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Abstract 

Macrophages show remarkable functional pleiotropy that is dependent on microenvironmental 

context.  Prior studies have characterized how polarizing cytokines alter the transcriptomic and 

epigenetic landscape.  Here we characterized the immune-threat appropriate responses of 

polarized macrophages by measuring the single-cell signaling dynamics of transcription factor 

NFκB.   Leveraging a fluorescent protein reporter mouse, primary macrophages were polarized 

into 6 states and stimulated with 8 different stimuli resulting in a vast dataset.  Linear 

Discriminant Analysis revealed how NFκB signaling codons compose the immune threat level of 

stimuli, placing polarization states along a linear continuum between the M1/M2 dichotomy.  

Machine learning classification revealed losses of stimulus distinguishability with polarization, 

which reflect a switch from sentinel to more canalized effector functions.  However, the stimulus-

response dynamics and discrimination patterns did not fit the M1/M2 continuum.  Instead, our 

analysis suggests macrophage functional niches within a multi-dimensional polarization 

landscape. 
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Highlights 

• Polarization of macrophages affects stimulus-response NFκB dynamics  

• For each condition, NFκB signaling codons quantify the “immune threat” level 

• Machine Learning reveals polarization-induced canalization of stimulus-responses  

• NFκB stimulus-responses may define a landscape of macrophage states 

eTOC blurb 

Macrophages are profoundly responsive to their tissue microenvironment, but how that affects 

their pathogen response functions has not been investigated systematically. Here we studied 

how their signaling response is affected by six polarizing cytokines. We found each modulates 

their stimulus-responses highly specifically, producing distinct patterns of stimulus-

discrimination. Thereby, these stimulus-response specificities may be used to describe a 

landscape of functional macrophage states. 
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INTRODUCTION 

Macrophages have critical functions in the immune response.  Upon detecting pathogen or 

tissue damage through pattern recognition receptors or cytokines through cognate receptors, 

these cells can perform a wide range of tasks from the phagocytosis of pathogen components 

and cellular debris to antigen presentation, recruitment of other immune cells to sites of 

infection, and activation of system-wide immune responses.  Which functional responses are 

elicited depends not only on the activating stimulus, but also on the microenvironmental context 

of the macrophage1.   More specifically, macrophages are polarized into different biological 

functional states by the microenvironmental cytokine milieu to accentuate specific functional 

responses over others2.   

Macrophage polarization was first described in terms of a M1 vs. M2 dichotomy, although it is 

now recognized that these states are representative of a larger spectrum of macrophage 

activation in vivo3.  M1 macrophages found in inflamed microenvironments defined by the 

presence of IFNγ, play critical roles in defending the host from pathogens, such as in bacterial, 

viral, and fungal infections.  Alternatively activated or M2 macrophages have anti-inflammatory 

function and additionally regulate wound healing and repair functions4.  Subsets of M2 

macrophages have been described, such as M2a promoted by IL13 and IL4 exposure and M2c 

promoted by IL10 exposure5.  Abnormalities in macrophage activation and subsets of polarized 

cells have been implicated in disease such as metabolic disorders, asthma, allergic reactions, 

cancer, and autoimmune disorders1,6,7.  Many previous studies have attempted to characterize 

differences in polarization states based on  transcriptomic8–10 , epigenomic11,12, or proteomic13,14 

profiling, with recent advances in single-cell technologies revealing heterogeneity within these 

states15–17.  However, functional states of macrophages ought to be defined by their actual 

functionality.  Steady-state measurements of molecular abundances provide correlative markers 

of these states, but profiling single-cell functional responses may reveal a state map that is 

closer to their biologically relevant functions 

Macrophages must recognize and react to diverse stimuli to fulfill their biological roles.  

Macrophages not only need to detect different pathogen or host stimuli, but need to mount a 

response that is appropriate to the stimulus encountered17–19.  The signaling system that 

controls macrophage responses to pathogen, tissue injury, or cytokine activates a handful of 

effectors, including the central immune response transcription factor, NFκB.  NFκB activation 

shows stimulus-specific activation dynamics20–24 that can control the expression of immune 

response genes25–28 and reprogram the epigenome29. A recent set of single-cell studies in 

primary macrophages has characterized a temporal signaling code that consists of six 

dynamical features, termed “signaling codons”, that are deployed stimulus-specifically30.  

Indeed, this “NFκB response specificity” may be quantified with information theoretic or machine 

learning classification approaches. Diminished response specificity was found to be associated 

with macrophages from a mouse model of the autoimmune disease Sjögren’s syndrome. 

However, whether and how the stimulus-specificity of signaling codon deployment is affected by 

polarizing cytokines remains unexplored, as well as the potential of using NFκB response 

dynamics to map macrophage polarization states. 

Many studies have described molecular mechanisms by which polarizing cytokines affect NFκB 

activation, but what their consequence is for macrophage response specificity in different 

contexts remains unclear.  Type 1 interferons, such as IFNβ, inhibit the translation and promote 

degradation of IκBα and increase expression of receptors like RIG-1 which activate IKK31,32.  
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Type 2 interferons, such as IFNγ, induce PA28 proteins which enhances the degradation of free 

IκBα32 or IκBε33. In this way, IFNβ and IFNγ may alter NFκB activation dynamics. IL4 and IL13 

stimulation results in STAT6 activation and downstream KLF4 expression that sequesters 

coactivators required for NFκB activation6.  IL10 stimulation induces p50 NFκB homodimers34.  

Multiple microRNAs (miRNAs) have been identified as regulators of TLR signaling components 

and whose expression can be modulated by polarizing cytokines as well35,36.  IL10 is necessary 

for the expression of miRNA-146b which negatively regulates TLR4 signaling37.  M1 polarization 

increases the expression of miRNA-155, which targets MYD8838, whereas M2 polarizers 

decrease its expression39,40.  Finally, the expression of miRNA-146a, which targets TRAF6, is 

responsive to many inflammatory stimuli, including interferons, while IL4 reduces its 

expression41,42.  While there is a rich literature of molecular mechanisms engaged by polarizing 

cytokines, it remains unclear how polarization affects the biologically relevant properties of the 

transcriptional effectors of the macrophage signaling system, such as their stimulus-specific 

dynamics and the resulting response specificities. 

Here, we examined how macrophage polarization affects stimulus-specific dynamics of NFκB 

activation by leveraging a live microscopy workflow to generate a large dataset of single-cell 

nuclear NFκB timecourse trajectories in response to 8 stimuli and 6 polarization conditions.  We 

applied machine learning approaches to decompose NFκB responses and quantitatively 

characterize NFκB response specificity across polarization states. This analysis revealed that 

NFκB signaling codons define the immune threat level of a response and that this level is a 

function of the macrophage polarization state.  Furthermore, utilizing a Long Short-Term 

Memory (LSTM) based machine-learning classifier, we identified stimuli responses that were 

less distinct with polarization, such as host TNF vs. pathogen ligands, and viral vs.  bacterial 

ligands.  Such convergence is associated with changes in signaling codon deployment that shift 

the immune threat level.  Finally, we used the rich dataset of stimulus-specific NFκB response 

dynamics to generate multi-dimensional mappings of macrophage polarization states.  The 

polarization-specific differences in NFκB dynamics and resulting differences in response 

specificity suggest a specialization of macrophages into distinct functional niches. 

