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ABSTRACT 

Large-scale untargeted metabolomics studies suffer from individual variation, batch effects and 

instrument variability, making comparisons of common spectral features across studies difficult.  

One solution is to compare studies after compound identification. However, compound 

identification is expensive and time consuming. We successfully identify common spectral 

features across multiple studies, with a generalizable experimental design approach. First, we 

included an anchor strain, PD1074, during sample and data collection. Second, we collected 

data in blocks with multiple controls. These anchors enabled us to successfully integrate three 

studies of Caenorhabditis elegans for nuclear magnetic resonance (NMR) spectroscopy and 

liquid chromatography-mass spectrometry (LC-MS) data from five different assays. We found 

34% and 14% of features to be significant in LC-MS and NMR, respectively. Between 20-50% of 

spectral features differ in a mutant and among a set of genetically diverse natural strains, 

suggesting this reduced set of spectral features are excellent targets for compound 

identification. 
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GRAPHICAL ABSTRACT 

 

Fourteen C. elegans strains are used in three individual studies. PD1074, the anchor control 

strain (orange), is grown alongside test strains (green, yellow, purple). Multiple biological 

replicates of PD1074 captures environmental variation in growth conditions. Non-polar and polar 

metabolic data across the three studies (i.e., natural strains, central metabolism mutants, and 

UGT mutants) were collected by nuclear magnetic resonance (NMR) spectroscopy and liquid 

chromatography-mass spectrometry (LC-MS). Data acquisition controls in each block included 

biological reference material and pooled PD1074 samples. Biological replicates of PD1074 (n = 

42 for LC-MS, n = 52 for NMR) were included in all batches. Meta-analysis provided 

comparable inferences to mixed effects models, and the estimated relative effects of each test 

strain to PD1074 and straightforward comparisons of test strains across experiments. 
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Untargeted metabolomics studies compare the variation in small molecules caused by 

genetic perturbations, treatments, and environmental differences1. Metabolomics is a powerful 

tool in biomarker discovery and holds great promise for precision medicine2-4. Targeted 

metabolomics is common in studies exploring human health questions that range from aging5, 6 

to complex diseases7-12. An advantage of untargeted metabolomics for these questions is the 

ability to reach beyond sets of well studied compounds to explore differences in an unbiased 

way13. Despite the attractiveness of an unbiased survey, untargeted metabolomics has well 

known challenges. In particular, the collection of highly variable biological material in a 

reproducible manner across batches makes the identification of differential compounds and 

comparisons of their abundances across datasets challenging. Chemical annotation of 

compounds, which is key to combining data across studies, requires considerable time and 

labor14. Given this bottleneck, it is essential to find novel ways to prioritize spectral features and 

overcome intractable challenges such as matrix effects, instrument drift, and batch variation15-18.   

Batch effects across experiments are an enormous problem in untargeted metabolomics 

and a barrier to adopting these methods19. Normalizing to a quality control (QC) or biological 

reference material (BRM) material included in each batch has been shown to be effective10, 15, 16. 

Although normalization strategies are improving15, 16; non-linear effects20, sample variation, the 

inability to separate environmental variance, and analytical artifacts17 still pose ongoing 

challenges to the identification of common spectral features across studies. While different 

approaches to sample-based and data-based normalization have been described, such as total 

protein content, total ion count (TIC), and pooled QCs12, 21, reproducibility and heteroscedasticity 

(unequal variance) issues remain problematic22-26. 

Our goal, common to many studies, is to compare groups across large numbers of 

independent samples27-30. As sample size increases, challenges associated with variation must 

be accounted for appropriately. In metabolomics studies, variation in pre-analytical sample 

collection (growth), analytical sample preparation (extraction), and data collection (instrument)31 

can be confounded (Figure 1). Identification of shared spectral features using a BRM is a 

successful strategy31, 32 that has proven essential in large-scale studies32-34. Implementation of 

BRM controls for instrument variation can estimate and normalize extraction variation16, 18, 31. 

However, variation among samples within the group remains. Metabolites may only be present 

in some samples or some batches. In both liquid chromatography-mass spectrometry (LC-MS) 

and nuclear magnetic resonance (NMR) spectroscopy, ambiguity in whether features are 

generated by genetic or environmental factors coupled with batch effects and challenges in 
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peak picking algorithms present obstacles to apply untargeted metabolomics to broader 

studies17, 35. 

Although tools to handle extraction and instrumentation variation exist, their utility in 

large studies for samples with complex matrices is limited33, 35, 36. Here, we use the model 

system Caenorhabditis elegans to demonstrate that an augmented design combined with 

experimental blocks37-39 can be used to anchor studies and enable comparisons of stable 

spectral features across time without the need for compound identification. 

C. elegans is a model organism ideally suited to study conserved small molecules in 

metabolism40-42. The worm’s short life cycle, self-fertilization of homozygous hermaphroditic 

individuals, ease of cultivation, and ability to propagate large numbers of animals43 are ideal for 

large-scale studies42, 44-46. These traits allow one to (i) develop, test, and validate approaches to 

identify stable spectral features, (ii) demonstrate the feasibility of large-scale biochemical 

pathway analyses with genetic mutants, and (iii) focus on spectral features likely to reveal 

essential components of metabolic pathways by comparing features that vary due to genetic 

perturbations.  

