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Abstract

Macrophages show remarkable functional pleiotropy that is dependent on microenvironmental
context. Prior studies have characterized how polarizing cytokines alter the transcriptomic and
epigenetic landscape. Here we characterized the immune-threat appropriate responses of
polarized macrophages by measuring the single-cell signaling dynamics of transcription factor
NFkB. Leveraging a fluorescent protein reporter mouse, primary macrophages were polarized
into 6 states and stimulated with 8 different stimuli resulting in a vast dataset. Linear
Discriminant Analysis revealed how NFkB signaling codons compose the immune threat level of
stimuli, placing polarization states along a linear continuum between the M1/M2 dichotomy.
Machine learning classification revealed losses of stimulus distinguishability with polarization,
which reflect a switch from sentinel to more canalized effector functions. However, the stimulus-
response dynamics and discrimination patterns did not fit the M1/M2 continuum. Instead, our
analysis suggests macrophage functional niches within a multi-dimensional polarization
landscape.
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Highlights

o Polarization of macrophages affects stimulus-response NFkB dynamics

e For each condition, NFkB signaling codons quantify the “immune threat” level

¢ Machine Learning reveals polarization-induced canalization of stimulus-responses
¢ NF«kB stimulus-responses may define a landscape of macrophage states

eTOC blurb

Macrophages are profoundly responsive to their tissue microenvironment, but how that affects
their pathogen response functions has not been investigated systematically. Here we studied
how their signaling response is affected by six polarizing cytokines. We found each modulates
their stimulus-responses highly specifically, producing distinct patterns of stimulus-
discrimination. Thereby, these stimulus-response specificities may be used to describe a
landscape of functional macrophage states.
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INTRODUCTION

Macrophages have critical functions in the immune response. Upon detecting pathogen or
tissue damage through pattern recognition receptors or cytokines through cognate receptors,
these cells can perform a wide range of tasks from the phagocytosis of pathogen components
and cellular debris to antigen presentation, recruitment of other immune cells to sites of
infection, and activation of system-wide immune responses. Which functional responses are
elicited depends not only on the activating stimulus, but also on the microenvironmental context
of the macrophage!. More specifically, macrophages are polarized into different biological
functional states by the microenvironmental cytokine milieu to accentuate specific functional
responses over others?.

Macrophage polarization was first described in terms of a M1 vs. M2 dichotomy, although it is
now recognized that these states are representative of a larger spectrum of macrophage
activation in vivo®. M1 macrophages found in inflamed microenvironments defined by the
presence of IFNy, play critical roles in defending the host from pathogens, such as in bacterial,
viral, and fungal infections. Alternatively activated or M2 macrophages have anti-inflammatory
function and additionally regulate wound healing and repair functions®. Subsets of M2
macrophages have been described, such as M2a promoted by IL13 and IL4 exposure and M2c
promoted by IL10 exposure®. Abnormalities in macrophage activation and subsets of polarized
cells have been implicated in disease such as metabolic disorders, asthma, allergic reactions,
cancer, and autoimmune disorders*®’. Many previous studies have attempted to characterize
differences in polarization states based on transcriptomic®1° | epigenomic**?, or proteomic®*4
profiling, with recent advances in single-cell technologies revealing heterogeneity within these
states'®>1’. However, functional states of macrophages ought to be defined by their actual
functionality. Steady-state measurements of molecular abundances provide correlative markers
of these states, but profiling single-cell functional responses may reveal a state map that is
closer to their biologically relevant functions

Macrophages must recognize and react to diverse stimuli to fulfill their biological roles.
Macrophages not only need to detect different pathogen or host stimuli, but need to mount a
response that is appropriate to the stimulus encountered*’~%°. The signaling system that
controls macrophage responses to pathogen, tissue injury, or cytokine activates a handful of
effectors, including the central immune response transcription factor, NFkB. NFkB activation
shows stimulus-specific activation dynamics?>-* that can control the expression of immune
response genes?-22 and reprogram the epigenome?. A recent set of single-cell studies in
primary macrophages has characterized a temporal signaling code that consists of six
dynamical features, termed “signaling codons”, that are deployed stimulus-specifically*°.

Indeed, this “NFkB response specificity” may be quantified with information theoretic or machine
learning classification approaches. Diminished response specificity was found to be associated
with macrophages from a mouse model of the autoimmune disease Sjégren’s syndrome.
However, whether and how the stimulus-specificity of signaling codon deployment is affected by
polarizing cytokines remains unexplored, as well as the potential of using NFkB response
dynamics to map macrophage polarization states.

Many studies have described molecular mechanisms by which polarizing cytokines affect NFkB
activation, but what their consequence is for macrophage response specificity in different
contexts remains unclear. Type 1 interferons, such as IFN, inhibit the translation and promote
degradation of IkBa and increase expression of receptors like RIG-1 which activate IKK31:22,
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Type 2 interferons, such as IFNy, induce PA28 proteins which enhances the degradation of free
IkBa®? or IkBe®3, In this way, IFNB and IFNy may alter NFkB activation dynamics. IL4 and IL13
stimulation results in STAT6 activation and downstream KLF4 expression that sequesters
coactivators required for NFkB activation®. IL10 stimulation induces p50 NFkB homodimers®®.
Multiple microRNAs (miRNAs) have been identified as regulators of TLR signaling components
and whose expression can be modulated by polarizing cytokines as well*>3¢, IL10 is necessary
for the expression of mMiRNA-146b which negatively regulates TLR4 signaling®”. M1 polarization
increases the expression of mMiRNA-155, which targets MYD88, whereas M2 polarizers
decrease its expression®*4°, Finally, the expression of miRNA-146a, which targets TRAF®, is
responsive to many inflammatory stimuli, including interferons, while I1L4 reduces its
expression*42, While there is a rich literature of molecular mechanisms engaged by polarizing
cytokines, it remains unclear how polarization affects the biologically relevant properties of the
transcriptional effectors of the macrophage signaling system, such as their stimulus-specific
dynamics and the resulting response specificities.

Here, we examined how macrophage polarization affects stimulus-specific dynamics of NFkB
activation by leveraging a live microscopy workflow to generate a large dataset of single-cell
nuclear NFkB timecourse trajectories in response to 8 stimuli and 6 polarization conditions. We
applied machine learning approaches to decompose NFkB responses and quantitatively
characterize NFkB response specificity across polarization states. This analysis revealed that
NFkB signaling codons define the immune threat level of a response and that this level is a
function of the macrophage polarization state. Furthermore, utilizing a Long Short-Term
Memory (LSTM) based machine-learning classifier, we identified stimuli responses that were
less distinct with polarization, such as host TNF vs. pathogen ligands, and viral vs. bacterial
ligands. Such convergence is associated with changes in signaling codon deployment that shift
the immune threat level. Finally, we used the rich dataset of stimulus-specific NFKB response
dynamics to generate multi-dimensional mappings of macrophage polarization states. The
polarization-specific differences in NFkB dynamics and resulting differences in response
specificity suggest a specialization of macrophages into distinct functional niches.