 

RESULTS 

An experimental pipeline for studying stimulus-specificity in polarized macrophages 

To study how polarization of macrophages by microenvironmental cytokines may affect NFκB 

signaling responses to various pro-inflammatory stimuli, we sought to generate a large dataset 

with mVenus-RelA knockin macrophages that were polarized in 6 different conditions, and then 

stimulated with 8 different proinflammatory stimulation ligands. Generating this large dataset 

with 48 experimental conditions was made feasible by producing macrophages from a HoxB4-

immortalized myeloid precursor line43 derived from the mVenus-RelA knockin mouse strain.  

Macrophages produced in this manner showed responses that were close to indistinguishable 

from those observed in bone marrow-derived macrophages in terms of NFκB signaling 

dynamics and endotoxin-induced gene expression in contrast to the often-used Raw264.7 cell 

line (Figure S1). 

Within our experimental workflow, differentiated macrophages were exposed to either IFNβ or 

IFNγ to polarize towards M1, or IL10, IL13, or IL4 for M2 polarization, and then stimulated with 

agonists for different toll-like receptors such as R848 (TLR8), Poly(I:C) (TLR3), Pam3CSK 
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(TLR1/2), CpG (TLR9), Flagellin (TLR5), FSL1 (TLR2/6), or LPS (TLR4) as well as the pro-

inflammatory cytokine TNF (Figure 1A).  The polarizing conditions did not appear to dramatically 

impact the macrophages’ morphology visually (Figure S2).  The resulting single-cell nuclear 

NFκB trajectories were captured by an established live-cell microscopy workflow and quantified 

by a robust image analysis pipeline 30.  For each experimental condition, we obtained two 

biological replicates, with hundreds of single-cell NFκB trajectories that passed stringent quality 

control metrics (see Methods) in each dataset (Figure 1B).  This dataset encompasses a total of 

68,056 cells, each characterized by 98 microscopy images. 

We examined the replicates by focusing on previously identified trajectory features, termed 

signaling codons (Figure 1C).  Using the Jensen-Shannon distance (JSD) of signaling codons 

between each population of cells as a measure of similarity, we found that the maximum JSD 

between replicates were in general much smaller than between cells stimulated in different 

conditions.  This assures that the biological differences of interest are larger than the technical 

variability associated with the experimental and image analysis workflow. A more detailed 

analysis revealed that some polarization and stimulus combinations to be more similar than 

most (Figure 1D), such as responses to R848 in cells polarized with IFNγ or IL10, or responses 

to TNF in cells polarized with IFNγ and responses to R848 when polarized with IL13 or IL4.   

Visual inspection of heatmaps that depict the actual time-course measurements confirmed that 

stimulus-specific signaling characteristics are preserved in each replicate, while the precise 

fraction of non-responding cells varied between some replicates (Figure 1E).   

To visualize the trajectories in an aggregate form for each condition, the soft-DTW (Dynamic 

Time Warping) barycenter44,45 of the NFκB trajectories in each replicate was computed46 (Figure 

1F).  A barycenter is a constructed trajectory that minimizes the pairwise distance between itself 

and each trajectory in the input dataset.  Even in aggregate form, NFκB dynamics showed 

stimulus-specificity, most notably for TNF, as well as a degree of polarization specificity, such as 

a loss in response to Poly(I:C) with IL13 and IL4 polarization. While this analysis confirmed the 

reproducibility of replicates in visual form, it is also apparent that the full dynamic features 

observed in single-cell trajectories are lost in the aggregation.   

With the quality of this rich dataset of single-cell NFκB trajectories confirmed, we turned to 

computational data analysis methods that respect the single-cell nature of the data to 

characterize the effect of polarization on the macrophage’s stimulus-responses.  

The immune threat level of a stimulus is modulated by polarization  

Prior work suggested that the level of immune threat a macrophage encounters is encoded by 

responsive NFκB signaling dynamics47.  Here we explored whether the immune threat level 

encoded by the macrophage to a particular stimulus is a function of the polarization state.  We 

sought to establish how the aforementioned signaling codons could define the level of immune 

threat by determining how they compose a host TNF vs. a pathogen response.  We used Linear 

Discriminant Analysis (LDA) to find a linear combination of the signaling codons that attempts to 

discriminate all TNF from all PAMP responses in our dataset (Figure 2A).  Under this LDA 

projection, pathogen responses were associated with higher positive values, thereby defining 

the immune threat level of a response (Figure 2B).  Utilizing the projection, we found that the 

mean response to LPS with IFNγ polarization had the greatest immune threat characterization, 

whereas the mean response to TNF in the naïve condition had the least.  This result supports 

the notion that maximal macrophage activation is elicited by LPS plus IFNγ21,30,32 and that TNF 
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secreted by other cells represents a lower immune threat level than direct cellular exposure to 

PAMPs.   

When we examined how the eight macrophage stimuli aligned on the LDA projection, we found 

indeed that, as expected, the host stimulus TNF consistently scored at the low end, but that the 

responses to PAMPs were variable (Figure 2C).  Mean responses to Poly(I:C), for example, 

ranged from -0.39±0.02 to +0.68±0.03, and even mean responses to LPS ranged from 

0.03±0.03 to 0.93±0.02.  This suggests that polarization states modulate the perceived immune 

threat level encoded in stimulus-specific NFκB responses.  Indeed, examining how polarization 

states align on the LDA projection, we found that responses associated with specific polarizing 

cytokines were over-represented in specific parts of the projection (Figure 2D). For example, we 

found that the highest immune threat values were associated with IFNβ and IFNγ polarization 

states, whereas negative immune threat values often derived from IL13 and IL4 polarization 

states, with most responses from unpolarized naïve macrophages clustering near zero.  Thus, 

polarization states were a significant determinant of what immune threat-level macrophages 

perceive with PAMPs.  Furthermore, the analysis supports the notion that macrophage 

polarization states do not merely fall into two discrete classes of M1 and M2, but may be 

represented on a continuum.   

Plotting how polarization affects the macrophage’s perception of specific stimuli (Figure 2E), we 

found that while TNF showed a consistently low immune threat level, LPS, which was highest 

with IFNγ, was diminished to average with IL4.  Other PAMPs showed an even greater degree 

of polarization-dependent variability, with polarization affecting the immune threat 

characterization of each differently.  For example, among the two viral PAMPs, the immune 

threat level of R848 was maximized with IFNγ polarization but that of Poly(I:C) was maximized 

with IFNβ polarization.  There are also differences between bacterial PAMPs, such as 

Pam3CSK which has minimal immune threat characterization with IL13 polarization, and CpG 

which instead has minimal immune threat characterization with IL4 polarization. 