We designed three C. elegans studies to link natural and deliberate knock- out genetic 

perturbations. The first and second studies comprised central metabolism (CM) mutants and 

UDP-glycosyltransferases (UGT) mutants as examples of primary and secondary metabolism, 

respectively. CM mutants have been used in studies showing that diagnostic changes can be 

associated with human disease47, 48. UGTs are an evolutionarily diverse class of Phase 2 

enzymes involved in detoxification49, 50. Although UGTs are vital to internal detoxification across 

species, the functions of UGTs have not been well described 49-52. The third study comprises 

genetically diverse natural strains (NS) from a broad geographic base, used to describe natural 

variation in the metabolome of C. elegans53 including N2, a widely used laboratory-adapted 

strain54.  

Collectively, CM and UGT mutants, and NS, allow us to (i) identify spectral features that 

vary due to genetic perturbations, (ii) compare the same spectral features across all three 

studies without compound identification, and (iii) plan future experiments that can be directly 

compared to these studies. The experimental design used here is straightforward to execute in 

model systems. One (or more) anchor strains (PD1074 here) are included alongside every test 

strain during growth and data collection, augmenting the design. Including the same strain 

enables measurement of the variation due to non-genetic effects. Augmented designs are 

common in large scale agricultural studies and they are used to compare large numbers of 

genotypes across heterogeneous environments38, 39. The inclusion of multiple biological 
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replicates of the same strain during data acquisition enables the identification of stable features 

across a wide range of environmental conditions. Given the limited resources and expense of 

compound identification, analysis of the set of stable spectral features for differences in intensity 

in several contexts provides one way of prioritizing interesting compounds for identification. 

 

RESULTS 

Here, we provide a method to identify stable spectral features and identify differences 

between groups using a straightforward meta-analytic approach. This demonstration is 

comprised of 104 independent samples collected in three studies of two batches each to 

produce five analytical datasets (3 LC-MS and 2 NMR) from two complementary technologies 

commonly used in untargeted metabolomics (Figures 1 and S1). 

Our first study comprised of CM mutants (n = 5) identifies spectral features involved in 

central metabolism. The second study, UGT mutants (n = 5), identifies spectral features 

affected by Phase 2 enzymes involved in the detoxification system. The third study, NS (n = 4), 

assesses natural genetic variation. Collectively, these studies represent common hypotheses of 

general interest to metabolomics and genetic researchers (See Table S1 for full strain details).   

Stringent quality assurance/quality controls (QA/QC) combined with a focus on spectral 

features consistently detected in PD1074 identified: 3953 spectral features in reverse phase 

(RP) LC-MS positive, 377 in RP LC-MS negative, 199 in hydrophilic interaction liquid 

chromatography (HILIC) LC-MS positive, 585 in NMR polar, and 487 in NMR non-polar. An 

instrument failure occurred during the collection of the HILIC negative data (see Methods).  

LC-MS spectral features often vary across biological replicates. Additional complexities 

include retention time drift, batch effects, and algorithmic limitations in estimating peak 

abundances in complex spectra26, 55-58. Including multiple independent PD1074 samples and 

pooled PD1074 samples in each batch can mitigate these issues. We continuously seeded and 

harvested PD1074 every time test samples were seeded or harvested during the large-scale 

culture plate (LSCP) growth process43. These PD1074 samples anchor the three studies and 

enable inter-study comparisons37, 39. 

 

PD1074 samples are pooled to control for within batch instrument variability 

PD1074 LSCPs are genetically identical, leading to the expectation that the spectral 

features present in each biological replicate are a result of the strain’s genetic composition as 

they are stable across an extensive range of growth conditions (samples collected over six 

months) (Figure S2). All biological replicates of PD1074 are extracted separately. There were 
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also technical replicates (repeat extractions of the same LSCP in different batches, n=20 for 

NMR, n =18 for LC-MS) that enabled an additional QC. During data acquisition, we included 

multiple biological replicates of PD1074 and a pool of the PD1074 samples included in each 

batch (Figure 1C). Comparing the PD1074 pools (measured twice n=12) across all batches 

(n=6) enables the identification of spectral features present across instrument runs over several 

months. Further, the selection of features present in all biological replicates of PD1074 ensures 

stable features across a range of environmental conditions (Figure 1). Iterative batch average 

method (IBAT) controls in the NMR study (from PD1074) combined with the biological replicates 

of PD1074 and the PD1074 pools enabled us to estimate the relative contribution of extraction 

(~40%), growth (~60%), and instrument variance, as expected in NMR, was negligible31.  We 

are also able to directly compare the stable features detected using the BRM approach to 

PD1074 batch pools.  We found that 97% of the features overlap. 

 

Figure 1. Experimental design overview. (A) Each C. elegans LSCP was grown and 

harvested with at least one PD1074 sample (sample growth variation captured) (Figure S2). (B) 

Multiple independent PD1074 samples and test strains (NS, CM mutants, or UGT mutants), 

IBAT references, and blanks were included in each batch for LC-MS or NMR (batch preparation 

variation captured). (C) A total of six batches in three sets were collected. Instrument controls, 

library standards, and replicate measurements of the pooled PD1074 samples (instrumentation 

variation captured) were in each run. Each test strain was collected in two independent 

sequential batches and a pool of all test samples are measured multiple times. (D) In LC-MS, 
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PD1074 spectral features were first identified from PD1074 pools and retained if present above 

the level of the blank in 100% of the individual PD1074 spectra. In NMR, semi-automated peak-

picking and binning were performed to extract peak heights and identify stable peaks present in 

PD1074 samples. (E) Data analysis was performed using meta-analysis models to identify 

spectral features of interest. 

