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ABSTRACT

The capacity of cells to process information is currently used to design cell-based tools for ecological, in-
dustrial, and biomedical applications such as detecting dangerous chemicals or for bioremediation. In most
applications, individual cells are used as the information processing unit. However, single cell engineering is
limited by the necessary molecular complexity and the accompanying metabolic burden of synthetic circuits.
To overcome these limitations, synthetic biologists have begun engineering multicellular systems that combine
cells with designed subfunctions. To further advance information processing in synthetic multicellular systems,
we introduce the application of reservoir computing. Reservoir computers (RCs) approximate a temporal signal
processing task via a fixed-rule dynamic network (the reservoir) with a regression-based readout. Importantly,
RCs eliminate the need of network rewiring, as different tasks can be approximated with the same reservoir.
Previous work has already demonstrated the capacity of single cells, as well as populations of neurons, to act
as reservoirs. In this work, we extend reservoir computing in multicellular populations with the widespread
mechanism of diffusion-based cell-cell signaling. As a proof-of-concept, we simulated a reservoir made of a
3D community of cells communicating via diffusible molecules and used it to approximate two benchmark
signal processing tasks, computing median and parity functions from binary input signals. We demonstrate
that a diffusion-based multicellular reservoir is a feasible synthetic framework for performing complex tempo-
ral computing tasks that provides a computational advantage over single cell reservoirs. We also identified a

number of biological properties that can affect the computational performance of these processing systems.

Keywords reservoir computing - boolean networks - multicellular - simulation

INTRODUCTION

Information processing plays an essential role in cellular sys-
tems, enabling cells to adapt their behavior in response to
changes in internal and external environmental conditions. By
processing information through the heterogeneous, nonlinear
interactions of their molecular components, cells can respond
to fluctuations in environmental signals (1, 2), search for food
(3-5), navigate paths (6, 7), and make behavioral decisions
during cellular regulation (8—10). Similarly, when cells ag-
gregate in multicellular communities, the interactions between
cells give rise to community-level computation, such as col-
lective decision-making (11, 12), distributed sensing (13, 14),
structure formation (15), and immune surveillance (16, 17).

In addition to its importance in natural systems, information
processing is playing an increasingly significant role in syn-
thetic biology. In single cell systems, multi-input synthetic
molecular circuits are being explored for their potential as sen-
sors, diagnostic tools, and responsive agents for ecological, in-
dustrial, and biomedical applications (18). Synthetic intracel-
lular circuits have been implemented in both prokaryotic and
eukaryotic cells through a variety of techniques using gene-
(19, 20), DNA recombinase- (21, 22), and RNA-based mecha-
nisms (23-25). However, single cell engineering has its limita-
tions (26). Because molecular components cannot be spatially
isolated, separate circuits require unique molecular wiring. The
number of independent circuits that can reasonably be engi-
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neered is therefore limited by the number of manageable molec-
ular species (27, 28). More practically, the complexity of engi-
neered circuits is constrained by the additional metabolic bur-
den they introduce to the cell. Synthetic circuits are also of-
ten highly function-specific with limited repurposing (28, 29).
To overcome these limitations, synthetic biologists have begun
engineering multicellular systems through the combination of
simple circuits implemented in individual cells (30). In this
way, the burden on individual cells is reduced, subfunctions
are separated, and circuit design is modular. Moreover, syn-
thetic biologists can take advantage of other inherent features of
multicellular systems, such as the capacity for parallel and dis-
tributed computing, robustness to failure, modularity, and scal-
ability (28, 29, 31). Currently, multicellular systems have been
designed that compute complex Boolean functions (26, 32-37),
act as memory devices (38), behave as glucose sensors (39),
generate specified spatial patterns (40), and recognize spatial
patterns (41) among other functions (42).

Though different molecular mechanisms are utilized in syn-
thetic multicellular systems, they all rely on intracellular ar-
chitecture that is designed for a specific function. A flexible
computing framework in neural networks, reservoir computing
(RC), does not require such specification. Reservoir computing
is a signal processing framework in which a signal is input into
a fixed-rule dynamic network (the reservoir) and the state of
the network is used to continuously approximate a function de-
fined over the input (43, 44). A reservoir computer consists of a
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signal node(s), a dynamical network (reservoir), and an output
node(s). The signal node changes in value over time, passing
this value to the reservoir via a subset of reservoir nodes. The
reservoir propagates the signal and projects it into a higher di-
mensional space, retaining a memory of past signal values ow-
ing to feedback within the reservoir. Finally, the output node
performs a form of regression analysis using another subset of
reservoir nodes in order to approximate a given function applied
to the input signal over a window of time. Different functions
can be approximated simply by retraining the parameters used
for regression. Importantly, retraining the output node does not
involve any adjustment to the structure or dynamics of the reser-
voir itself.

