273(04)00192-8 818 10.7554/eLife.06063

772 Keum, S. and Shin, H. (2019). Neural Basis of 819 Olton, D. S. (1977). The Function of Septo-
773 Observational Fear Learning: A Potential Model of 820 Hippocampal Connections in Spatially Organized
774 Affective Empathy. *Neuron* 104, 78–86. doi: 821 Behaviour. *Ciba Foundation Symposia* (58), 327–
775 10.1016/j.neuron.2019.09.013 822 349. doi: 10.1002/9780470720394.ch13

776 Laland, K. N. and Williams, K. (1998). Social 823 Omer, D. B., Maimon, S. R., Las, L. and
777 transmission of maladaptive information in the 824 Ulanovsky, N. (2018). Social place-cells in the bat
778 guppy. *Behavioral Ecology* 9(5), 493–499. doi: 825 hippocampus. *Science* 359(6372), 218–224. doi:
779 10.1093/beheco/9.5.493 826 10.1126/science.aa03474

780 Leggio, M. G., Molinari, M., Neri, P., Graziano, A., 827 O'Neill, J., Pleydell-Bouverie, B., Dupret, D. and
781 Mandolesi, L. and Petrosini, L. (2000). 828 Csicsvari, J. (2010). Play It Again: Reactivation of
782 Representation of actions in rats: The role of 829 Waking Experience and Memory. *Trends in
783 cerebellum in learning spatial performances by 830 Neurosciences* 33 (5), 220–229. doi:
784 observation. *PNAS* 97(5), 2320–2325. doi: 831 10.1073/pnas.040554297

785 10.1073/pnas.040554297

786 Leggio, M. G., Graziano, A., Mandolesi, L., 832 Petrosini, L., Graziano, A., Mandolesi, L., Neri, P.,
787 Molinari, M., Neri, P. and Petrosini, L. (2003). A 833 Molinari, M., Leggio, M. G. (2003). Watch how to
788 new paradigm to analyze observational learning in 834 do it! New advances in learning by observation.
789 rats. *Brain Research Protocols* 12(2), 83–90. doi: 835 *Brain Research Reviews* 42(3), 252–264. doi:
790 10.1016/j.brainresprot.2003.08.001 836 10.1016/S0165-0173(03)00176-0

791 Morris, R. (1984). Developments of a water-maze 837 838
792 procedure for studying spatial learning in the rat. 839 Ranck, J. J. (1985). Head direction cells in the deep
793 *Journal of Neuroscience Methods* (11), 47–60. 840 cell layer of dorsal post-subiculum in freely
794
795
796 Moser, E. I., Moser, M. and McNaughton, B. L. 841 moving rats. *Electrical activity of the archicortex*,
797 (2017). Spatial representation in the hippocampal 842 217–220. Akademiai. Budapest

798 formation: a history. *Nature Neuroscience* (20), 843 Renaudineau, S., Poucet, B., Laroche, S., Davis, S.
799 1448–1464. doi: 10.1038/nn.4653 844 and Save, E. (2009). Impaired Long-Term Stability
800 Muzzio, I. A., Levita, L., Kulkarni, J., Monaco, J., 845 of CA1 Place Cell Representation in Mice Lacking
801 Kentros, C., Stead, M. et al. (2009). Attention 846 the Transcription Factor Zif268 / Egr1. *PNAS* 106
802 Enhances the Retrieval and Stability of 847 (28), 11771–11775. doi:
803 Visuospatial and Olfactory Representations in the 848 10.1073/pnas.0900484106

804 Dorsal Hippocampus. *PLoS Biology* 7 (6), 849 Rotenberg, A., Mayford, M., Hawkins, R. D.,
805 e1000140. doi: 10.1371/journal.pbio.1000140 850 Kandel, E. R. and Muller, R. U. (1996). Mice
806 O'Keefe, J. and Dostrovsky, J. (1971). The 851 Expressing Activated CaMKII Lack Low
807 hippocampus as a spatial map. Preliminary 852 Frequency LTP and Do Not Form Stable Place
808 evidence from unit activity in the freely-moving 853 Cells in the CA1 Region of the Hippocampus. *Cell*
809 rat. *Brain Research* 34(1), 171–175. doi: 854 87 (7), 1351–1361. doi: 10.1016/S0092-
810 10.1016/0006-8993(71)90358-1 855 8674(00)81829-2