 

 

Meta-analysis identifies differences in spectral features between test and reference 

strains without the need for complex normalization 

For each spectral feature, the difference in effect between the PD1074 individual LSCP 

(n=6-10) and each test strain (n=2-6) was estimated for each batch. We identified statistically 

significant spectral features by performing a meta-analysis across the two batches for each test 

strain59 eliminating the need to estimate and normalize/remove batch variance37 (Figure 1E). 

We compare a meta-analysis with a linear models analysis60 (Figure S3) and demonstrate that 

the final inferences are very similar, as predicted in larger studies that have compared individual 

analyses and meta-analytic approaches60. An advantage of the meta-analysis is the ability to 

apply this technique generally, even when there may be complex patterns of variance across 

batches such as those present in large cohort studies and/or due to technical variation (e.g., 

after an instrument interruption). Effect sizes can be used to compare test strains when data 

acquisition occurs independently across time. Effect sizes calculated in the meta-analysis are 

comparable to those calculated by a linear model analysis, demonstrating the successful 

implementation of meta-analysis when sample sizes are small (Figure S3). 

We see a similar pattern across platforms for the percentage of significant features 

identified across the three studies, with the highest percentage found in the RP LC-MS (-) 

dataset (Figure 2A). The highest percentage of significant spectral features was 58% in the CM 

mutation study. In the individual strains, the CM mutant, VC1265 (pyk-1) had the largest overall 

effect across platforms and fractions, followed by RB2347 (idh-2). AUM2073 (unc-119) and 

KJ550 (aco-1) had the smallest overall effects (Figures 2B, 3, and S4). For the UGT mutants, 

VC2512 (ugt-60) had the largest overall effect, followed by RB2607 (ugt-49). RB2011 (ugt-62) 

had the smallest overall effect (Figures 2C and S5). These patterns demonstrate the variation 

in single knockouts of different genes. In the NS, the most genetically divergent strains from 

PD1074 (CB4856 and DL238) had the largest overall effect in both platforms, and N2 had a 

small set of differences, as expected, since PD1074 is a trackable variant of N2 (Figures 2D 

and S6). 
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Figure 2. Summary of significant spectral features found in each analytical platform and 

across the three studies. (A) Percent of significant features. The total number of significant 

features in all strains, by study, is used as the denominator for each of the five technologies. 

Significant spectral features identified in at least one strain by study are displayed for (B) central 

metabolism mutants, (C) UGT mutants, and (D) natural strains. Zero indicates the strain has no 

significant spectral feature differences from PD1074, while one indicates that all spectral feature 

differences from PD1074 are present in that strain. Significant feature totals are summarized at 

the end of the plot and detailed in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Summary of significant spectral features found in all three studies across NMR 

and LC-MS. The total number of significant spectral features (p < 0.05) for a given strain and 

each analytical platform are listed. 

 

 

Non-polar Polar RP + RP - HILIC +

AUM2073 11 29 175 8 3

KJ550 9 14 110 17 10

RB2347 23 22 421 38 14

VC1265 25 49 671 79 42

VC2524 19 13 261 24 4

Total CM sig. features by 

platform
87 127 1638 166 73

RB2011 2 6 237 21 16

RB2055 8 20 161 34 10

RB2550 11 23 200 18 5

RB2607 18 17 539 69 9

VC2512 33 72 736 101 34

Total UGT sig. features 

by platform
72 138 1873 243 74

N2 1 3 22 6 7

DL238 18 15 631 52 19

CX11314 13 16 254 44 7

CB4856 23 29 869 113 17

Total NS sig. features by 

platform
55 63 1776 215 50

146 228 2541 281 115Total sig. features by platform

StrainStudy Group NMR LC-MS

Number of significant spectral features 

UGT 

mutants 

(UGT)

Central 

metabolism 

mutants 

(CM)

Natural 

Strains (NS)
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Figure 3. Heatmaps of significant spectral features identified in the CM mutant study. (A) 

RP LC-MS positive mode (B) RP LC-MS negative mode (C) HILIC LC-MS positive mode (D) 

NMR polar (E) NMR non-polar. For each heatmap, the first five columns are strains, and each 

row represents a spectral feature with an effect size that is consistently higher or lower relative 

to PD1074 in that study. The effect sizes range from (2 to -2). Positive effect sizes (i.e., the 

strain had a higher peak at that given metabolic feature than PD1074) are displayed in red. 

Negative effect sizes (i.e., PD1074 had a higher peak at that given metabolic feature than the 

test strain) are displayed in blue. The right-hand column indicates the number of models in 

which a given spectral feature is statistically significant. See Figure S4 for additional CM mutant 

results. 