Previous work in reservoir computing has shown that a diverse
collection of physical systems can be utilized as reservoirs for
a range of signal processing tasks, reviewed in (45). In the-
ory, any dynamical system that demonstrates a fading memory
property can act as a reservoir (46). Both structurally and dy-
namically, cells are suitable reservoirs. Intracellular networks
are fixed and naturally tuned to balance robustness with respon-
siveness (i.e. fading memory) (47). Moreover, multiple possi-
ble mechanisms - utilizing physical, chemical, and bioelectic
mediums - exist for signal input and signal readout. Further-
more, a cellular reservoir computer would be a widely appli-
cable synthetic computing system that would require minimal
engineering as the training is performed in the readout layer and
not within the reservoir itself. Initial work has already demon-
strated the capacity of cells to act as reservoirs. Namely, single
cell gene regulatory network reservoirs have been explored in
living(48, 49) and theoretical systems (50, 51).

As with other synthetic cellular systems, reservoir computers
that take advantage of multicellular populations have the po-
tential for more complex and robust computation compared to
single cell reservoirs. Previous work has shown evidence of
multicellular reservoirs in the prefrontal cortex (52), cerebel-
lum (53), and glial networks (54). Similarly, in vitro neural sys-
tems have been shown to act as reservoirs (55, 56). This work
has demonstrated that cells can act together to form a reservoir
when connected via neuroelectic signaling. Here, we extend
reservoir computing in multicellular populations to the more
wide-spread mechanism of diffusion-based signaling, which is
used by both prokaryotic and eukaryotic cells and can serve as
a means of short- and long-distance communication. Namely,
we simulated a proof-of-concept multicellular reservoir com-
puter, in which a 3D community of cells communicating via
diffusible molecules serves as the reservoir. We show that mul-
ticellular reservoir computing via diffusion-based communica-
tion is a feasible synthetic framework for performing complex
temporal computing tasks.

MODEL DESCRIPTION

The goal of the multicellular Reservoir Computer (RC) is to ap-
proximate an objective function f, given an input sequence of T
binary values: V = (vi,va,...,vr), where v; € {0,1},1 <i < T.
The function f is defined on a w sized window of sequential
values from V and outputs a binary value: f : X — Y, where
X = (Vimwtls Views2s V)W <t < Tand Y € {0,1}. In
this work, we have tested the performance of the RC on two
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time-dependent functions, temporal median and temporal par-
ity, over multiple window sizes. The temporal median and par-
ity functions test the memory and processing power of the reser-
voir, respectively, and have been used previously for bench-
marking reservoir performance (57-60). The median function
outputs 1 if there are more 1 bits in the window and O other-
wise. The parity function outputs 1 if there is an odd number of
1 bits within the window, and 0 otherwise.

Community organization & communication

The RC is implemented as a community of cells of different
strains arranged in a 3-dimensional regular grid of cube shape
or in a number of stacked square layers. A visualization of
a cell community model can be seen in Figure 1. The cells
communicate with each other using Extracellular Signalling
Molecules (ESMs). Cells are able to secrete ESMs which dif-
fuse into their surroundings and are able to register the presence
of an ESM concentration above a given threshold. The diffusion
of ESMs is modeled by solving the standard diffusion equation:
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where C?" is the concentration of ESM molecule m at location i,
B is the diffusion coeflicient, « is the degradation rate, 77" is the
secretion rate of molecule m by the cell at location i, and V, is
the volume occupied by the secreting cell. "7 term is O if there
is no cell at location i. @ and S values are constant and same for
all ESM molecules. Here we assume that diffusion is a much
faster process than regulation of the gene network responsible
for secretion and reception, and so we solve the steady state of
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At the ends of the simulation domain, Neumann boundary con-
dition is enforced with a derivative of 0, i.e. ESMs stay un-
changed. This mechanism facilitates information propagation
throughout the community.

