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Highlights 
  
  

· Phenotyping at scale defines lifetime trajectories of age-dependent changes in 
C57BL/6J mice 

  
· Central genetic and environmental lifespan regulators (putative anti-aging interventions; 
PAAIs) influence age-sensitive phenotypes (ASPs) often long before the appearance of 
age-dependent changes in these ASPs 

  
· Corresponding genetic variants in humans also have age-independent effects 

  
· Many PAAI effects shift the baseline of ASPs rather than slowing their rate of change 
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Summary 
  
  
Current concepts regarding the biology of aging are based on studies aimed at 
identifying factors regulating natural lifespan. However, lifespan as a sole proxy 
measure for aging can be of limited value because it may be restricted by specific sets 
of pathologies, rather than by general physiological decline. Here, we employed large-
scale phenotyping to analyze hundreds of phenotypes and thousands of molecular 
markers across tissues and organ systems in a single study of aging male C57BL/6J 
mice. For each phenotype, we established lifetime profiles to determine when age-
dependent phenotypic change is first detectable relative to the young adult baseline. 
We examined central genetic and environmental lifespan regulators (putative anti-aging 
interventions, PAAIs; the following PAAIs were examined: mTOR loss-of-function, loss-
of-function in growth hormone signaling, dietary restriction) for a possible countering 
of the signs and symptoms of aging. Importantly, in our study design, we included 
young treated groups of animals, subjected to PAAIs prior to the onset of detectable 
age-dependent phenotypic change. In parallel to our studies in mice, we assessed 
genetic variants for their effects on age-sensitive phenotypes in humans. We observed 
that, surprisingly, many PAAI effects influenced phenotypes long before the onset of 
detectable age-dependent changes, rather than altering the rate at which these 
phenotypes developed with age. Accordingly, this subset of PAAI effects does not 
reflect a targeting of age-dependent phenotypic change. Overall, our findings suggest 
that comprehensive phenotyping, including the controls built in our study, is critical 
for the investigation of PAAIs as it facilitates the proper interpretation of the 
mechanistic mode by which PAAIs influence biological aging. 
 
 
Keywords: Aging, lifespan, anti-aging, mechanisms, mTOR, growth hormone, dietary 
restriction, deep phenotyping 
  
Abbreviations: ASP: age-sensitive phenotype; PAAI: putative anti-aging intervention 
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Introduction 
  
  
A large body of work, carried out over the past decades in a range of model organisms 
including yeast, worms, flies and mice, has identified hundreds of genetic variants as well as 
numerous dietary factors, pharmacological treatments and other environmental variables that 
can increase the length of life in animals 1-3. Current concepts regarding the biology of aging 4 
are in large part based on results from these lifespan studies. Much fewer data, however, are 
available to address the question of whether these factors, besides extending lifespan, in fact 
also slow aging, particularly in the context of mammalian models. 
  
It is important to distinguish lifespan vs. aging because it is well known that lifespan can be 
restricted by specific sets of pathologies associated with old age, rather than being directly 
limited by a general decline in physiological systems. In various rodent species, for instance, 
the natural end of life is frequently due to the development of lethal neoplastic disorders: 
Cancers have been shown to account for ca. 70 – 90% of natural age-related deaths in a 
range of mouse strains 5-10. Accordingly, there is a strong need to study aging more directly, 
rather than to rely on lifespan as the sole proxy measure for aging. 
  
‘Aging’ is used as a term to lump together the processes that transform young adult individuals 
(i.e., individuals that have attained full growth and maturity) into aged ones with functional 
changes across multiple physiological systems, elevated risk for multiple age-related 
diseases, and high mortality rates 3,11,12. It is associated with the accumulation of a large 
number of phenotypic changes, spanning across various levels of biological complexity 
(molecular, cellular, tissue and organismal level) and affecting virtually all tissues and organ 
systems 13,14. Aging can hence be approached analytically by assessing age-dependent 
phenotypic change, from young adulthood into old age, across a large number of age-sensitive 
traits covering multiple tissues, organ systems and levels of biological complexity 15,16. 
  
Deep phenotyping represents a powerful approach to capture a wide range of aging-
associated phenotypic changes, since it takes into account alterations at molecular, cellular, 
physiological and pathological levels of analysis, thereby providing a very fine-grained view of 
the consequences of aging as they develop across tissues and organs 10,15-17. The approach 
is therefore ideally suited to assess genetic variants, pathways, dietary or pharmacological 
factors previously linked to lifespan extension and, potentially, delayed aging. Deep 
phenotyping examines hundreds of parameters, many of which are expected to differ between 
young and old animals (hereafter called age-sensitive phenotypes; ASPs); these can be 
collectively used to address if and how a given intervention interacts with the biological 
processes underlying the signs and symptoms of aging (Fig. 1a). 
  