811 O'Keefe, J. and Nadel, L. (1978). The 856 Rowland, D. C., Yanovich, Y. and Kentros, C. G.
812 Hippocampus as a Cognitive Map. Oxford 857 (2011). A stable hippocampal representation of a
813 University Press. 858 space requires its direct experience. *PNAS* 108(35),
814 Ólafsdóttir, H. F., Barry, C., Saleem, A. B., 859 14654–14658. doi: 10.1073/pnas.1105445108

860 Sargolini, F., Fyhn, M., Hafting, T., McNaughton, 890 55(1), 79–85. doi: 10.1006/anbe.1997.0587
861 B. L., Witter, M. P., Moser, M. B. et al. (2006).
862 Conjunctive representation of position, direction, 891 Tolman, E. C., Ritchie, B. F. and Kalish, D. (1946).
863 and velocity in entorhinal cortex. *Science* 892 Studies in spatial learning: orientation and the
864 312(5774), 758–762. doi: 893 short-cut. *Journal of Experimental Psychology*
865 10.1126/science.1125572 894 (36), 13–24. doi: 10.1037/0096-3445.121.4.429

866 Savelli, F., Yoganarasimha, D. and Knierim, J. J. 895 Tolman, E. C. (1948). Cognitive maps in rats and
867 (2008). Influence of boundary removal on the 896 men. *Psychological review* (55), 189–208.
868 spatial representations of the medial entorhinal 897 Viana, D. S., Gordo, I., Sucena, E. and Moita, M.
869 cortex. *Hippocampus* 18(12), 1270–1282. doi: 898 A. P. (2010). Cognitive and Motivational
870 10.1002/hipo.20511 899 Requirements for the Emergence of Cooperation in
871 Solstad, T., Boccara, C. N., Kropff, E., Moser, M. 900 a Rat Social Game. *PLoS ONE* 5(1), e8483. doi:
872 B. and Moser, E. I. (2008). Representation of 901 10.1371/journal.pone.0008483
873 Geometric Borders in the Entorhinal Cortex. 902 Wilson, M. A. and McNaughton, B. L. (1993).
874 *Science* 322(5909), 1865–1868. doi: 903 Dynamics of the hippocampal ensemble code for
875 10.1126/science.1166466 904 space. *Science* 261(5124), 1055–1058. doi:
905 10.1126/science.8351520

876 Takano, Y., Ukezono, M., Nakashima, S. F., 906 Worden, B. D. and Papaj, D. R. (2005). Flower
877 Takahashi, N. and Hironaka, N. (2017). Learning 907 choice copying in bumblebees. *Biology Letters*
878 of efficient behaviour in spatial exploration 908 1(4), 504–507. doi: 10.1098/rsbl.2005.0368

879 through observation of behaviour of conspecific in 909 Wright, T. P. (1936). Factors Affecting the Cost of
880 laboratory rats. *Royal Society Open Science* 4(9), 910 Airplanes. *Journal of the Aeronautical Sciences*
881 170121. doi: 10.1098/rsos.170121 911 3(4), 122–128. doi: 10.2514/8.155

882 Taube, J. S., Muller, R. U. and Ranck, J. B. (1990). 912 Zentall, T. R. and Levine, J. M. (1972).
883 Head-direction cells recorded from the 913 Observational Learning and Social Facilitation in
884 postsubiculum in freely moving rats. I. Description 914 the Rat. *Science* 178(4066), 1220–1221. doi:
885 and quantitative analysis. *The Journal of 915 10.1126/science.178.4066.1220*
886 neuroscience 10(2), 420–435. doi:
887 10.1523/JNEUROSCI.10-02-00420.1990