Each cell has ESM receptor and secreter genes that control
communication and can be either ON or OFF. ESM receptors
transition into the ON state if the concentration of the corre-
sponding ESM is above the threshold 6 in the cell’s surround-
ings and into the OFF state otherwise. The value of 6 is constant
and the same for all ESM molecules. When the secretion genes
are in the OFF state, they produce ESMs with a basal secretion
rate and diffuse it into the cell’s surroundings. When they are
in the ON state, they produce ESMs with an active secretion
rate that is higher than basal. For the receptor genes to regis-
ter ESMs presence, the threshold 6 is defined as a factor of the
basal secretion rate of a single cell. In other words, the ESM
concentration should be 6 times the basal in order to be reg-
istered. Incorporating basal secretion in this way allows for a
more general model of signaling dynamics better able to cap-
ture the leaky nature of real systems (61, 62). Another key pa-
rameter of the ESM communication mechanism is the effective
interaction distance A, which is derived from the molecule con-
centration decay rate and the diffusion coefficient: 1 = /8/a.
Increasing A allows ESMs to travel further from their source,
enabling more distant cells to communicate with each other.
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Cell inner workings

Inside each cell, gene regulation is modeled with a Ran-
dom Boolean Network (RBN) (63) implemented as a graph
G = {Gy,Gg}, where Gy is a set of N nodes/genes: Gy =
{g1,82,--»8n}, and Gg is aset of 2 - (N — 1 — E) edges, where
E is the number of ESMs. Each gene can either be OFF or
ON: g; € {0,1},1 < i < N. All cells have the same number
of genes defined as a simulation parameter (N). There are four
types of genes in each cell: input signal gene, ESM receptors,
ESM secreters, and reservoir genes. There is always a single
input signal gene (1), a receptor and a secreter gene for each
ESM (2 - E), and the rest are reservoir genes (N,), for a total
of N genes. While the input and ESM genes are responsible
for external communication, the reservoir genes represent the
internal state of a cell.

A simulation is divided into discrete time steps. At every time
step ¢, the input signal is diffused into the environment (as de-
scribed in the following subsection) and the ESMs secreted
based on secreter gene states. Then Equation (2) is solved for
every location in the simulation to determine molecule concen-
trations. Following this, the input signal gene g; and the ESM
receptor genes determine their states based on the presence of
the input signal and ESM molecules respectively in the cell’s
surroundings. For a corresponding gene g;, if the molecule con-
centration is above a threshold, then g;(f) = 1 and g;(r) = 0
otherwise. The input signal gene g; has a different threshold
from ESM receptors, as described in the following subsection.
Finally, ESM secretion genes and reservoir genes determine
their values based on the state of the other genes. The value
of each of those genes, g;(7), is updated using a function f;. f;
has k; inputs chosen randomly and uniformly from G excluding
ESM secreter genes, g;(t + 1) = fi(g;i1(#), gj2(®), ..., 8xi(?)), & €
G \ Ggs Msecreters- The fraction of genes whose f; inputs include
the input signal gene g; is controlled with the L simulation pa-
rameter. The truth table for f;, its output for each possible com-
bination of input values, is randomly generated. The average
number of inputs (in-degree) for all f; is 2 and the probability
of f; outputting a 1 is 0.5. These function parameters have been
shown to maximize computing capacity (64, 65).

In each simulation, not all cells are described by the same set of
functions. Each cell is randomly assigned a strain. Each strain
has a distinct set of randomly generated edges in G, defining its
RBN topology. and a distinct truth table is generated for each
gi- The number of strains is a simulation parameter ().

Community input/output

A random input signal sequence V is generated for each sim-
ulation. For every time step ¢, there is a corresponding input
value v;. The input signal is represented as molecules diffusing
away from one of the simulation walls, as shown on the left
part of Figure 1. The dynamics of the input signal molecules
are modeled using the same diffusion equation as the ESMs.
The difference is that the secretion term is always 0 and instead
the production is modeled with Dirichlet boundary condition on
the signal producing wall. All other walls still follow Neumann
boundary condition with a derivative of 0. If the input value
v; is 1 in a simulation time step, the solution to the Dirichlet
boundary condition is >0 (100,000), diffusing the molecules

Input signal

Output layer

.. %%

Input source

S/
il

-

S

Cells:

@
e
Figure 1: A visual example of a cell community. Cells are ar-
ranged in 3D space in a number of square shaped layers along
the input signal source axis. The input signal molecules are
produced from a simulation domain wall if the value of the in-
put signal in the current simulation time step is 1. The input
signal molecules dissipate as they travel through the simulation
domain, activating a specified number of cell layers. The cells
belonging to these layers register the input and communicate
with further layers using ESMs. A specified number of cell
community layers at the end opposite of the input source are
used for output readout. Their gene values are read at every

simulation time step and a regression analysis is performed in
order to approximate the objective function.