RESULTS
An experimental pipeline for studying stimulus-specificity in polarized macrophages

To study how polarization of macrophages by microenvironmental cytokines may affect NFkB
signaling responses to various pro-inflammatory stimuli, we sought to generate a large dataset
with mVenus-RelA knockin macrophages that were polarized in 6 different conditions, and then
stimulated with 8 different proinflammatory stimulation ligands. Generating this large dataset
with 48 experimental conditions was made feasible by producing macrophages from a HoxB4-
immortalized myeloid precursor line*® derived from the mVenus-RelA knockin mouse strain.
Macrophages produced in this manner showed responses that were close to indistinguishable
from those observed in bone marrow-derived macrophages in terms of NFkB signaling
dynamics and endotoxin-induced gene expression in contrast to the often-used Raw264.7 cell
line (Figure S1).

Within our experimental workflow, differentiated macrophages were exposed to either IFN[3 or
IFNy to polarize towards M1, or IL10, IL13, or IL4 for M2 polarization, and then stimulated with
agonists for different toll-like receptors such as R848 (TLR8), Poly(l:C) (TLR3), Pam3CSK
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(TLR1/2), CpG (TLR9), Flagellin (TLR5), FSL1 (TLR2/6), or LPS (TLR4) as well as the pro-
inflammatory cytokine TNF (Figure 1A). The polarizing conditions did not appear to dramatically
impact the macrophages’ morphology visually (Figure S2). The resulting single-cell nuclear
NFkB trajectories were captured by an established live-cell microscopy workflow and quantified
by a robust image analysis pipeline %°. For each experimental condition, we obtained two
biological replicates, with hundreds of single-cell NFkB trajectories that passed stringent quality
control metrics (see Methods) in each dataset (Figure 1B). This dataset encompasses a total of
68,056 cells, each characterized by 98 microscopy images.

We examined the replicates by focusing on previously identified trajectory features, termed
signaling codons (Figure 1C). Using the Jensen-Shannon distance (JSD) of signaling codons
between each population of cells as a measure of similarity, we found that the maximum JSD
between replicates were in general much smaller than between cells stimulated in different
conditions. This assures that the biological differences of interest are larger than the technical
variability associated with the experimental and image analysis workflow. A more detailed
analysis revealed that some polarization and stimulus combinations to be more similar than
most (Figure 1D), such as responses to R848 in cells polarized with IFNy or IL10, or responses
to TNF in cells polarized with IFNy and responses to R848 when polarized with 1L13 or IL4.
Visual inspection of heatmaps that depict the actual time-course measurements confirmed that
stimulus-specific signaling characteristics are preserved in each replicate, while the precise
fraction of non-responding cells varied between some replicates (Figure 1E).

To visualize the trajectories in an aggregate form for each condition, the soft-DTW (Dynamic
Time Warping) barycenter*4> of the NFkB trajectories in each replicate was computed*® (Figure
1F). A barycenter is a constructed trajectory that minimizes the pairwise distance between itself
and each trajectory in the input dataset. Even in aggregate form, NFkB dynamics showed
stimulus-specificity, most notably for TNF, as well as a degree of polarization specificity, such as
a loss in response to Poly(I:C) with IL13 and IL4 polarization. While this analysis confirmed the
reproducibility of replicates in visual form, it is also apparent that the full dynamic features
observed in single-cell trajectories are lost in the aggregation.

With the quality of this rich dataset of single-cell NFkB trajectories confirmed, we turned to
computational data analysis methods that respect the single-cell nature of the data to
characterize the effect of polarization on the macrophage’s stimulus-responses.

The immune threat level of a stimulus is modulated by polarization

Prior work suggested that the level of immune threat a macrophage encounters is encoded by
responsive NFkB signaling dynamics*’. Here we explored whether the immune threat level
encoded by the macrophage to a particular stimulus is a function of the polarization state. We
sought to establish how the aforementioned signaling codons could define the level of immune
threat by determining how they compose a host TNF vs. a pathogen response. We used Linear
Discriminant Analysis (LDA) to find a linear combination of the signaling codons that attempts to
discriminate all TNF from all PAMP responses in our dataset (Figure 2A). Under this LDA
projection, pathogen responses were associated with higher positive values, thereby defining
the immune threat level of a response (Figure 2B). Utilizing the projection, we found that the
mean response to LPS with IFNy polarization had the greatest immune threat characterization,
whereas the mean response to TNF in the naive condition had the least. This result supports
the notion that maximal macrophage activation is elicited by LPS plus IFNy?13932 and that TNF
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secreted by other cells represents a lower immune threat level than direct cellular exposure to
PAMPs.

When we examined how the eight macrophage stimuli aligned on the LDA projection, we found
indeed that, as expected, the host stimulus TNF consistently scored at the low end, but that the
responses to PAMPs were variable (Figure 2C). Mean responses to Poly(l:C), for example,
ranged from -0.39+0.02 to +0.68+0.03, and even mean responses to LPS ranged from
0.03£0.03 to 0.93+£0.02. This suggests that polarization states modulate the perceived immune
threat level encoded in stimulus-specific NFkB responses. Indeed, examining how polarization
states align on the LDA projection, we found that responses associated with specific polarizing
cytokines were over-represented in specific parts of the projection (Figure 2D). For example, we
found that the highest immune threat values were associated with IFNB and IFNy polarization
states, whereas negative immune threat values often derived from IL13 and IL4 polarization
states, with most responses from unpolarized naive macrophages clustering near zero. Thus,
polarization states were a significant determinant of what immune threat-level macrophages
perceive with PAMPs. Furthermore, the analysis supports the notion that macrophage
polarization states do not merely fall into two discrete classes of M1 and M2, but may be
represented on a continuum.

Plotting how polarization affects the macrophage’s perception of specific stimuli (Figure 2E), we
found that while TNF showed a consistently low immune threat level, LPS, which was highest
with IFNy, was diminished to average with IL4. Other PAMPs showed an even greater degree
of polarization-dependent variability, with polarization affecting the immune threat
characterization of each differently. For example, among the two viral PAMPs, the immune
threat level of R848 was maximized with IFNy polarization but that of Poly(l:C) was maximized
with IFNP polarization. There are also differences between bacterial PAMPs, such as
Pam3CSK which has minimal immune threat characterization with IL13 polarization, and CpG
which instead has minimal immune threat characterization with IL4 polarization.

We wondered which dynamical features of NFkB signaling were driving the differences in
immune threat evaluation. Investigating the coefficients applied to the six signaling codons to
generate the linear projection identified by LDA, we found that responses with increased
immune threat levels are associated with decreased oscillations, increased peak amplitude,
decreased speed, and increased total activity (Figure 2F). For each trajectory, the signaling
codon values were multiplied by these coefficients and then summed to obtain the immune
threat level value. This provides a way of quantifying the contribution of a particular signaling
codon to the immune threat of a specific experimental condition. Comparing the viral ligands,
R848 and Poly(l:C), we found that the maximization in Poly(l:C)’s immune threat level with IFN(
polarization was driven by speed (Figure 2G). Similarly, the minimization of the immune threat
level of bacterial ligand Pam3CSK with 1L13, as opposed to CpG with IL13, was also driven by
speed (Figure 2H). Overall, this analysis revealed that the immune threat characterization of
stimuli is a function of polarization and we identified specific signaling codons that may drive
such changes. Further, the fact that each polarizing cytokine had differential effects on different
PAMPs suggested that the macrophage polarization is not adequately described as falling on a
linear continuum between M1 and M2 states but there is a more complex multi-dimensional
landscape of polarization states.