888 Templeton, J. J. (1998). Learning from others' 916
889 mistakes: a paradox revisited. *Animal Behaviour*
917

918

919

920

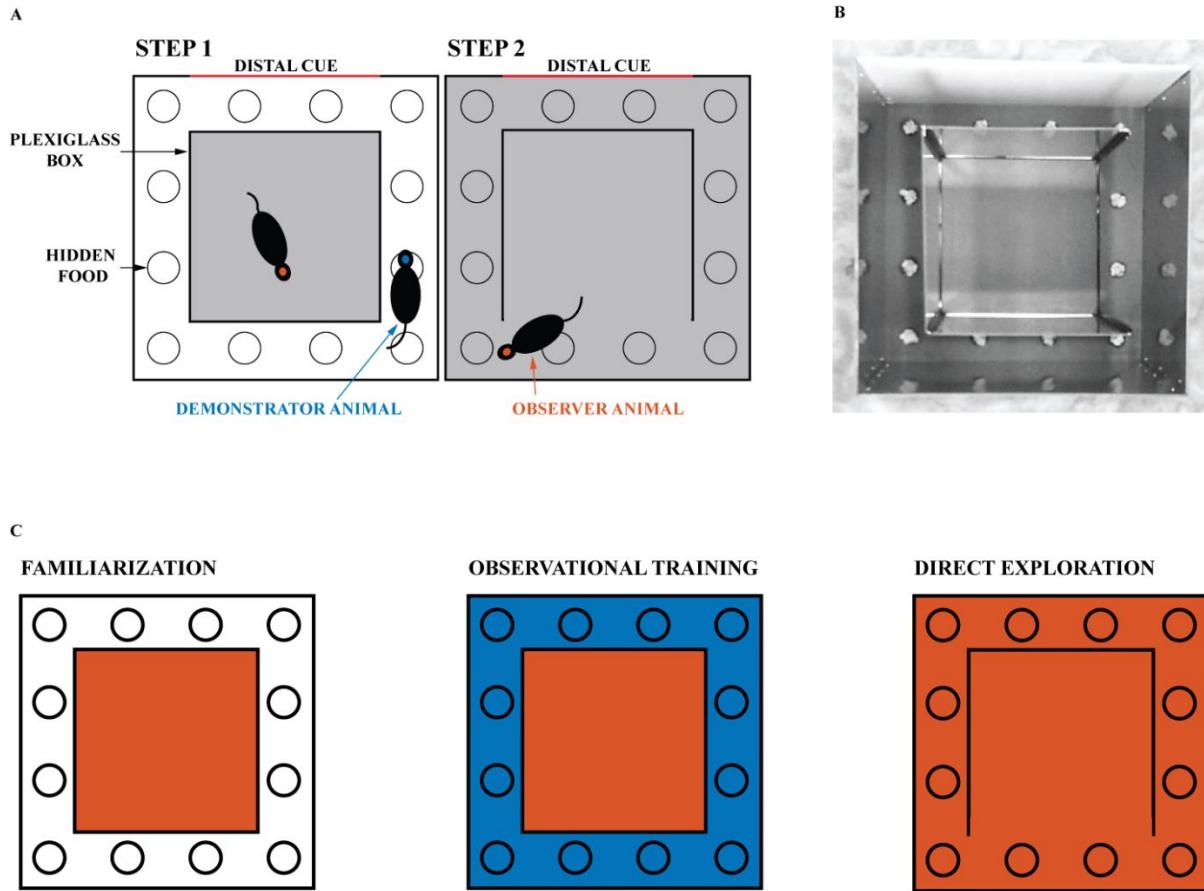
921

922

923

924

925


926

927

928

929

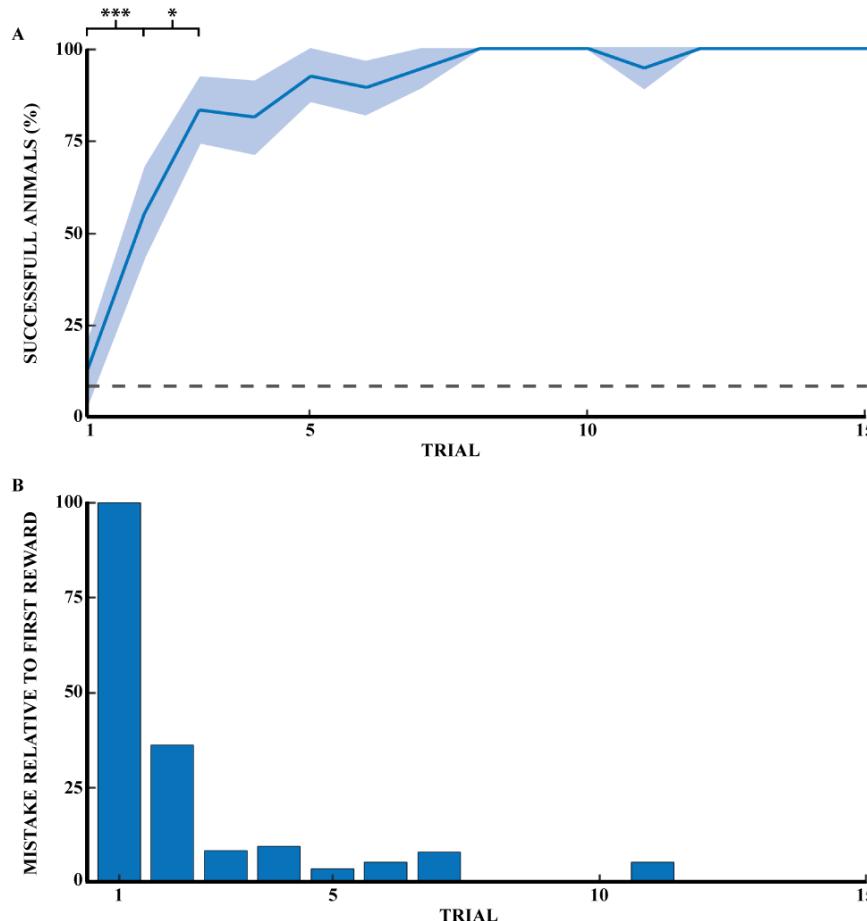
930

933 **FIGURE 1** | Experimental design. (A) The experimental environment consisted of a
934 transparent inner box and an opaque outer box. The gray areas indicate the regions explored by
935 the tested rat. (B) Image of the experimental apparatus with the right wall of the transparent
936 inner box open. The reward is hidden in one of the 12 wells and covered with gravels. One of
937 the four walls of the opaque outer box is white and provides a distal cue to the animals. (C)
938 Schematic representation of the experiment. The familiarization phase, in which the
939 experimental animal is confined to the inner box, is followed by the observational training
940 phase, in which it can observe the demonstrator animal navigating the outer space (blue).
941 Finally, on the day of direct exploration, the observer animal is allowed to navigate in the
942 observed space. One session is held daily, for a total of 9 sessions (3 for familiarization, 5 for
943 observational training, and 1 for direct exploration). The red and blue areas correspond
944 respectively to the space that the observer and demonstrator animals can physically explore.

945

946

947


948

949

950

951

952

953

954 **FIGURE 2** | Spatial memory task learned through exploratory experience. **(A)** Learning
955 progress of naive rats across 15 reward retrievals (3 days) calculated as percentage of successful
956 animals for each trial (n= 14). Error bars are mean \pm standard error of the mean (SEM). Gray
957 dashed line represents success by chance. **(B)** Number of mistakes per trial by naive rats across
958 15 reward retrievals (n= 14). Number of mistakes is the average normalized number of mistakes
959 made for each reward, relative to the first trial.

960 * p < 0.05, *** p < 0.001.