We wondered which dynamical features of NFκB signaling were driving the differences in 

immune threat evaluation. Investigating the coefficients applied to the six signaling codons to 

generate the linear projection identified by LDA, we found that responses with increased 

immune threat levels are associated with decreased oscillations, increased peak amplitude, 

decreased speed, and increased total activity (Figure 2F).  For each trajectory, the signaling 

codon values were multiplied by these coefficients and then summed to obtain the immune 

threat level value.  This provides a way of quantifying the contribution of a particular signaling 

codon to the immune threat of a specific experimental condition.  Comparing the viral ligands, 

R848 and Poly(I:C), we found that the maximization in Poly(I:C)’s immune threat level with IFNβ 

polarization was driven by speed (Figure 2G).  Similarly, the minimization of the immune threat 

level of bacterial ligand Pam3CSK with IL13, as opposed to CpG with IL13, was also driven by 

speed (Figure 2H).  Overall, this analysis revealed that the immune threat characterization of 

stimuli is a function of polarization and we identified specific signaling codons that may drive 

such changes. Further, the fact that each polarizing cytokine had differential effects on different 

PAMPs suggested that the macrophage polarization is not adequately described as falling on a 

linear continuum between M1 and M2 states but there is a more complex multi-dimensional 

landscape of polarization states. 

A machine learning classifier reveals reductions in stimulus-response specificity with 

polarization 
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Given the plasticity of the immune threat level associated with each stimulus, we asked whether 

polarization may then affect the degree of stimulus-response specificity in NFκB dynamics.  To 

quantify stimulus distinguishability based on NFκB trajectories and characterize how it is 

affected by polarization, we implemented a Long Short-Term Memory (LSTM)-based machine 

learning classifier48.  LSTM is a recurrent neural network (RNN) architecture developed to 

handle the vanishing/exploding gradient problem frequently encountered when training RNN’s.  

LSTM networks are well suited to perform classification or prediction tasks on time-series data 

because of their ability to learn long-term dependencies in input sequences49.     

The classifier was trained on different ligand identification tasks using 80% of the stimulus-

responsive trajectories from all polarization states as input data (Figure 3A, see Methods).  By 

comparing the output model’s classification performance on the remaining 20% of the data, 

which was unseen during training, we were able to quantify how stimulus distinguishability was 

affected by polarization (Figure 3A).  For each classification task, the data was resampled and 

the training procedure was repeated 15 times to estimate uncertainty in the obtained 

performance metrics.  To quantify classification performance, two metrics were used (Figure 

3B).  First, the F1 score is the harmonic mean of the accuracy and precision for each class; it is 

a measure of classification performance, and hence stimulus distinguishability.  Second, the 

confusion fraction is the mean incorrect prediction probability between pairs of classes and thus 

quantifies the convergence of the NFκB trajectories associated with two stimuli.  We observed 

that the LSTM-based classifier achieved better performance than an ensemble of decision trees 

algorithm using the time-series data (Figure S3A).   

We first applied the LSTM-based classifier to the task of discriminating the ligand sources. To 

this end we combined NFκB trajectories from Poly(I:C) and R848 under the “viral” label and 

LPS, Pam3CSK, Flagellin, FSL1 and CpG under the “bacterial” label.  We also considered TNF 

as “host” and had “unstimulated” cell trajectories as well.  We found that macrophages showed 

higher macro-averaged F1 scores in unpolarized naïve conditions than any of the five 

polarization conditions for the task of classifying different ligand sources, suggesting naïve 

macrophages have greater stimulus-response specificity than their polarized counterparts 

(Figure 3C).  Naïve macrophages showed the greatest macro-averaged F1 score for the task of 

classifying each ligand individually as well, and this remained true even when separate models 

were trained for each polarization state (Figure S3B-D), confirming the loss of stimulus-

specificity with polarization.  Further, we found that viral ligand identifiability was most 

diminished by polarization, particularly in IFNβ, IL13, and IL4 polarization states, while host TNF 

identifiability was the least affected (Figure 3D).  We then asked what caused the diminished 

identifiability by inspecting the confusion fractions between ligand sources (Figure 3E). IL4 

polarization resulted in the greatest confusion between both TNF and viral ligands or bacterial 

ligands.  These confusion fractions were also elevated with IL13 polarization, but not with the 

other M2 polarizer, IL10.  IFNβ polarization increased TNF vs. viral ligand confusion only and 

IFNγ increased TNF vs. bacterial ligand confusion only.  All polarization conditions caused 

convergence of NFκB dynamics in response to viral and bacterial ligand sources.  Furthermore, 

the classifier of individual ligands confirmed these losses of host and pathogen distinguishability 

with polarization, and revealed convergence among bacterial ligands as well, such as with FSL1 

and LPS with interferon polarization (Figure S3E). Finally, confusion with unstimulated 

conditions was increased for TNF in the IFNβ-polarized state, for viral ligands in the IL13 and 

IL4 states, and for bacterial ligands in all three states, due to diminished responses in these 

conditions. Overall, the machine learning analysis revealed losses in the stimulus-specificity of 
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NFκB signaling with all polarizers, but each polarization condition affected different ligand 

responses differentially. 

Polarizing cytokines have distinct effects on the discrimination of stimuli  

We further explored polarization’s effect on the distinguishability of NFκB responses to specific 

ligands, first examining the increased confusion with IL4 polarization.  We now performed 

classification tasks to identify TNF vs. each of the bacterial ligands (Pam3CSK, Flagellin, CpG, 

FSL1, and LPS), or TNF vs. each of the viral ligands (R848 and Pol(I:C)).  Increased confusion 

was evident with flagellin, CpG and LPS (Figure 4A), as well as R848 and Poly(I:C) (Figure 

S4A), thus IL4’s effects were remarkably broad.  Deployment of the six signaling codons with 

TNF and LPS stimulation revealed that LPS responses looked more TNF-like with IL4 

polarization due to increased oscillatory content and decreased total activity, reflecting a loss in 

immune threat (Figure 4B).  Similar changes were also apparent with R848 responses (Figure 

S4C).  Exploring the effects of M1 polarizers IFNβ and IFNγ, we found that decreased 

oscillatory content and increased total activity of TNF responses contributed to the increased 

confusion with poly(I:C) and flagellin respectively and a gain in immune threat level (Figure 

S4D-I). Our analysis indicates that the loss of host TNF distinguishability with IL4 polarization is 

driven by pathogen responses becoming less “pathogen-like”, while for M1 type polarization 

states, host TNF responses become more “pathogen-like”. 

Next, we investigated further why distinct pathogen response signals converged (Figure 3E), by 

training a model to individually classify each of the viral vs. bacterial ligands.  In the IFNβ 

polarization state, where viral and bacterial source confusion was the largest, Poly(I:C) showed 

greatest confusion with LPS, with FSL1 a close second (Figure 4C).  We found that all Poly(I:C) 

and LPS signaling codon distributions became more similar with IFNβ polarization, with the 

convergence driven most by a diminished oscillatory content and increased total activity in 

Poly(I:C), and reduced speed in LPS (Figure 4D).  These changes correspond to an increase in 

immune threat characterization for both ligands.  We carried out similar analyses in IFNγ, IL10, 

IL13, and IL4 polarization states (Figure S5); together, these findings suggested that 

convergence of responses to diverse PAMPs in IFNβ or IFNγ polarization states is due to the 

generation of a more monolithic or stereotyped “pathogen-like” response signifying a greater 

threat level, whereas in IL4, IL10, and IL13 they become less “pathogen-like”. 

