

1

2 RNA-targeting CRISPR-Cas13 Provides Broad-spectrum Phage Immunity

3

4 Benjamin A. Adler^{1,2}, Tomas Hessler^{2,3,4}, Brady F Cress^{2,5}, Vivek K. Mutalik^{2,4}, Rodolphe
5 Barrangou⁶, Jillian Banfield^{2,3,4,7,8}, Jennifer A Doudna^{1,2,4,9-11*}

6

7 ¹California Institute for Quantitative Biosciences (QB3), University of California,
8 Berkeley, California 94720, USA; ²Innovative Genomics Institute, University of
9 California, Berkeley, California 94720, USA; ³Department of Earth and Planetary
10 Science, University of California, Berkeley, California 94720, USA; ⁴Environmental
11 Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory,
12 Berkeley, California 94720, USA; ⁵Department of Molecular and Cell Biology, University
13 of California, Berkeley, California 94720, USA; ⁶Department of Food, Bioprocessing
14 and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA;
15 ⁷Environmental Science, Policy and Management, University of California, Berkeley,
16 California 94720, USA; ⁸University of Melbourne, Australia; ⁹Howard Hughes Medical
17 Institute, University of California, Berkeley, California 94720, USA; ¹⁰Department of
18 Chemistry, University of California, Berkeley, California 94720, USA; ¹¹MBIB Division,
19 Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.

20

21 *Correspondence: doudna@berkeley.edu

22

23

24 **Abstract**

25 CRISPR-Cas13 proteins are RNA-guided RNA nucleases that defend against invasive
26 phages through general, non-specific RNA degradation upon complementary target
27 transcript binding. Despite being RNA nucleases, Cas13 effectors are capable of
28 inhibiting the infection of dsDNA phages but have only been investigated across a
29 relatively small sampling of phage diversity. Here, we employ a systematic, phage-centric
30 approach to determine the anti-phage capacity of Cas13 and find LbuCas13a to be a
31 remarkably potent phage inhibitor. LbuCas13a confers robust, consistent antiviral activity
32 regardless of gene essentiality, gene expression timing or target sequence location.
33 Furthermore, after challenging LbuCas13a with eight diverse *E. coli* phages distributed
34 across *E. coli* phage phylogenetic groups, we find no apparent phage-encoded limits to
35 its potent antiviral activity. In contrast to other Class 2 CRISPR-Cas proteins, these results
36 suggest that DNA phages are generally vulnerable to Cas13a targeting. Leveraging this
37 effective anti-phage activity, LbuCas13a can be used seamlessly as a counter-selection
38 agent for broad-spectrum phage editing. Using a two-step phage editing and enrichment
39 approach, we show that LbuCas13a enables markerless genome edits in phages with
40 exceptionally high efficiency and precision, including edits as small as a single codon. By
41 taking advantage of the broad vulnerability of RNA during viral infection, Cas13a enables
42 a generalizable strategy for editing the most abundant and diverse biological entities on
43 Earth.

44 **Introduction**

45 CRISPR-Cas systems confer diverse RNA-guided antiviral and anti-plasmid
46 adaptive immunity in prokaryotes¹. CRISPR genomic loci record phage infections over
47 time in the form of sequence arrays comprising foreign DNA sequences (spacers) flanked
48 by direct repeats (DRs). Array transcription and processing generates CRISPR RNAs
49 (crRNAs) that associate with one or more cognate Cas proteins to form ribonucleoprotein
50 complexes capable of recognizing crRNA-complementary DNA or RNA². Upon target
51 binding, Cas effectors disrupt phage infection using DNA cleavage^{3–5}, RNA cleavage⁶,
52 secondary messenger production^{7,8}, or transcriptional silencing⁹. These programmable
53 biochemical activities have had tremendous success as genome editing tools in bacteria
54 and eukaryotes¹⁰.

55 Due to the coevolutionary arms race between phages and their target bacteria,
56 phages encode direct and indirect inhibitors of CRISPR-Cas systems^{11–14}, employ DNA
57 compartmentalizing or masking strategies^{15–19}, and manipulate DNA repair systems^{20,21}.
58 In addition, phages use population-level strategies to overwhelm^{22,23} and even destroy
59 native CRISPR pathways²⁴. This suite of active and passive DNA defense mechanisms
60 has rendered it difficult to generalize the use of any single DNA-targeting CRISPR effector
61 as a sequence-guided phage genome editing tool^{25–28}.

62 Cas13 (formerly C2c2) effectors are RNA-guided RNA nucleases whose catalytic
63 activity resides in two higher eukaryotic and prokaryotic nucleotide binding (HEPN)
64 domains^{6,29}. Four Cas13 subtypes (a-d) differ by primary sequence and size as well as
65 auxiliary gene association and extent of cis- versus trans-RNA cleavage activity². Distinct
66 from other single effector CRISPR-Cas systems, Cas13 is capable of conferring both

67 individual- and population-level defense against phage infection³⁰. Upon target RNA
68 binding, Cas13 unleashes general, non-specific RNA degradation that arrests growth of
69 the virocell to block infection progression, thereby limiting infection of neighboring cells³⁰.
70 Since all known viruses produce RNA³¹, Cas13 is capable of inhibiting dsDNA phages,
71 primarily shown through studies investigating temperate^{30,32,33} and nucleus forming^{19,34}
72 phages. However, other Class 2 CRISPR effectors have encountered serious limitations
73 in overcoming the diversity of genetic content encoded in phages^{12,19,20,35}. It remains
74 unclear whether an RNA-targeting Cas13 can broadly protect bacteria from a wide range
75 of dsDNA phages.

76 Here, we explored systematically the ability of a single Cas13a variant to restrict
77 wide-ranging phage infections in *E.coli*. Phage infection assays show that LbuCas13a is
78 a robust inhibitor of phage infections across *E. coli* phage phylogeny. Further, Cas13-
79 mediated phage restriction is robust across a diversity of phage infection modalities,
80 phage lifestyles, genes, and transcript features, enabling direct and specific phage
81 interference. We demonstrate how Cas13's potent, broad-spectrum antiviral activity can
82 be employed as a sequence-specific counterselection system suitable for recovering
83 phage variants with edits as minimal as a single codon. These results highlight the
84 extraordinary exposure and vulnerability of phage RNA molecules during phage infection
85 and provide a robust, generalizable strategy for phage genome engineering.

86

87 **Results**

88 ***Cas13 homologs sparsely populate bacteria phyla***

89 Phages encode diverse anti-defense strategies against the bacterial defense systems
90 they are likely to encounter^{13,32}, which in turn can render those systems ineffective for
91 either phage immunity or phage engineering. To determine whether Cas13 might be
92 useful as both a broad-spectrum phage defense and a phage genome editing tool, we
93 began by investigating the distribution of Cas13 effectors across bacterial phyla. We
94 performed a bioinformatic search for Cas13 proteins across NCBI and Genome
95 Taxonomy Database (GTDB) genomes, culminating in a non-redundant set of 224 Cas13
96 protein sequences (Fig. 1; Supplementary Fig. 1). Consistent with prior classification
97 efforts, Cas13 subtypes cluster into four clades 13a-d. We found Cas13b to be the most
98 widespread, yet predominantly found within *Bacteroidota*. In contrast, Cas13c and
99 Cas13d subtypes appeared least common, primarily found in *Fusobacteriota* and
100 *Bacillota* (formerly *Firmicutes*), respectively. We found Cas13a to be phylogenetically
101 more widely dispersed, although relatively limited in the total number of homologs, spread
102 across *Pseudomondota* (previously *Proteobacteria*), *Bacillota*, *Bacteroidota*, and
103 *Fusobacteriota*.

104 Our results are consistent with prior CRISPR-search endeavors, suggesting that
105 Cas13 effectors are some of the rarest Cas proteins currently identified². Although RNA-
106 targeting Type-III CRISPR-Cas systems are relatively abundant in bacterial phyla², we
107 wondered whether the sparse occurrence of Cas13 effectors means that general (ex.
108 RNA-repair or RNA-modification) or specific (ex. anti-CRISPR³²) resistance mechanisms
109 to Cas13-activity are relatively rare as well.

110

111 ***Cas13a is a more potent anti-phage effector than Cas13d***

112 Two parsimonious explanations for the phylogenetic distribution of Cas13 effectors are
113 that (1) Cas13 effectors are relatively ineffective anti-phage systems, limiting their
114 phylogenetic spread from evolutionary pressure or (2) Cas13 effectors are potent anti-
115 phage systems, but the fitness cost of their abortive-infection- (abi-) like effects^{30,33} is
116 selected against. To explore these possibilities, we tested the anti-phage activity of the
117 most- and least-widely dispersed Cas13 effectors based on our analysis of bacterial
118 phylogeny, Cas13a and Cas13d, respectively (Fig. 1). We selected LbuCas13a from
119 *Leptotrichia buccalis* and RfxCas13d from *Ruminococcus flavefaciens* due to their
120 extensive prior biochemical characterization^{29,36-39}. Notably, neither Cas13 variant has
121 been investigated for antiviral activity. While a Cas13a ortholog from *Listeria seeligeri* has
122 been used to restrict temperate and nucleus-forming phages^{19,30,32,34}, LbuCas13a comes
123 from a phylogenetically distinct sub-clade of Cas13a effectors (Supplementary Fig. 1).

124 To develop a *E. coli* phage-challenge assay for LbuCas13a and RfxCas13d, we
125 created “all-in-one” plasmids for inducible expression of *cas13* using anhydrotetracycline
126 (aTc) alongside a constitutively expressed crRNA (DR-spacer) (Fig. 2a, b). During phage
127 infection, phage RNAs are transcribed including a crRNA-targeted transcript (orange, Fig.
128 2a). Upon recognition, Cas13 activates HEPN-mediated RNA cleavage, although the
129 extent of trans-cleavage may be reduced for Cas13d relative to Cas13a³⁷. Depending on
130 the extent of Cas13-mediated RNA cleavage, phage-encoded Cas13-resistance,
131 protospacer mutation rate, and phage-encoded function containing the protospacer,
132 phage may overcome the resulting general transcript degradation.