We here refer to the mechanisms of aging as the sets of processes that underlie age-
dependent phenotypic change 3,11,12. Accordingly, an intervention that targets the mechanisms 
underlying aging should slow the transformation of a phenotypically young to a phenotypically 
aged organism. In other words, the intervention should attenuate the age-dependent change 
in ASPs (the delta in phenotype between young and old). For instance, a specific intervention 
or genotype could ameliorate the age-dependent loss of neurons by promoting processes 
concerned with maintaining the integrity of neurons over time. 
  
An intervention could mimic a targeting of age-dependent change by affecting ASPs directly 
(i.e., independently of age-dependent change in these phenotypes). For instance, a specific 
genetic variant may increase the number of neurons by promoting neurogenesis during brain 
development, without affecting the rate of subsequent age-dependent neuron loss. This 
variant would regulate neurodevelopmental processes but would not affect the mechanisms 
underlying age-dependent change. Although this would also result in increased neuronal 
numbers in old age, it cannot be taken as evidence of a slowed progression of aging because 
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the rate of age-dependent change remains unaltered 18,19. Such a mimicry of effects on age-
dependent change can be uncovered by dissociating the intervention’s effects on ASPs from 
age-dependent changes in ASPs. Experimentally, this can be achieved by testing the 
intervention in young animals, prior to the onset of age-dependent change in ASPs. 
  
These considerations are similar to the distinction between disease-modifying vs. 
symptomatic treatments made in clinical medicine 20-23. While both can be useful for patients, 
the former approach implies targeting the root causes of disease, whereas the latter does not. 
For instance, while a drug that enhances cognitive function in healthy people could serve well 
as a symptomatic treatment for subjects affected by Alzheimer’s disease (AD), it does not 
provide clues regarding the mechanisms underlying cognitive decline in AD. Likewise, a drug 
that enhances cognitive function in pre-symptomatic AD patients, well before the onset of 
cognitive decline, is not lending insights into the mechanisms underlying AD-related cognitive 
decline because that’s not what it is targeting. Clues regarding underlying pathogenetic 
processes can, however, be derived from a disease-modifying treatment that changes the rate 
of cognitive decline in AD.  
  
Building on the considerations above, it is relatively straightforward to design experiments that 
distinguish between an intervention targeting age-dependent change and a mimicry of such 
an effect (Fig. 1; detailed analysis workflow is illustrated in Extended Data Fig. 1). One needs 
to 1) generate knowledge of lifetime profiles of ASPs in order to determine when age-
dependent changes in ASPs are first detectable (Fig. 1a) to then 2) design experiments that 
include young treated reference groups, which are subjected to a putative anti-aging 
intervention (PAAI) prior to age-dependent changes in ASPs (Fig. 1b). 
  
Based on these fundamental considerations, we sought to estimate aging trajectories for a 
compendium of ASPs. Towards this end, we profiled hundreds of phenotypes, and thousands 
of molecular markers, across the lifespan of mice; these analyses included multi-dimensional 
deep phenotyping, assessments of a range of molecular markers as well as transcriptomic 
profiling and were carried out in 3, 5, 8, 14, 20 and 26 month old male C57BL/6J mice (Fig. 
1a). We hypothesized that individual ASPs follow different lifetime trajectories and that for 
many ASPs there is an initial stage of relative stability in young adulthood, with limited changes 
in many of the parameters examined (Fig. 1a, see schematic to the right). If this were correct, 
young groups (younger than the age at first detected age-dependent change in many ASPs) 
could be used to determine whether a PAAI interacts with age-dependent changes by either 
modifying their root causes or by acting on ASPs in an age-independent manner. Consistent 
with our hypothesis, we demonstrate that most of the phenotypes examined in this study 
feature a period of relative stability in young adulthood (i.e., between 3 and 5 months of age). 
  
We then applied the strategy outlined above to assess key longevity interventions in animal 
models for their effects on aging (slowing aging rate vs. age-independent effects). Major 
insights into longevity-associated pathways have predominantly derived from lifespan studies 
of genetically modified organisms 1,3. mTOR signaling and growth hormone signaling are 
amongst the most central regulators of lifespan according to prior longevity studies in C. 
elegans, D. melanogaster and mice. The mTOR pathway also represents a major focus of 
efforts to develop pro-longevity drugs 24. Accordingly, to cover key genetic longevity 
interventions and study their effects on aging in mice, we here chose genetic models targeting 
the mTOR pathway (hypomorphic mTORKI/KI mice 25-27) as well as growth hormone signaling 
(Ghrhrlit/lit mice 28,29). In parallel to our studies in mice, we applied multi-dimensional 
phenotyping combined with stratification based on genetic expression variants in GHRHR and 
MTOR in a human population across a wide age range, spanning from 30 to 95 years 30. The 
analyses in humans complement our work in animal models and allowed us to address, in 
parallel to the work in mice, whether or not a potential genetic modification of human ASPs 
occurs in an age-independent fashion or not. 
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In addition to these genetic factors, we applied our deep phenotyping strategy to assess an 
important environmental longevity intervention for its effects on aging (slowing aging rate vs. 
age-independent effects). Among the most intensely studied environmental factors are dietary 
restriction effects on longevity and age-related changes, with many thousands of publications 
since the 1930s when the effects of food restriction on lifespan in rodents were first discovered 
31. Accordingly, in our study, we chose to examine a dietary restriction model (specifically, a 
form of intermittent fasting/every other day feeding) that has been previously linked to lifespan 
extension in mice 10,32. 
  