We then examined the ability of macrophages to distinguish particular PAMPs within a pathogen 

class.  We performed two classification tasks: the first discriminated the two viral ligands from 

each other and the second discriminated the five bacterial ligands from each other.  Average F1 

scores, normalized to the naïve condition scores, revealed polarization had little effect on viral 

PAMPs distinguishability, but a big effect on bacterial PAMPs, particularly with IFNγ and IL10 

polarization (Figure 4E).  Interestingly, each bacterial ligand differentially contributed to this 

overall classification performance (Figure 4F).  Whereas LPS and CpG identifiability was largely 

unaffected by polarization, Pam3CSK identifiability was diminished most by IFNγ and IL10 

polarization, flagellin by both type I and II IFNs, and FSL1 more so by IL10 and IL4.  

The ligand-specific effects suggest that different polarization conditions differentially modulate 

molecular mechanisms that are very proximal to TLRs and MyD88 recruitment.  For example, 

with IL10 polarization there is a significant increase in the oscillatory content of Pam3CSK 

responses when compared to the naïve condition (Figure 4G), with the mean oscillatory content 

increasing from -0.18±0.05 to 0.43±0.07.  This may be due to a decrease in TLR1/2 surface 
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expression or the recruitment of MyD88. which would diminish downstream IKK activity and 

hence render the dynamics more oscillatory. 

NFκB stimulus-response dynamics can map macrophage polarization states 

Our investigation thus far has focused on how stimulus discrimination based on differences in 

NFκB response dynamics is affected by macrophage polarization.  Our results suggested that 

polarization states may be distinguishable based on the dynamical NFκB response to a specific 

stimulus.  We used Functional PCA50 to dimensionality-reduce the single-cell NFκB trajectories 

for a specific stimulus, and used the top ten principal components for Uniform Manifold 

Approximation & Projection (UMAP) to display the 6 polarization states (Figure 5A-B).  Visual 

inspection suggested that TNF stimulation did not reveal much difference between the six 

polarization states, while Pam3CSK stimulation did. To independently quantify the 

discrimination of polarization states we trained an LSTM-classifier on polarization conditions.  

We found that the classifier had the greatest macro-averaged F1 score with Pam3CSK 

stimulation, followed by CpG stimulation, while TNF, Poly(I:C), and FSL1 had the least (Figure 

5B).  Inspecting the UMAP projections, it appears the separation of IL10-polarized cells from 

other M2-polarized cells contributes to the increased performance with Pam3CSK, while some 

separation of IFNβ- and IFNγ-polarized cells is relevant in the case of CpG stimulation. 

Examining the signaling codons of the NFκB dynamics in response to these stimuli illustrates 

how polarizers alter dynamics, particularly amongst M1 and M2 type polarizers.  IL10-polarized 

responses to Pam3CSK differ from those polarized with IL13 and IL4 due to their less early 

activity, peak amplitude, and speed, as well as more oscillations (Figure 5D).  IFNβ-polarized 

responses to CpG differ from those polarized with IFNγ due to their peak amplitude, speed, and 

total activity, as well as more early activity (Figure 5E).    Overall, these findings illustrate that 

macrophage polarization states cannot be realistically described along a single dimension, but 

form a multi-dimensional landscape. 

This analysis highlights that the ability to discriminate polarization states based on NFκB 

response dynamics depends on the stimulus used to elicit NFκB activation.  Presumably better 

discrimination of polarization states could be achieved if NFκB dynamics in response to multiple 

stimuli were available for each cell. However, each cell can be interrogated experimentally only 

by a single stimulus.  To integrate signaling dynamic information from all stimuli, future studies 

may involve a mathematical model of the NFκB signaling network with parameter distributions 

inferred from the experimental data to undertake in silico simulations of single macrophages 

responding to different stimuli.   

 

DISCUSSION 

Macrophages are subjected to diverse tissue microenvironments characterized by a variety of 

cytokines that modulate their functions. One functional hallmark of macrophages is their ability 

to mount stimulus-specific immune responses to diverse immune threats, as observed in studies 

of gene expression18,19,51 or NFκB dynamics30. Here, we explored the effect of macrophage 

polarization on stimulus-specific NFκB response dynamics by generating an unprecedented 

dataset of single-cell NFκB response trajectories associated with a wide array of polarizing 

cytokines and stimulating ligands, and developing analytical frameworks for interpreting these 

datasets.  Our analysis revealed polarization-specific effects on NFκB dynamics and response 
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specificity that could be traced to the response to specific stimuli and specific dynamic features. 

Our results suggest how macrophage polarization states do not lie on a continuum from M1 to 

M2 states, but rather a landscape of distinct functional specialization states. 

Prior work has aimed to identify transcriptional and epigenetic signatures of macrophage  

states52–58.  More recently, single-cell sequencing approaches have been leveraged for an 

unbiased data-driven characterization of macrophage states in various physiologic and 

pathologic contexts59–64.  These studies rely on profiling the abundance of molecules using a 

snap-shot measurement to characterize macrophage states. In contrast, our study probes the 

functionality of the macrophage. The function we are able to probe here at the single cell level is 

the stimulus-response signaling dynamics of NFκB.  This function does not linearly result from 

the chromatin landscape or mRNA abundances but involves non-linear assemblies of protein 

complexes, membrane organization, and transport processes.  As demonstrated here, NFκB 

signaling dynamics can be leveraged to capture this additional information enabling an 

alternative mapping of polarization states based not on snap-shot transcriptomic or epigenomic 

data but on a functional biological response. 

Developing appropriate computational tools to measure the distinguishability between different 

single-cell NFκB trajectories was essential to address several analysis challenges that arise 

from working with large time-series datasets.  To determine distinction between trajectories, a 

reliable notion of distance must be established; however, for time-series data standard 

definitions of distance (i.e. Euclidean distance) often fail to capture differences appropriately. 

Specifically, treating a n-timepoint trajectory as a n-dimensional vector disregards the 

relationship between timepoints, and two single-cell trajectories with similar dynamical patterns 

but slightly displaced in time could be computed to be highly distinct65.  To describe differences 

between experimental conditions, summary statistics are easy to compute and interpret, 

however they are insufficient.  For example, taking the timepoint by timepoint mean of the 

single-cell trajectories can obscure asynchronous oscillatory dynamics observed at the single-

cell level66.  Further, average behavior descriptions mask how the distributions of responses 

actually overlap.  Employing measures of spread or shape that are used to characterize 

distributions, are also not fully informative if taken at a timepoint level, because they also do not 

recognize the inter-timepoint correlations and so risk overestimating the dispersion. 

We addressed these challenges using two innovations. The first is the utilization of ‘signaling 

codons’, which are features of dynamical trajectories that are informative about the stimulus, as 

defined by mutual information30.  Thus, six signaling codons sufficiently describe the stimulus-

specific dynamical NFκB trajectories and their values are more robust to temporal shifts 

previously discussed.  In essence, they constitute a lower dimensional representation of the 

data, thereby expanding the range of analysis tools that can be used, while preserving biological 

interpretability.  Our second approach to address the challenges of time-series data analysis 

was to utilize a novel machine learning approach that allowed for trajectory distinguishability to 

be explored in a feature-free manner.  Indeed, the LSTM classifier performs with higher 

precision than a standard ensemble of decision tree classifier trained with time-series data. The 

LSTM architecture enabled direct analysis of the time-series data which allows for the 

recognition of informative variation not limited by predefined features.  This approach also 

permits an interrogation of distinguishability that includes the single-cell resolution. 