133 To test the phage-restriction capacity of LbuCas13a and RfxCas13d outside of
134 their native context, we individually targeted a small panel of genes in phage T4. Phage

135 T4 is a classical virulent dsDNA phage with a 170kb genome and well-characterized
136 genetic content^{40,41}. From the perspective of phage genome editing, T4 represents an
137 empirical challenge, displaying considerable variability in Cas-restriction efficacy for Cas9
138 and Cas12a, owing in part to modified glucosyl-5-hydroxymethylcytosine
139 nucleotides^{26,27,35} and endogenous DNA-repair mechanisms²⁰. For these reasons, we
140 hypothesized RNA targeting could be a superior strategy to inhibit T4 and related phages.

141 We designed a panel of Cas13 crRNAs targeting T4 transcripts with diverse design
142 criteria (Fig. 2c)⁴⁰. Targeted regions of T4⁴⁰ RNA sequences included essential-genes
143 (*mcp*, *motA*), a conditionally-essential gene (*gp42*), a non-essential gene (*soc*), an early-
144 infection gene (*motA*), a middle-infection gene (*gp42*), late-infection genes (*mcp*, *soc*),
145 encompassing regions early in coding sequences (CDSs) (*mcp*, *soc*), middle in CDS (*soc*)
146 and untranslated regions around the ribosome binding site (RBS) (*gp42*, *motA*)
147 (Supplementary Table 1). Broadly, this panel of crRNAs represents a systematic
148 exploration of Cas13 targeting the diversity of feature types present in a phage
149 transcriptome.

150 During phage infection experiments, we remarkably observed robust phage
151 knockdown for all crRNAs tested using LbuCas13a (Fig. 2d). Independent of gene
152 essentiality, timing of expression or position on transcript, we found that crRNA-guided
153 LbuCas13a could restrict phage T4 over 100,000X with no substantial escape mutants
154 observed (Supplementary Fig. 8). In contrast, crRNA-guided RfxCas13d exhibited highly
155 variable and less-efficient phage restriction. Further, RfxCas13d exhibited phage-
156 independent *E. coli* growth inhibition during RfxCas13d expression (Fig. 2e) and also
157 observed a high degree of phage escape for RfxCas13d relative to LbuCas13a (Fig. 2e).

158 These results suggest that LbuCas13a is a remarkably potent restrictor of phage T4
159 relative to other CRISPR-Cas systems^{20,26,27,35}.

160

161 ***Cas13a confers resistance across *E. coli* phage phylogeny***

162 To the best of our knowledge, no single Cas effector (or antiviral defense protein) has
163 been shown to confer broad-spectrum phage-resistance when pressured against diverse
164 dsDNA phages. To uncover the phage-phylogenetic limits of Cas13a anti-phage activity,
165 we challenged *E. coli* expressing LbuCas13a with a phylogenetically diverse panel of
166 dsDNA *E. coli* phages. To generate a representative sampling of *E. coli* phages, we
167 constructed a protein-sharing network from 2307 phage genomes visualizing the
168 relatedness of currently known *E. coli* phages (Fig. 3a). From this network, we assembled
169 a panel of eight dsDNA *E. coli* phages scattered across coliphage phylogeny (Fig. 3a, b,
170 Table 1). This panel includes both model *E. coli* phages (T4, T5, T7, and λ) and non-
171 model *E. coli* phages (EdH4, MM02, N4, and SUSP1). With the sole exception of phages
172 T4 and MM02, these phages bore minimal nucleotide sequence similarity to each other
173 (Fig. 3a, b). Furthermore, these phages have diverse lifestyles and reflect a realistic
174 model-sampling of the genetic diversity found among known dsDNA phages. Only one of
175 these phages is temperate (λ) while the remaining seven are obligately lytic. They
176 comprise diverse lifestyles including documented superspreaders⁴², DNA
177 compartmentalization¹⁶ and pseudolysogeny⁴³ phenotypes. In aggregate, these phages
178 not only represent genotypic diversity but also encompass a mixture of host-takeover
179 strategies, modes of entry, and degrees of prior characterization.

180 For each phage, we designed a pair of Cas13a crRNAs targeting either a putative
181 early gene (DNA polymerase (*dnap*), RNA polymerase (*rnap* (T7)), a lytic regulator (*cro*)
182 or a putative late gene (major capsid protein (*mcp*)). An overview of Cas13-mediated
183 phage restriction can be found in Table 1, diversity of crRNAs tested shown in
184 Supplementary Fig. 2, and a by-phage summary of results shown in Supplementary Figs.
185 3-10. In aggregate, we observed substantial anti-phage activity for all 16 guides across
186 the 8 phages tested (Fig. 3c, Table 1). Most guides reduced phage infectivity 10⁵-10⁶-
187 fold, with the rare observation of escape mutants. Across this entire study, only a pair of
188 escape mutants at 10⁻⁴ percent abundance were observed for T7 *mcp* targeting
189 experiments (Supplementary Fig. 10). We observed a single guide (targeting T5 *dnap*) to
190 yield general toxicity and growth inhibition during LbuCas13a induction. This constraint
191 required us to perform assays in the absence of induction, achieving a mere 10²-fold
192 knockdown (Supplementary Fig. 9). However, employing a reduced-toxicity LbuCas13a
193 mutant³⁹, we observed phage restriction at 10⁶-fold, suggesting that the subpar
194 performance was due to baseline toxicity, rather than target toxicity.

195 Interestingly SUSP1 consistently displayed a small degree of resistance to Cas13a
196 (Fig. 3c). Both early- and late- transcript targeting guides only decreased phage infectivity
197 ~5000-fold compared to all other phages showing 10⁵-10⁶-fold infectivity reduction. We
198 further investigated the efficacy of SUSP1-targeting crRNAs in a plate-reader assay at a
199 wide-range of multiplicities of infection (MOIs) (Supplementary Fig. 11). Compared to a
200 non-targeting crRNA control, we found that both SUSP1*dnap*- and SUSP1*mcp*-targeting
201 guides conferred phage resistance at all MOIs tested, including MOIs >10. These results
202 indicate that Cas13a provided substantial protection against SUSP1 infection at both

203 single-cell and population-levels³⁰. Overall, LbuCas13a is capable of anti-phage activity
204 with no apparent limits across phage phylogeny.

205

206 ***LbuCas13a mediated phage restriction is independent of phage gene essentiality***

207 We wondered whether the essentiality of the Cas13-targeted phage gene matters for
208 Cas13a-mediated phage restriction. Prior work suggests that Cas13a primarily imparts
209 phage defense through RNA trans-cleavage activity, but these observations derive from
210 either temperate phages^{30,32} or from targeting essential genes^{19,34}. However, for the
211 majority of phages probed here, gene essentiality is poorly annotated. Therefore, we
212 extended our study to crRNAs that target known non-essential genes of temperate phage
213 λ (ea47)⁴⁴, virulent phage T4 (soc)⁴⁰, and virulent phage T5 (gp150)⁴⁵. Across non-
214 essential phage genes, we found Cas13a-mediated restriction to be as effective as when
215 targeting essential phage genes (Fig. 4), indicating that the primary counterselection
216 pressure does not depend on the essentiality of the crRNA target.

217

218 ***A generalizable, markerless method for editing virulent phage genomes using***
219 ***Cas13a***

220 The editing of virulent phage genomes has remained a major challenge for phage
221 engineering, largely due to the lack of universally applicable genetic tools or reliance on
222 a native CRISPR-Cas system^{25,26,28,46–50}. While the introduction of foreign gene content
223 into phages is relatively straightforward to perform with homologous recombination (HR),
224 ultimately the selection or screening for these rare recombinants is limiting even in well
225 characterized phages⁴⁸. Given that our LbuCas13a phage-restriction efficacy appears to

226 have very little variability in terms of guide- (Fig. 2), target- (Figs. 3, 4), and phage-choice
227 (Fig. 3), we suspected that Cas13a-mediated phage restriction would be an ideal tool for
228 counterselection during phage genome editing. The high counter-selection stringency
229 observed earlier in this study obviates the need for selection markers creating
230 opportunities for multi-loci editing. Furthermore, the absence of PAM requirements for
231 LbuCas13a targeting²⁹ suggests that virtually any position within or nearby a phage
232 transcript could be edited and selected through LbuCas13a counterselection.

233 We aimed to take advantage of these features by creating and enriching minimal
234 edits that only Cas13a could easily select for^{20,26,27,35}, using T4 as a model virulent phage.
235 We designed 6 mutants at either the non-essential *soc* gene or essential *dnap* using silent
236 mutations, thus “re-coding” the target gene (Fig. 5). We designed these mutants to re-
237 code only a single codon (*soc*-C, *dnap*-C), re-code the entire seed region (*soc*-S, *dnap*-
238 S)³⁸, or re-code the full target (*soc*-F, *dnap*-F) (Fig. 5acf). To facilitate homologous
239 recombination-mediated edits, we flanked the intended mutation with 52 bp of native
240 phage homology (Fig. 5a).

241 In principle, edits in the phage genome introduced through homologous
242 recombination can escape LbuCas13a targeting, while wildtype phage can not (Fig. 5b).
243 To introduce and select for edits, we performed a simple, two-stage homologous
244 recombination and enrichment process (Fig. 5b, Supplementary Fig. 12, Methods).
245 Briefly, we employed two strains per edit: an editing strain containing a homologous
246 recombination vector hosting a re-coded protospacer as well as 52 bp of phage homology
247 (Fig. 5a,c,f) and a counterselection strain containing a LbuCas13a and crRNA expressing
248 strain targeting either wt *soc* or *dnap* transcript (Fig. 2a,b). We first infected our editing

249 strain with wildtype phage T4 at low MOI and collected the lysate, consisting of a mixture
250 of wildtype and edited phages (“HR” phage lysate) (Fig. 5b, Supplementary Fig. 12a).
251 Then we diluted this lysate, infected the counterselection strain at low MOI, and collected
252 the resultant lysate (“HR+E” phage lysate) (Fig. 5b, Supplementary Fig. 12b). After each
253 stage, lysates were collected and titered on the corresponding counterselection strain and
254 a non-targeting control to assess editing penetrance.