Extracellular
signaling molecules:

-

from the simulation wall into the environment, affecting nearby
cells. The input molecules move towards the opposite wall of
the simulation domain, dissipating along the way and penetrat-
ing I layers of the community, specified as a parameter. Each
simulation calculates what threshold cells should have to the
input signal in order for it to penetrate / layers. If v; is O in a
simulation time step, the Dirichlet boundary condition solution
is 0 and no input signal molecule is produced.

As information is processed by the community, the goal is to
obtain an approximation of the given function f (median or
parity) on the input signal by reading the cell states of the cell
community output layers. A number of cell community layers,
specified as a parameter (O), on the side opposite of the input
signal producing wall are used for output. After the ground
truth for f output is calculated, the gene states g; of all cells
within the output layers are used as covariates for regression
analysis with the ground truth values as desired output. Further
description of the reservoir training and testing are provided in
Materials and Methods.

REsuLTS

Here we have tested the performance of a cube-structured com-
munity as a reservoir with comparison to a single cell (Proof
of Concept); analyzed the effect of parameter values on the
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cube-structured reservoir’s performance (Sensitivity Analysis);
and tested the performance of a 3-layered rather than cube-
structured community of cells as a reservoir (Layered Com-
munity). In all analyses, accuracy has been used as a metric
of performance. We define accuracy as the ratio of correctly
approximated outputs using the regression model over the total
number of outputs. Since the tested functions have binary out-
put, at worst, the performance is 50%, which is equal to a ran-
dom guess, and 100% at best, where all outputs are correctly
guessed.

Proof of Concept

In this analysis, we simulated a cube-shaped community in
which all cells are exposed to the input signal and all cells are
used as outputs. In this way, we focused on the multicellular
and communication aspects of the population rather than the
effects of spatial heterogeneity in the input signal (input hetero-
geneity). The cube-shaped community was tested for approxi-
mating median and parity functions with window sizes 3, 5, 7,
and 9. We also simulated a single cell to compare multicellu-
lar to unicellular performance. The fixed simulation parameters
can be found in Supplementary Table S1, with the only differ-
ence between the multicellular and the unicellular system being
the number of cells, 12° and 1 respectively. The performance
comparison can be seen in Figure 2.

The results demonstrate that a community of cells has the ca-
pacity to approximate binary functions even with larger window
sizes. For estimating the median function, the mean accuracy
remains near 1 for all window sizes tested, but does decrease
as the window size increases. For estimating the parity func-
tion, a computationally harder task, the community performs
nearly perfectly for window sizes 3 and 5, but mean accuracy
rapidly decreases for larger window sizes. At window size 9,
mean accuracy is around 50%, or as good as a random guess,
demonstrating the computational capacity limit of this setup. In
all cases except parity window size 9 where both systems are at
their limit, multicellular communities achieve a higher average
accuracy when compared to the performance of a comparable
unicellular reservoir simulated here as well as to previous re-
ports of single cell Boolean Network (BN) reservoirs (50).

Sensitivity Analysis

To examine how community parameters, especially those re-
lated to intercellular communication, affect reservoir perfor-
mance, sensitivity analysis was performed using Partial Rank
Correlation Coeflicient (PRCC) (66). Briefly, sensitivity analy-
sis generates random sets of input parameters and assesses the
accuracy of the model for every parameter set in order to deter-
mine the rank correlation between each parameter x;, 1 <i <k,
where k is the number of parameters, and the output y (Accu-
racy). Correlation is calculated after rank-transforming values,
and so non-linear effects are ignored. When calculating cor-
relation for each parameter, the effect of other parameters is
cancelled out (further explained in Materials and Methods).

The model was tested to approximate parity function with a
window size of 7. The community is cube-shaped and all cells
are used for output. The results of Sensitivity Analysis can be
found in Table 1, including the range within which parameters

Table 1: Sensitivity Analysis results, including parameter
range, rank correlation (pg), and p-value. As shown in earlier
works, L and N, have strong correlation with reservoir accu-
racy. These results add C and S to the set of parameters that
are strongly correlated with accuracy. The number of input lay-
ers, I, the number of ESMs, A, and 6 all have noticeably lower
correlation.

Parameter Range PR p-value

Gene input fraction (L) [0.1,1.0] 0.77 < 1.00e - 10
Reservoir genes (N,) [10,500] 0.55 < 1.00e-10
Cells (C) [1,15%] 042 < 1.00e-10
Strains (S) [1,20] 033 < 1.00e-10
Input layers (1) [1,15] 0.08 < 1.00e-10

ESM 2 [2.5,30] 0.04 1.63¢ — 05

ESMs (E) [0,20] -0.06 4.54¢-09

ESM ¢ [10.0,100.0] -0.06 1.08¢ — 09

have been randomly sampled. The rest of the parameters are
kept fixed and can be found in Supplementary Table S2.