We first used the NFκB signaling codons in a LDA analysis that was based on the concept that 

NFκB responses encode immune threat level of the encountered stimuli with the projection 
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maximizing the distinction between the responses to PAMPs and host TNF. This data-driven 

approach ordered each paired PAMP/polarization condition along a continuum and revealed 

that the immune threat character of responses was maximized in M1 polarization states 

mediated by interferons and minimized in M2 polarization states mediated by IL4, IL10, and 

IL13.  The approach also revealed which signaling codons were associated with an increased 

immune threat response: larger peak amplitude and total activity, and fewer oscillations and less 

speed.  Furthermore, we utilized this descriptive framework to interpret the signaling codon 

changes that drove convergence with polarization.  Broadly, elevated immune threat responses 

contributed to convergence in M1 polarizations states, whereas the opposite was observed for 

M2 polarization states.  Hence, the immune threat level axis can be associated with the pro- vs 

anti-inflammatory M1/M2 dichotomy and a continuum of polarization states between these poles 

elicited by various microenvironmental cytokines3,67,68.   

LSTM-based ML analysis provided additional insights. It identified increased confusion between 

IL4-treated macrophage responses to TNF and pathogen ligands, mediated by responses to 

pathogens, such as R848 and LPS, having more oscillatory but less total activity with 

polarization, reducing immune threat with this M2 type polarization.  In contrast, the 

convergence of TNF and pathogen responses with M1 polarization states was driven by 

opposite changes of the same signaling codons in TNF, elevating immune threat level.  We 

additionally detected increased confusion between the viral and bacterial ligand sources across 

all polarization states, suggesting a convergence of pathogen responses with polarization.  We 

discovered, however, that this convergence was mediated by pathogen responses attaining 

greater immune threat characteristics with M1 polarization conditions and losing them with M2 

polarization. 

While these results could be related to the conception of a linear continuum in M1 vs M2 

polarization states, our analysis also revealed its limitations as we found for example differences 

within these M1 and M2 polarization states that are specific to particular polarizing cytokines.  

Firstly, the immune threat characterization of ligands varied between IFNβ- and IFNγ-treated 

macrophages, as well as between IL10, IL13, and IL4 treated macrophages.  For example, for 

the viral ligand R848, the immune threat level of its responses was elevated with IFNγ 

polarization, but slightly diminished with IFNβ polarization.  For the bacterial ligand Pam3CSK, 

the immune threat level of its responses was significantly minimized with IL13 polarization, but 

much less so with IL10 and IL4 polarization. Furthermore, there were polarization-specific 

effects to losses in NFκB response distinguishability.  For example, within the M2 polarizers, IL4 

led to the greatest confusion between host TNF and pathogen responses as well as between 

viral and bacterial source responses, however IL10 led to the greatest confusion between 

different bacterial ligands.  These areas of confusion were mediated by similar signaling codon 

changes, notably increased oscillations of pathogen associated responses; however, these 

changes manifested differently in the ligand responses with each polarization state, hence 

resulting in distinguishability differences.  Finally, projecting the NFκB response dynamics to the 

different stimuli using functional PCA revealed a mapping of the polarization states that provided 

separation between M1 polarizers from one another, as well as M2 polarizers from one another 

in certain stimulation conditions, like Pam3CSK and CpG respectively.  These effects suggest a 

conception of macrophage polarization that occupies a higher number of dimensions as there 

are several axes along which these states can differ from one another, going beyond the M1/M2 

continuum. 
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These findings support the notion of finer functional niches within macrophage activation.  

Macrophages stimulated by IL4 versus those stimulated with IL10 for example have been 

previously identified as functionally distinct, with the former serving a more wound-healing role 

and the latter serving a more regulatory role and hence differences in stimulus-response 

specificity may support these functions69.  M2a macrophages have been associated with 

increased susceptibility to viral, bacterial, and fungal infections which may align with poor host 

versus pathogen recognition.  M2c macrophages are associated with late stages of adaptive 

immune response and dampening the response, and hence the ability to differentiate bacterial 

pathogens may be nonessential.  Such functional characterization of macrophage subtypes has 

been previously studied in atherosclerotic and dermatological lesions which identified 

macrophage subtypes beyond the M1/M2 dichotomy in vivo70,71.  Our study supports the notion 

that macrophage activation is better described as a multi-dimensional topology with different 

functional zones rather than a linear continuum between two functional poles.  In that sense the 

process of macrophage polarization can then perhaps be best analogized with the concept of a 

“Waddington landscape”.  Naïve macrophages at the outset have tremendous specialization 

potential and upon microenvironmental exposures the functional capacities of the macrophage 

narrow.  This specialization of macrophage function aligns with the losses in response 

specificity that we observed with polarization.  Unlike naïve macrophages that must maintain a 

high degree of functional pleiotropy, polarized macrophages have less need to distinguish 

stimuli in their prescribed effector roles, and hence a canalization of stimuli responses is 

appropriate.  Future studies may further describe this functional landscape of macrophage 

polarization states and the transition between them, by combining our signaling data with other 

single-cell measurements or using mathematical models of the signaling network that account 

for the observed signaling dynamics72. 
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RESOURCE AVAILABILITY 

Lead contact and materials availability 

Further information and requests for resources and reagents should be directed to and will be  
fulfilled by the lead contact, Alexander Hoffmann (ahoffmann@ucla.edu). 

Data and code availability 

Single-cell RNA-seq data have been deposited at SRA under BioProject accession number 
PRJNA819468 and are publicly available as of the date of publication. Accession numbers are 
listed in the key resources table. Trajectory data generated from microscopy experiments have 
been deposited at Mendeley Data (https://doi.org/10.17632/gkxzb5hcmk.1) and are publicly 
available as of the date of publication.  Software for image analysis is available on GitHub 
(https://github.com/brookstaylorjr/MACKtrack) and code to calculate signaling codons is 
available on GitHub (https://github.com/signalingsystemslab) as of the date of publication. 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Macrophage Cell Culture and Stimulation 
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Immortalized myeloid precursor (iMP) cells were prepared from RelA-mVenus mouse strain30 by 
HoxB4-mediated transduction 43. iMP-Derived Macrophages (iMPDMs) were prepared by 
culturing iMPs in L929-conditioned medium using standard Bone-Marrow Derived Macrophage 
(BMDM)  culture method 30 iMPDMs were re-plated in imaging dishes on day 6 at 20,000 
cells/well in an 8-well ibidi SlideTek chamber, for imaging at an appropriate density on day 10 or 
day 11. iMPDMs were treated with polarization reagents (IL4 (10 ng/mL), IL13 (50 ng/mL), IL10 

(20 ng/ML) IFN (10 ng/mL) or IFNβ (100 U/ML)) 24 hrs before stimulation. Stimulation was 
done with the toll-like receptor (TLR) 4 agonist, lipopolysaccharide (LPS) (Sigma Aldrich), TLR3 
agonist, polyinosine-polycytidylic acid (Poly(I:C) (Invivogen), TLR9 agonist, CpG B ODN 
(invivogen); TLR2 agonists, Pam3CSK4 (invivogen) and FSL1, TLR8 agonist, R848 (invivogen) 
or cytokine TNF (R&D Systems) without media replacement. 