A machine learning classifier reveals reductions in stimulus-response specificity with
polarization


https://doi.org/10.1101/2022.03.27.485991
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.27.485991; this version posted March 27, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Given the plasticity of the immune threat level associated with each stimulus, we asked whether
polarization may then affect the degree of stimulus-response specificity in NFKB dynamics. To
guantify stimulus distinguishability based on NFkB trajectories and characterize how it is
affected by polarization, we implemented a Long Short-Term Memory (LSTM)-based machine
learning classifier*®. LSTM is a recurrent neural network (RNN) architecture developed to
handle the vanishing/exploding gradient problem frequently encountered when training RNN’s.
LSTM networks are well suited to perform classification or prediction tasks on time-series data
because of their ability to learn long-term dependencies in input sequences®.

The classifier was trained on different ligand identification tasks using 80% of the stimulus-
responsive trajectories from all polarization states as input data (Figure 3A, see Methods). By
comparing the output model’s classification performance on the remaining 20% of the data,
which was unseen during training, we were able to quantify how stimulus distinguishability was
affected by polarization (Figure 3A). For each classification task, the data was resampled and
the training procedure was repeated 15 times to estimate uncertainty in the obtained
performance metrics. To quantify classification performance, two metrics were used (Figure
3B). First, the F1 score is the harmonic mean of the accuracy and precision for each class; it is
a measure of classification performance, and hence stimulus distinguishability. Second, the
confusion fraction is the mean incorrect prediction probability between pairs of classes and thus
guantifies the convergence of the NFkB trajectories associated with two stimuli. We observed
that the LSTM-based classifier achieved better performance than an ensemble of decision trees
algorithm using the time-series data (Figure S3A).

We first applied the LSTM-based classifier to the task of discriminating the ligand sources. To
this end we combined NFkB trajectories from Poly(I:C) and R848 under the “viral” label and
LPS, Pam3CSK, Flagellin, FSL1 and CpG under the “bacterial’ label. We also considered TNF
as “host” and had “unstimulated” cell trajectories as well. We found that macrophages showed
higher macro-averaged F1 scores in unpolarized naive conditions than any of the five
polarization conditions for the task of classifying different ligand sources, suggesting naive
macrophages have greater stimulus-response specificity than their polarized counterparts
(Figure 3C). Naive macrophages showed the greatest macro-averaged F1 score for the task of
classifying each ligand individually as well, and this remained true even when separate models
were trained for each polarization state (Figure S3B-D), confirming the loss of stimulus-
specificity with polarization. Further, we found that viral ligand identifiability was most
diminished by polarization, particularly in IFNB, IL13, and IL4 polarization states, while host TNF
identifiability was the least affected (Figure 3D). We then asked what caused the diminished
identifiability by inspecting the confusion fractions between ligand sources (Figure 3E). IL4
polarization resulted in the greatest confusion between both TNF and viral ligands or bacterial
ligands. These confusion fractions were also elevated with IL13 polarization, but not with the
other M2 polarizer, IL10. IFNB polarization increased TNF vs. viral ligand confusion only and
IFNy increased TNF vs. bacterial ligand confusion only. All polarization conditions caused
convergence of NFKB dynamics in response to viral and bacterial ligand sources. Furthermore,
the classifier of individual ligands confirmed these losses of host and pathogen distinguishability
with polarization, and revealed convergence among bacterial ligands as well, such as with FSL1
and LPS with interferon polarization (Figure S3E). Finally, confusion with unstimulated
conditions was increased for TNF in the IFNB-polarized state, for viral ligands in the IL13 and
IL4 states, and for bacterial ligands in all three states, due to diminished responses in these
conditions. Overall, the machine learning analysis revealed losses in the stimulus-specificity of
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NFkB signaling with all polarizers, but each polarization condition affected different ligand
responses differentially.

Polarizing cytokines have distinct effects on the discrimination of stimuli

We further explored polarization’s effect on the distinguishability of NFkB responses to specific
ligands, first examining the increased confusion with IL4 polarization. We now performed
classification tasks to identify TNF vs. each of the bacterial ligands (Pam3CSK, Flagellin, CpG,
FSL1, and LPS), or TNF vs. each of the viral ligands (R848 and Pol(I:C)). Increased confusion
was evident with flagellin, CpG and LPS (Figure 4A), as well as R848 and Poly(l:C) (Figure
S4A), thus IL4’s effects were remarkably broad. Deployment of the six signaling codons with
TNF and LPS stimulation revealed that LPS responses looked more TNF-like with IL4
polarization due to increased oscillatory content and decreased total activity, reflecting a loss in
immune threat (Figure 4B). Similar changes were also apparent with R848 responses (Figure
S4C). Exploring the effects of M1 polarizers IFNB and IFNy, we found that decreased
oscillatory content and increased total activity of TNF responses contributed to the increased
confusion with poly(l:C) and flagellin respectively and a gain in immune threat level (Figure
S4D-l). Our analysis indicates that the loss of host TNF distinguishability with 1L4 polarization is
driven by pathogen responses becoming less “pathogen-like”, while for M1 type polarization
states, host TNF responses become more “pathogen-like”.

Next, we investigated further why distinct pathogen response signals converged (Figure 3E), by
training a model to individually classify each of the viral vs. bacterial ligands. In the IFNB
polarization state, where viral and bacterial source confusion was the largest, Poly(l:C) showed
greatest confusion with LPS, with FSL1 a close second (Figure 4C). We found that all Poly(l:C)
and LPS signaling codon distributions became more similar with IFN polarization, with the
convergence driven most by a diminished oscillatory content and increased total activity in
Poly(l:C), and reduced speed in LPS (Figure 4D). These changes correspond to an increase in
immune threat characterization for both ligands. We carried out similar analyses in IFNy, IL10,
IL13, and IL4 polarization states (Figure S5); together, these findings suggested that
convergence of responses to diverse PAMPs in IFNB or IFNy polarization states is due to the
generation of a more monolithic or stereotyped “pathogen-like” response signifying a greater
threat level, whereas in IL4, IL10, and IL13 they become less “pathogen-like”.

We then examined the ability of macrophages to distinguish particular PAMPs within a pathogen
class. We performed two classification tasks: the first discriminated the two viral ligands from
each other and the second discriminated the five bacterial ligands from each other. Average F1
scores, normalized to the naive condition scores, revealed polarization had little effect on viral
PAMPs distinguishability, but a big effect on bacterial PAMPs, particularly with IFNy and IL10
polarization (Figure 4E). Interestingly, each bacterial ligand differentially contributed to this
overall classification performance (Figure 4F). Whereas LPS and CpG identifiability was largely
unaffected by polarization, Pam3CSK identifiability was diminished most by IFNy and IL10
polarization, flagellin by both type | and Il IFNs, and FSL1 more so by IL10 and IL4.