As demonstrated in previous RBN reservoir studies (50, 57),
the fraction of genes connected to the input gene (L) and the
number of reservoir genes (N,) strongly positively correlate
with accuracy (oruyrey) = 0.77, prav,)r) = 0.55). Here, we
demonstrate that the number of cells (C) and the number of
strains (§') also positively correlate with accuracy (pgrc)ry) =
0.42, pres)rey) = 0.33). Additionally, the number of cell layers
that receive the input signal (/) moderately positively correlates
with accuracy (ora) ) = 0.08). Despite being responsible for
intercellular communication, the number of ESMs (E), A, and
6 only have a weak correlation (or)ry) = —0.06, pra.ry) =
0.04, pr).r(y) = —0.00).

Layered Community

This analysis involves a cell community of three square shaped
layers along the input signal axis, as depicted in Figure 1. The
model was tested to approximate parity function with a window
size of 3. This function and window size were chosen because
the difficulty of the task balances the accuracy well between
50% and 100%. In this setup, the threshold for the input signal
is such that the signal is undetectable past the first layer. Addi-
tionally, only the last cell layer is used for output. The ESM A
parameter value is such that the signal is only detectable to im-
mediately neighbouring cells in the same or adjacent layer. Be-
cause of this, the first layer cannot directly communicate with
the third output layer. The information has to propagate through
the middle layer, and so it takes two simulation time steps to
reach the output layer. The intention here is to model the input
heterogeneity present in real cellular communities, which can
be the result of receptor heterogeneity, limited signal penetra-
tion, or engineered spatial segregation. Moreover, With this
setup, we more closely tested the role of communication in
the reservoir, since the output layer relies solely on intercel-
lular communication for information about the input signal. An
analysis of the average performance of the Layered Commu-
nity for median and parity functions shows that reservoir per-
formance is generally improved over the performance of single
cells (Supplementary Figure S4).
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Figure 2: Simulation results from the Proof of Concept analysis. The distribution of reservoir accuracy is shown for median
and parity functions with different function window sizes. To generate the distributions, each combination of window size
and function was simulated 100 times. As parity is a harder function to approximate, the distributions are skewed towards
the left compared to median function. For window size 3, both functions are well approximated, with almost all simulations
performing with 100% accuracy. As window size increases, distributions move towards 50% (random chance) accuracy, with
parity function reaching around 50% for window size 9 for both unicellular and multicellular systems. These results demonstrate
that a community of cells can act as an RC and can outperform a single cell in that capacity.
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Four parameters have been varied in order to determine their
effect: number of reservoir genes (N,), cells (C), strains (S),
ESMs (E). N, is relevant to the relationship between individual
computational power and community computational power; C
and S are relevant to the size and diversity of the reservoir; and
E is relevant to the informational bandwidth of communication.
The numbers for cells were chosen such that they can form
three square layers without excess cells. Figure 3 shows the
relationship between each parameter and accuracy, while keep-
ing all other parameter values fixed (Supplementary Table S3).
Each datapoint is the average accuracy of 100 simulations.

With the exception of the number of strains, all parameters have
a monotonic positive relationship with accuracy. For the num-
ber of genes and cells, this aligns with the conclusion from
Sensitivity Analysis, i.e., that they positively correlate with ac-
curacy. However, gene contribution to accuracy plateaus after
around 300 genes. Strains have also been found in Sensitivity
Analysis to correlate positively, but in this setup plateau quickly
and do not have a clearly monotonic relationship as they start to
negatively correlate with accuracy after around 8 strains. An-
other contrast from Sensitivity Analysis is the clear contribution
of the number of ESMs to accuracy. Unlike in Sensitivity Anal-
ysis, here the output cells did not have direct access to the input
signal and relied on ESM communication through layers.

Discussion

With this work, we aimed to demonstrate that cellular commu-
nities utilizing diffusion-based communication are capable of
acting as reservoir computers. Previous research has success-
fully applied neuronal communities with neuroelectric commu-
nication schemes as reservoirs. However, communities that rely
on diffusion, a more widespread form of communication, had
yet to be tested in this role. Here we have provided theoreti-
cal evidence demonstrating the potential of such reservoirs. We
further demonstrated that these reservoirs are successful under
conditions of both input homogeneity, when all cells have ac-
cess to the input signal and can act as individual reservoirs, and
input heterogeneity, when only some cells have access to the
input signal and communication is necessary to function as a
reservoir. The latter case is likely to be more applicable to engi-
neered systems in which input heterogeneity can be introduced
through receptor expression heterogeneity, reduced signal pen-
etration, or externally imposed spatial segregation.