 

 

Spectral features significant in a mutant and NS 

The percentage of significant features in each of the mutant studies (CM and UGT) that 

overlapped in at least one NS (Figure 4) are features of interest for follow-up compound 

identification. CM mutant strains AUM2073 (unc-119) and RB2347 (idh-2) share 75% and 68% 

of their significant features with a NS, respectively. UGT mutants, RB2607 (ugt-49) and RB2055 

(ugt-1) share 67% and 62% of their significant features with a NS, respectively. RB2011 (ugt-62) 

had the most overlap with the NS sharing 67% of its significant features in RP LC-MS (+) and 

44% in HILIC LC-MS (+). See Figures S7 and S8 for significant feature overlap across study 

comparisons. 

We focused on compounds affected in any CM mutants and used those to identify which 

UGTs and NS had genetic variation in those same compounds for the NMR polar data. Using 

COLMAR61, we identified three putative compounds significant in strains from all three studies. 

Of the 35 putative compounds showing evidence for metabolic variation in the NMR data, 13 

were annotated (see Table S2).  

 Nine putative compounds show metabolic variation in response to the pyk-1 mutation 

(Figure 5). The mutation in pyk-1 affects a large portion of the metabolome. The gene pyk-1, is 

involved in one of the last enzymes of glycolysis, encoding for pyruvate kinase and responsible 

for glycolytic ATP production. The depletion of lactic acid production is consistent with the 
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mutation in pyk-162 in the strain VC1265. We saw the depletion of lactic acid in DL238 (NS), and 

an increase in VC2512 (ugt-60) (Figure 5). As expected, none of the 13 compounds identified in 

the NMR polar dataset were significant in N2 (Figure 5). Interestingly, annotated compounds 

were also similar to PD1074 in CX11314 (NS), RB2055 (ugt-1), RB2607 (ugt-49), and RB2011 

(ugt-62).  

 

 

Figure 4. Percent of significant features for each of the mutant studies (CM and UGT) that 

are also significant in at least one NS by analytical platform. (A) UGT mutants (B) CM 

mutants. Data points at zero indicate the analytical platform detected no significant spectral 

features shared between the mutant strain and a natural strain. Data points at one indicate all 

significant spectral features for the mutant strain are shared with a natural strain for that 

analytical platform.  
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Figure 5. Heatmap of metabolites identified by NMR. Significant NMR spectral features in 

the central metabolism mutants are compared across UGT mutants and natural strains. Deep 

blue boxes indicate the metabolite is significant and more abundant in PD1074 compared to the 

test strain. Deep red boxes indicate the metabolite is significant and more abundant in the test 

strain. Light colored boxes indicate the direction of effect when the metabolite is not significantly 

different between PD1074 and the test strain. For compounds with more than one significant 

feature, the highest effect size feature is used for this figure. The significant compound list 

provides metabolites to pursue in subsequent experiments. See Table S2 for compound 

annotation list and details. 

 

DISCUSSION 

The experimental design enables the same spectral features to be identified across 

experiments. We elected to use PD1074 to augment the design and focus on stable features in 

PD1074 instead of attempting to capture unique features in test strains in this analysis. This 

choice explicitly enables us to use PD1074 to anchor comparisons across studies of genetically 

diverse test strains, in the current data and in the future. However, the principle behind this 

approach is not limited to a single strain/genotype but we acknowledge that the inclusion of an 
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augmentation will increase the number of samples, extractions and replicate measurements 

increasing the cost and size of the study. Individual investigators will need to find their own 

balance of generalizability and throughput.  

A focus on spectral features present despite environmental variation eliminates the need 

to annotate compounds prior to across study comparisons. The presented technologies can 

detect many more spectral features that can be identified and then subsequently interpreted 

biologically. By focusing on stable features, there are far fewer features analyzed here than is 

typical in untargeted metabolomics.  In addition, the analyses presented here fail to identify 

presence/absence variation, undercount the number of features present, and potentially fail to 

identify crucial novel metabolites formed as a result of a mutation. However, this is an analytical 

choice. There is no limitation placed on the technology during data acquisition and these data 

can also be analyzed for presence/absence variation and for spectral features that vary.  

In non-model organism experiments, implementation of a BRM31, 34 also enables stable 

feature identification.  New analytic advances have enabled joint alignment and feature 

selection across high levels of variability when there is a common QC standard like a BRM 

included in each batch77.  However, not all experiments have an appropriate BRM.  We 

demonstrate that in the absence of a BRM, pooled anchor (here PD1074) samples can be used 

to connect the experiment over time and identify stable features even with variable data 

acquisition conditions.  

Perhaps of most value to experimental success is the inclusion of several alternate 

strategies for stable feature identification. Even though a high abundance of features due to 

contaminants from sample preparation are present in the LC-MS dataset, the use of individual 

PD1074 samples along with their pools enable the identification of stable spectral features. This 

approach is very similar to the BRM approach in the NMR data where both controls are present. 

Additionally, multiple biological replicates of PD1074 provides the added benefit of enabling a 

straightforward calculation of the relative effect size for each test strain by batch that can be 

used later to combine batches or compare test strains statistically using meta-analysis and 

avoiding a complicated normalization process due to batch variance. 