The ligand-specific effects suggest that different polarization conditions differentially modulate
molecular mechanisms that are very proximal to TLRs and MyD88 recruitment. For example,
with IL10 polarization there is a significant increase in the oscillatory content of Pam3CSK
responses when compared to the naive condition (Figure 4G), with the mean oscillatory content
increasing from -0.18+0.05 to 0.43+0.07. This may be due to a decrease in TLR1/2 surface
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expression or the recruitment of MyD88. which would diminish downstream IKK activity and
hence render the dynamics more oscillatory.

NFkB stimulus-response dynamics can map macrophage polarization states

Our investigation thus far has focused on how stimulus discrimination based on differences in
NFkB response dynamics is affected by macrophage polarization. Our results suggested that
polarization states may be distinguishable based on the dynamical NFkB response to a specific
stimulus. We used Functional PCA® to dimensionality-reduce the single-cell NFkB trajectories
for a specific stimulus, and used the top ten principal components for Uniform Manifold
Approximation & Projection (UMAP) to display the 6 polarization states (Figure 5A-B). Visual
inspection suggested that TNF stimulation did not reveal much difference between the six
polarization states, while Pam3CSK stimulation did. To independently quantify the
discrimination of polarization states we trained an LSTM-classifier on polarization conditions.
We found that the classifier had the greatest macro-averaged F1 score with Pam3CSK
stimulation, followed by CpG stimulation, while TNF, Poly(l:C), and FSL1 had the least (Figure
5B). Inspecting the UMAP projections, it appears the separation of IL10-polarized cells from
other M2-polarized cells contributes to the increased performance with Pam3CSK, while some
separation of IFNB- and IFNy-polarized cells is relevant in the case of CpG stimulation.

Examining the signaling codons of the NFkB dynamics in response to these stimuli illustrates
how polarizers alter dynamics, particularly amongst M1 and M2 type polarizers. IL10-polarized
responses to Pam3CSK differ from those polarized with IL13 and IL4 due to their less early
activity, peak amplitude, and speed, as well as more oscillations (Figure 5D). IFNB-polarized
responses to CpG differ from those polarized with IFNy due to their peak amplitude, speed, and
total activity, as well as more early activity (Figure 5E). Overall, these findings illustrate that
macrophage polarization states cannot be realistically described along a single dimension, but
form a multi-dimensional landscape.

This analysis highlights that the ability to discriminate polarization states based on NFkB
response dynamics depends on the stimulus used to elicit NFKB activation. Presumably better
discrimination of polarization states could be achieved if NFKB dynamics in response to multiple
stimuli were available for each cell. However, each cell can be interrogated experimentally only
by a single stimulus. To integrate signaling dynamic information from all stimuli, future studies
may involve a mathematical model of the NFkB signaling network with parameter distributions
inferred from the experimental data to undertake in silico simulations of single macrophages
responding to different stimuli.

DISCUSSION

Macrophages are subjected to diverse tissue microenvironments characterized by a variety of
cytokines that modulate their functions. One functional hallmark of macrophages is their ability
to mount stimulus-specific immune responses to diverse immune threats, as observed in studies
of gene expression®1%5! or NFKB dynamics®. Here, we explored the effect of macrophage
polarization on stimulus-specific NFKB response dynamics by generating an unprecedented
dataset of single-cell NFKkB response trajectories associated with a wide array of polarizing
cytokines and stimulating ligands, and developing analytical frameworks for interpreting these
datasets. Our analysis revealed polarization-specific effects on NFkB dynamics and response
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specificity that could be traced to the response to specific stimuli and specific dynamic features.
Our results suggest how macrophage polarization states do not lie on a continuum from M1 to
M2 states, but rather a landscape of distinct functional specialization states.

Prior work has aimed to identify transcriptional and epigenetic signatures of macrophage
states®?°8. More recently, single-cell sequencing approaches have been leveraged for an
unbiased data-driven characterization of macrophage states in various physiologic and
pathologic contexts®*—4, These studies rely on profiling the abundance of molecules using a
shap-shot measurement to characterize macrophage states. In contrast, our study probes the
functionality of the macrophage. The function we are able to probe here at the single cell level is
the stimulus-response signaling dynamics of NFkB. This function does not linearly result from
the chromatin landscape or mMRNA abundances but involves non-linear assemblies of protein
complexes, membrane organization, and transport processes. As demonstrated here, NFkB
signaling dynamics can be leveraged to capture this additional information enabling an
alternative mapping of polarization states based not on snap-shot transcriptomic or epigenomic
data but on a functional biological response.

Developing appropriate computational tools to measure the distinguishability between different
single-cell NFkB trajectories was essential to address several analysis challenges that arise
from working with large time-series datasets. To determine distinction between trajectories, a
reliable notion of distance must be established; however, for time-series data standard
definitions of distance (i.e. Euclidean distance) often fail to capture differences appropriately.
Specifically, treating a n-timepoint trajectory as a n-dimensional vector disregards the
relationship between timepoints, and two single-cell trajectories with similar dynamical patterns
but slightly displaced in time could be computed to be highly distinct®. To describe differences
between experimental conditions, summary statistics are easy to compute and interpret,
however they are insufficient. For example, taking the timepoint by timepoint mean of the
single-cell trajectories can obscure asynchronous oscillatory dynamics observed at the single-
cell level®®. Further, average behavior descriptions mask how the distributions of responses
actually overlap. Employing measures of spread or shape that are used to characterize
distributions, are also not fully informative if taken at a timepoint level, because they also do not
recognize the inter-timepoint correlations and so risk overestimating the dispersion.

We addressed these challenges using two innovations. The first is the utilization of ‘signaling
codons’, which are features of dynamical trajectories that are informative about the stimulus, as
defined by mutual information®. Thus, six signaling codons sulfficiently describe the stimulus-
specific dynamical NFkB trajectories and their values are more robust to temporal shifts
previously discussed. In essence, they constitute a lower dimensional representation of the
data, thereby expanding the range of analysis tools that can be used, while preserving biological
interpretability. Our second approach to address the challenges of time-series data analysis
was to utilize a novel machine learning approach that allowed for trajectory distinguishability to
be explored in a feature-free manner. Indeed, the LSTM classifier performs with higher
precision than a standard ensemble of decision tree classifier trained with time-series data. The
LSTM architecture enabled direct analysis of the time-series data which allows for the
recognition of informative variation not limited by predefined features. This approach also
permits an interrogation of distinguishability that includes the single-cell resolution.