In addition to demonstrating that multicellular communities can
act as reservoirs, we have shown that they can significantly out-
perform their single cell counterparts. Not only was average
accuracy higher, but cellular communities were able to per-
form tasks that single cells could not (Figure 2, parity func-
tion window size 5 and 7). However, the factors responsible
for the increased computational power remain unclear. Two
potential factors are the increased number of individually capa-
ble reservoir computers (cells), from which a prediction can be
crowd-sourced; and the increased size of the total cellular net-
work through communication, which has more components to
contribute to the computing capacity. We found that removing
communication when it is not necessary has little effect on per-
formance (Supplementary Figure S2). Thus, crowd-sourcing
from many cells and strains of cells likely plays a significant
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role in the success of multicellular reservoirs. Our brief anal-
ysis also suggests that communication can negatively impact
accuracy when little memory is required for the signal process-
ing task and positively impact accuracy when more memory is
required (Supplementary Figure S3, median function). There-
fore, communication may be increasing the memory of the sys-
tem as a whole while also reducing the independence of each
cell, thereby reducing the value of crowd-sourcing.

For reservoirs that rely on communication to propagate the in-
put signal, we found that performance can also exceed that of
single cells (Supplementary Figures S3 and S4); though we did
observe a decrease in reservoir performance compared to reser-
voirs that do not need communication. Estimation of the parity
function is also notably more difficult when communication is
required. The inherent delay as the signal is propagated from
input to output cells may be causing the decrease in perfor-
mance. Previous reservoir computing research has shown that
introducing a delay between receiving an input and estimating
the function negatively affects performance (57). Another pos-
sibility is that signal propagation between cells introduces noise
and uncertainty to the signal, which would contribute to lower
accuracy. Unexpectedly, the spatial organization of input and
output cells has a very strong effect on reservoir performance.
Populations with one half of cells receiving input and the other
half used as output, randomly intermixed in the community, are
at a disadvantage (Supplementary Figure S3). Intermixed pop-
ulations actually increase in accuracy as window size increases.
More targeted experimentation is needed to further explore the
role of communication in reservoir behavior.

A multicellular reservoir’s computing capacity also varies with
properties inherent to both the individual cell and the cellu-
lar community. Here we focused on parameters that have the
potential to be incorporated into the design of a multicellular
reservoir computer. As previous work has shown for single cell
RBN reservoirs, the number of genes within each cell and the
number of those genes with input from the signal both posi-
tively correlate with the performance of multicellular reservoirs
(50, 57). Intuitively, more genes means more computing power
and more genes wired to the input signal means less of an in-
formation bottleneck. Notably, there is a nontrivial amount of
heterogeneity across reservoir performance with respect to the
number of genes and the benefit of adding more genes to each
cell quickly diminishes (Figure 3). For engineered systems this
suggests that the burden to an individual cell can be kept low
without losing out on much computational capacity.

Considering properties unique to cellular communities, we
found that the size, diversity, and number of signaling chan-
nels of the community positively correlate with reservoir per-
formance. If crowd-sourcing is, in fact, a contributing factor
to computing, then increasing the number and diversity of cells
would be advantageous. The effect of ESMs is less straightfor-
ward. Accuracy in the communities that do not require commu-
nication (Proof of Concept) shows little correlation with ESM-
related parameters, suggestion a minor improvement that com-
munication provides to these reservoirs. Although, it is also
possible that the method used for sensitivity analysis is sim-
ply unable to detect a relationships since the interaction dis-
tance and threshold form a nonlinear communication parameter
space. For the three-layered community, in which communica-
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Figure 3: Simulation results from the Layered Community analysis. Four parameters were examined independently while keeping
the rest fixed: the number of genes (A), cells (B), strains (C), and ESMs (D). The blue line shows the trend in average accuracy.
Each data point along the trend line is the average accuracy of 100 simulations and the bars show + one standard deviation. This
data shows that the number of cells and ESMs contribute the most to improving accuracy. These are also the parameters most
closely responsible for carrying the signal across layers. Genes give a modest improvement to accuracy and plateau around 300.
Finally, strains initially improve accuracy noticeably, but peak around 8, after which accuracy starts decreasing.

tion is necessary, increasing the number of signaling molecules
has a large effect on accuracy, though the reason is not obvi-
ous. While more signaling molecules may benefit the efficacy
of signal transmission, it would also reduce the independence
of individual cells, which may negatively impact the reservoir.
Overall, it appears that a minimum number of cells, strains,
and ESMs is necessary for reservoirs to perform well, but that
deficiency in one parameter can likely be compensated for by
increasing another.