 

METHOD DETAILS 

RNA Isolation and Sequencing 

Bone-Marrow Derived Macrophages (BMDMs) were cultured with standard methods, L929-
conditioned medium30. Raw 264.7 cells were cultured in DMEM 10 % FBS media. After 
stimulation, cells were harvested at desired time points. For PolyA+ RNA, cells were harvested 
in TRIzol reagent (Life Technologies, Carlsbad, CA). Then, DNA-free RNA was extracted from 
cell using DIRECTzol kit (Zymo Research, Irvine, CA) according to manufacturer’s instructions. 
After RNA extraction, libraries for polyA+ RNA were prepared using KAPA Stranded RNA-Seq 
Kit for Illumina Platforms (KAPA Biosystems, Wilmington, MA) according to the manufacturer’s 
instructions. Resulting cDNA libraries were single-end sequenced with a length of 50bp on an 
Illumina HiSeq 2000 (Illumina, San Diego, CA). 

Sequencing Mapping and Analysis of RNA-Seq 

After adapter trimming with cutadapt73, sequences were preprocessed with PRINSEQ74 using 
the “dust” method to filter low complexity sequences with the maximum allowed score set to 7 
and sequences with more than 10% ambiguous bases were removed.  Single-end reads were 
mapped to reference mouse genome (mm10) using STAR75 with the following options: --
outFilterMultimapNmax 20 --alignSJoverhangMin 8 --alignSJDBoverhangMin 1 --
outFilterMismatchNmax 999 --outFilterMismatchNoverLmax 0.04 --alignIntronMin 20 --
alignIntronMax 1000000 --alignMatesGapMax 1000000 --seedSearchStartLmax 30. Only 
primary mapped reads with alignment score (MAPQ)>30 were then selected by Samtools76.  
Ribosomal RNA was filtered out using the intersect function in bedtools with a minimal overlap 
fraction of 0.1 and finally reads mapped to the Y chromosome or mitochondria were removed for 
downstream analysis.  Transcript abundance was quantified based on GENECODE M4 
annotation using featureCounts77 using option ‘-t exon -g gene_id. For analysis, genes with no 
count across all experiments were filtered out.  An average pseudocount of 2 was added to the 
raw counts, where the exact value added to each library was proportional to the library size.  
The counts were then normalized for differences in library size by calculating the counts per 
million (CPM) and then the base 2 log of those values were used to calculate fold change.  
Genes induced by LPS were determined to be those that had a log2 Fold Change greater than 
or equal to 1 after 3 hours post LPS stimulation in two replicate experiments of BMDM’s. 

Live-cell imaging 
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2 hours prior to imaging, iMPDMs were stained with nuclear staining dye, Hoechst 33342 (5 
ng/mL). ibidi chamber was placed to imaging station. Cells were imaged at 5-minute intervals on 
a Zeiss AxioObserver platform with live-cell incubation, using epifluorescent excitation from a 
Sutter Lambda XL light source. The first three images collected (pre-stimulation) were used to 
determine the baseline activity of NFκB for each cell.  After 15 mins of the start of imaging, 
conditioned culture media containing stimulus was injected into the respective well of ibidi 
chamber in situ. Images were recorded on a Hamamatsu Orca Flash 2.0 CCD camera for 12.5 
hrs 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Image analysis and processing 

Microscopy time-lapse images were exported for single-cell tracking and measurement in 
MATLAB R2018a,used in earlier work30. Briefly, cells were identified using DIC images, then 
segmented, guided by nuclear staining from the Hoechst image. Segmented cells were linked 
into trajectories across successive images, then nuclear and cytoplasmic boundaries were 
defined and used for measurement in fluorescent channel for mVenus-NFκB. Nuclear NFκB 
levels were quantified on a per-cell basis, normalized to image background levels, then were 
baseline-subtracted. The first three images collected (pre-stimulation) were used to determine 
the baseline activity of NFκB for each cell.  The mean fluorescence value from these three 
frames was subtracted from the complete trajectory to normalize each cell.  For downstream 
analysis and visualization, the third timepoint corresponds to time = 0 and 97 timepoints after 
that were included (~ 8 hour trajectories).   Mitotic cells, as well as cells that drifted out of the 
field of view, were excluded from analysis. The code (MACKtrack) used for this analysis are 
publicly available at GitHub (https://github.com/brookstaylorjr/MACKtrack). 

Signaling Codon Calculations 

To quantify the 6 signaling codons, 11 metrics were applied to the NFκB trajectories (Table S1).  
For signaling codons formed by more than one trajectory feature, the trajectory features were z-
scored and the mean of the z-scores was taken to get the signaling codon value.  During quality 
control analysis to determine biological replicates, z-scoring was performed over cells in the 
experimental condition of interest.  Additionally, for the quality control analysis, the trajectory 
features from only “responding” cells were considered.  A cell was deemed a responder if its 
trajectory exceeded three times the standard deviation of the baseline for at least 5 consecutive 
time points.  Experiments were finally deemed biological replicates if the Jensen-Shannon 
distance (JSD) between each of their signaling codon distributions were below a pre-specified 
threshold, 0.3.  For all subsequent analysis and visualizations presented in this paper, z-scoring 
was performed over all cells in all experimental conditions listed in Figure 1B to calculate 
signaling codon values.  The code to calculate these signaling codons values are provided on 
the GitHub site.   

To calculate the Jensen-Shannon distances (JSD) between signaling codon distributions, the 
Freedman-Diaconis rule78 was first used to select a bin width for each signaling codon.  Using 
this bin width and the extremum signaling codon values, a histogram that approximates the 
probability density function for each experiment can be constructed and used to calculate the 
JSD (the square root of the Jensen Shannon Divergence using the base 2 logarithm). For LDA 
and PCA calculations using the signaling codons, the scikit-learn Python package79 was used, 
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cells with missing values were excluded, and the standard scaler was applied.  The confidence 
intervals reported were two-sided and used a normal distribution with associated z-scores. 

LSTM-based Machine Learning Classifier  

The LSTM-based Machine Learning Classifier was implemented in TensorFlow 280 using the 

Keras API81.  The classifier utilized the trajectories from time = 0 to 8.083 hours for a total of 98 

timepoints.  Trajectories with missing (nan) values were excluded from this analysis.  For each 

classification task described, trajectories were sampled from each polarization state such that 

for each combination of class and polarization state the number of trajectories were equivalent.  

More specifically, for each combination of class and polarization state the trajectories were 

either undersampled or resampled to reach the mean number of trajectories across the class 

and polarization state combinations.  The sampled data was then split 60% for training, 20% for 

validation, and 20% for testing.  For each classification task, the data was shuffled and resplit 15 

times to estimate uncertainty in output performance metrics.  The confidence intervals reported 

were two-sided and used a T-distribution with degrees of freedom one less than the sample size 

(n-1).  A standard scaling, fit from the training data, was finally applied across each time point.   