255 For 4 of the 6 edits (*soc-F*, *dnap-C*, *dnap-S*, *dnap-F*), we observed plaques emerge
256 at 0.1-0.001% abundance in the “HR” lysate (Supplementary Figs. 15, 17-19). After
257 enrichment on the Cas13a counterselection strain, resistant plaques consisted of almost
258 all of the phage population, suggesting high editing penetrance (Fig. 5d,g, Supplementary
259 Figs. 15, 17-19). In contrast, lysates containing *soc-C* and *soc-S* mutations went to
260 extinction following enrichment, suggesting that the *soc-C* and *soc-S* mutations were
261 insufficient to evade Cas13a activation. Comparing the design of *soc-C*, *soc-S*, and *dnap-*
262 *C*, multiple, contiguous mutations within the seed region appear necessary to evade
263 Cas13a activation during phage infection. Potentially, one of the reasons we observed so
264 few escape mutants is that multiple, contiguous mutations are needed to evade Cas13a
265 activation.

266 To verify that Cas13a-resistant plaques were the result of intended edits, we
267 performed unbiased PCRs at the wildtype locus for all editing attempts yielding plaques
268 (Supplementary Figs. 15, 17-19). We analyzed plaques from 4 unique edits (*soc-F*, *dnap-*
269 *C*, *dnap-S*, and *dnap-F*) and 12 independent editing processes, for a total of 36 plaques.
270 Strikingly, we found all 36 analyzed plaques to have the intended mutation (Table 2,
271 Supplementary Fig. 16, 20). This editing process represents a simple, straightforward

272 route for enriching phage genome edits as small as one codon, as illustrated in the case
273 of *dnap-C*.

274

275 **Discussion**

276 We have shown that LbuCas13a transcript targeting is a near-universal, programmable
277 phage counterselection pressure that can be easily converted into a phage genome
278 editing tool. Despite belonging to one of the rarest known CRISPR-Cas systems, we
279 found LbuCas13a to be a potent RNA-guided anti-phage system. We challenged *E. coli*
280 expressing Cas13a with eight diverse phages scattered across *E. coli* dsDNA phage
281 phylogeny and found Cas13a to be effective at restricting all of them ($>10^4$ -fold). These
282 results suggest that it is rare to encode mechanisms to broadly recover from or prevent
283 RNA degradation in phages. Furthermore, we observed very high crRNA efficacy and
284 consistency between these phages and designed targets. Cas13a anti-phage activity was
285 consistent and effective across gene essentiality, gene expression timing, and target
286 location. Due to the minimal constraints of crRNA design for LbuCas13a, we anticipate
287 the primary constraint on crRNA design to be self-toxicity independent of the phage, a
288 limitation that is uncommon and readily circumvented by designing an alternative crRNA.
289 Due to the relative scarcity of Type-VI systems, we doubt many phages harbor Type-VI
290 anti-CRISPR systems. Based on our observations, it appears that dsDNA phages are
291 generally vulnerable to Cas13a targeting.

292 Leveraging the broad vulnerability of phages to Cas13a-targeting, we
293 demonstrated how this robust counterselection could be employed to enrich markerless
294 genome edits in *E. coli* phage. Most Cas-based counterselection methods show extensive

295 crRNA or phage variability^{25,28,34,47}, rely on native CRISPR host-biology^{46–49}, and/or yield
296 a high rate of escape mutants^{34,46}. In contrast, we observed little variability in Cas13a
297 counterselection efficacy across the eight phages and 21 crRNAs tested in this study.
298 When applied to minimal, markerless genome editing that could only be selected using
299 Cas13a, we measured a mutational penetrance of 100% - 36/36 plaques across 4 unique
300 edits and 3 independent editing attempts (Fig. 5, Table 2). We anticipate this phage
301 selection strategy can enrich nearly any viable edit at any phage locus in any phage
302 whose host can harbor and express LbuCas13a.

303 Possibly, the highly potent anti-phage activity observed by Cas13a explains the
304 relative scarcity of Type-VI CRISPR-Cas systems. All known Type-VI systems are
305 thought to facilitate anti-phage activity through mechanisms similar to abortive infection
306^{30,33}. Although the use of crRNA confers specificity for the activation of Cas13, we noticed
307 substantial activation and toxicity in the absence of phage for RfxCas13d. Additionally,
308 we observed substantial premature activation for one crRNA (targeting T5 *dnap*) with
309 LbuCas13a that was remedied by using a less toxic variant of LbuCas13a³⁹, highlighting
310 this possible design constraint on crRNA designs. Nonetheless, the high reliability of
311 crRNA efficacy we observe in tandem with flexible crRNA design afforded by Cas13a
312 means that this occasional limitation is easily circumventable. Perhaps the genetic
313 stability and performance of this phage-counterselection system would be more limited
314 as it is applied in more diverse bacteria and their phages with higher mutation rates.

315 In some respects, the seemingly universal efficacy of Cas13a against phages is
316 surprising. RNA-cleaving HEPN domains, such as those in Cas13a^{6,29}, are widely found
317 across the tree of life including *E.coli* and related bacteria^{51–53}. Although phages

318 occasionally encode direct inhibitors of specific HEPN domains including Cas13a^{32,54}, it
319 appears that general phage-encoded strategies for mitigating the toxic and anti-phage
320 effects of HEPN-mediated RNA transcleavage are relatively limited. In contrast, phages
321 encode a diversity of mechanisms to mitigate the effects of dsDNA cleavage including
322 nuclease inhibitors^{11,13,14,55}, DNA modifications^{15,17}, DNA repair mechanisms^{20,21}, and
323 nucleic acid compartmentalization^{16,18,19}. This comparative vulnerability to degenerate
324 RNA cleavage we observe for phages at large highlights the centrality of RNA for viral
325 infection ³¹.

326

327 **Author Contributions**

328 BAA and JAD conceived of the study and designed the experiments. BAA and TH
329 performed informatic analysis. BAA conducted the experiments. BAA and BFC performed
330 genetic design and molecular biology. BAA and VKM propagated phages. BAA wrote the
331 initial manuscript. VKM, JFB, and RB contributed critical resources and advice. All authors
332 contributed to the manuscript.

333

334 **Acknowledgments**

335 We thank members of the Doudna lab, the Innovative Genomics Institute, and m-CAFEs SFA
336 for helpful discussions, encouragement, and feedback. Original templates for LbuCas13a,
337 eLbuCas13a, and RfxCas13d were kindly provided by Drs. Emeric Charles and David Savage.
338 Phage SUSP1 was a generous gift from Dr. Sankar Adhya. We would also like to thank Dr.
339 Hitomi Asahara, Dr. Eileen Wagner, Angelica Lam, and Dr. Rohan Sachdeva for piloting
340 custom full-plasmid sequencing and analysis pipelines that were instrumental to this study. The
341 mature version of this pipeline is publicly accessible through the UC Berkeley Sequencing

342 Facility. This project, BAA, and TH were supported by m-CAFEs Microbial Community Analysis
343 & Functional Evaluation in Soils (m-CAFEs@lbl.gov), a project led by Lawrence Berkeley
344 National Laboratory based upon work supported by the U.S. Department of Energy, Office of
345 Science, Office of Biological & Environmental Research. JAD is an Investigator of the Howard
346 Hughes Medical Institute. Plasmids are available from Addgene (addgene.org) or by request.
347
348
349
350
351

352 **Methods**

353 **Bacterial strains and growth conditions**

354 Cultures of *E. coli* were grown in Lysogeny Broth (LB-Lennox) at 37°C, 250 rpm unless
355 stated otherwise. When appropriate, 34 µg/mL chloramphenicol (+Ch) or 50 µg/mL
356 kanamycin (+K) sulfate was supplemented to media. All bacterial strains were stored at -
357 80°C for long term storage in 25% sterile glycerol (Sigma). All cloning and strains were
358 performed in dh10b genotype cells (NEB, Intact Genomics).

359

360 **Phage propagation and scaling**

361 Phages were propagated through commonly used protocols in LB media or LB top agar
362 overlays (0.7%)⁵⁶. Unless stated otherwise phages were propagated on *E. coli* BW25113
363 [*lacI*⁺*rrnB*_{T14} Δ *lacZ*_{WJ16} *hsdR514* Δ *araBAD*_{AH33} Δ *rhaBAD*_{LD78} *rph-1* Δ (*araB*-*D*)567
364 Δ (*rhaD*-*B*)568 Δ *lacZ4787*(::*rrnB*-3) *hsdR514* *rph-1*]. Phages N4, T4, T5, and T7 were
365 scaled on *E. coli* BW25113⁵⁷. Phage SUSP1 was a gift from Dr. Sankar Adhya and
366 scaled on *E. coli* BW25113⁴². Phages EdH4 and MM02 were obtained from DSMZ culture
367 collection and scaled on *E. coli* BW25113 (DSM 103295 and DSM 29475 respectively)
368⁵⁸. Phage λ cl857 *bor*::*kanR* was a gift from Dr. Drew Endy and scaled as described
369 previously⁵⁹. All phages were titered through 2 µL spots of 10X serial dilution of phage in
370 SM Buffer (Teknova) on *E. coli* BW25113 in a 0.7% top agar overlay.