We first used the NFkB signaling codons in a LDA analysis that was based on the concept that
NFkB responses encode immune threat level of the encountered stimuli with the projection
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maximizing the distinction between the responses to PAMPs and host TNF. This data-driven
approach ordered each paired PAMP/polarization condition along a continuum and revealed
that the immune threat character of responses was maximized in M1 polarization states
mediated by interferons and minimized in M2 polarization states mediated by IL4, 1L10, and
IL13. The approach also revealed which signaling codons were associated with an increased
immune threat response: larger peak amplitude and total activity, and fewer oscillations and less
speed. Furthermore, we utilized this descriptive framework to interpret the signaling codon
changes that drove convergence with polarization. Broadly, elevated immune threat responses
contributed to convergence in M1 polarizations states, whereas the opposite was observed for
M2 polarization states. Hence, the immune threat level axis can be associated with the pro- vs
anti-inflammatory M1/M2 dichotomy and a continuum of polarization states between these poles
elicited by various microenvironmental cytokines367:68,

LSTM-based ML analysis provided additional insights. It identified increased confusion between
IL4-treated macrophage responses to TNF and pathogen ligands, mediated by responses to
pathogens, such as R848 and LPS, having more oscillatory but less total activity with
polarization, reducing immune threat with this M2 type polarization. In contrast, the
convergence of TNF and pathogen responses with M1 polarization states was driven by
opposite changes of the same signaling codons in TNF, elevating immune threat level. We
additionally detected increased confusion between the viral and bacterial ligand sources across
all polarization states, suggesting a convergence of pathogen responses with polarization. We
discovered, however, that this convergence was mediated by pathogen responses attaining
greater immune threat characteristics with M1 polarization conditions and losing them with M2
polarization.

While these results could be related to the conception of a linear continuum in M1 vs M2
polarization states, our analysis also revealed its limitations as we found for example differences
within these M1 and M2 polarization states that are specific to particular polarizing cytokines.
Firstly, the immune threat characterization of ligands varied between IFN3- and IFNy-treated
macrophages, as well as between IL10, IL13, and IL4 treated macrophages. For example, for
the viral ligand R848, the immune threat level of its responses was elevated with IFNy
polarization, but slightly diminished with IFN polarization. For the bacterial ligand Pam3CSK,
the immune threat level of its responses was significantly minimized with IL13 polarization, but
much less so with IL10 and IL4 polarization. Furthermore, there were polarization-specific
effects to losses in NFkB response distinguishability. For example, within the M2 polarizers, IL4
led to the greatest confusion between host TNF and pathogen responses as well as between
viral and bacterial source responses, however IL10 led to the greatest confusion between
different bacterial ligands. These areas of confusion were mediated by similar signaling codon
changes, notably increased oscillations of pathogen associated responses; however, these
changes manifested differently in the ligand responses with each polarization state, hence
resulting in distinguishability differences. Finally, projecting the NFkB response dynamics to the
different stimuli using functional PCA revealed a mapping of the polarization states that provided
separation between M1 polarizers from one another, as well as M2 polarizers from one another
in certain stimulation conditions, like Pam3CSK and CpG respectively. These effects suggest a
conception of macrophage polarization that occupies a higher number of dimensions as there
are several axes along which these states can differ from one another, going beyond the M1/M2
continuum.


https://doi.org/10.1101/2022.03.27.485991
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.27.485991; this version posted March 27, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

These findings support the notion of finer functional niches within macrophage activation.
Macrophages stimulated by IL4 versus those stimulated with IL10 for example have been
previously identified as functionally distinct, with the former serving a more wound-healing role
and the latter serving a more regulatory role and hence differences in stimulus-response
specificity may support these functions®®. M2a macrophages have been associated with
increased susceptibility to viral, bacterial, and fungal infections which may align with poor host
versus pathogen recognition. M2c macrophages are associated with late stages of adaptive
immune response and dampening the response, and hence the ability to differentiate bacterial
pathogens may be nonessential. Such functional characterization of macrophage subtypes has
been previously studied in atherosclerotic and dermatological lesions which identified
macrophage subtypes beyond the M1/M2 dichotomy in vivo’®’t. Our study supports the notion
that macrophage activation is better described as a multi-dimensional topology with different
functional zones rather than a linear continuum between two functional poles. In that sense the
process of macrophage polarization can then perhaps be best analogized with the concept of a
“Waddington landscape”. Naive macrophages at the outset have tremendous specialization
potential and upon microenvironmental exposures the functional capacities of the macrophage
narrow. This specialization of macrophage function aligns with the losses in response
specificity that we observed with polarization. Unlike naive macrophages that must maintain a
high degree of functional pleiotropy, polarized macrophages have less need to distinguish
stimuli in their prescribed effector roles, and hence a canalization of stimuli responses is
appropriate. Future studies may further describe this functional landscape of macrophage
polarization states and the transition between them, by combining our signaling data with other
single-cell measurements or using mathematical models of the signaling network that account
for the observed signaling dynamics’2.
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RESOURCE AVAILABILITY
Lead contact and materials availability

Further information and requests for resources and reagents should be directed to and will be
fulfilled by the lead contact, Alexander Hoffmann (ahoffmann@ucla.edu).

Data and code availability

Single-cell RNA-seq data have been deposited at SRA under BioProject accession number
PRJNAB819468 and are publicly available as of the date of publication. Accession numbers are
listed in the key resources table. Trajectory data generated from microscopy experiments have
been deposited at Mendeley Data (https://doi.org/10.17632/gkxzb5hcmk.1) and are publicly
available as of the date of publication. Software for image analysis is available on GitHub
(https://github.com/brookstaylorir/MACKItrack) and code to calculate signaling codons is
available on GitHub (https://github.com/signalingsystemslab) as of the date of publication.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Macrophage Cell Culture and Stimulation
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Immortalized myeloid precursor (iMP) cells were prepared from RelA-mVenus mouse strain®® by
HoxB4-mediated transduction *3. iMP-Derived Macrophages (iMPDMs) were prepared by
culturing iIMPs in L929-conditioned medium using standard Bone-Marrow Derived Macrophage
(BMDM) culture method *° iIMPDMs were re-plated in imaging dishes on day 6 at 20,000
cells/well in an 8-well ibidi SlideTek chamber, for imaging at an appropriate density on day 10 or
day 11. iIMPDMs were treated with polarization reagents (IL4 (10 ng/mL), IL13 (50 ng/mL), IL10
(20 ng/ML) IFNy (10 ng/mL) or IFNB (100 U/ML)) 24 hrs before stimulation. Stimulation was
done with the toll-like receptor (TLR) 4 agonist, lipopolysaccharide (LPS) (Sigma Aldrich), TLR3
agonist, polyinosine-polycytidylic acid (Poly(l:C) (Invivogen), TLR9 agonist, CpG B ODN
(invivogen); TLR2 agonists, Pam3CSK4 (invivogen) and FSL1, TLR8 agonist, R848 (invivogen)
or cytokine TNF (R&D Systems) without media replacement.

