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ABSTRACT

Large-scale untargeted metabolomics studies suffer from individual variation, batch effects and
instrument variability, making comparisons of common spectral features across studies difficult.
One solution is to compare studies after compound identification. However, compound
identification is expensive and time consuming. We successfully identify common spectral
features across multiple studies, with a generalizable experimental design approach. First, we
included an anchor strain, PD1074, during sample and data collection. Second, we collected
data in blocks with multiple controls. These anchors enabled us to successfully integrate three
studies of Caenorhabditis elegans for nuclear magnetic resonance (NMR) spectroscopy and
liquid chromatography-mass spectrometry (LC-MS) data from five different assays. We found
34% and 14% of features to be significant in LC-MS and NMR, respectively. Between 20-50% of
spectral features differ in a mutant and among a set of genetically diverse natural strains,
suggesting this reduced set of spectral features are excellent targets for compound
identification.
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GRAPHICAL ABSTRACT
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Fourteen C. elegans strains are used in three individual studies. PD1074, the anchor control
strain (orange), is grown alongside test strains (green, yellow, purple). Multiple biological
replicates of PD1074 captures environmental variation in growth conditions. Non-polar and polar
metabolic data across the three studies (i.e., natural strains, central metabolism mutants, and
UGT mutants) were collected by nuclear magnetic resonance (NMR) spectroscopy and liquid
chromatography-mass spectrometry (LC-MS). Data acquisition controls in each block included
biological reference material and pooled PD1074 samples. Biological replicates of PD1074 (n =
42 for LC-MS, n = 52 for NMR) were included in all batches. Meta-analysis provided
comparable inferences to mixed effects models, and the estimated relative effects of each test
strain to PD1074 and straightforward comparisons of test strains across experiments.
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Untargeted metabolomics studies compare the variation in small molecules caused by
genetic perturbations, treatments, and environmental differences!. Metabolomics is a powerful
tool in biomarker discovery and holds great promise for precision medicine?*. Targeted
metabolomics is common in studies exploring human health questions that range from aging® ©
to complex diseases’*2. An advantage of untargeted metabolomics for these questions is the
ability to reach beyond sets of well studied compounds to explore differences in an unbiased
way!®, Despite the attractiveness of an unbiased survey, untargeted metabolomics has well
known challenges. In particular, the collection of highly variable biological material in a
reproducible manner across batches makes the identification of differential compounds and
comparisons of their abundances across datasets challenging. Chemical annotation of
compounds, which is key to combining data across studies, requires considerable time and
labor!4. Given this bottleneck, it is essential to find novel ways to prioritize spectral features and
overcome intractable challenges such as matrix effects, instrument drift, and batch variation5-18,

Batch effects across experiments are an enormous problem in untargeted metabolomics
and a barrier to adopting these methods?!®. Normalizing to a quality control (QC) or biological
reference material (BRM) material included in each batch has been shown to be effectivel® 15 16,
Although normalization strategies are improving® é; non-linear effects?’, sample variation, the
inability to separate environmental variance, and analytical artifacts!’ still pose ongoing
challenges to the identification of common spectral features across studies. While different
approaches to sample-based and data-based normalization have been described, such as total
protein content, total ion count (TIC), and pooled QCs'? 2, reproducibility and heteroscedasticity
(unequal variance) issues remain problematic??26,

Our goal, common to many studies, is to compare groups across large numbers of
independent samples?’*°, As sample size increases, challenges associated with variation must
be accounted for appropriately. In metabolomics studies, variation in pre-analytical sample
collection (growth), analytical sample preparation (extraction), and data collection (instrument)3!
can be confounded (Figure 1). ldentification of shared spectral features using a BRM is a
successful strategy®" 32 that has proven essential in large-scale studies®?>3*. Implementation of
BRM controls for instrument variation can estimate and normalize extraction variation®: & 31,
However, variation among samples within the group remains. Metabolites may only be present
in some samples or some batches. In both liquid chromatography-mass spectrometry (LC-MS)
and nuclear magnetic resonance (NMR) spectroscopy, ambiguity in whether features are

generated by genetic or environmental factors coupled with batch effects and challenges in
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peak picking algorithms present obstacles to apply untargeted metabolomics to broader
studies?” %,

Although tools to handle extraction and instrumentation variation exist, their utility in
large studies for samples with complex matrices is limited®* ** %6, Here, we use the model
system Caenorhabditis elegans to demonstrate that an augmented design combined with
experimental blocks®*® can be used to anchor studies and enable comparisons of stable
spectral features across time without the need for compound identification.

C. elegans is a model organism ideally suited to study conserved small molecules in
metabolism?®42, The worm’s short life cycle, self-fertilization of homozygous hermaphroditic
individuals, ease of cultivation, and ability to propagate large numbers of animals*® are ideal for
large-scale studies*? 4446, These traits allow one to (i) develop, test, and validate approaches to
identify stable spectral features, (i) demonstrate the feasibility of large-scale biochemical
pathway analyses with genetic mutants, and (iii) focus on spectral features likely to reveal
essential components of metabolic pathways by comparing features that vary due to genetic
perturbations.