371

372 **Plasmid construction**

373 A description of all plasmids and oligonucleotides to build them can be found in
374 Supplementary Table 2 and 3 respectively. All plasmids used in this study were verified

375 using whole plasmid sequencing services offered by the UC Berkeley DNA Sequencing
376 Facility. All plasmids were maintained as strains and maintained at -80°C in 25% glycerol
377 (Sigma).

378

379 All-in-one LbuCas13a, eLbuCas13a, and RfxCas13d plasmids were designed to include
380 a Cas13 effector under tetR-pTet control and a crRNA placeholder (DR-2xBsal dropout
381 site) under constitutive expression on a p15a-CmR backbone. LbuCas13a, eLbuCas13a,
382 and RfxCas13d entry vectors were constructed through Gibson assembly (NEB, E2611L),
383 yielding plasmids pBA559, pBA560, and pBA562 respectively. Assembly of pBA559,
384 pBA560, and pBA562 used PCRs derived from pEJC 1.2 Lbu, pEJC 1.2 Lbu A12, and
385 pEJC 1.5 CasRX vectors that were gifts from Drs. Emeric Charles and David Savage³⁹.
386 Gibson reactions were purified with DNA Clean & Concentrator-5 (Zymo Research) and
387 electroporated into DH10b (NEB, Intact Genomics).

388

389 crRNA spacers were introduced to pBA559, pBA560, and pBA562 through BsalHFv2
390 (NEB, R3733L) golden-gate assembly. For each spacer, golden-gate compatible
391 template was created by 5'-phosphorylating with T4 PNK (NEB) and annealing of
392 oligonucleotides. Golden Gate reactions for crRNA assembly were purified with DNA
393 Clean & Concentrator-5 (Zymo Research), electroporated into DH10b (NEB, Intact
394 Genomics), and plated on LB+Ch, 37°C.

395

396 HR donor vectors were assembled through BbsI (NEB, R0539L) golden gate assembly.
397 pBA707 a BBR1-KanR vector with an RFP dropout cassette and 2xBbsI restriction was

398 used as the backbone. 5'-phosphorylated with T4 PNK (NEB) and annealed
399 oligonucleotides were used for UP-homology (oBA1761/oBA1762 or
400 oBA1765/oBA1766), DN-homology (oBA1763/oBA1764 or oBA1767/oBA1768), and
401 mutated protospacer (oBA1769/oBA1770, oBA1771/oBA1772, oBA1773/oBA1774,
402 oBA1775/oBA1776, oBA1777/oBA1778, or oBA1779/oBA1780). Golden-gate reactions
403 were purified with DNA Clean & Concentrator-5 (Zymo Research) and electroporated into
404 DH10b (NEB, Intact Genomics) and plated on LB+K, 37°C. RFP-negative colonies were
405 chosen for sequence-verification.

406

407 **crRNA design**

408 A complete summary of the spacers used in this study can be found in Supplementary
409 Table 1. We designed all Cas13a/d crRNAs as 31-nt spacers with no substantial bias
410 against or towards any protospacer flanking sequence (PFS). Spacers were exclusively
411 chosen to target predicted phage transcripts or a non-targeting control based on
412 published genome sequences for phage λ (J02459.1), EdH4 (MK327930.1), MM02
413 (MK373784.1), N4 (NC_008720.1), SUSP1 (NC_028808.2), T4 (NC_000866.4), T5
414 (NC_005859.1), and T7 (NC_001604.1). Because DH10b harbors λ -like prophage,
415 ϕ 80lacZ Δ M15, spacers were designed to avoid similarity to the DH10b genome
416 (NC_010473.1)⁶⁰. The majority of spacers were chosen to target the transcript of a target
417 coding sequence (CDS). However, some spacers were chosen to target untranslated
418 regions and are demarcated with “RBS”.

419

420 **Minimal edit homologous recombination donor vector design**

421 HR donor vectors were designed with 52-nt of homology upstream (UP) and downstream
422 (DN) of a targeted protospacer on the phage genome. To encode minimal edits, predicted
423 codons were converted to silent mutations in a single codon (-C), seed region (-S), or full
424 protospacer (-F) using a coding table for *E. coli*. When possible, codons were maximally
425 altered and rare codons avoided to minimize non-Cas13-phenotypic consequence. The
426 estimated seed region was estimated as previously observed *in vitro* ³⁸.

427

428 **Efficiency of plaquing assays**

429 Bacteriophage assays were conducted using a modified double agar overlay protocol.
430 For each Cas13-crRNA-phage combination, a strain of dh10b (NEB, Intact Genomics)
431 containing a Cas13-crRNA plasmid (Supplementary Table 2) was grown overnight 37°C,
432 250 rpm. To perform plaque assays, 100 µL of saturated overnight culture was mixed with
433 molten LB Lennox top agar supplemented with appropriate inducer and antibiotics and
434 decanted onto a corresponding LB Lennox Agar plate (to final overlay concentrations of
435 0.7% (w/v) agar, 5 nM anhydrotetracycline (aTc), and 34 µg/mL chloramphenicol). For all
436 phage experiments in this study no supplementary CaCl₂ or MgSO₄ salts were added.
437 For pBA675 and pBFC1053, toxicity was apparent at 5 nM aTc, so lower levels of aTc
438 were used (0 aTc added and 1 nM aTc respectively). For pBA769 assays were performed
439 at 10 nM aTc to achieve restriction against phage SUSP1. Overlays were left to dry for
440 15 minutes under microbiological flame. For each Cas13-crRNA-phage combination, 10X
441 serial dilutions of the appropriate phage were performed in SM buffer (Teknova), and 2
442 µL of each dilution were spotted onto the top agar and allowed to dry for 10 minutes.
443 Plaque assays were incubated at 37°C for 12-16 hours. After overnight incubation,

444 plaques were scanned using a standard photo scanner and plaque forming units (PFUs)
445 enumerated. In cases where individual PFUs were not enumerable, but clearings were
446 observed at high phage concentrations, the most concentrated dilution at which no
447 individual plaques were observed was counted as 1 PFU. Efficiency of plaquing (EOP)
448 calculations for a given condition were performed by normalizing the mean of PFU for a
449 condition to the mean PFU of a non-targeting control:
450 $\text{mean(PFU}_{\text{condition}}\text{)}/\text{mean(PFU}_{\text{negativecontrol}}\text{)}$. All plaque assays were performed in
451 biological triplicate. Calculations were performed using GraphPad Prism.

452

453 **Liquid phage infection assays**

454 Liquid phage experiments were performed in a Biotek plate reader at determined
455 multiplicities of infection (MOIs). Briefly, for each Cas13-crRNA-phage combination, a
456 strain of dh10b (NEB, Intact Genomics) containing a Cas13-crRNA plasmid
457 (Supplementary Table 2) was grown overnight 37°C, 250 rpm. Strains were diluted in
458 fresh media (LB + Ch + 10 nM aTc) to an OD of 0.04 and 200µL transferred to a 96-well
459 plate (Corning 3904), achieving a final cell count of $\sim 8 \times 10^6$ CFU/well. Appropriate phages
460 were diluted in SM Buffer (Teknova) to a maximal titer of 10^{11} PFU/mL and 10X serially
461 diluted 7 times. To begin phage infection, 1 µL of phage was added to achieve MOIs of
462 1.25×10^{-6} to 12.5. Infection was monitored in a Biotek Cytation 5 plate reader for 16 hours,
463 200 rpm shaking, 37°C with OD600 readings every 5 minutes. All infection assays were
464 performed in biological triplicate beginning from 3 independent overnights of bacterial
465 culture.

466

467 **T4 Phage genome editing experiments**

468 A graphical overview of the phage genome editing experiments is shown in
469 Supplementary Fig. 12. All assays were performed in biological triplicate beginning from
470 3 independent overnights of bacterial culture. All editing workflows occurred in parallel
471 processes.

472

473 To create genome edited phage lysates, a phage editing strain consisting of dh10b (NEB,
474 Intact Genomics) containing a homologous recombination vector (pBA787-pBA792)
475 (Supplementary Table 2) was grown overnight in LB+K media at 37°C, 250 rpm. Strains
476 were diluted into fresh media (LB+K) to an OD of 0.04 and 200µL transferred to a 96-well
477 plate (Corning 3904), achieving a final cell count of ~8*10⁶ CFU/well. Wildtype T4 was
478 added to each well to achieve a MOI of 0.01 (~8*10⁴ PFU of T4 phage). Infection was
479 monitored in a Biotek Cytation 5 plate reader at 200 rpm shaking, 37°C with OD600
480 readings every 5 minutes. Infection was allowed to proceed until there was a visible
481 population crash (~4.5 hours). Lysates were transferred to a 96 well block (Greiner
482 780271-FD) and 1 drop of chloroform (Sigma) was added to lyse remaining bacteria.
483 These lysates comprise a mixture of homologous recombination-edited T4 and wildtype
484 T4 and comprised “HR” phage lysate. Blocks were covered with an aluminum seal
485 (Corning 6570). “HR” phage lysates were stored at 4°C until use. “HR” phage lysates were
486 titered before enrichment.

487

488 To enrich genome edited phage lysates, a phage counterselection strain consisting of
489 dh10b (NEB, Intact Genomics) containing a “counterselection” Cas13a vector (pBA691

490 for *soc* or pBA778 for *dnap*) (Supplementary Table 2) was grown overnight in LB+Ch
491 media at 37°C, 250 rpm. Strains were diluted into fresh media (LB+Ch+10 nM aTc) to an
492 OD of 0.04 and 200 µL transferred to a 96-well plate (Corning 3904), achieving a final cell
493 count of ~8*10⁶ CFU/well. “HR phage lysate” was added to each well to achieve a MOI
494 of 0.01 (~8*10⁴ PFU of total phage titer). Infection was monitored in a Biotek Cytation 5
495 plate reader at 200 rpm shaking, 37°C with OD600 readings every 5 minutes. Infection
496 was allowed to proceed until there was a visible population crash (~7 hours). Lysates
497 were transferred to a 96 well block (Greiner 780271-FD) and 1 drop of chloroform (Sigma)
498 was added to lyse remaining bacteria. These lysates comprise an enriched mixture of
499 homologous recombination-edited T4 and wildtype T4 and comprised “HR+E” phage
500 lysate. Blocks were covered with an aluminum seal (Corning 6570). “HR+E” phage
501 lysates were stored at 4°C until use.