Our analysis focuses on a single anchor strain, PD1074, and allows us to compare the 

effect of all common stable spectral features across experiments. The same result can be 

achieved in cohort studies by identifying a control group and including multiple control samples 

in each batch. Effect sizes for each group relative to the control can be calculated for each 

batch.  Further, if all groups are present in each batch, effect sizes between groups can also be 

calculated. Spectral features consistently present within groups can be prioritized for future 
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studies so that database matching and, ultimately, compound identification efforts are focused 

on the most likely biologically important spectral features. This aspect is important as studies7, 9, 

63 increase in size and complexity31, 36, 64, 65.   

We demonstrate how a list of significant spectral features can be used to focus NMR 

compound identification efforts (13 annotated compounds). A similar approach can be used for 

LC-MS where features are annotated using accurate mass, elemental formula, MS/MS 

database matching, and in silico predictions of spectral features. Compound identification 

approaches for LC-MS are challenging and oftentimes require orthogonal data for confident 

annotations. This approach allows future MS/MS experiments to target spectral features that are 

known to be affected in multiple experiments and are consistently detectable enabling the 

investigator to collect these specific features rather than relying on the data-dependent 

acquisition (DDA) or iterative DDA approaches. In silico prediction methods for NMR and 

MS/MS have improved accuracy although ambiguity is expected to remain for large molecular 

weight formulas67.  1H and 13C 1D NMR and MS/MS fragmentation in silico predictions can be 

prioritized for target features identified with this approach66.  

 Mapping metabolites in pathways is complicated because many metabolites are 

involved in multiple pathways and/or have yet to be described. The genetic mutation 

approach used to annotate gene function in pathways has had limited success in 

untargeted metabolomics because of the scope of the experiments and the necessity of 

subsequent rescue experiments to discern pathway-gene relationships. With the large 

numbers of unknown spectral features, this problem is complex.  Meta-analysis allows 

for the identification of significant spectral features in a straightforward manner when 

batch effects complicate mixed effects models. Similarly, untargeted studies of 

collections of genotypes68 using an reference genotype, in this case PD1074, can 

leverage data across experiments and increase the utility of untargeted metabolomics 

for genetic studies and increase the efficiency of the compound identification process14. 
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METHODS 

C. elegans Strain Selection  

This study used 15 Caenorhabditis elegans strains obtained from the Caenorhabditis 

Genetics Center (CGC) and Caenorhabditis elegans Natural Diversity Resource (CeNDR) 41. 

Fourteen C. elegans strains were used as ‘comparison strains,’ and one strain, PD1074, was 

used as the ‘reference strain’ (Table S1). These strains were selected to cover the diversity of 

interests in the metabolomics community, to encompass samples with mutations in primary and 

secondary metabolism, along with natural strains.   

 

C. elegans Sample Growth and Preparation  

Large populations of nematodes were generated for every biological replicate with 

minimal variability43. The stable Escherichia coli IBAT BRM and food source used throughout 

this experiment was described previously31. Briefly, a large-scale culture plate (LSCP) was used 
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for each biological sample to generate a large mixed-stage population of worms (four to seven 

LSCP replicates per test strain). For each LSCP, worms were collected, population size 

estimated, and subsequently divided into at least 12 identical aliquots of 200,000 worms in 

ddH2O and flash-frozen in liquid nitrogen to quench metabolism and stored at -80°C43. As a QC 

sample, C. elegans IBAT BRM was generated and saved in 200,000 worm aliquots31.  

 

Study Design 

Each C. elegans strain was reared with and harvested with at least one PD1074 LCSP. 

Sample collection for all three studies lasted more than six months. To ensure handling was 

consistent, no more than five LSCPs were handled at a given time. There are 29 independent 

PD1074 LCSPs collected and 104 independent test strain sample LSCPs. The PD1074 

represents an augmented design37, 39, where one PD1074 biological replicate (‘check’) was 

matched with each test strain biological replicate (‘new treatments’).  

 

Iterative Batch Average Method (IBAT) in PD1074 

An IBAT control31, made up of pools of PD1074, was generated to assess batch 

variance across the six batches in this study. Briefly, aliquots of PD1074 were pooled together 

to generate a BRM that (i) minimizes the variance between batches of PD1074 BRM, (ii) can be 

used throughout large-scale experiments, and (iii) can be used to determine the magnitude of 

variation at multiple points in a metabolomics experiment. See Gouveia et al., 2021 for more 

details on the IBAT process31. 

 

Lyophilization  

Frozen aliquots of 200,000 C. elegans worms were retrieved from -80°C and lyophilized 

in a VirTis® BenchTop™ “K” Series Freeze Dryer (SP Industries, Inc.). After lyophilization, each 

aliquot was weighed and stored at -80°C until homogenization.  