METHOD DETAILS
RNA lIsolation and Sequencing

Bone-Marrow Derived Macrophages (BMDMs) were cultured with standard methods, L929-
conditioned medium®. Raw 264.7 cells were cultured in DMEM 10 % FBS media. After
stimulation, cells were harvested at desired time points. For PolyA+ RNA, cells were harvested
in TRIzol reagent (Life Technologies, Carlsbad, CA). Then, DNA-free RNA was extracted from
cell using DIRECTzol kit (Zymo Research, Irvine, CA) according to manufacturer’s instructions.
After RNA extraction, libraries for polyA+ RNA were prepared using KAPA Stranded RNA-Seq
Kit for lllumina Platforms (KAPA Biosystems, Wilmington, MA) according to the manufacturer’s
instructions. Resulting cDNA libraries were single-end sequenced with a length of 50bp on an
lllumina HiSeq 2000 (lllumina, San Diego, CA).

Sequencing Mapping and Analysis of RNA-Seq

After adapter trimming with cutadapt’, sequences were preprocessed with PRINSEQ" using
the “dust” method to filter low complexity sequences with the maximum allowed score set to 7
and sequences with more than 10% ambiguous bases were removed. Single-end reads were
mapped to reference mouse genome (mm10) using STAR® with the following options: --
outFilterMultimapNmax 20 --alignSJoverhangMin 8 --alignSJDBoverhangMin 1 --
outFilterMismatchNmax 999 --outFilterMismatchNoverLmax 0.04 --alignintronMin 20 --
alignintronMax 1000000 --alignMatesGapMax 1000000 --seedSearchStartLmax 30. Only
primary mapped reads with alignment score (MAPQ)>30 were then selected by Samtools’®.
Ribosomal RNA was filtered out using the intersect function in bedtools with a minimal overlap
fraction of 0.1 and finally reads mapped to the Y chromosome or mitochondria were removed for
downstream analysis. Transcript abundance was quantified based on GENECODE M4
annotation using featureCounts’’ using option ‘-t exon -g gene_id. For analysis, genes with no
count across all experiments were filtered out. An average pseudocount of 2 was added to the
raw counts, where the exact value added to each library was proportional to the library size.
The counts were then normalized for differences in library size by calculating the counts per
million (CPM) and then the base 2 log of those values were used to calculate fold change.
Genes induced by LPS were determined to be those that had a log2 Fold Change greater than
or equal to 1 after 3 hours post LPS stimulation in two replicate experiments of BMDM'’s.

Live-cell imaging
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2 hours prior to imaging, iIMPDMs were stained with nuclear staining dye, Hoechst 33342 (5
ng/mL). ibidi chamber was placed to imaging station. Cells were imaged at 5-minute intervals on
a Zeiss AxioObserver platform with live-cell incubation, using epifluorescent excitation from a
Sutter Lambda XL light source. The first three images collected (pre-stimulation) were used to
determine the baseline activity of NFkB for each cell. After 15 mins of the start of imaging,
conditioned culture media containing stimulus was injected into the respective well of ibidi
chamber in situ. Images were recorded on a Hamamatsu Orca Flash 2.0 CCD camera for 12.5
hrs

QUANTIFICATION AND STATISTICAL ANALYSIS
Image analysis and processing

Microscopy time-lapse images were exported for single-cell tracking and measurement in
MATLAB R2018a,used in earlier work®. Briefly, cells were identified using DIC images, then
segmented, guided by nuclear staining from the Hoechst image. Segmented cells were linked
into trajectories across successive images, then nuclear and cytoplasmic boundaries were
defined and used for measurement in fluorescent channel for mVenus-NFkB. Nuclear NFkB
levels were quantified on a per-cell basis, normalized to image background levels, then were
baseline-subtracted. The first three images collected (pre-stimulation) were used to determine
the baseline activity of NFkB for each cell. The mean fluorescence value from these three
frames was subtracted from the complete trajectory to normalize each cell. For downstream
analysis and visualization, the third timepoint corresponds to time = 0 and 97 timepoints after
that were included (~ 8 hour trajectories). Mitotic cells, as well as cells that drifted out of the
field of view, were excluded from analysis. The code (MACKtrack) used for this analysis are
publicly available at GitHub (https://github.com/brookstaylorjr/MACK{track).

Signaling Codon Calculations

To quantify the 6 signaling codons, 11 metrics were applied to the NFkB trajectories (Table S1).
For signaling codons formed by more than one trajectory feature, the trajectory features were z-
scored and the mean of the z-scores was taken to get the signaling codon value. During quality
control analysis to determine biological replicates, z-scoring was performed over cells in the
experimental condition of interest. Additionally, for the quality control analysis, the trajectory
features from only “responding” cells were considered. A cell was deemed a responder if its
trajectory exceeded three times the standard deviation of the baseline for at least 5 consecutive
time points. Experiments were finally deemed biological replicates if the Jensen-Shannon
distance (JSD) between each of their signaling codon distributions were below a pre-specified
threshold, 0.3. For all subsequent analysis and visualizations presented in this paper, z-scoring
was performed over all cells in all experimental conditions listed in Figure 1B to calculate
signaling codon values. The code to calculate these signaling codons values are provided on
the GitHub site.

To calculate the Jensen-Shannon distances (JSD) between signaling codon distributions, the
Freedman-Diaconis rule’® was first used to select a bin width for each signaling codon. Using
this bin width and the extremum signaling codon values, a histogram that approximates the
probability density function for each experiment can be constructed and used to calculate the
JSD (the square root of the Jensen Shannon Divergence using the base 2 logarithm). For LDA
and PCA calculations using the signaling codons, the scikit-learn Python package’ was used,
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cells with missing values were excluded, and the standard scaler was applied. The confidence
intervals reported were two-sided and used a normal distribution with associated z-scores.

LSTM-based Machine Learning Classifier

The LSTM-based Machine Learning Classifier was implemented in TensorFlow 28° using the
Keras API8L, The classifier utilized the trajectories from time = 0 to 8.083 hours for a total of 98
timepoints. Trajectories with missing (nan) values were excluded from this analysis. For each
classification task described, trajectories were sampled from each polarization state such that
for each combination of class and polarization state the number of trajectories were equivalent.
More specifically, for each combination of class and polarization state the trajectories were
either undersampled or resampled to reach the mean number of trajectories across the class
and polarization state combinations. The sampled data was then split 60% for training, 20% for
validation, and 20% for testing. For each classification task, the data was shuffled and resplit 15
times to estimate uncertainty in output performance metrics. The confidence intervals reported
were two-sided and used a T-distribution with degrees of freedom one less than the sample size
(n-1). A standard scaling, fit from the training data, was finally applied across each time point.

The architecture of the machine learning classifier consisted of a LSTM layer with the
dimensionality of the output set to the number of timepoints, 98, followed by a fully connected
layer with the dimensionality of the output set to the number of classes. A softmax activation
function was finally applied to the output of the fully connected layer. The weights of the
classifier were optimized by minimizing the categorical cross-entropy loss objective function with
the Adam algorithm using the following default parameters: learning rate=0.001, beta 1=0.9,
beta 2=0.99, epsilon = 1e-08, batch size=32. With increasing number of training epochs, the
value of the loss function over the training data will continue to decrease whereas eventually the
value of the loss function over the validation data (data unseen during optimization) will begin to
increase. This signals overfitting, as the trained model loses generalizability of its performance
on new data. We employed a simple early stopping technique to address this. For each
classification task, the validation loss was monitored during training and the epoch number
corresponding approximately to the start of the rise in validation loss was determined. Training
was then terminated just prior to this epoch (typically around 60-80 epochs of training in total).