502

503 **Determination of T4 phage genome editing penetrance**

504 Determination of phage-editing penetrance was determined by plaque assay of “HR” and
505 “HR+E” lysates on non-selective and wt-counterselective strains. For *soc* edits, 10 nM
506 aTc induction was used for strains containing pBA620 as a negative control and pBA691
507 as a wt-counterselective Cas13 vector. For *dnap* edits, 5 nM aTc induction was used for
508 strains containing pBA620 as a negative control and pBA778 as a wt-counterselective
509 Cas13 vector. Penetrance was defined as $\text{PFU}_{\text{counterselection}}/\text{PFU}_{\text{negative}}$. Average
510 penetrance was calculated across independent editing attempts. Penetrance calculations
511 were performed in Graphpad Prism.

512

513 To confirm the genotype of edits, we performed unbiased PCRs followed by Sanger-
514 sequencing. In all cases, unbiased PCRs were designed to amplify from 200 bp upstream
515 and 200 bp downstream of the mutated protospacer, touching down outside the 52 bp
516 flanking homologous recombination supplied from the editing vectors. PCRs were
517 performed on 3 individual plaques from each “HR+E” lysate after plaquing on the
518 counterselection strain. Plaques were picked into 50 μ L SM Buffer (Teknova) and allowed
519 to diffuse out of the plaque plug at 4°C overnight. To prepare for PCR and denature phage
520 virions, 10 μ L of these samples were transferred to PCR tubes and boiled at 100°C for 10
521 minutes. For *soc*-F edits, plaques were picked from “HR+E” *soc* lysate plaques on
522 pBA691, amplified using oBA1783, oBA1784, and sequenced with oBA1783. For *dnap*-
523 C, *dnap*-S, and *dnap*-F edits, plaques were picked from “HR+E” *soc* lysate plaques on
524 pBA778, amplified using oBA1781, oBA1782, and sequenced with oBA1781.
525 Additionally, the same procedure was performed on wildtype T4 at both *soc* and *dnap*
526 loci.

527

528 **Cas13 phylogenetic tree**

529 Cas13 annotated protein sequences were compiled from NCBI and were identified in
530 GTDB r95 using custom cas13 HMMs. All sequences which did not contain two
531 [R/Q/N/K/H/****H] sequence motifs were removed. CD-HIT v4.8.1⁶¹ was used to cluster
532 sequences with a length cutoff of 0.9 and sequence similarity of 0.9. Sequences were
533 then independently aligned using MUSCLE v3.8.31 and were manually trimmed in
534 Geneious^{62,63}. A maximum likelihood phylogenetic tree was built from the alignment using

535 IQ-TREE v1.6.12⁶⁴ with the following parameters -st AA -nt 48 -bb 1000 -m
536 LG+G4+FO+I.

537

538 **Phage genome comparisons network**

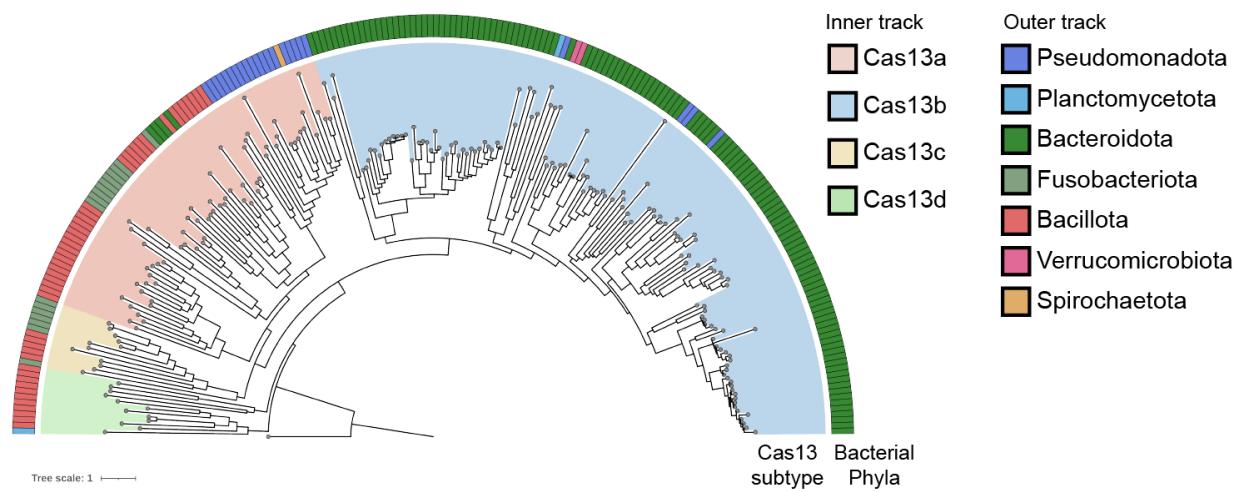
539 Protein-protein phage genome comparisons were performed with VConTACT2⁶⁵ MCL
540 clustering (*rel-mode Diamond*, *vcs-mode ClusterONE*) of the protein sequences of three
541 *E. coli* phages EdH4 (MK327930.1) and vB_EcoM_MM02 (MK373784.1) together with
542 those of the Prokaryotic Viral RefSeq 201 phage database. Produced viral clusters which
543 did not contain *E. coli* phage nor shared an edge with a viral cluster containing any *E. coli*
544 phage were removed, together with singletons, to simplify the network.

545

546 Average nucleotide identity phage genome comparisons were performed with Gepard⁶⁶
547 using a word length of 10 bp. For source genomes, we used a concatenation of the eight
548 phage genomes used in this study: T4 (NC_000866.4), MM02 (MK373784.1), SUSP1
549 (NC_028808.2), EdH4 (MK327930.1), N4 (NC_008720.1), T7 (NC_001604.1), λ
550 (J02459.1), and T5 (NC_005859.1).