961

962

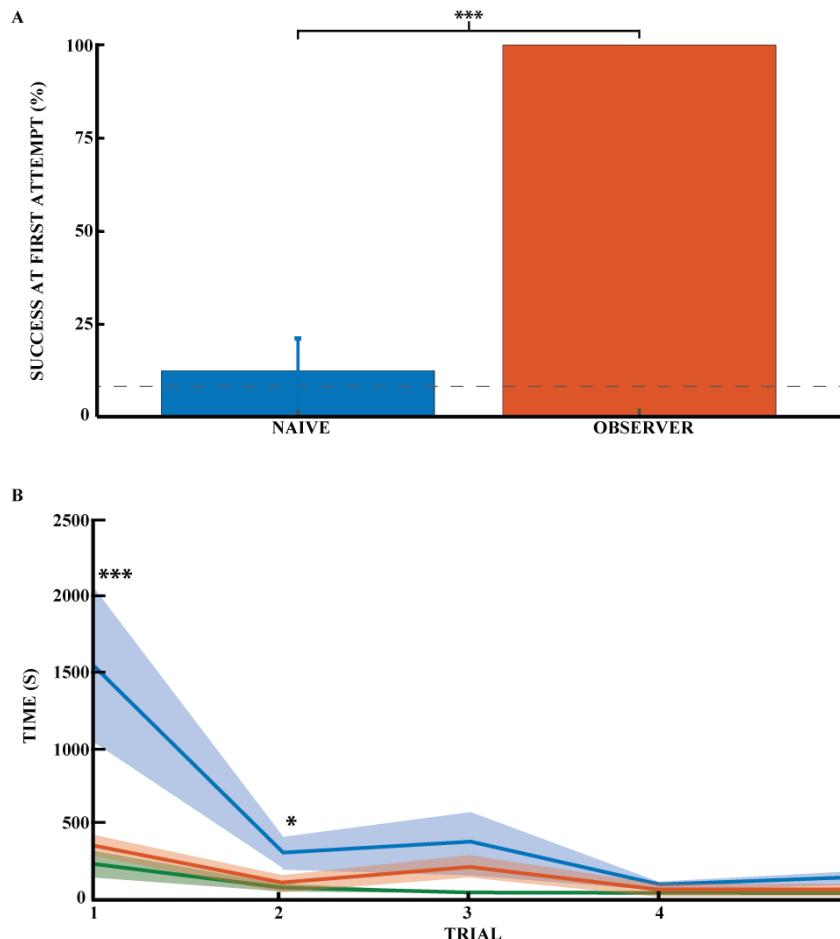
963

964

965

966

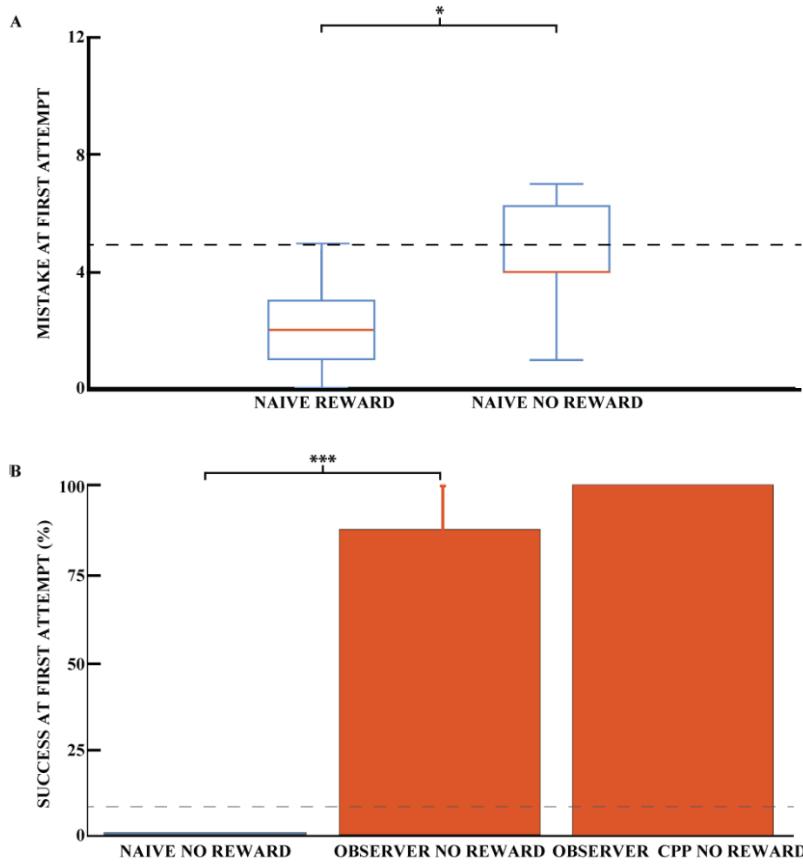
967


968

969

970

971


972

973
974

975 **FIGURE 3 |** Spatial memory task learned by observational experience in an unexplored
976 environment. (A) Effect of learning an unexplored space by observation by percentage of
977 success on the task for naive (blue) and observer animals (red) on the first direct exploration.
978 Performance on the first direct exploration was statistically different for the observer animals
979 compared to the naive animals (Pearson chi square= 14.44, 99.9% confidence, n naive = 16, n
980 observer = 6). Error bars are mean \pm standard error of the mean (SEM). Gray dashed line
981 represents success by chance. (B) Effect of learning the unexplored space by observation using
982 the average time to find the reward across trials (n naive = 17, n observer = 5). Performance on
983 the first and second direct explorations was statistically different in observer (red) compared
984 with naive animals (blue) (unpaired mean difference on first reward = -1.17×10^3 , 99.9%
985 confidence; unpaired mean difference on second reward = -1.85×10^2 , 95.0% confidence).
986 Demonstrator (green) for comparison. Error bars are mean \pm standard error of the mean (SEM).
987 * p < 0.05, *** p < 0.001.

988
989
990
991
992

FIGURE 4 | Success on the spatial task is independent of olfactory cues. (A) Mean number of mistakes on the first trial for rewarded and unrewarded naive animals. Performance on the first direct exploration was statistically different for rewarded and non-rewarded naive animals (Pearson chi-square= 15.44, 95% confidence, n naive rewarded = 16, n naive non-rewarded = 7). Error bars are mean \pm standard error of the mean (SEM). Gray dashed line represents success by chance. (B) Effect of learning an unexplored space by observation using the percentage of success in the unrewarded task for naive (blue) and observer animals (red) on the first direct exploration. Performance on the first direct exploration was statistically different for observer animals without reward (red) compared to naive animals without reward (blue) (Pearson chi-square= 10.50, 99.9% confidence, n naive animals without reward = 7, n observer without reward = 8). No statistical difference was found between unrewarded observer animal control and CPP groups (n observer non-rewarded = 8, n observer non-rewarded CPP = 5). Error bars are mean \pm standard error of the mean (SEM). Gray dashed line represents success by chance.

* $p < 0.05$, *** $p < 0.001$.