We designed three C. elegans studies to link natural and deliberate knock- out genetic
perturbations. The first and second studies comprised central metabolism (CM) mutants and
UDP-glycosyltransferases (UGT) mutants as examples of primary and secondary metabolism,
respectively. CM mutants have been used in studies showing that diagnostic changes can be
associated with human disease*” “8, UGTs are an evolutionarily diverse class of Phase 2
enzymes involved in detoxification*® %0, Although UGTs are vital to internal detoxification across
species, the functions of UGTs have not been well described 42, The third study comprises
genetically diverse natural strains (NS) from a broad geographic base, used to describe natural
variation in the metabolome of C. elegans® including N2, a widely used laboratory-adapted
strain®*,

Collectively, CM and UGT mutants, and NS, allow us to (i) identify spectral features that
vary due to genetic perturbations, (i) compare the same spectral features across all three
studies without compound identification, and (iii) plan future experiments that can be directly
compared to these studies. The experimental design used here is straightforward to execute in
model systems. One (or more) anchor strains (PD1074 here) are included alongside every test
strain during growth and data collection, augmenting the design. Including the same strain
enables measurement of the variation due to non-genetic effects. Augmented designs are
common in large scale agricultural studies and they are used to compare large numbers of

genotypes across heterogeneous environments®® 3. The inclusion of multiple biological
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replicates of the same strain during data acquisition enables the identification of stable features
across a wide range of environmental conditions. Given the limited resources and expense of
compound identification, analysis of the set of stable spectral features for differences in intensity

in several contexts provides one way of prioritizing interesting compounds for identification.

RESULTS

Here, we provide a method to identify stable spectral features and identify differences
between groups using a straightforward meta-analytic approach. This demonstration is
comprised of 104 independent samples collected in three studies of two batches each to
produce five analytical datasets (3 LC-MS and 2 NMR) from two complementary technologies
commonly used in untargeted metabolomics (Figures 1 and S1).

Our first study comprised of CM mutants (n = 5) identifies spectral features involved in
central metabolism. The second study, UGT mutants (n = 5), identifies spectral features
affected by Phase 2 enzymes involved in the detoxification system. The third study, NS (n = 4),
assesses natural genetic variation. Collectively, these studies represent common hypotheses of
general interest to metabolomics and genetic researchers (See Table S1 for full strain details).

Stringent quality assurance/quality controls (QA/QC) combined with a focus on spectral
features consistently detected in PD1074 identified: 3953 spectral features in reverse phase
(RP) LC-MS positive, 377 in RP LC-MS negative, 199 in hydrophilic interaction liquid
chromatography (HILIC) LC-MS positive, 585 in NMR polar, and 487 in NMR non-polar. An
instrument failure occurred during the collection of the HILIC negative data (see Methods).

LC-MS spectral features often vary across biological replicates. Additional complexities
include retention time drift, batch effects, and algorithmic limitations in estimating peak
abundances in complex spectra® 558, Including multiple independent PD1074 samples and
pooled PD1074 samples in each batch can mitigate these issues. We continuously seeded and
harvested PD1074 every time test samples were seeded or harvested during the large-scale
culture plate (LSCP) growth process*:. These PD1074 samples anchor the three studies and

enable inter-study comparisons®’ %°,

PD1074 samples are pooled to control for within batch instrument variability

PD1074 LSCPs are genetically identical, leading to the expectation that the spectral
features present in each biological replicate are a result of the strain’s genetic composition as
they are stable across an extensive range of growth conditions (samples collected over six

months) (Figure S2). All biological replicates of PD1074 are extracted separately. There were
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also technical replicates (repeat extractions of the same LSCP in different batches, n=20 for
NMR, n =18 for LC-MS) that enabled an additional QC. During data acquisition, we included
multiple biological replicates of PD1074 and a pool of the PD1074 samples included in each
batch (Figure 1C). Comparing the PD1074 pools (measured twice n=12) across all batches
(n=6) enables the identification of spectral features present across instrument runs over several
months. Further, the selection of features present in all biological replicates of PD1074 ensures
stable features across a range of environmental conditions (Figure 1). lterative batch average
method (IBAT) controls in the NMR study (from PD1074) combined with the biological replicates
of PD1074 and the PD1074 pools enabled us to estimate the relative contribution of extraction
(~40%), growth (~60%), and instrument variance, as expected in NMR, was negligible3.. We
are also able to directly compare the stable features detected using the BRM approach to
PD1074 batch pools. We found that 97% of the features overlap.

Key Anchor Samples (PD1074) - az:gﬂ;a(llg:.fre)rence fgral)e d Test Samples D Extraction Blank
. Test Samples . Pooled Anchor Samples [:] Frx?g;ecj Test Samples [] FSSI.? Test Samples Library Standard
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- ] [
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***** s 88008 | IH":IEJ
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Figure 1. Experimental design overview. (A) Each C. elegans LSCP was grown and
harvested with at least one PD1074 sample (sample growth variation captured) (Figure S2). (B)
Multiple independent PD1074 samples and test strains (NS, CM mutants, or UGT mutants),
IBAT references, and blanks were included in each batch for LC-MS or NMR (batch preparation
variation captured). (C) A total of six batches in three sets were collected. Instrument controls,
library standards, and replicate measurements of the pooled PD1074 samples (instrumentation
variation captured) were in each run. Each test strain was collected in two independent
sequential batches and a pool of all test samples are measured multiple times. (D) In LC-MS,
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PD1074 spectral features were first identified from PD1074 pools and retained if present above
the level of the blank in 100% of the individual PD1074 spectra. In NMR, semi-automated peak-
picking and binning were performed to extract peak heights and identify stable peaks present in
PD1074 samples. (E) Data analysis was performed using meta-analysis models to identify
spectral features of interest.