551

552

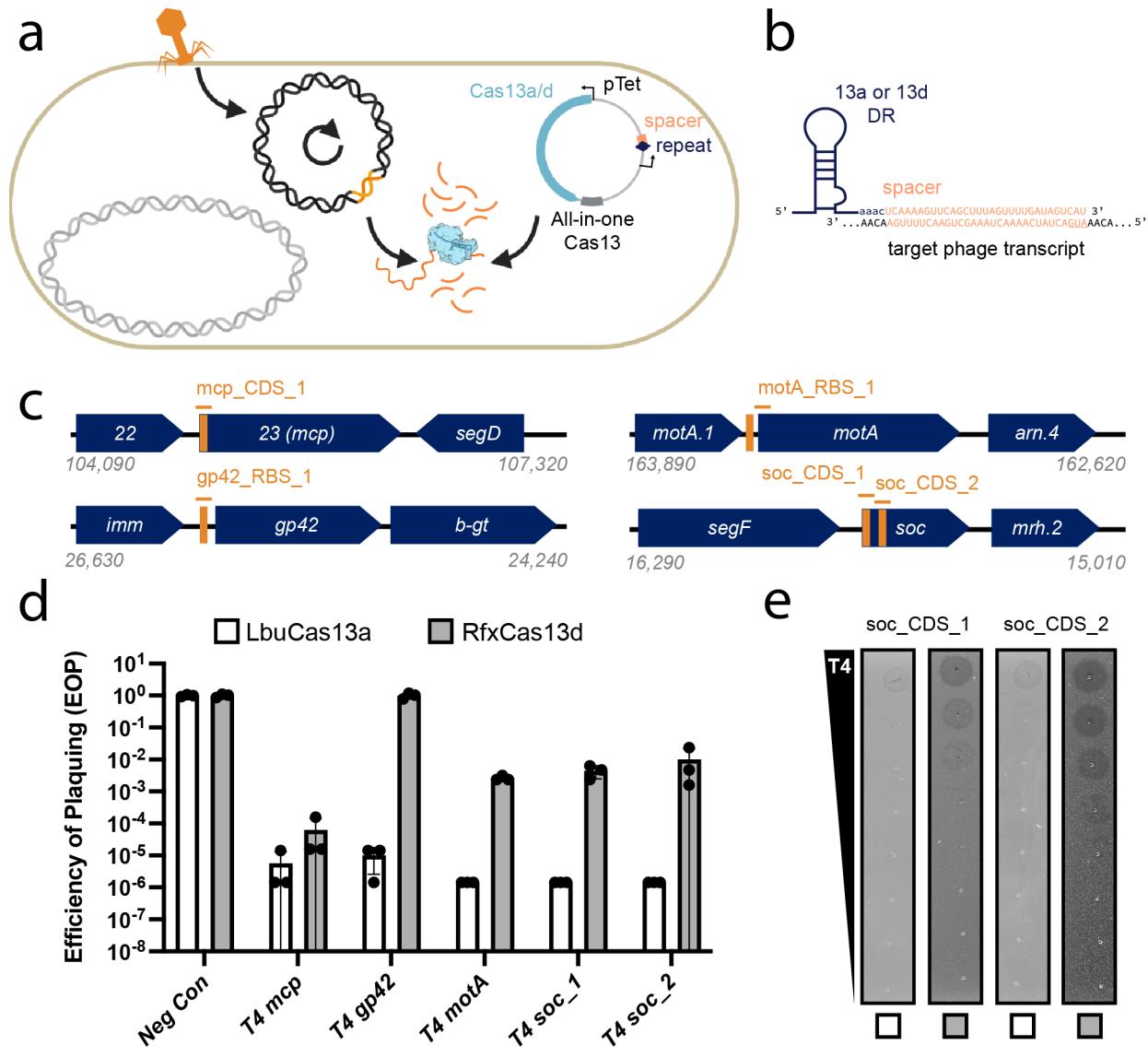

553

554 **Figures**

555

556

557

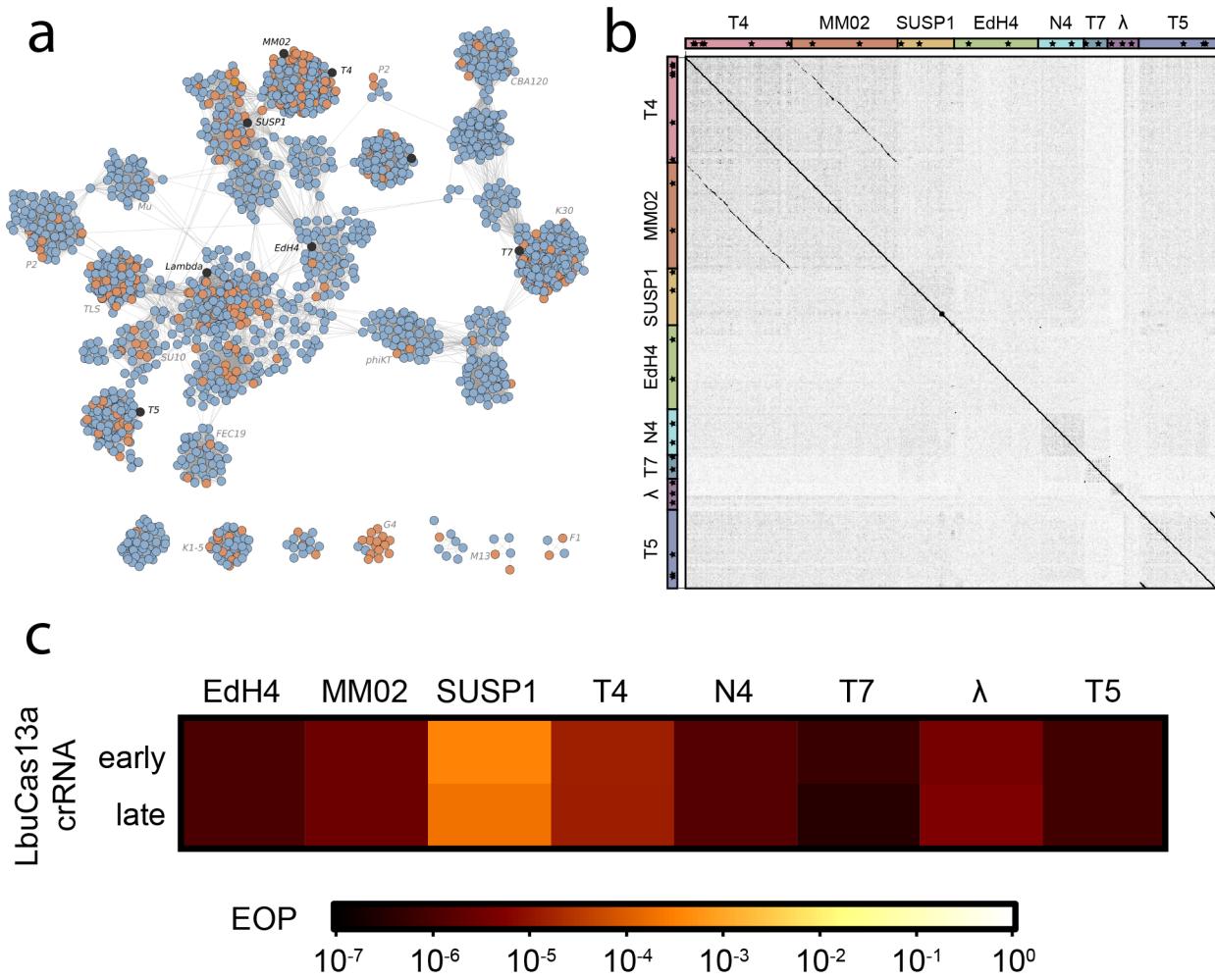


558

559 **Fig. 1. Maximum-likelihood phylogeny of Cas13 proteins and their distribution**
560 **across the bacterial tree of life.** The four known subtypes, Cas13a-d, each form their
561 clade. A *Vibrio cholerae* Cas9 (UIO88932.1) was used as the outgroup. The microbial
562 taxa that encode these Cas13s are denoted in the color bar.

563

564

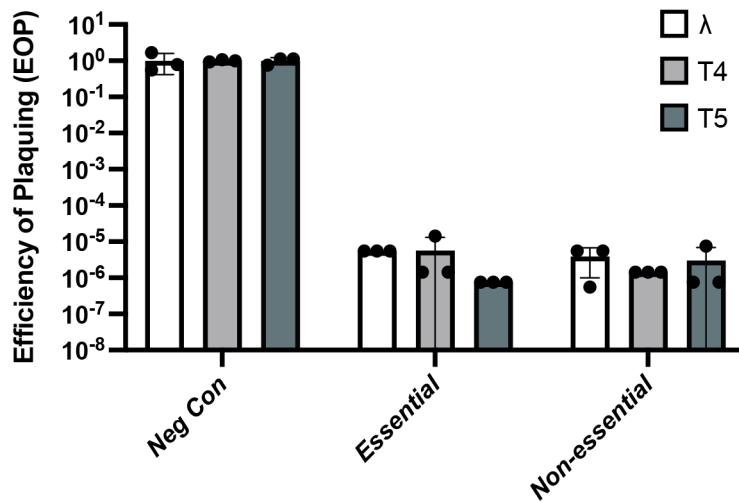

565 **Fig 2. Comparison of Cas13a and Cas13d in *E. coli* phage-challenge assays with**
 566 **lytic phage T4. (a)** Experimental architecture of Cas13 phage defense. Cas13 is
 567 expressed under anhydrotetracycline (aTc) control alongside a crRNA. During phage
 568 infection, Cas13 unleashes toxic cis- and trans-cleavage if Cas13 detects its crRNA
 569 target. **(b)** crRNA architecture employed in this study. **(c)** Overview of T4 genes and
 570 transcript locations targeted by Cas13 in T4 phage challenge experiments. Approximate
 571 gene architecture is shown in forward orientation. crRNA locations are highlighted in
 572 black.

573 orange. **(d)** T4 phage infection in bacteria expressing phage-targeting crRNA and either
574 LbuCas13a or RfxCas13d. EOP values represent the average of three biological
575 replicates for a single crRNA. **(e)** T4 phage plaque assays comparing efficacy and toxicity
576 of Cas13a and Cas13d. A representative plaque assay from three biological replicates is
577 shown.

578

579

580


581

582

583 **Fig 3. Comparison of LbuCas13a anti-phage activity across dsDNA *E. coli* phage**
 584 **phylogeny. (a)** Network graph representation of *E. coli* phages and their relatives. Nodes
 585 represent phage genomes that are connected by edges if they share significant similarity
 586 as determined by vContact2⁶⁵ (protein similarity). Nodes are shaded red if they are
 587 classified as an *E. coli* phage and blue if they only share similarity. Nodes are shaded
 588 black if they were assessed for sensitivity to LbuCas13a. **(b)** Gepard⁶⁶ dot plot comparing
 589 the average nucleotide identity of phage genomes and the location of crRNAs used in this
 590 study. Higher regions of similarity are shown with darker shade. Phage genomes are

591 concatenated and annotated on the axes. **(c)** Efficiency of plaquing (EOP) experiments
592 for Cas13a designed to target an early- or late- transcript. EOP values represent the
593 average of three biological replicates for a single crRNA.

594

595

596

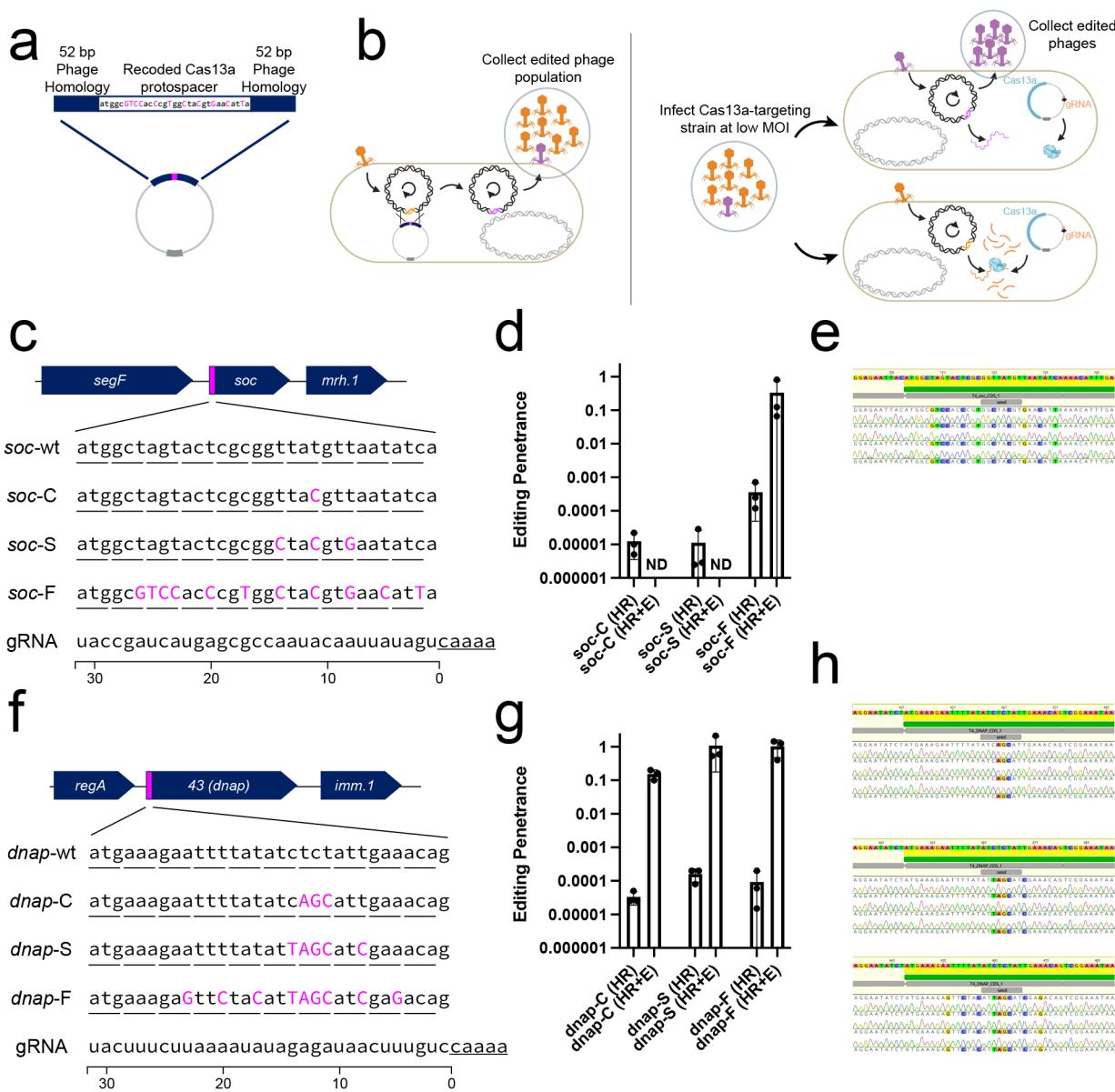
597 **Fig. 4. Anti-phage activity of Cas13a targeting essential versus non-essential phage**