The architecture of the machine learning classifier consisted of a LSTM layer with the 

dimensionality of the output set to the number of timepoints, 98, followed by a fully connected 

layer with the dimensionality of the output set to the number of classes.  A softmax activation 

function was finally applied to the output of the fully connected layer.  The weights of the 

classifier were optimized by minimizing the categorical cross-entropy loss objective function with 

the Adam algorithm using the following default parameters:  learning rate=0.001, beta 1=0.9, 

beta 2=0.99, epsilon = 1e-08, batch size=32.  With increasing number of training epochs, the 

value of the loss function over the training data will continue to decrease whereas eventually the 

value of the loss function over the validation data (data unseen during optimization) will begin to 

increase.  This signals overfitting, as the trained model loses generalizability of its performance 

on new data.  We employed a simple early stopping technique to address this.  For each 

classification task, the validation loss was monitored during training and the epoch number 

corresponding approximately to the start of the rise in validation loss was determined.  Training 

was then terminated just prior to this epoch (typically around 60-80 epochs of training in total).   

The testing data held out during training was finally used to evaluate the performance of the 

trained model.  The output of the classifier is the probability that a trajectory belongs to each 

class.  To assign the trajectory to a class, the class with the highest prediction probability for 

each trajectory gave the assignment.  These output prediction probabilities and class 

assignments from the testing data were then used to calculate the performance metrics as 

described. 

Functional Principal Component Analysis 

Functional principal component analysis of the NFκB response trajectories across all stimulation 

and polarization conditions was performed using scikit-fda82.  An equal number of samples from 

each experimental condition was used.  This analysis operated directly on the centered raw 

data (discretized FPCA) without first converting the data using a basis representation.  The first 

ten principal components were then utilized to create a UMAP projection of the data using the 

Uniform Manifold Approximation & Projection package83 with default parameters.  
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Figure 1: Single-cell NFκB trajectories across 6 polarization states following 8 different stimulations A. Experimental pipeline for obtaining single-cell NFκB responses 
in different polarization and stimulation conditions to study the effect of polarization on stimulus response specificity B. Number of single cell NFκB trajectories obtained in each 
experimental condition with two biological replicates C. Histogram of maximum Jensen-Shannon Distance (JSD) between distributions of Signaling Codon (SC) from 
experiments, with distances between replicate experiments in orange and distances between different experimental conditions in blue. C. Along the diagonal of the distance 
matrix are the maximum SC JSD between replicates for each experimental condition.  Experimental conditions are ordered by stimuli and further sub-ordered by polarization 
state.  The off-diagonal elements are the mean maximum SC JSD between replicates of different experimental conditions. E. Example replicate NFκB trajectory datasets in M0, 
M1:IFNγ, and M2:IL4 polarization states with TNF, Poly(I:C), and LPS stimulation.  Each row in a heatmap corresponds to a single macrophage in the experiment and the color 
corresponds to the amount of nuclear (active) NFκB.  F. Soft-DTW (dynamic time warping) barycenter of all NFκB trajectories in each replicate for all experimental conditions 
(computed using smoothing hyperparameter γ = 5) .
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immune threat as pathogen responses are more positive along it. C. Comparing mean LDA projection of different ligand responses D. Comparing mean LDA projection of 
different polarizer responses shows more mean M1 polarized responses with positive LDA values and more mean M2 polarized responses with negative LDA values.  E. Mean 
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ligands, R848 and Poly(I:C), in IFNβ polarization condition, hence specifying codon contribution to immune threat quantification. H. Scaled mean signaling codon values for 
bacterial ligands, Pam3CSK and CpG, in IL13 polarization condition.  Error bars in E, G, and H correspond to 95% confidence intervals.
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Figure 3: An LSTM-based ML classifier reveals the effect of macrophage polarization on stimulus response specificity  A. 
For each classification task, data was sampled from all polarization states to train and test the LSTM-based ML model.  Input data 
was split into training (60%), validation (20%), and testing sets (20%) where validation loss was used to monitor model overfitting.
B. Two metrics were used to assess model performance: the F1 score and Confusion Fraction  C. Macro-averaged class F1 scores 
for the task of classifying ligand source (host TNF, viral, bacterial, and unstimulated) across polarization states demonstrates loss of 
stimulus response specificity with polarization  D. Class F1 scores across polarization states normalized to M0 performance from 
the same model. E. Confusion fractions across polarization states for different ligand sources reveal polarization-dependent 
patterns in stimulus response specificity. Error bars in C and D and values in E correspond to 95% confidence intervals.
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Figure 4

C

Figure 4:  Macrophage polarization affects ligand distinguishability uniquely A. Confusion fraction between the host ligand (TNF) 
and the bacterial ligands (Pam3CSK, Flagellin, CpG, FSL1, LPS) in the IL4 and M0 polarization states (for the task of individually 
identifying the host TNF and bacterial ligands) shows larger increase with flagellin, CpG, and LPS stimulation.  B. Signaling codon 
distributions from the single-cell responses to TNF and LPS with M0 and IL4 polarization reveal decreased immune threat level of LPS 
responses (increased oscillations and decreased total activity) drive convergence of stimulus responses with polarization; percent 
reduction in Jensen-Shannon Distance between ligand responses with polarization in red. C. Confusion fraction between the viral ligands 
(R848, Poly(I:C)) and the bacterial ligands (Pam3CSK, Flagellin, CpG, FSL1, LPS) in the IFNβ polarization state for the task of individually 
identifying the viral and bacterial ligands; illustrates greatest confusion between Poly(I:C) and LPS.  D. Signaling codon distributions from 
the single-cell responses to Poly(I:C) and LPS with M0 and IFNβ polarization reveal an increased immune threat level of both Poly(I:C) 
(decreased oscillations and increased total activity) and LPS (reduced speed) drives convergence of stimulus responses with polarization . 
E. Macro-averaged class F1 scores normalized to M0 performance from the same model shows greater performance loss for the task of 
individually classifying the bacterial ligands with polarization compared to that of viral ligands. F. Class F1 scores for the task of 
classifying bacterial ligand responses reveals Pam3CSK as a significant source of confusion with IFNγ and IL10 polarization.  G. NFκB 
trajectory datasets with Pam3CSK stimulation in M0 and IL10 polarization demonstrate increased oscillations with polarization.  Error bars 
in A, C, E, and F correspond to 95% confidence intervals.
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Figure 5: Mapping macrophage polarization states with NFκB signaling response dynamics.  A. UMAP 
projection of the first 10 principal components identified by functional PCA (capturing approximately 85.30% of the 
variance) of the NFκB responses for each stimuli colored by polarization state (down-sampled such that number of 
samples per condition equivalent)  B. First 10 principal components used as input for the UMAP projection.  C. Macro-
averaged class F1 scores for the task of classifying each polarization condition provides a quantification of polarizer 
distinguishability across the stimuli. D. Signaling codon distributions from the single-cell responses to Pam3CSK with 
IL10, IL13, and IL4 polarization reveal separation of IL10 signaling codon values from other M2 polarizers (mean JSD 
between IL10 and IL13/IL4 in blue). E. Signaling codon distributions from the single-cell responses to CpG with IFNβ
and IFNγ polarization reveal separation of signaling codon values for the M1 polarizers (JSD between IFNβ and IFNγ
in blue).
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Supplemental Figure 1

A

Figure S1: Stimulus-responsive NFκB signaling dynamics and gene expression in iMPDMs (immortalized myeloid progenitor derived 
macrophages) and BMDMs (bone-marrow derived macrophages) are similar A. Heatmaps of single-cell NFκB trajectories in response to stimulation 
with TNF, LPS, and Poly(I:C) produced in BMDMs (top), and iMPDMs (bottom)  B. Distribution of normalized NFκB trajectory features in BMDM and iMPDM
single cell responses to TNF, LPS, and Poly(I:C) stimulation  C.  Log2 CPM of gene expression following 3 hours of LPS stimulation in BMDM, iMPDM, and 
RAW cells.  LPS-induced genes are defined as having a Log2 Fold Change equal to or greater than 1 compared to unstimulated basal expression in two 
replicates of BMDMs.
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Supplemental Figure 2

Figure S2: Representative brightfield and fluorescence microscopy images demonstrate that iMPDMs (immortalized myeloid progenitor derived macrophages) appear healthy 
under different polarizing conditions and mVenus-RelA localizes to the nucleus across the various polarization and stimulation conditions.