Meta-analysis identifies differences in spectral features between test and reference
strains without the need for complex normalization

For each spectral feature, the difference in effect between the PD1074 individual LSCP
(n=6-10) and each test strain (n=2-6) was estimated for each batch. We identified statistically
significant spectral features by performing a meta-analysis across the two batches for each test
strain® eliminating the need to estimate and normalize/remove batch variance®” (Figure 1E).
We compare a meta-analysis with a linear models analysis®® (Figure S3) and demonstrate that
the final inferences are very similar, as predicted in larger studies that have compared individual
analyses and meta-analytic approaches®®. An advantage of the meta-analysis is the ability to
apply this technique generally, even when there may be complex patterns of variance across
batches such as those present in large cohort studies and/or due to technical variation (e.g.,
after an instrument interruption). Effect sizes can be used to compare test strains when data
acquisition occurs independently across time. Effect sizes calculated in the meta-analysis are
comparable to those calculated by a linear model analysis, demonstrating the successful
implementation of meta-analysis when sample sizes are small (Figure S3).

We see a similar pattern across platforms for the percentage of significant features
identified across the three studies, with the highest percentage found in the RP LC-MS (-)
dataset (Figure 2A). The highest percentage of significant spectral features was 58% in the CM
mutation study. In the individual strains, the CM mutant, VC1265 (pyk-1) had the largest overall
effect across platforms and fractions, followed by RB2347 (idh-2). AUM2073 (unc-119) and
KJ550 (aco-1) had the smallest overall effects (Figures 2B, 3, and S4). For the UGT mutants,
VC2512 (ugt-60) had the largest overall effect, followed by RB2607 (ugt-49). RB2011 (ugt-62)
had the smallest overall effect (Figures 2C and S5). These patterns demonstrate the variation
in single knockouts of different genes: In the NS, the most genetically divergent strains from
PD1074 (CB4856 and DL238) had the largest overall effect in both platforms, and N2 had a
small set of differences, as expected, since PD1074 is a trackable variant of N2 (Figures 2D
and S6).
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Figure 2. Summary of significant spectral features found in each analytical platform and
across the three studies. (A) Percent of significant features. The total number of significant
features in all strains, by study, is used as the denominator for each of the five technologies.
Significant spectral features identified in at least one strain by study are displayed for (B) central
metabolism mutants, (C) UGT mutants, and (D) natural strains. Zero indicates the strain has no
significant spectral feature differences from PD1074, while one indicates that all spectral feature
differences from PD1074 are present in that strain. Significant feature totals are summarized at
the end of the plot and detailed in Table 1.

Number of significant spectral features
Study Group Strain NMR LC-MS
Non-polar Polar RP + RP - HILIC +
AUM2073 11 29 175 8 3
KJ550 9 14 110 17 10
Central RB2347 23 22 421 38 14
metabolism VC1265 25 49 671 79 42
mutants V(2524 19 13 261 24 4
(C™m) .
Total CM sig. features by 87 G 1638 166 73
platform
RB2011 2 6 237 21 16
RB2055 8 20 161 34 10
UGT RB2550 11 23 200 18 5
mutants RB2607 18 17 539 69 9
(UGT) V(2512 33 72 736 101 34
Total UGT sig. features = 138 1873 243 -
by platform
N2 1 3 22 6 7
DL238 18 15 631 52 19
Natural CX11314 13 16 254 44 7
Strains (NS) CB4856 23 29 869 113 17
Total NS sig. features by 55 63 1776 215 50
platform
Total sig. features by platform 146 228 2541 281 115

Table 1. Summary of significant spectral features found in all three studies across NMR
and LC-MS. The total number of significant spectral features (p < 0.05) for a given strain and
each analytical platform are listed.
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RP LC-MS positive mode (B) RP LC-MS negative mode (C) HILIC LC-MS positive mode (D)
NMR polar (E) NMR non-polar. For each heatmap, the first five columns are strains, and each
row represents a spectral feature with an effect size that is consistently higher or lower relative
to PD1074 in that study. The effect sizes range from (2 to -2). Positive effect sizes (i.e., the
strain had a higher peak at that given metabolic feature than PD1074) are displayed in red.
Negative effect sizes (i.e., PD1074 had a higher peak at that given metabolic feature than the
test strain) are displayed in blue. The right-hand column indicates the number of models in
which a given spectral feature is statistically significant. See Figure S4 for additional CM mutant
results.
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The percentage of significant features in each of the mutant studies (CM and UGT) that
overlapped in at least one NS (Figure 4) are features of interest for follow-up compound
identification. CM mutant strains AUM2073 (unc-119) and RB2347 (idh-2) share 75% and 68%
of their significant features with a NS, respectively. UGT mutants, RB2607 (ugt-49) and RB2055
(ugt-1) share 67% and 62% of their significant features with a NS, respectively. RB2011 (ugt-62)
had the most overlap with the NS sharing 67% of its significant features in RP LC-MS (+) and
44% in HILIC LC-MS (+). See Figures S7 and S8 for significant feature overlap across study
comparisons.