The testing data held out during training was finally used to evaluate the performance of the
trained model. The output of the classifier is the probability that a trajectory belongs to each
class. To assign the trajectory to a class, the class with the highest prediction probability for
each trajectory gave the assignment. These output prediction probabilities and class
assignments from the testing data were then used to calculate the performance metrics as
described.

Functional Principal Component Analysis

Functional principal component analysis of the NFkB response trajectories across all stimulation
and polarization conditions was performed using scikit-fda®2. An equal number of samples from
each experimental condition was used. This analysis operated directly on the centered raw
data (discretized FPCA) without first converting the data using a basis representation. The first
ten principal components were then utilized to create a UMAP projection of the data using the
Uniform Manifold Approximation & Projection package®® with default parameters.
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Figure 1: Single-cell NFkB trajectories across 6 polarization states following 8 different stimulations A. Experimental pipeline for obtaining single-cell NFkB responses
in different polarization and stimulation conditions to study the effect of polarization on stimulus response specificity B. Number of single cell NFkB trajectories obtained in each
experimental condition with two biological replicates C. Histogram of maximum Jensen-Shannon Distance (JSD) between distributions of Signaling Codon (SC) from
experiments, with distances between replicate experiments in orange and distances between different experimental conditions in blue. C. Along the diagonal of the distance
matrix are the maximum SC JSD between replicates for each experimental condition. Experimental conditions are ordered by stimuli and further sub-ordered by polarization
state. The off-diagonal elements are the mean maximum SC JSD between replicates of different experimental conditions. E. Example replicate NFkB trajectory datasets in MO,
M1:1IFNy, and M2:IL4 polarization states with TNF, Poly(l:C), and LPS stimulation. Each row in a heatmap corresponds to a single macrophage in the experiment and the color
corresponds to the amount of nuclear (active) NFkB. F. Soft-DTW (dynamic time warping) barycenter of all NFkB trajectories in each replicate for all experimental conditions
(computed using smoothing hyperparametery = 5) .
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Figure 2: Characterization of Imnmune Threat utilizing LDA of Signaling Codons A. Signaling Codons are calculated from the single-cell NFkB trajectories and then LDA
finds a linear combination that best distinguishes threat level B. Comparing mean LDA projection of host TNF versus pathogen (PAMPs) responses; this axis quantifies
immune threat as pathogen responses are more positive along it. C. Comparing mean LDA projection of different ligand responses D. Comparing mean LDA projection of
different polarizer responses shows more mean M1 polarized responses with positive LDA values and more mean M2 polarized responses with negative LDA values. E. Mean
immune threat level of each stimuli versus polarization state shows modulation by polarizers F. Coefficient applied to each signaling codon to obtain the LDA projection, hence
characterizing immune threat: decreased oscillations, increased peak amplitude, decreased speed, and increased total activity. G. Scaled mean signaling codon values for viral
ligands, R848 and Poly(l:C), in IFNB polarization condition, hence specifying codon contribution to immune threat quantification. H. Scaled mean signaling codon values for
bacterial ligands, Pam3CSK and CpG, in IL13 polarization condition. Error bars in E, G, and H correspond to 95% confidence intervals.
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Figure 3: An LSTM-based ML classifier reveals the effect of macrophage polarization on stimulus response specificity A.
For each classification task, data was sampled from all polarization states to train and test the LSTM-based ML model. Input data
was split into training (60%), validation (20%), and testing sets (20%) where validation loss was used to monitor model overfitting.
B. Two metrics were used to assess model performance: the F1 score and Confusion Fraction C. Macro-averaged class F1 scores
for the task of classifying ligand source (host TNF, viral, bacterial, and unstimulated) across polarization states demonstrates loss of
stimulus response specificity with polarization D. Class F1 scores across polarization states normalized to MO performance from
the same model. E. Confusion fractions across polarization states for different ligand sources reveal polarization-dependent
patterns in stimulus response specificity. Error bars in C and D and values in E correspond to 95% confidence intervals.
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Figure 4: Macrophage polarization affects ligand distinguishability uniquely A. Confusion fraction between the host ligand (TNF)
and the bacterial ligands (Pam3CSK, Flagellin, CpG, FSL1, LPS) in the IL4 and MO polarization states (for the task of individually
identifying the host TNF and bacterial ligands) shows larger increase with flagellin, CpG, and LPS stimulation. B. Signaling codon
distributions from the single-cell responses to TNF and LPS with MO and IL4 polarization reveal decreased immune threat level of LPS
responses (increased oscillations and decreased total activity) drive convergence of stimulus responses with polarization; percent
reduction in Jensen-Shannon Distance between ligand responses with polarization in red. C. Confusion fraction between the viral ligands
(R848, Poly(l:C)) and the bacterial ligands (Pam3CSK, Flagellin, CpG, FSL1, LPS) in the IFNB polarization state for the task of individually
identifying the viral and bacterial ligands; illustrates greatest confusion between Poly(l:C) and LPS. D. Signaling codon distributions from
the single-cell responses to Poly(l:C) and LPS with MO and IFN polarization reveal an increased immune threat level of both Poly(l:C)
(decreased oscillations and increased total activity) and LPS (reduced speed) drives convergence of stimulus responses with polarization .
E. Macro-averaged class F1 scores normalized to MO performance from the same model shows greater performance loss for the task of
individually classifying the bacterial ligands with polarization compared to that of viral ligands. F. Class F1 scores for the task of
classifying bacterial ligand responses reveals Pam3CSK as a significant source of confusion with IFNy and IL10 polarization. G. NFkB
trajectory datasets with Pam3CSK stimulation in MO and IL10 polarization demonstrate increased oscillations with polarization. Error bars
in A, C, E, and F correspond to 95% confidence intervals.
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Figure 5: Mapping macrophage polarization states with NFkB signaling response dynamics. A. UMAP
projection of the first 10 principal components identified by functional PCA (capturing approximately 85.30% of the
variance) of the NFkB responses for each stimuli colored by polarization state (down-sampled such that number of
samples per condition equivalent) B. First 10 principal components used as input for the UMAP projection. C. Macro-
averaged class F1 scores for the task of classifying each polarization condition provides a quantification of polarizer
distinguishability across the stimuli. D. Signaling codon distributions from the single-cell responses to Pam3CSK with
IL10, IL13, and IL4 polarization reveal separation of IL10 signaling codon values from other M2 polarizers (mean JSD
between IL10 and IL13/IL4 in blue). E. Signaling codon distributions from the single-cell responses to CpG with IFN(
and IFNy polarization reveal separation of signaling codon values for the M1 polarizers (JSD between IFN and IFNy
in blue).
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Figure S1: Stimulus-responsive NFkB signaling dynamics and gene expression in iMPDMs (immortalized myeloid progenitor derived
macrophages) and BMDMs (bone-marrow derived macrophages) are similar A. Heatmaps of single-cell NFkB trajectories in response to stimulation
with TNF, LPS, and Poly(l:C) produced in BMDMs (top), and iMPDMs (bottom) B. Distribution of normalized NFkB trajectory features in BMDM and iMPDM
single cell responses to TNF, LPS, and Poly(l:C) stimulation C. Log2 CPM of gene expression following 3 hours of LPS stimulation in BMDM, iMPDM, and
RAW cells. LPS-induced genes are defined as having a Log2 Fold Change equal to or greater than 1 compared to unstimulated basal expression in two