 

Batching and Quality Control Across Analytical Platforms 

Up to 24 extractions could be performed simultaneously based on centrifuge capacity 

limitations. Six extraction batches were needed to accommodate all the strains. Extraction 

batches were designed in sets of two consecutive batches so that each test strain has all 

replicates measured in close proximity. The test strains belong to three studies, and the studies 

are used to create three sets of two batches each, for a total of six batches. The three sets were 

collected back-to-back in NMR but are separated in time by some months in the LC-MS, 
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although the column and instrument are the same for all three sets. There was a needle failure 

between batches 5 and 6 in the HILIC LC-MS run. The NS were collected in batches 1 and 2, 

most of the CM mutants in batches 3 and 4 (exception, AUM2073 and VC2524 were collected in 

batches 5 and 6), and the UGT mutants were mostly in batches 5 and 6 with (exception, 

RB2011 was collected in batch 1). Each extraction batch includes half of the replicates for each 

test sample type (balanced across two consecutive batches), a set of PD1074 LCSPs, the IBAT 

control, and an extraction blank. Extraction blanks were processed with test strain and PD1074 

aliquots to control for homogenization and extraction steps to account for non-biologically 

related LC-MS or NMR features that arise from sample preparation. Test LSCPs were unique to 

a batch, but aliquots from the same PD1074 LSCPs may be included more than once. Multiple 

aliquots of the same LSCP enables QC of feature selection and alignment were included as 

these differ only by technical variance (i.e., instrument and extraction) (Figure 1). 

 

NMR Sample Homogenization and Extraction  

Frozen lyophilized C. elegans aliquots were retrieved from -80°C. 200 μL of 1 mm 

zirconia beads (BioSpec Products) were added to each sample and homogenized at 420 rcf for 

90 seconds in a FastPrep-96 homogenizer and subsequently placed on dry ice for 90 seconds 

to avoid overheating; this step was repeated twice for a total of three rounds. 

Using the homogenized samples, 1 mL of 100% IPA chilled to -20°C was added to the 

lyophilized/homogenized sample powder and Zirconia beads in two increments of 500 μL. After 

each addition of 500 μL, samples were vortexed for 30 seconds – 1 min., and left at room 

temperature (RT) for 15 - 20 minutes. After RT incubation, samples were stored overnight (~12 

hours) at -20°C. Samples were centrifuged for 30 minutes at 4°C (20,800 rcf). The supernatant 

was transferred to a new tube to analyze non-polar molecules. 1 mL of pre-chilled 80:20 

CH3OH:H2O (4°C) was added to the remaining worm pellet to analyze polar molecules. The 

polar fraction was allowed to shake at 4°C for 30 minutes. Samples were centrifuged at 20,800 

rcf for 30 minutes at 4°C. The supernatant was transferred to a new tube to analyze non-polar 

molecules. Both polar and non-polar samples were placed in a Labconco Centrivap at RT and 

monitored until completely dry. Once dry, polar samples were reconstituted in D2O (99%, 

Cambridge Isotope Laboratories, Inc.) in a 100 mM sodium phosphate buffered solution with 

0.11 mM sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS-D6; 98%; Cambridge Isotope 

Laboratories, Inc.). Once dry, non-polar samples were reconstituted in CDCl3 (99.96%; 

Cambridge Isotope Laboratories, Inc.). Samples were vortexed until fully soluble, and 45 μL of 

each sample were transferred into 1.7 mm NMR tubes (Bruker SampleJet) for acquisition.  
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NMR Acquisition 

To collect the polar fraction, one-dimensional (1D) 1H NMR spectra were acquired with a 

noesypr1d pulse sequence on a NEO 800 MHz Bruker NMR spectrometer equipped with a 

1.7mm TCI cryoprobe and a Bruker SampleJet autosampler cooled to 6°C. During acquisition, 

32,768 complex data points were collected using 128 scans with two additional dummy scans. 

The spectral width was set to 15 ppm.  

To collect the non-polar fraction, one-dimensional (1D) 1H NMR spectra were acquired 

with a zg pulse sequence (zg30). During acquisition, 65,536 complex data points were collected 

using 64 scans with four additional dummy scans. The spectral width was set to 20.2 ppm.  

In addition, immediately after each 1D acquisition, a 2D J-resolved spectrum is collected 

using the Bruker pulse program jresgpprqf. For both the polar and non-polar fractions, 8,192 

and 40 points were collected using eight scans, four dummy scans, and spectral widths of 16 

and 0.09 ppm, respectively. See metabolomics workbench Study IDs (NMR polar: ST002095; 

NMR non-polar: ST002096) for additional acquisition parameters and data. 

For metabolite identification the web server COLMARm was used. As inputs three two-

dimensional experiments 1H-1H TOCSY (dipsi2gppphzspr), 1H-13C HSQC (hsqcetgpsisp2.2) 

and 1H-13C HSQC-TOCSY (hsqcdietgpsisp.2) collected on separate pooled PD1074 polar 

samples were used. The HSQC experiment was collected using 6250 and 720 points in the 

indirect and direct dimensions, 32 scans and 16 dummy scans and a spectral width of 13 ppm 

for the proton and 165 ppm for the carbon dimensions. The HSQC-TOCSY experiment 

parameters were identical to HSQC except for 32 dummy scans and a 90 ms mixing time. The 

TOCSY experiment was collected with 7272 points and 800 points in the indirect and direct 

dimensions, 32 scans and 16 dummy scans, a spectral width of 11.367 ppm in both dimensions 

and a mixing time of 90 ms. Peak picking and spectral match against hydrophilic metabolite 

databases (i.e., HMDB and BMRB) was carried out by COLMARm using 0.04 and 0.3 ppm 

chemical shift cutoffs for 1H and 13C respectively and a matching ratio cutoff of 0.6. See 

metabolomics workbench Study IDs (NMR polar: ST002095; NMR non-polar: ST002096) for all 

the acquisition parameters and data. 