We focused on compounds affected in any CM mutants and used those to identify which
UGTs and NS had genetic variation in those same compounds for the NMR polar data. Using
COLMAR®, we identified three putative compounds significant in strains from all three studies.
Of the 35 putative compounds showing evidence for metabolic variation in the NMR data, 13
were annotated (see Table S2).

Nine putative compounds show metabolic variation in response to the pyk-1 mutation
(Figure 5). The mutation in pyk-1 affects a large portion of the metabolome. The gene pyk-1, is
involved in one of the last enzymes of glycolysis, encoding for pyruvate kinase and responsible

for glycolytic ATP production. The depletion of lactic acid production is consistent with the
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mutation in pyk-1°2 in the strain VC1265. We saw the depletion of lactic acid in DL238 (NS), and
an increase in VC2512 (ugt-60) (Figure 5). As expected, none of the 13 compounds identified in
the NMR polar dataset were significant in N2 (Figure 5). Interestingly, annotated compounds
were also similar to PD1074 in CX11314 (NS), RB2055 (ugt-1), RB2607 (ugt-49), and RB2011
(ugt-62).

RB2011 (ugt-62) g —@- —Or i —(O . . | () RPLC-MS (+)

O RPLC-MS ()
RB2055 (ugt-1) g o : O {O— , . | HILICLC-MS (+) <
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Figure 4. Percent of significant features for each of the mutant studies (CM and UGT) that
are also significant in at least one NS by analytical platform. (A) UGT mutants (B) CM
mutants. Data points at zero indicate the analytical platform detected no significant spectral
features shared between the mutant strain and a natural strain. Data points at one indicate all
significant spectral features for the mutant strain are shared with a natural strain for that
analytical platform.
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Figure 5. Heatmap of metabolites identified by NMR. Significant NMR spectral features in
the central metabolism mutants are compared across UGT mutants and natural strains. Deep
blue boxes indicate the metabolite is significant and more abundant in PD1074 compared to the
test strain. Deep red boxes indicate the metabolite is significant and more abundant in the test
strain. Light colored boxes indicate the direction of effect when the metabolite is not significantly
different between PD1074 and the test strain. For compounds with more than one significant
feature, the highest effect size feature is used for this figure. The significant compound list
provides metabolites to pursue in subsequent experiments. See Table S2 for compound
annotation list and details.

DISCUSSION

The experimental design enables the same spectral features to be identified across
experiments. We elected to use PD1074 to augment the design and focus on stable features in
PD1074 instead of attempting to capture unique features in test strains in this analysis. This
choice explicitly enables us to use PD1074 to anchor comparisons across studies of genetically
diverse test strains, in the current data and in the future. However, the principle behind this

approach is not limited to a single strain/genotype but we acknowledge that the inclusion of an


https://doi.org/10.1101/2022.03.25.485859
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.25.485859; this version posted March 27, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

augmentation will increase the number of samples, extractions and replicate measurements
increasing the cost and size of the study. Individual investigators will need to find their own
balance of generalizability and throughput.

A focus on spectral features present despite environmental variation eliminates the need
to annotate compounds prior to across study comparisons. The presented technologies can
detect many more spectral features that can be identified and then subsequently interpreted
biologically. By focusing on stable features, there are far fewer features analyzed here than is
typical in untargeted metabolomics. In addition, the analyses presented here fail to identify
presence/absence variation, undercount the number of features present, and potentially fail to
identify crucial novel metabolites formed as a result of a mutation. However, this is an analytical
choice. There is no limitation placed on the technology during data acquisition and these data
can also be analyzed for presence/absence variation and for spectral features that vary.

In non-model organism experiments, implementation of a BRM3! ** also enables stable
feature identification. New analytic advances have enabled joint alignment and feature
selection across high levels of variability when there is a common QC standard like a BRM
included in each batch”. However, not all experiments have an appropriate BRM. We
demonstrate that in the absence of a BRM, pooled anchor (here PD1074) samples can be used
to connect the experiment over time and identify stable features even with variable data
acquisition conditions.

Perhaps of most value to experimental success is the inclusion of several alternate
strategies for stable feature identification. Even though a high abundance of features due to
contaminants from sample preparation are present in the LC-MS dataset, the use of individual
PD1074 samples along with their pools enable the identification of stable spectral features. This
approach is very similar to the BRM approach in the NMR data where both controls are present.
Additionally, multiple biological replicates of PD1074 provides the added benefit of enabling a
straightforward calculation of the relative effect size for each test strain by batch that can be
used later to combine batches or compare test strains statistically using meta-analysis and
avoiding a complicated normalization process due to batch variance.