598 **genes.** Different EOP experiments employing Cas13a crRNAs target either phage-
599 essential or non-essential genes in diverse phages λ , T4, and T5; EOP values represent
600 the average of three biological replicates for a single crRNA.

601

602

603 *Table 1. Summary of crRNAs Used in Cas13a Phage Restriction Assays*


Phage	Phage Family (Genus)	Genes Targeted	crRNA Success Rate Restriction)	Reference genome
λ	<i>Siphoviridae</i> (<i>Lambdavirus</i>)	<i>cro, ea47, mcp</i>	3/3 (100%)	J02459.1
EdH4	<i>Myoviridae</i> (<i>Vequintavirinae</i>)	<i>dnap, mcp</i>	2/2 (100%)	MK327930.1
MM02	<i>Myoviridae</i> (<i>Tevenvirinae</i>)	<i>dnap, mcp</i>	2/2 (100%)	MK373784.1
N4	<i>Schitoviridae</i> (<i>Enquattrovirinae</i>)	<i>dnap, mcp</i>	2/2 (100%)	NC_008720.1
SUSP1	<i>Myoviridae</i> (<i>Ounavirinae</i>)	<i>dnap, mcp</i>	2/2 (100%)	NC_028808.2
T4	<i>Myoviridae</i> (<i>Tevenvirinae</i>)	<i>dnap, gp42, mcp, soc</i>	5/5 (100%)	NC_000866.4
T5	<i>Demerecviridae</i> (<i>Markadamsvirinae</i>)	<i>dnap (eLbu), gp150, mcp</i>	3/3 (100%)	NC_005859.1

T7	<i>Autographiviridae</i> (<i>Studiervirinae</i>)	<i>rnap, mcp</i>	2/2 (100%)	NC_001604.1
----	---	------------------	------------	-------------

604

605

606

607

608 **Fig 5. Editing of phage T4 in response to Cas13a counterselection.** (a) Homologous
609 recombination vector design consists of a re-coded Cas13a protospacer flanked by 52 bp
610 of homology to the phage genome. (b) Overview of a simple 2-step editing process.
611 Wildtype phage T4 infects homology vector-containing strain at a low MOI, yielding a
612 mixed population of wt (orange) and edited (purple) phages (“HR”). This population is
613 diluted and infects a LbuCas13a-expressing strain targeting the wt locus (10 nM aTc),
614 enriching for edited phages relative to wt (“HR+E”). (c) Re-coding design for a T4 non-
615 essential gene, *soc*, with introduced silent mutations shown in magenta. Three designs
616 with differing mutations were tested (*soc*-C, *soc*-S, *soc*-F). (d) Survivor ratios from three
617 biological replicates of the editing and enrichment process shown in (b) for *soc*-C, *soc*-S,
618 *soc*-F. (e) Unbiased sequencing of T4 *soc* loci from individual plaques from three
619 independent editing attempts. Deviations from wildtype are highlighted. (f) Re-coding
620 design for a T4 essential gene, *dnap*, with introduced silent mutations shown in magenta.
621 3 designs with differing degrees of mutations were tested (*dnap*-C, *dnap*-S, *dnap*-F). (g)
622 Survivor ratios from 3 biological replicates of the editing and enrichment process shown
623 in (b) for *dnap*-C, *dnap*-S, *dnap*-F. (h) Unbiased, sequencing of T4 *dnap* loci from
624 individual plaques from three independent editing attempts. Deviations from wildtype are
625 highlighted. Sanger sequencing traces for all verified plaques including those shown in
626 panels (e, h) can be found in Supplementary Figs. 16, 20).

627

628

629 *Table 2. Summary of Cas13a-Mediated Phage Genome Editing*

Edit Name	Phage	Edited Locus	Number of SNPs Introduced	Survivors Detected?	Plaques Screened	Mutant Success Rate
<i>soc</i> -C	T4	<i>soc</i>	1	No	N/A	N/A
<i>soc</i> -S	T4	<i>soc</i>	3	No	N/A	N/A
<i>soc</i> -F	T4	<i>soc</i>	11	Yes	9	100%
<i>dnap</i> -C	T4	<i>dnap</i>	3	Yes	9	100%
<i>dnap</i> -S	T4	<i>dnap</i>	5	Yes	9	100%
<i>dnap</i> -F	T4	<i>dnap</i>	9	Yes	9	100%

630

631

632 **References**

633 1. Barrangou, R. *et al.* CRISPR provides acquired resistance against viruses in
634 prokaryotes. *Science* **315**, 1709–1712 (2007).

635 2. Makarova, K. S. *et al.* Evolutionary classification of CRISPR-Cas systems: a burst
636 of class 2 and derived variants. *Nat. Rev. Microbiol.* **18**, 67–83 (2020).

637 3. Brouns, S. J. J. *et al.* Small CRISPR RNAs guide antiviral defense in prokaryotes.
638 *Science* **321**, 960–964 (2008).

639 4. Garneau, J. E. *et al.* The CRISPR/Cas bacterial immune system cleaves
640 bacteriophage and plasmid DNA. *Nature* **468**, 67–71 (2010).

641 5. Zetsche, B. *et al.* Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-
642 Cas system. *Cell* **163**, 759–771 (2015).

643 6. Abudayyeh, O. O. *et al.* C2c2 is a single-component programmable RNA-guided
644 RNA-targeting CRISPR effector. *Science* 1–17 (2016).

645 7. Kazlauskiene, M., Kostiuk, G., Venclovas, Č., Tamulaitis, G. & Siksnys, V. A cyclic
646 oligonucleotide signaling pathway in type III CRISPR-Cas systems. *Science* **357**,
647 605–609 (2017).

648 8. Niewohner, O. *et al.* Type III CRISPR-Cas systems produce cyclic oligoadenylate
649 second messengers. *Nature* **548**, 543–548 (2017).

650 9. Huang, C. J., Adler, B. A. & Doudna, J. A. A naturally DNase-free CRISPR-Cas12c
651 enzyme silences gene expression. *bioRxiv* 2021.12.06.471469 (2021)
652 doi:10.1101/2021.12.06.471469.

653 10. Knott, G. J. & Doudna, J. A. CRISPR-Cas guides the future of genetic engineering.
654 *Science* **361**, 866–869 (2018).

655 11. Bondy-Denomy, J., Pawluk, A., Maxwell, K. L. & Davidson, A. R. Bacteriophage
656 genes that inactivate the CRISPR/Cas bacterial immune system. *Nature* **493**, 429–
657 432 (2013).

658 12. Harrington, L. B. *et al.* A Broad-Spectrum Inhibitor of CRISPR-Cas9. *Cell* **170**,
659 1224–1233.e15 (2017).

660 13. Pawluk, A., Davidson, A. R. & Maxwell, K. L. Anti-CRISPR: discovery, mechanism
661 and function. *Nat. Rev. Microbiol.* **16**, 12–17 (2018).

662 14. Shivram, H., Cress, B. F., Knott, G. J. & Doudna, J. A. Controlling and enhancing
663 CRISPR systems. *Nat. Chem. Biol.* **17**, 10–19 (2021).

664 15. Sinsheimer, R. L. Nucleotides from T2r+ Bacteriophage. *Science* **120**, 551–553
665 (1954).

666 16. Lanni, Y. T. First-step-transfer deoxyribonucleic acid of bacteriophage T5.
667 *Bacteriol. Rev.* **32**, 227–242 (1968).

668 17. Weigle, P. & Raleigh, E. A. Biosynthesis and Function of Modified Bases in
669 Bacteria and Their Viruses. *Chem. Rev.* **116**, 12655–12687 (2016).

670 18. Chaikeeratisak, V. *et al.* Assembly of a nucleus-like structure during viral replication
671 in bacteria. *Science* **355**, 194–197 (2017).

672 19. Mendoza, S. D. *et al.* A bacteriophage nucleus-like compartment shields DNA from
673 CRISPR nucleases. *Nature* **577**, 244–248 (2020).

674 20. Wu, X., Zhu, J., Tao, P. & Rao, V. B. Bacteriophage T4 Escapes CRISPR Attack by
675 Minihomology Recombination and Repair. *MBio* **12**, e0136121 (2021).