 

NMR Data Processing 

Following data acquisition, the data were processed using NMRPipe 69. Fourier 

transform, an exponential line broadening of 1.5 Hz and manual phase correction were carried 

out. Using the tools from (MATLAB, The MathWorks, R2019a70), the spectra were referenced at 

7.24 ppm using the CDCl3 resonance, and the polar extracts are referenced at 0.00 ppm using 
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DSS. Solvent regions were removed followed by baseline correction using a statistical 

smoothing function71. Alignment was performed using CCOW72 and PAFFT73 algorithms. 

Manual curation of semi-automated peak-picking was carried out by peak picking that used a 

binning algorithm74 to extract peak heights. This was done separately for blanks and samples. 

Individual spectral features were removed if detected in the solvent and process blanks using 

the BFF function in SECIMtools75.  

Two-dimensional NMR experiments were also processed using NMRPipe. Spectra were 

Fourier transformed, a 90O shifted sine window function and automatic zero filled applied, 

manually phased and referenced to DSS. 

Stable spectral features were compared between individual PD1074 samples, PD1074 

pools, and IBAT controls.  

 

LC-MS Sample Homogenization and Extraction  

Using glass and zirconium oxide beads, the aliquots were homogenized for three minutes in 

a Qiagen Tissuelyser 2. Homogenized worms were extracted with 1.5 mL of isopropanol (IPA) 

at -20°C overnight (approximately 12 hours), then pelleted and the supernatant transferred to 

separate 2 mL centrifuge tubes. Supernatants were then dried to completion in a Labconco 

Centrivap and stored at -80°C for non-polar LC-MS analysis. The pellet was extracted a second 

time using 80:20 methanol:water (CH3OH:H2O) (v:v) for 20 minutes at RT while shaking at 1500 

rpm. Samples were again pelleted to separate proteins, and the supernatant was transferred to 

separate 2 mL centrifuge tubes, dried down to completion, and stored at -80°C for polar LC-MS 

analysis. 

 

LC-MS Acquisition and Processing 

Each instrument run for a single batch included the following controls with replicate 

injections at the beginning and end of the batch: instrument control, extraction blanks, pooled 

test sample aliquots, and pooled PD1074 sample aliquots. In the middle of the batch, individual 

test samples and PD1074 samples were injected in a randomized order. 

Non-polar extracts were reconstituted in 75 µL of IPA containing isotopically labeled lipid 

standards and analyzed by LC-MS using a ThermoFisher Scientific Accucore C30 150 x 2.1mm, 

2.6 µm column paired with a Thermo Fisher Orbitrap ID-X in positive and negative polarity. 

Polar (80:20 CH3OH:H2O) extracts were reconstituted in 75 µL of 80:20 CH3OH:H2O containing 

isotopically labeled arginine, hypoxanthine, hippuric acid, and methionine (Cambridge Isotope 

Laboratories, Inc.) and analyzed by LC-MS using a Waters BEH Amide 150 x 2.1 mm, 1.7 µm 
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column paired with a Thermo Fisher Orbitrap ID-X in positive and negative polarity. LC-MS/MS 

data for each mode of analysis was collected using three rounds of iterative DDA (Thermo 

Scientific AcquireX) performed on pooled test samples. 

Data for each sample was collected in full MS1 with a resolution of 240,000 FWHM (full-

width half-maximum) and MS/MS spectra of pooled samples were collected at a resolution of 

30,000 FWHM using a 0.8da isolation window and stepped HCD collision energies of 15, 30, 

and 45. See supplemental information for detailed LC-MS parameter settings. Thermo .raw files 

were converted to centroid mode and .mzML format using Proteowizard’s MSconvertGUI tool76. 

Raw files are deposited at metabolomics workbench Study ID ST002092. Pre-processing steps, 

input parameters, and set values used for LC-MS data are listed in Table S4. 

 

Selection of stable LC-MS spectral features  

A plasticizer contamination event precluded us from quantitatively assessing the 

performance of an IBAT control in the LC-MS experiments. Instead, we used the 12 PD1074 

pools in a two-step procedure. First, the PD1074 pools were averaged over extraction variance 

for the batch, capturing instrumentation variation across batches. In the second step, we 

retained the subset of peaks only present in 100% of the individual PD1074 samples to focus on 

stable peaks across growth conditions (environmental variation). Here, we focus on peaks 

present across multiple individual samples of the same genotype, PD1074, a variant of the 

laboratory-adapted strain N2, but any strain of C. elegans could serve this purpose. 

 The 12 pooled PD1074 samples were used to estimate optimal parameters, and then 

these parameters were applied to all samples using a memory-efficient algorithm SLAW 

(https://github.com/zamboni-lab/SLAW).77 Only spectral features above the blank threshold of 

100 for all 12 PD1074 pools were retained for further analysis. SLAW offers the following peak 

picking algorithms: XCMS centWave78, 79, OpenMS FeatureFinderMetabo80, 81, and MZmine 

ADAP82, 83 For this study, ADAP was selected.84. The SLAW algorithm is predicated upon the 

assumption that the experimental design includes identical QC samples across an experiment 

(e.g., BRM) in intervals during data collection. This inclusion is typical in large-scale studies31, 85, 

86, but the selection of stable spectral features across extraction variance is not standard. While 

the benefits of including QC samples are known and recently have been implemented in peak 

picking and alignment optimization workflows that traditionally have not scaled to large data87, 

the inclusion of PD1074 replicate samples during sample generation, analytical measurement, 

and data processing is novel.   
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 Spectral peaks were filtered further using the individual PD1074 samples. We took a 

conservative approach requiring 100% of the PD1074 samples to have each spectral feature 

present above the blank. This focuses the experiment and our attention on spectral features that 

are likely to be present in a subsequent independently prepared MS2 experiment in the 

compound identification process, and not spectral features present sporadically due to variation 

in growth or extraction.  