Our analysis focuses on a single anchor strain, PD1074, and allows us to compare the
effect of all common stable spectral features across experiments. The same result can be
achieved in cohort studies by identifying a control group and including multiple control samples
in each batch. Effect sizes for each group relative to the control can be calculated for each
batch. Further, if all groups are present in each batch, effect sizes between groups can also be

calculated. Spectral features consistently present within groups can be prioritized for future
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studies so that database matching and, ultimately, compound identification efforts are focused
on the most likely biologically important spectral features. This aspect is important as studies’” ®
% increase in size and complexity3® 366465,

We demonstrate how a list of significant spectral features can be used to focus NMR
compound identification efforts (13 annotated compounds). A similar approach can be used for
LC-MS where features are annotated using accurate mass, elemental formula, MS/MS
database matching, and in silico predictions of spectral features. Compound identification
approaches for LC-MS are challenging and oftentimes require orthogonal data for confident
annotations. This approach allows future MS/MS experiments to target spectral features that are
known to be affected in multiple experiments and are consistently detectable enabling the
investigator to collect these specific features rather than relying on the data-dependent
acquisition (DDA) or iterative DDA approaches. In silico prediction methods for NMR and
MS/MS have improved accuracy although ambiguity is expected to remain for large molecular
weight formulas®’. 'H and *C 1D NMR and MS/MS fragmentation in silico predictions can be
prioritized for target features identified with this approach®®.

Mapping metabolites in pathways is complicated because many metabolites are
involved in multiple pathways and/or have yet to be described. The genetic mutation
approach used to annotate gene function in pathways has had limited success in
untargeted metabolomics because of the scope of the experiments and the necessity of
subsequent rescue experiments to discern pathway-gene relationships. With the large
numbers of unknown spectral features, this problem is complex. Meta-analysis allows
for the identification of significant spectral features in a straightforward manner when
batch effects complicate mixed effects models. Similarly, untargeted studies of
collections of genotypes®® using an reference genotype, in this case PD1074, can
leverage data across experiments and increase the utility of untargeted metabolomics

for genetic studies and increase the efficiency of the compound identification process!*.
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METHODS
C. elegans Strain Selection

This study used 15 Caenorhabditis elegans strains obtained from the Caenorhabditis
Genetics Center (CGC) and Caenorhabditis elegans Natural Diversity Resource (CeNDR) ..
Fourteen C. elegans strains were used as ‘comparison strains,” and one strain, PD1074, was
used as the ‘reference strain’ (Table S1). These strains were selected to cover the diversity of
interests in the metabolomics community, to encompass samples with mutations in primary and

secondary metabolism, along with natural strains.

C. elegans Sample Growth and Preparation
Large populations of nematodes were generated for every biological replicate with
minimal variability**. The stable Escherichia coli IBAT BRM and food source used throughout

this experiment was described previously®. Briefly, a large-scale culture plate (LSCP) was used
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for each biological sample to generate a large mixed-stage population of worms (four to seven
LSCP replicates per test strain). For each LSCP, worms were collected, population size
estimated, and subsequently divided into at least 12 identical aliquots of 200,000 worms in
ddH,O and flash-frozen in liquid nitrogen to quench metabolism and stored at -80°C*3. As a QC
sample, C. elegans IBAT BRM was generated and saved in 200,000 worm aliquots®..

Study Design

Each C. elegans strain was reared with and harvested with at least one PD1074 LCSP.
Sample collection for all three studies lasted more than six months. To ensure handling was
consistent, no more than five LSCPs were handled at a given time. There are 29 independent
PD1074 LCSPs collected and 104 independent test strain sample LSCPs. The PD1074
represents an augmented design®” 3°, where one PD1074 biological replicate (‘check’) was

matched with each test strain biological replicate (‘new treatments’).

Iterative Batch Average Method (IBAT) in PD1074

An IBAT control®}, made up of pools of PD1074, was generated to assess batch
variance across the six batches in this study. Briefly, aliquots of PD1074 were pooled together
to generate a BRM that (i) minimizes the variance between batches of PD1074 BRM, (ii) can be
used throughout large-scale experiments, and (iii) can be used to determine the magnitude of
variation at multiple points in a metabolomics experiment. See Gouveia et al., 2021 for more

details on the IBAT process®..

Lyophilization
Frozen aliquots of 200,000 C. elegans worms were retrieved from -80°C and lyophilized
in a VirTis® BenchTop™ “K” Series Freeze Dryer (SP Industries, Inc.). After lyophilization, each

aliguot was weighed and stored at -80°C until homogenization.