676 21. Hossain, A. A., McGinn, J., Meeske, A. J., Modell, J. W. & Marraffini, L. A. Viral
677 recombination systems limit CRISPR-Cas targeting through the generation of

678 escape mutations. *Cell Host Microbe* **29**, 1482–1495.e12 (2021).

679 22. Borges, A. L. *et al.* Bacteriophage Cooperation Suppresses CRISPR-Cas3 and
680 Cas9 Immunity. *Cell* **174**, 917–925.e10 (2018).

681 23. Landsberger, M. *et al.* Anti-CRISPR Phages Cooperate to Overcome CRISPR-Cas
682 Immunity. *Cell* **174**, 908–916.e12 (2018).

683 24. Varble, A. *et al.* Prophage integration into CRISPR loci enables evasion of antiviral
684 immunity in *Streptococcus pyogenes*. *Nature Microbiology* **6**, 1516–1525 (2021).

685 25. Martel, B. & Moineau, S. CRISPR-Cas: an efficient tool for genome engineering of
686 virulent bacteriophages. *Nucleic Acids Res.* **42**, 9504–9513 (2014).

687 26. Tao, P., Wu, X., Tang, W.-C., Zhu, J. & Rao, V. Engineering of Bacteriophage T4
688 Genome Using CRISPR-Cas9. *ACS Synth. Biol.* **6**, 1952–1961 (2017).

689 27. Duong, M. M., Carmody, C. M., Ma, Q., Peters, J. E. & Nugen, S. R. Optimization
690 of T4 phage engineering via CRISPR/Cas9. *Sci. Rep.* **10**, 18229 (2020).

691 28. Wetzel, K. S. *et al.* CRISPY-BRED and CRISPY-BRIP: efficient bacteriophage
692 engineering. *Sci. Rep.* **11**, 6796 (2021).

693 29. East-Seletsky, A. *et al.* Two distinct RNase activities of CRISPR-C2c2 enable
694 guide-RNA processing and RNA detection. *Nature* **538**, 270–273 (2016).

695 30. Meeske, A. J., Nakandakari-Higa, S. & Marraffini, L. A. Cas13-induced cellular
696 dormancy prevents the rise of CRISPR-resistant bacteriophage. *Nature* **570**, 241–
697 245 (2019).

698 31. Baltimore, D. Expression of animal virus genomes. *Bacteriol. Rev.* **35**, 235–241
699 (1971).

700 32. Meeske, A. J. *et al.* A phage-encoded anti-CRISPR enables complete evasion of

701 type VI-A CRISPR-Cas immunity. *Science* **369**, 54–59 (2020).

702 33. VanderWal, A. R., Park, J.-U., Polevoda, B., Kellogg, E. H. & O'Connell, M. R.

703 CRISPR-Csx28 forms a Cas13b-activated membrane pore required for robust

704 CRISPR-Cas adaptive immunity. *bioRxiv* 2021.11.02.466367 (2021)

705 doi:10.1101/2021.11.02.466367.

706 34. Guan, J. *et al.* RNA targeting with CRISPR-Cas13a facilitates bacteriophage

707 genome engineering. *bioRxiv* 2022.02.14.480438 (2022)

708 doi:10.1101/2022.02.14.480438.

709 35. Bryson, A. L. *et al.* Covalent Modification of Bacteriophage T4 DNA Inhibits

710 CRISPR-Cas9. *MBio* **6**, e00648 (2015).

711 36. Liu, L. *et al.* The Molecular Architecture for RNA-Guided RNA Cleavage by

712 Cas13a. *Cell* **170**, 714–726.e10 (2017).

713 37. Konermann, S. *et al.* Transcriptome Engineering with RNA-Targeting Type VI-D

714 CRISPR Effectors. *Cell* **173**, 665–676.e14 (2018).

715 38. Tambe, A., East-Seletsky, A., Knott, G. J., Doudna, J. A. & O'Connell, M. R. RNA

716 Binding and HEPN-Nuclease Activation Are Decoupled in CRISPR-Cas13a. *Cell*

717 *Rep.* **24**, 1025–1036 (2018).

718 39. Charles, E. J. *et al.* Engineering improved Cas13 effectors for targeted post-

719 transcriptional regulation of gene expression. *bioRxiv* 2021.05.26.445687 (2021)

720 doi:10.1101/2021.05.26.445687.

721 40. Miller Eric S. *et al.* Bacteriophage T4 Genome. *Microbiol. Mol. Biol. Rev.* **67**, 86–

722 156 (2003).

723 41. Kutter, E. *et al.* From Host to Phage Metabolism: Hot Tales of Phage T4's Takeover

724 of *E. coli*. *Viruses* **10**, (2018).

725 42. Keen, E. C. *et al.* Novel ‘Superspread’ Bacteriophages Promote Horizontal Gene
726 Transfer by Transformation. *MBio* **8**, (2017).

727 43. Los, M., Wegrzyn, G. & Neubauer, P. A role for bacteriophage T4 rI gene function
728 in the control of phage development during pseudolysogeny and in slowly growing
729 host cells. *Res. Microbiol.* **154**, 547–552 (2003).

730 44. Kellenberger, G., Zichichi, M. L. & Weigle, J. A mutation affecting the DNA content
731 of bacteriophage lambda and its lysogenizing properties. *J. Mol. Biol.* **3**, 399–408
732 (1961).

733 45. Huet, A., Duda, R. L., Hendrix, R. W., Boulanger, P. & Conway, J. F. Correct
734 Assembly of the Bacteriophage T5 Procapsid Requires Both the Maturation
735 Protease and the Portal Complex. *J. Mol. Biol.* **428**, 165–181 (2016).

736 46. Kiro, R., Shitrit, D. & Qimron, U. Efficient engineering of a bacteriophage genome
737 using the type I-E CRISPR-Cas system. *RNA Biol.* **11**, 42–44 (2014).

738 47. Box, A. M., McGuffie, M. J., O’Hara, B. J. & Seed, K. D. Functional Analysis of
739 Bacteriophage Immunity through a Type I-E CRISPR-Cas System in *Vibrio*
740 *cholerae* and Its Application in Bacteriophage Genome Engineering. *J. Bacteriol.*
741 **198**, 578–590 (2016).

742 48. Bari, S. M. N., Walker, F. C., Cater, K., Aslan, B. & Hatoum-Aslan, A. Strategies for
743 Editing Virulent Staphylococcal Phages Using CRISPR-Cas10. *ACS Synth. Biol.* **6**,
744 2316–2325 (2017).

745 49. Mayo-Muñoz, D. *et al.* Anti-CRISPR-Based and CRISPR-Based Genome Editing of
746 *Sulfolobus islandicus* Rod-Shaped Virus 2. *Viruses* **10**, (2018).

747 50. Grigonyte, A. M. *et al.* Comparison of CRISPR and Marker-Based Methods for the
748 Engineering of Phage T7. *Viruses* **12**, (2020).

749 51. Anantharaman, V., Makarova, K. S., Burroughs, A. M., Koonin, E. V. & Aravind, L.
750 Comprehensive analysis of the HEPN superfamily: identification of novel roles in
751 intra-genomic conflicts, defense, pathogenesis and RNA processing. *Biol. Direct* **8**,
752 15 (2013).

753 52. Doron, S. *et al.* Systematic discovery of antiphage defense systems in the microbial
754 pangenome. *Science* **359**, (2018).

755 53. Gao, L. *et al.* Diverse enzymatic activities mediate antiviral immunity in prokaryotes.
756 *Science* **369**, 1077–1084 (2020).

757 54. Otsuka, Y. & Yonesaki, T. Dmd of bacteriophage T4 functions as an antitoxin
758 against Escherichia coli LsoA and RnlA toxins. *Mol. Microbiol.* **83**, 669–681 (2012).

759 55. Krüger, D. H., Schroeder, C., Hansen, S. & Rosenthal, H. A. Active protection by
760 bacteriophages T3 and T7 against E. coli B- and K-specific restriction of their DNA.
761 *Mol. Gen. Genet.* **153**, 99–106 (1977).

762 56. Kutter, E. & Sulakvelidze, A. *Bacteriophages: Biology and Applications*. (CRC
763 Press, 2004).

764 57. Mutualik, V. K. *et al.* High-throughput mapping of the phage resistance landscape in
765 E. coli. *PLoS Biol.* **18**, e3000877 (2020).

766 58. Korf, I. H. E. *et al.* Still Something to Discover: Novel Insights intoEscherichia coli
767 Phage Diversity and Taxonomy. *Viruses* **11**, (2019).

768 59. Knott, G. J. *et al.* Structural basis for AcrVA4 inhibition of specific CRISPR-Cas12a.
769 *Elife* **8**, (2019).

770 60. Durfee, T. *et al.* The complete genome sequence of *Escherichia coli* DH10B:
771 insights into the biology of a laboratory workhorse. *J. Bacteriol.* **190**, 2597–2606
772 (2008).

773 61. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-
774 generation sequencing data. *Bioinformatics* **28**, 3150–3152 (2012).

775 62. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high
776 throughput. *Nucleic Acids Res.* **32**, 1792–1797 (2004).

777 63. Kearse, M. *et al.* Geneious Basic: an integrated and extendable desktop software
778 platform for the organization and analysis of sequence data. *Bioinformatics* **28**,
779 1647–1649 (2012).

780 64. Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and
781 effective stochastic algorithm for estimating maximum-likelihood phylogenies. *Mol.*
782 *Biol. Evol.* **32**, 268–274 (2015).

783 65. Bin Jang, H. *et al.* Taxonomic assignment of uncultivated prokaryotic virus
784 genomes is enabled by gene-sharing networks. *Nat. Biotechnol.* **37**, 632–639
785 (2019).

786 66. Krumsiek, J., Arnold, R. & Rattei, T. Gepard: a rapid and sensitive tool for creating
787 dotplots on genome scale. *Bioinformatics* **23**, 1026–1028 (2007).

788