replicates of BMDMs.
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Figure S2: Representative brightfield and fluorescence microscopy images demonstrate that iIMPDMs (immortalized myeloid progenitor derived macrophages) appear healthy
under different polarizing conditions and mVenus-RelA localizes to the nucleus across the various polarization and stimulation conditions.
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Figure S3: LSTM-based ML classifier performance A. Comparison of the macro-averaged F1 scores for the task of identifying each ligand
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from the time series data in the naive condition using the ensemble of decision trees versus the LSTM-based classifier. B. Macro-averaged class

F1 scores for the task of classifying each ligand individually across all polarization states reveal overall loss of specificity with polarization C.

Class F1 scores across polarization states for the same task as in B. D. Macro-averaged class F1 scores for the task of classifying each ligand

individually with a model trained separately for each polarization state again reveals overall loss of specificity with polarization. E. Confusion
fractions across polarization states for different ligand stimulations demonstrate polarization specific patterns in stimulus response specificity.

Error bars in A, B, C, & D and values in E correspond to 95% confidence intervals.
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Figure S4: Additional examples of increased host TNF confusion with polarization A. Confusion fraction between the host ligand (TNF) and the viral ligands (R848 and
Poly(l:C)) in the IL4 and MO polarization states for the task of individually identifying the host TNF and viral ligands shows greater increase with R848 stimulation. B. PCA
projection of the signaling codons from the single-cell responses to TNF and R848 with MO and IL4 polarization; dispersion measure in red (average pairwise distance between
classes divided by average pairwise distance within classes) illustrates convergence of stimulus responses with IL4 polarization C. Signaling codon distributions from the single-
cell responses to TNF and R848 with MO and IL4 polarization reveal a decreased immune threat level of R848 responses (increased oscillations and decreased total activity)
drive convergence; percent reduction in Jensen-Shannon Distance between ligand responses with polarization in red. D. Confusion fraction between the host ligand (TNF) and
the viral ligands (R848, Poly(l:C)) in the MO and IFN polarization states shows increased confusion between Poly(l:C) and TNF. E. PCA projection of the signaling codons
from the single-cell responses to TNF and Poly(l:C) with MO and IFN polarization; dispersion measure illustrates convergence of stimulus responses F. Signaling codon
distributions from the single-cell responses to TNF and Poly(l:C) (pIC) with MO and IFN[ polarization reveal an increased immune threat level of TNF responses (decreased
oscillations and increased total activity) drive convergence. G. Confusion fraction between the host ligand (TNF) and the bacterial ligands (Pam3CSK, Flagellin, CpG, FSL1,
LPS) in the MO and IFNy polarization states show greatest increase with Flagellin stimulation. H. PCA projection of the signaling codons from the single-cell responses to TNF
and Flagellin with MO and IFNy polarization; dispersion measure illustrates convergence of stimulus responses. G. Signaling codon distributions from the single-cell responses
to TNF and Flagellin (FLA) with MO and IFNy polarization reveal an increased immune threat level of TNF responses (decreased oscillations and increased total activity) drive
convergence. Error bars in A and D correspond to 95% confidence intervals.
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Figure S5: Additional examples of the convergence of viral and bacterial responses with macrophage polarization A. Confusion fraction between the viral ligands
(R848, Poly(l:C)) and the bacterial ligands (Pam3CSK, Flagellin, CpG, FSL1, LPS) in the M1 IFNy polarization state identified elevated confusion between Poly(I:C) and FSL
responses B. PCA projection of the signaling codons from the single-cell responses to Poly(l:C) and FSL1 with MO and IFNy polarization; dispersion measure in red (average
pairwise distance between classes divided by average pairwise distance within classes) shows convergence of stimulus responses with polarization C. Signaling codon
distributions from the single-cell responses to Poly(l:C) (pIC) and FSL1 with MO and IFNy polarization reveal increased immune threat of Poly(l:C) (increased duration, peak
amplitude, & total activity and decreased oscillations) drives convergence; percent reduction in Jensen-Shannon Distance between ligand responses with polarization in red. D.
Confusion fraction between the viral and the bacterial ligands in the M2 IL10 polarization state identified elevated confusion between Poly(l:C) and Pam3CSK. E. PCA
projection of the signaling codons from the single-cell responses to Poly(l:C) and Pam3CSK with MO and IL10 polarization shows convergence of stimulus responses with
polarization. F. Signaling codon distributions from the single-cell responses to Poly(l:C) (pIC) and Pam3CSK (P3K) with MO and IL10 polarization reveal decreased immune
threat level of Pam3CSK (decreased duration, peak amplitude, & total activity and increased oscillations) drives convergence. G. Confusion fraction between the viral and
bacterial ligands in the M2 1L13 polarization state identified Flagellin responses as most confused with R848 responses. H. PCA projection of the signaling codons from the
single-cell responses to R848 and Flagellin with MO and IL13 polarization shows convergence of stimulus responses with polarization. I. Signaling codon distributions from the
single-cell responses to R848 and Flagellin (FLA) with MO and IL13 polarization reveal decreased immune threat level of R848 (decreased duration and increased oscillations)
drive convergence. J. Confusion fraction between the viral and bacterial ligands in the M2 IL4 polarization state identified elevated confusion between Poly(l:C) and FSL1. H.
PCA projection of the signaling codons from the single-cell responses to Poly(l:C) and FSL1 with MO and IL4 polarization shows convergence of stimulus responses with
polarization. L. Signaling codon distributions from the single-cell responses to Poly(l:C) and FSL1 with MO and IL4 polarization reveal decreased immune threat level of FSL1
(decreased duration & total activity and increased oscillations) drives convergence. Error bars in A, D, G and J correspond to 95% confidence intervals.
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Table S1:Signaling Codon Definitions

Duration

dur_t = time
response above
0.3 (first of 25
levels splitting
range)

n_pks = number of
peaks

EarlyVsLate

-eVI| = -time to half
maximum
cumulative integral
value

OscVsNon

oVn = average
power in 0.33 to 1
hr' frequency

range

PeakAmplitude max_val = pk2pk = maximum | pk1_amp =
maximum value to minimum value | amplitude of first

difference peak

Speed max_pk1_spd = -pk1_t=-time to deriv2 = derivative
maximum first peak at 10 minutes
derivative value
until first peak time

Total tot_act = maximum

cumulative integral
value
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