Batching and Quality Control Across Analytical Platforms

Up to 24 extractions could be performed simultaneously based on centrifuge capacity
limitations. Six extraction batches were needed to accommodate all the strains. Extraction
batches were designed in sets of two consecutive batches so that each test strain has all
replicates measured in close proximity. The test strains belong to three studies, and the studies
are used to create three sets of two batches each, for a total of six batches. The three sets were

collected back-to-back in NMR but are separated in time by some months in the LC-MS,
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although the column and instrument are the same for all three sets. There was a needle failure
between batches 5 and 6 in the HILIC LC-MS run. The NS were collected in batches 1 and 2,
most of the CM mutants in batches 3 and 4 (exception, AUM2073 and VC2524 were collected in
batches 5 and 6), and the UGT mutants were mostly in batches 5 and 6 with (exception,
RB2011 was collected in batch 1). Each extraction batch includes half of the replicates for each
test sample type (balanced across two consecutive batches), a set of PD1074 LCSPs, the IBAT
control, and an extraction blank. Extraction blanks were processed with test strain and PD1074
aliquots to control for homogenization and extraction steps to account for non-biologically
related LC-MS or NMR features that arise from sample preparation. Test LSCPs were unique to
a batch, but aliquots from the same PD1074 LSCPs may be included more than once. Multiple
aliquots of the same LSCP enables QC of feature selection and alignment were included as

these differ only by technical variance (i.e., instrument and extraction) (Figure 1).

NMR Sample Homogenization and Extraction

Frozen lyophilized C. elegans aliquots were retrieved from -80°C. 200 yL of 1 mm
zirconia beads (BioSpec Products) were added to each sample and homogenized at 420 rcf for
90 seconds in a FastPrep-96 homogenizer and subsequently placed on dry ice for 90 seconds
to avoid overheating; this step was repeated twice for a total of three rounds.

Using the homogenized samples, 1 mL of 100% IPA chilled to -20°C was added to the
lyophilized/homogenized sample powder and Zirconia beads in two increments of 500 uL. After
each addition of 500 uL, samples were vortexed for 30 seconds — 1 min., and left at room
temperature (RT) for 15 - 20 minutes. After RT incubation, samples were stored overnight (~12
hours) at -20°C. Samples were centrifuged for 30 minutes at 4°C (20,800 rcf). The supernatant
was transferred to a new tube to analyze non-polar molecules. 1 mL of pre-chilled 80:20
CH30H:H.0O (4°C) was added to the remaining worm pellet to analyze polar molecules. The
polar fraction was allowed to shake at 4°C for 30 minutes. Samples were centrifuged at 20,800
rcf for 30 minutes at 4°C. The supernatant was transferred to a new tube to analyze non-polar
molecules. Both polar and non-polar samples were placed in a Labconco Centrivap at RT and
monitored until completely dry. Once dry, polar samples were reconstituted in DO (99%,
Cambridge Isotope Laboratories, Inc.) in a 100 mM sodium phosphate buffered solution with
0.11 mM sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS-D6; 98%; Cambridge Isotope
Laboratories, Inc.). Once dry, non-polar samples were reconstituted in CDCl; (99.96%;
Cambridge Isotope Laboratories, Inc.). Samples were vortexed until fully soluble, and 45 uL of

each sample were transferred into 1.7 mm NMR tubes (Bruker SampleJet) for acquisition.
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NMR Acquisition

To collect the polar fraction, one-dimensional (1D) *H NMR spectra were acquired with a
noesyprld pulse sequence on a NEO 800 MHz Bruker NMR spectrometer equipped with a
1.7mm TCI cryoprobe and a Bruker SampleJet autosampler cooled to 6°C. During acquisition,
32,768 complex data points were collected using 128 scans with two additional dummy scans.
The spectral width was set to 15 ppm.

To collect the non-polar fraction, one-dimensional (1D) *H NMR spectra were acquired
with a zg pulse sequence (zg30). During acquisition, 65,536 complex data points were collected
using 64 scans with four additional dummy scans. The spectral width was set to 20.2 ppm.

In addition, immediately after each 1D acquisition, a 2D J-resolved spectrum is collected
using the Bruker pulse program jresgpprgf. For both the polar and non-polar fractions, 8,192
and 40 points were collected using eight scans, four dummy scans, and spectral widths of 16
and 0.09 ppm, respectively. See metabolomics workbench Study IDs (NMR polar: ST002095;
NMR non-polar: ST002096) for additional acquisition parameters and data.

For metabolite identification the web server COLMARmM was used. As inputs three two-
dimensional experiments 1H-1H TOCSY (dipsi2gppphzspr), 1H-13C HSQC (hsqcetgpsisp2.2)
and 1H-13C HSQC-TOCSY (hsqcdietgpsisp.2) collected on separate pooled PD1074 polar
samples were used. The HSQC experiment was collected using 6250 and 720 points in the
indirect and direct dimensions, 32 scans and 16 dummy scans and a spectral width of 13 ppm
for the proton and 165 ppm for the carbon dimensions. The HSQC-TOCSY experiment
parameters were identical to HSQC except for 32 dummy scans and a 90 ms mixing time. The
TOCSY experiment was collected with 7272 points and 800 points in the indirect and direct
dimensions, 32 scans and 16 dummy scans, a spectral width of 11.367 ppm in both dimensions
and a mixing time of 90 ms. Peak picking and spectral match against hydrophilic metabolite
databases (i.e., HMDB and BMRB) was carried out by COLMARmM using 0.04 and 0.3 ppm
chemical shift cutoffs for 'H and 3C respectively and a matching ratio cutoff of 0.6. See
metabolomics workbench Study IDs (NMR polar: ST002095; NMR non-polar: ST002096) for all

the acquisition parameters and data.