Finally, we integrated our aging trajectory dataset with the analyses of PAAIs to address 
whether PAAIs primarily counteracted signs of aging in ways consistent with a slowing of age-
dependent changes in ASPs (Fig. 1b, panels to the lower left; rate effects) or via a mimicry of 
such effects (Fig. 1b, panels to the lower right; baseline effects).  
 
PAAIs can also affect ASPs via a mixture of baseline and rate effects (Fig. 1b, panels in the 
lower middle). This pattern corresponds to having effects in both age groups with effects being 
larger in old mice than in young mice. One possible interpretation of such a pattern is that 
PAAIs could have age-independent effects in addition to slowing aging-associated change in 
phenotype. Alternatively, this constellation of findings could be caused simply by differences 
in treatment exposure time between young (shorter-term exposure leading to weaker effects) 
and old animals (longer exposure leading to stronger effects). Our current study design does 
not allow us to distinguish between these two possible interpretations. Hence, this 
intermediate category (Fig. 1b, panels in the lower middle) identifies ASPs with candidate 
status for a slowed rate of age-dependent change which, however, requires further study and 
corroboration. 
 
Altogether, our analyses revealed that, among all PAAIs examined, many anti-aging effects 
were age-independent in nature (i.e., interventions had similar effect sizes in young and old 
mice), suggesting these phenotypes were not affected by a deceleration of age-dependent 
change. We also identified phenotypes influenced by PAAIs in a way consistent with a slowed 
aging rate, although these reflected a minority of ASPs analyzed. Our findings have important 
implications regarding the extent to which different aspects of the aging process can be 
modulated, at least by the set of PAAIs investigated in the present study. 
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Results 
  
  
Age-dependent phenotypic change in our older groups of mice 
  
To map age-dependent trajectories of a broad range of phenotypes over the lifespan of mice, 
we carried out deep phenotyping analyses in 3, 5, 8, 14, 20 and 26 month old male C57BL/6J 
mice. This covered phenotypes within the areas of cardiovascular health, neuropsychiatric 
functions, sensory systems, clinical chemistry, hematology, immunology, metabolism, as well 
as anatomy and physiology (for details regarding the assays used and phenotypes analyzed, 
see Extended Data Table 1 and 2, Supplementary Data 1 and the Methods section; for 
details regarding pathological findings in this cohort of animals, see Extended Data Fig. 2) 
(Fig. 2a).  
  
Overall, this analysis included 222 phenotypes, ~59% of which we found to be age-sensitive 
(p < 0.05 by one-way ANOVA with between-subjects factor age, Kruskal-Wallis-test or Fisher’s 
exact test, as appropriate). ASPs were observed across all functional domains examined (Fig. 
2b). Based on the outcomes of posthoc analyses relative to the young reference group (3 
months old group; for details, see Material and Methods), we next assigned ASPs into any 
one of the following categories: ASPs first detectable at either 5, 8, 14, 20 or 26 months, or 
others (Fig. 2c,d). 
  
Only ~5% of ASPs featured very early alterations, with an age at first detected change of 5 
months; a progressively diminishing acoustic startle response, indicative of early-onset age-
related hearing loss associated with a degeneration of cochlear hair cells and spiral ganglion 
neurons in C57BL/6J mice 33, represents an example in this category (Fig. 2e). We also noted 
very few ASPs with an age at first detected change of 8 months (~5% of all ASPs). For 
instance, the abundance of naïve CD4+ T cells (CD62L+CD4+ T cells), which is well known to 
decline with advancing age 16,34-36 and is linked to age-related impairments in adaptive immune 
responses 34-36, started to show measurable decrements at 8 months and continued to 
decrease further in the older age groups (Fig. 2e). 
  
We noted that ~26% of ASPs showed a difference first measurable at 14 months. An increased 
duration of the QRS interval, a well-known electrocardiographic aging phenotype in mice 10,37 
and men 38 that might reflect slowed ventricular depolarization due to altered intercellular 
communication between cardiomyocytes 37, serves as an example to illustrate this pattern of 
age-related change (Fig. 2e). 
  