DIC mVenus
M0 – CpG

IFNβ – Poly(I:C) IL13 – Pam3CSK

IL10 – FSL1

IFNγ – TNF

DIC mVenus

IL4 – LPS
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Supplemental Figure 3
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Figure S3: LSTM-based ML classifier performance A. Comparison of the macro-averaged F1 scores for the task of identifying each ligand 
from the time series data in the naïve condition using the ensemble of decision trees versus the LSTM-based classifier. B. Macro-averaged class 
F1 scores for the task of classifying each ligand individually across all polarization states reveal overall loss of specificity with polarization C.
Class F1 scores across polarization states for the same task as in B. D. Macro-averaged class F1 scores for the task of classifying each ligand 
individually with a model trained separately for each polarization state again reveals overall loss of specificity with polarization.  E. Confusion
fractions across polarization states for different ligand stimulations demonstrate polarization specific patterns in stimulus response specificity. 
Error bars in A, B, C, & D and values in E correspond to 95% confidence intervals. 
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Figure S4: Additional examples of increased host TNF confusion with polarization A. Confusion fraction between the host ligand (TNF) and the viral ligands (R848 and 
Poly(I:C)) in the IL4 and M0 polarization states for the task of individually identifying the host TNF and viral ligands shows greater increase with R848 stimulation.  B. PCA 
projection of the signaling codons from the single-cell responses to TNF and R848 with M0 and IL4 polarization; dispersion measure in red (average pairwise distance between 
classes divided by average pairwise distance within classes) illustrates convergence of stimulus responses with IL4 polarization C. Signaling codon distributions from the single-
cell responses to TNF and R848 with M0 and IL4 polarization reveal a decreased immune threat level of R848 responses (increased oscillations and decreased total activity) 
drive convergence; percent reduction in Jensen-Shannon Distance between ligand responses with polarization in red.  D. Confusion fraction between the host ligand (TNF) and 
the viral ligands (R848, Poly(I:C)) in the M0 and IFNβ polarization states shows increased confusion between Poly(I:C) and TNF.  E. PCA projection of the signaling codons 
from the single-cell responses to TNF and Poly(I:C) with M0 and IFNβ polarization; dispersion measure illustrates convergence of stimulus responses F. Signaling codon 
distributions from the single-cell responses to TNF and Poly(I:C) (pIC) with M0 and IFNβ polarization reveal an increased immune threat level of TNF responses (decreased 
oscillations and increased total activity) drive convergence.  G. Confusion fraction between the host ligand (TNF) and the bacterial ligands (Pam3CSK, Flagellin, CpG, FSL1, 
LPS) in the M0 and IFNγ polarization states show greatest increase with Flagellin stimulation. H. PCA projection of the signaling codons from the single-cell responses to TNF 
and Flagellin with M0 and IFNγ polarization; dispersion measure illustrates convergence of stimulus responses. G. Signaling codon distributions from the single-cell responses 
to TNF and Flagellin (FLA) with M0 and IFNγ polarization reveal an increased immune threat level of TNF responses (decreased oscillations and increased total activity)  drive 
convergence.  Error bars in A and D correspond to 95% confidence intervals.
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Figure S5: Additional examples of the convergence of viral and bacterial responses with macrophage polarization A. Confusion fraction between the viral ligands 
(R848, Poly(I:C)) and the bacterial ligands (Pam3CSK, Flagellin, CpG, FSL1, LPS) in the M1 IFNγ polarization state identified elevated confusion between Poly(I:C) and FSL 
responses B. PCA projection of the signaling codons from the single-cell responses to Poly(I:C) and FSL1 with M0 and IFNγ polarization; dispersion measure in red (average 
pairwise distance between classes divided by average pairwise distance within classes) shows convergence of stimulus responses with polarization C. Signaling codon 
distributions from the single-cell responses to Poly(I:C) (pIC) and FSL1 with M0 and IFNγ polarization reveal increased immune threat of Poly(I:C) (increased duration, peak 
amplitude, & total activity and decreased oscillations) drives convergence; percent reduction in Jensen-Shannon Distance between ligand responses with polarization in red.  D. 
Confusion fraction between the viral and the bacterial ligands in the M2 IL10 polarization state identified elevated confusion between Poly(I:C) and Pam3CSK.  E. PCA 
projection of the signaling codons from the single-cell responses to Poly(I:C) and Pam3CSK with M0 and IL10 polarization shows convergence of stimulus responses with 
polarization. F. Signaling codon distributions from the single-cell responses to Poly(I:C) (pIC) and Pam3CSK (P3K) with M0 and IL10 polarization reveal decreased immune 
threat level of Pam3CSK (decreased duration, peak amplitude, & total activity and increased oscillations) drives convergence. G. Confusion fraction between the viral and 
bacterial ligands in the M2 IL13 polarization state identified Flagellin responses as most confused with R848 responses.  H. PCA projection of the signaling codons from the 
single-cell responses to R848 and Flagellin with M0 and IL13 polarization shows convergence of stimulus responses with polarization. I. Signaling codon distributions from the 
single-cell responses to R848 and Flagellin (FLA) with M0 and IL13 polarization reveal decreased immune threat level of R848 (decreased duration and increased oscillations) 
drive convergence.  J. Confusion fraction between the viral and bacterial ligands in the M2 IL4 polarization state identified elevated confusion between Poly(I:C) and FSL1. H.
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polarization. L. Signaling codon distributions from the single-cell responses to Poly(I:C) and FSL1 with M0 and IL4 polarization reveal decreased immune threat level of FSL1 
(decreased duration & total activity and increased oscillations) drives convergence.  Error bars in A, D, G and J correspond to 95% confidence intervals.
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Peak Amplitude Speed Total Activity
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Duration dur_t = time 
response above 
0.3 (first of 25 
levels splitting 
range) 

n_pks = number of 
peaks

EarlyVsLate -eVl = -time to half 
maximum 
cumulative integral 
value

OscVsNon oVn = average 
power in 0.33 to 1 
hr-1 frequency 
range

PeakAmplitude max_val = 
maximum value 

pk2pk = maximum 
to minimum value 
difference

pk1_amp = 
amplitude of first 
peak

Speed max_pk1_spd = 
maximum 
derivative value 
until first peak time

-pk1_t = -time to 
first peak

deriv2 = derivative 
at 10 minutes

Total tot_act = maximum 
cumulative integral 
value

Table S1:Signaling Codon Definitions
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