NMR Data Processing

Following data acquisition, the data were processed using NMRPipe ©°. Fourier
transform, an exponential line broadening of 1.5 Hz and manual phase correction were carried
out. Using the tools from (MATLAB, The MathWorks, R2019a’°), the spectra were referenced at

7.24 ppm using the CDClsresonance, and the polar extracts are referenced at 0.00 ppm using
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DSS. Solvent regions were removed followed by baseline correction using a statistical
smoothing function™. Alignment was performed using CCOW™ and PAFFT™ algorithms
Manual curation of semi-automated peak-picking was carried out by peak picking that used a
binning algorithm™ to extract peak heights. This was done separately for blanks and samples.
Individual spectral features were removed if detected in the solvent and process blanks using
the BFF function in SECIMtools’®.

Two-dimensional NMR experiments were also processed using NMRPipe. Spectra were
Fourier transformed, a 90° shifted sine window function and automatic zero filled applied,
manually phased and referenced to DSS.

Stable spectral features were compared between individual PD1074 samples, PD1074

pools, and IBAT controls.

LC-MS Sample Homogenization and Extraction

Using glass and zirconium oxide beads, the aliquots were homogenized for three minutes in
a Qiagen Tissuelyser 2. Homogenized worms were extracted with 1.5 mL of isopropanol (IPA)
at -20°C overnight (approximately 12 hours), then pelleted and the supernatant transferred to
separate 2 mL centrifuge tubes. Supernatants were then dried to completion in a Labconco
Centrivap and stored at -80°C for non-polar LC-MS analysis. The pellet was extracted a second
time using 80:20 methanol:water (CH3sOH:H-20) (v:v) for 20 minutes at RT while shaking at 1500
rpm. Samples were again pelleted to separate proteins, and the supernatant was transferred to
separate 2 mL centrifuge tubes, dried down to completion, and stored at -80°C for polar LC-MS

analysis.

LC-MS Acquisition and Processing

Each instrument run for a single batch included the following controls with replicate
injections at the beginning and end of the batch: instrument control, extraction blanks, pooled
test sample aliquots, and pooled PD1074 sample aliquots. In the middle of the batch, individual
test samples and PD1074 samples were injected in a randomized order.

Non-polar extracts were reconstituted in 75 pL of IPA containing isotopically labeled lipid
standards and analyzed by LC-MS using a ThermoFisher Scientific Accucore C30 150 x 2.1mm,
2.6 pm column paired with a Thermo Fisher Orbitrap ID-X in positive and negative polarity.
Polar (80:20 CH3OH:H»0) extracts were reconstituted in 75 pL of 80:20 CH3zOH:H>O containing
isotopically labeled arginine, hypoxanthine, hippuric acid, and methionine (Cambridge Isotope

Laboratories, Inc.) and analyzed by LC-MS using a Waters BEH Amide 150 x 2.1 mm, 1.7 ym
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column paired with a Thermo Fisher Orbitrap ID-X in positive and negative polarity. LC-MS/MS
data for each mode of analysis was collected using three rounds of iterative DDA (Thermo
Scientific AcquireX) performed on pooled test samples.

Data for each sample was collected in full MS1 with a resolution of 240,000 FWHM (full-
width half-maximum) and MS/MS spectra of pooled samples were collected at a resolution of
30,000 FWHM using a 0.8da isolation window and stepped HCD collision energies of 15, 30,
and 45. See supplemental information for detailed LC-MS parameter settings. Thermo .raw files
were converted to centroid mode and .mzML format using Proteowizard’s MSconvertGUI tool®.
Raw files are deposited at metabolomics workbench Study ID ST002092. Pre-processing steps,

input parameters, and set values used for LC-MS data are listed in Table S4.

Selection of stable LC-MS spectral features

A plasticizer contamination event precluded us from quantitatively assessing the
performance of an IBAT control in the LC-MS experiments. Instead, we used the 12 PD1074
pools in a two-step procedure. First, the PD1074 pools were averaged over extraction variance
for the batch, capturing instrumentation variation across batches. In the second step, we
retained the subset of peaks only present in 100% of the individual PD1074 samples to focus on
stable peaks across growth conditions (environmental variation). Here, we focus on peaks
present across multiple individual samples of the same genotype, PD1074, a variant of the
laboratory-adapted strain N2, but any strain of C. elegans could serve this purpose.

The 12 pooled PD1074 samples were used to estimate optimal parameters, and then
these parameters were applied to all samples using a memory-efficient algorithm SLAW
(https://github.com/zamboni-lab/SLAW).”” Only spectral features above the blank threshold of
100 for all 12 PD1074 pools were retained for further analysis. SLAW offers the following peak
picking algorithms: XCMS centWave’™ 7®, OpenMS FeatureFinderMetabo® 8 and MZmine
ADAP®2 83 For this study, ADAP was selected.®*. The SLAW algorithm is predicated upon the
assumption that the experimental design includes identical QC samples across an experiment
(e.g., BRM) in intervals during data collection. This inclusion is typical in large-scale studies®" &>
8 but the selection of stable spectral features across extraction variance is not standard. While
the benefits of including QC samples are known and recently have been implemented in peak
picking and alignment optimization workflows that traditionally have not scaled to large data®’,
the inclusion of PD1074 replicate samples during sample generation, analytical measurement,

and data processing is novel.


https://doi.org/10.1101/2022.03.25.485859
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.25.485859; this version posted March 27, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Spectral peaks were filtered further using the individual PD1074 samples. We took a
conservative approach requiring 100% of the PD1074 samples to have each spectral feature
present above the blank. This focuses the experiment and our attention on spectral features that
are likely to be present in a subsequent independently prepared MS2 experiment in the
compound identification process, and not spectral features present sporadically due to variation

in growth or extraction.