Though we have tried to consider real-world conditions in this
work, further work is required to identify all limitations that
could be encountered in the bio-engineering process. For exam-
ple, the number of genes that can directly interact with signal
receptors may be severely limited in practice. Additional anal-
ysis to account for such limitations would be straightforward to
test in a similar computational framework. Future work could
also include a closer investigation of the effects of communica-
tion on computational power versus system memory as well as
the effect of different communication regions described by the
communication parameters (Supplementary Figure S7).

What we have shown with this work is that multicellular com-
munities can act as reservoirs. We have identified that the com-
munication scheme and community structure both play impor-
tant roles in the type of computation performed. And lastly
we have shown that, in addition to the benefits typically as-
sociated with multicellular systems, cellular communities can
easily outperform single cells with more flexibility in how they
can be optimized.

METHODS AND MATERIALS

The simulations were implemented using the Biocellion v1.2
multicellular simulation framework (67). Fixed simulation pa-
rameters can be found in Supplementary Tables S1 to S3 and
their meaning is further described here.

Simulation details

All simulations run for 7 = 1000 time steps. Before each simu-
lation, a random binary input signal array V is generated, equal
in size to the number of simulation time steps. In each time
step ¢, the input signal molecule is produced if v, is 1 (Dirichlet
boundary condition is 100,000), otherwise it is not (Dirichlet
boundary condition is 0). A numerical solution is implemented
that determines the threshold each cell should have to the input
signal when it is being produced so that number of cell layers
that detect the presence of the input signal molecule is equal to
the value of the input layers I parameter. All cells that belong
to the input layers register the input signal presence and set the
state of the input gene g to 1 for the duration of that simulation
time step. The state of g; is O otherwise. For all simulations,
Vo is guaranteed to be 0 and all molecule concentrations are ini-
tialized to 0. The input signal gene g; and ESM receptor genes
are initialized to O for all cells. The initial values of the rest of
the genes are randomly generated.

For Proof of Concept and Sensitivity Analysis, cells are ar-
ranged in a cube shaped grid, whereas for the Layered Com-
munity setup, the cells are arranged in a grid of three square-
shaped layers. Each cell occupies one simulation domain voxel
and is centered in it.

Random boolean networks

Every cell has N genes: one input signal gene (1), one receptor
and one secreter gene for each ESM (2 - E) and the rest are
reservoir genes (N,). When assigning edges in the RBN, the
constraints are:

e Input gene and ESM receptor genes cannot have in-
coming edges.

o ESM secreter genes cannot have outgoing edges.

In order to stay within these constraints and have an average
in-degree of two for the reservoir genes, there is a total of
SN oo leil = 2+ (N = (1 + E)) randomly and uniformly assigned
edges in the RBN, where |e;| is the in-degree of gene i. The in-
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coming edges are counted from E +2 because the input gene (1)
and the ESM receptor genes (E) do not have incoming edges. A
fraction of these edges is used specifically for connections with
the input gene. At most, there are £ + N, = N — (1 + E) edges
from the input gene (as the other 1+ E genes do not have incom-
ing edges). The number of these edges is L - (E + N,), where
0 < L < 1is a parameter. Additional information about the
RBN construction within cells can be found in Supplementary
Random boolean network construction section.

Cells communicate with each other using ESMs, which are im-
plemented using the diffusion mechanism in Biocellion. Here
we assume that molecule diffusion is a much faster process than
gene regulation and so diffusion is implemented with a steady
state partial differential equation (PDE). A single simulation
time step is sufficient for both the input signal and ESMs to
reach the steady state. Following this, the RBN for each cell
is updated. For each ESM molecule m, diffusion in the envi-
ronment follows Equation (2) where C?" is the concentration of
ESM molecule m at voxel i, 8 is the diffusion coefficient, « is
the degradation rate, 77" is the secretion rate of molecule m by
the cell at voxel i, and V, is voxel volume (all voxels have the
same volume).