 

Quality Control Assessments for LC-MS and NMR Data  

Stable spectral features were rank transformed (i.e., raw data is replaced by ranks 

where the lowest rank has the smallest peak height, and the highest rank has the largest peak 

height for a given spectral feature). QC assessments included Standard Euclidean Distance 

(SED), principal component analysis (PCA), coefficient of variation (CV), Bland Altman (BA), 

and sample density distributions to identify potential feature artifacts and/or atypical samples75. 

See Table S3 for QC parameters and thresholds used to identify stable mass features75. PCA is 

used to visualize distortions due to batch or genotype. BA plots on pools and PD1074 samples 

within a batch were used to visualize alignment variation, and BA plots on replicate aliquots of 

the same PD1074 samples were used to verify the success of the alignment across batches. 

Per feature CV is examined to identify any wildly aberrant features and was used to help refine 

the quantification of the solvent front. 

Sample outliers were identified based on the SED plots. Chromatograms of samples 

whose distance to other samples did not cross the 95% percentile for the distribution of pairwise 

distances were manually examined for chromatography failure. The PD1074 LSCP sample 

“aos54” failed the QC assessment for NMR. The PD1074 LSCP samples “aos53” and “aos41” 

failed the QC assessment for RP LC-MS datasets. Test strain “aos49” in batch 5 is removed 

from all datasets, and test strain “aos25” in batch 1 was removed from the HILIC LC-MS positive 

dataset. Samples were removed from further consideration in their respective datasets. 

 

Meta-analysis on LC-MS and NMR Data  

All replicates of a particular genotype were contained within two sequential batches: 

however, different test strains within the same study span multiple sets. We used meta-analysis 

for each feature to compare the test genotype to the control, where each batch is treated as an 

‘experiment’ using a fixed effects (FE) model using standardized mean difference (SMD)75, 

referred to as “meta-strain” model throughout. Positive effect sizes indicate that the test strain 

has a higher peak than PD1074 for a given chemical feature. Negative effect sizes indicate 
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PD1074 has a higher peak than the test strain for a given chemical feature. Each strain was 

tested against PD1074 to see if that feature is differentially expressed between PD1074 and the 

test strain. We also used meta-analysis to compare test genotypes to each other, referred to as 

the “meta-study” model throughout. For example, for the five UGT mutants (i.e., RB2011, 

RB2550, RB2055, RB2607, and VC2512) we tested whether a feature is differentially expressed 

between the test strain and PD1074 in all five test genotypes.  

 

NMR 1H 1D spectra Annotation 

 Significant features obtained from the meta analysis of the CM mutants were selected 

for identification. The 2D experiments HSQC, HSQC-TOCSY, and TOCSY were collected from 

a pooled PD1074 sample. These data served as inputs to the public webserver COLMARm88 

(Complex Mixture Analysis by NMR), an application that allows us to simultaneously and 

interactively compare multiple 2D spectra data to HMDB89, BMRB90, and NMRShiftDB91 publicly 

available databases. Only the significant features were annotated. Annotation confidence 

scores per compound are detailed in Table S2 according to the previously reported levels as 

described elsewhere92. 

 Further annotation details can be found in the COLMAR outputs submitted to 

Metabolomics Workbench. Figure 5 illustrates the annotated compounds. Only the feature with 

the highest effect size was selected for compounds with more than one significant feature. After 

a list of compounds was identified, WormFlux44 was used to explore the effects of the CM 

mutants on the C. elegans metabolic network. 

 

Code Availability 

The python code for QA/QC is available through GitHub 

(https://github.com/secimTools/SECIMTools) and can be run via a Galaxy install 

(https://docs.galaxyproject.org/en/master/) or from a command line interface.  The meta-

analysis (meta_analysis.py) and rank transformation (add_group_rank.py) python code are 

available on the SECIMtools GitHub page. The Matlab functions used as well as instructions 

and version control are available at: 

https://github.com/artedison/Edison_Lab_Shared_Metabolomics_UGA.  

 

Data Availability 

These data are available at the NIH Common Fund's National Metabolomics Data Repository 

(NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org 
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where it has been assigned Study ID (LC-MS: ST002092; NMR polar: ST002095; NMR non-

polar: ST002096). The data can be accessed directly via its:  

Project DOI: http://dx.doi.org/10.21228/M82978. This work is supported by NIH grant U2C-

DK119886. Methods and protocols used in this study are available on protocols.io: 

NMR: dx.doi.org/10.17504/protocols.io.b2rbqd2n 

LCMS: (dx.doi.org/10.17504/protocols.io.bahjib4n). 
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