Quality Control Assessments for LC-MS and NMR Data

Stable spectral features were rank transformed (i.e., raw data is replaced by ranks
where the lowest rank has the smallest peak height, and the highest rank has the largest peak
height for a given spectral feature). QC assessments included Standard Euclidean Distance
(SED), principal component analysis (PCA), coefficient of variation (CV), Bland Altman (BA),
and sample density distributions to identify potential feature artifacts and/or atypical samples™.
See Table S3 for QC parameters and thresholds used to identify stable mass features”. PCA is
used to visualize distortions due to batch or genotype. BA plots on pools and PD1074 samples
within a batch were used to visualize alignment variation, and BA plots on replicate aliquots of
the same PD1074 samples were used to verify the success of the alignment across batches.
Per feature CV is examined to identify any wildly aberrant features and was used to help refine
the quantification of the solvent front.

Sample outliers were identified based on the SED plots. Chromatograms of samples
whose distance to other samples did not cross the 95% percentile for the distribution of pairwise
distances were manually examined for chromatography failure. The PD1074 LSCP sample
“aos54” failed the QC assessment for NMR. The PD1074 LSCP samples “aos53” and “aos41”
failed the QC assessment for RP LC-MS datasets. Test strain “aos49” in batch 5 is removed
from all datasets, and test strain “a0s25” in batch 1 was removed from the HILIC LC-MS positive

dataset. Samples were removed from further consideration in their respective datasets.

Meta-analysis on LC-MS and NMR Data

All replicates of a particular genotype were contained within two sequential batches:
however, different test strains within the same study span multiple sets. We used meta-analysis
for each feature to compare the test genotype to the control, where each batch is treated as an
‘experiment’ using a fixed effects (FE) model using standardized mean difference (SMD)’,
referred to as “meta-strain” model throughout. Positive effect sizes indicate that the test strain

has a higher peak than PD1074 for a given chemical feature. Negative effect sizes indicate
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PD1074 has a higher peak than the test strain for a given chemical feature. Each strain was
tested against PD1074 to see if that feature is differentially expressed between PD1074 and the
test strain. We also used meta-analysis to compare test genotypes to each other, referred to as
the “meta-study” model throughout. For example, for the five UGT mutants (i.e., RB2011,
RB2550, RB2055, RB2607, and VC2512) we tested whether a feature is differentially expressed

between the test strain and PD1074 in all five test genotypes.

NMR H 1D spectra Annotation

Significant features obtained from the meta analysis of the CM mutants were selected
for identification. The 2D experiments HSQC, HSQC-TOCSY, and TOCSY were collected from
a pooled PD1074 sample. These data served as inputs to the public webserver COLMARmM?®8
(Complex Mixture Analysis by NMR), an application that allows us to simultaneously and
interactively compare multiple 2D spectra data to HMDB?®, BMRB®*°, and NMRShiftDB®! publicly
available databases. Only the significant features were annotated. Annotation confidence
scores per compound are detailed in Table S2 according to the previously reported levels as
described elsewhere®.

Further annotation details can be found in the COLMAR outputs submitted to
Metabolomics Workbench. Figure 5 illustrates the annotated compounds. Only the feature with
the highest effect size was selected for compounds with more than one significant feature. After
a list of compounds was identified, WormFlux** was used to explore the effects of the CM

mutants on the C. elegans metabolic network.

Code Availability

The python code for QA/QC is available through GitHub
(https://github.com/secimTools/SECIMTools) and can be run via a Galaxy install
(https://docs.galaxyproject.org/en/master/) or from a command line interface. The meta-
analysis (meta_analysis.py) and rank transformation (add_group_rank.py) python code are
available on the SECIMtools GitHub page. The Matlab functions used as well as instructions
and version control are available at:

https://github.com/artedison/Edison_Lab_Shared Metabolomics UGA.

Data Availability
These data are available at the NIH Common Fund's National Metabolomics Data Repository

(NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org


https://github.com/secimTools/SECIMTools
https://docs.galaxyproject.org/en/master/
https://github.com/artedison/Edison_Lab_Shared_Metabolomics_UGA
https://www.metabolomicsworkbench.org/
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where it has been assigned Study ID (LC-MS: ST002092; NMR polar: ST002095; NMR non-
polar: ST002096). The data can be accessed directly via its:

Project DOI: http://dx.doi.org/10.21228/M82978. This work is supported by NIH grant U2C-
DK119886. Methods and protocols used in this study are available on protocols.io:

NMR: dx.doi.org/10.17504/protocols.io.b2rbgd2n

LCMS: (dx.doi.org/10.17504/protocols.io.bahjib4n).
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