This PDE is numerically calculated (68, 69). We also define A4

as the effective interaction distance, where 2 = +/8/a. The 6
parameter is the threshold for registering ESM presence in the
cell’s voxel. It is defined as a factor of the ESM concentration
in a cell’s voxel when the cell is producing the ESM molecule at
basal rate and this concentration is numerically calculated. The
same value of 6 is used for all the ESM. For Proof of Concept
and Layered Community, the ESM communication parameters:
a (1.0/45.0), B (5.0), A (15.0, derived from « and B), n (1.0
basal, 5.0 active), and 6 (11.5) have the same values as in the
previous work done by Echlin et al (50). For Sensitivity Anal-
ysis, B and 7 are the same as for Proof of Concept and Layered
Community, whereas A and 6 parameter ranges are informed by
Supplementary Figure S7. Based on information from previous
work (70), the tested parameter values explore scenarios where:

¢ Intercellular communication does not occur, because
the receptor is always on, always off, or only responds
to self-generated signal.

o Intercellular communication occurs, where the recep-
tors either respond to neighbor-generated signal, self-
generated signal, or a combination of the two.

For each simulation time step, actions are done in the following
order (as implemented in Biocellion):

1. ESMs are secreted into the environment based on se-
creter gene states.

2. Input signal Dirichlet boundary value is set to 100,000
if the current input signal value is 1, and to O other-
wise.

3. PDEs are solved and molecule concentrations in every
voxel stabilized.

4. Gene values for all cells are updated. Input gene and
receptors according to the environment, and secreters
and reservoir genes according to the update functions.

Linear Regression

Linear regression analysis was done using the LassoCV func-
tion (with selection = “random”,tol = 0.05 parameters for
faster convergence) from the Python language scikit-learn li-
brary (71). Each simulation starts off with Ty = 100 warm-up
time steps, included in the total 7 = 1000 time steps, during
which the simulation runs as normal, but the outputs are not
used for linear regression. The covariates of linear regression
are all reservoir gene states of all cells belonging to the output
layers, which are collectively denoted here as g?. The number
of output layers (O) is a parameter and the layers are selected
sequentially from the community, starting at the side opposite
of the input signal source. Additionally, we define the param-
eter d which is the delay in time steps between the objective
function ground truth output at time ¢, y,, and gO which is taken
from time ¢ + d, denoted as g°(t + d). This delay parameter lets
the information propagate through the system for d timesteps
before linear regression is performed. This is necessary in Lay-
ered Community, where it takes two time steps for the signal
to propagate from the first to the last, third community layer.
For that reason, d is 2 in that analysis. The input to linear
regression is matrix X, where columns correspond to covari-
ates/genes and rows to time steps. If X; is the i row of X and
w the objective function window size, then for each time step
t, Tw+w+d <t <T, Xt—(TW+w+d)+1 = go(t). Additionally,
the ground truth array Y for the objective function f is calcu-
lated for each time step ¢, Tw + w < t < T — d, on the input
sequence window: Y,y +w+1 = f(Vicws1, Views2, ..., Vo). The
rows of X and Y are divided into training (75%) and test dataset
(25%) randomly. LassoCV is ran on the training dataset and the
accuracy of the model is assessed on the test dataset.

Sensitivity analysis

For Sensitivity Analysis, Latin Hypercube Sampling (LHS)
(72) is used to generate 10,000 samples, each simulated 5 times.
For each sampled parameter, LHS divides the sampled range
into 10,000 equal intervals and takes a randomly selected value
from each interval. This ensures a fairly uniform sampling
which would not be guaranteed by brute force sampling. The
order of selected values is then randomly shuffled for each pa-
rameter.

In order to calculate rank correlation in Sensitivity Analysis for
each parameter individually, the effect of other parameters has
to be cancelled out. The parameters and output are first rank-
transformed to ignore non-linear effects and keep only mono-
tonicity. Then, for every rank transformed parameter r; and
output 77, the following linear models are built that estimate the
parameter and output from other parameters:

i rAV=b0+ibj-r§

j=1,j j=1,j#i

A
X —
l

Pearson correlation is then calculated between the residu-
als, which have linear effects of other parameters removed:
corr(rf — r:?‘, ¥ — 7). The plots showing correlation between
each varied parameter and accuracy can be seen in Supplemen-
tary Figure S5, and partial correlation after rank transformation
in Supplementary Figure S6. The distribution of accuracies for
Sensitivity Analysis simulation runs can be seen in Supplemen-
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tary Figure S1. The fixed parameters for Sensitivity Analysis,
found in Supplementary Table S2 were chosen such that the
accuracy distribution would be evenly spread out. If too many
simulations were concentrated at 0.5 or 1.0 accuracies, the Sen-
sitivity Analysis results would be less reliable.

Miscellaneous

Plots in this work were generated using the ggplot2 (73) and
seaborn (74) libraries.

The code used in this work can be found online at: https:
//github.com/v1ad0x00/multicell-rc
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