Many ASPs (~36%) were characterized by changes that became detectable only later in life, 
with reliable alterations first identified at 20 months. The age-related reduction of exploratory 
activity in an unfamiliar environment (open field), for instance, constitutes a well-known ASP 
10,16,39 and was first observed in 20-month old mice (Fig. 2e). Finally, few changes (~8%) were 
first noted in 26-month old mice. Alterations in platelet morphology showed a detectable 
departure from baseline at 26 months (Fig. 2e). In addition to age-related alterations showing 
a consistent direction of change once they had emerged, we also noted a subset of 
phenotypes with other lifetime profiles (~19%, denoted as ‘other’): Fat mass for instance first 
increased to a peak in midlife and then decremented in older age groups (Fig. 2e). 
  
We carried out principal component analysis (PCA) to determine how the animals from all our 
age groups cluster in 2D-PCA space based on all phenotypes (measured on a continuous 
scale) included in the deep phenotyping analysis (Fig. 2f). Age effects were mostly seen in 
PC1. There was no apparent difference between 3-month and 5-month old animals on PC1. 
A PC1 shift to the right appeared to be first evident at 8 months and progressively increased 
up to 20 months.  
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In conclusion, our deep phenotyping analysis identified a large number of ASPs and showed 
only very limited age-related changes in these phenotypes between 3 and 5 months of age. 
The analyses also indicated that, overall, most changes in ASPs from baseline were detected 
in the second year of life of the animals (between 14 and 20 months). 
  
Next, we employed RNA-seq analyses to determine the age in life when transcriptomic 
changes relative to the young adult baseline are first discernable in our cohort of animals (Fig. 
2g-j; Extended Data Fig. 3; Supplementary Data 2-4). As starting material, we used brain 
and spleen tissue, respectively, of 3, 5, 8, 14, 20 and 26 month old male C57BL/6J mice. 
Consistent with the data described above, we observed very limited changes in gene 
expression when comparing 3-month old mice to 5- or 8-month old animals for both brain and 
spleen tissue (Fig. 2h,i; Extended Data Fig. 3). While in spleen many changes relative to the 
young adult baseline began to be detectable at 14 months (Fig. 2i,j; Supplementary Data 2), 
significant differences relative to the 3-month baseline in brain were largely restricted to the 
two oldest groups (20 and 26 months; Fig. 2h; Extended Data Fig. 3; Supplementary Data 
3). 
  
To establish how molecular and cellular mechanisms that have been suggested to drive aging 
are altered across the murine lifespan 4, we analyzed a panel of molecular markers that we 
designed to cover many hallmark processes of aging (summarized in Extended Data Tables 
3-5; Extended Data Fig. 4). These included markers to assess alterations in intercellular 
communication, cellular senescence, deregulated nutrient sensing, genomic stability, loss of 
proteostasis, mitochondrial dysfunction and reduced cell proliferation (Fig. 2k). These 
analyses were focused on spleen, lung and brain of 3, 5, 8, 14, 20 and 26 month old male 
C57BL/6J mice. Based on the set of molecular markers tested, age-associated alterations 
were noted in 14 out of 55 in the brain, 17 out of 55 in the lung and 20 out of 57 in the spleen 
(Fig. 2l; Supplementary Data 5). Among all age-sensitive markers, most showed relative 
stability between 3 and 5 months and clear changes, compared to the young adult baseline (3 
months), were detectable primarily in the oldest groups (20 and 26 months) (Fig. 2m; 
Supplementary Data 5). An exception to this notion were age-related changes in cell 
proliferation markers that decremented early (between 3 and 5 months) and remained stable 
afterwards (Fig. 2m,n; Supplementary Data 5). In summary, our analyses of molecular 
markers were consistent with the deep phenotyping data described above in showing relative 
stability in early life; most age-related changes relative to the young adult baseline were 
identified past the first year of life . 
  
Altogether, the data discussed thus far, including deep phenotyping, molecular and 
transcriptomic data, revealed that few age-sensitive markers show alterations detectable early 
in life (between 3 and 5 months). Rather, most changes relative to the young adult baseline 
(3 months) detected in our study became apparent in the second year of life. 
  
  
Do key longevity factors slow aging in mice? 
  
We wanted to establish whether key longevity and putative anti-aging interventions (PAAIs), 
on a large scale, counter age-sensitive phenotypes (ASPs). We also wanted to address 
whether effects on ASPs are best explained via (1) slowing the development of age-related 
changes in ASPs, (2) age-independent effects on ASPs or (3) a combination of (1) and (2). To 
explore which of these scenarios is supported best empirically, we analyzed deep phenotyping 
and transcriptomic effects of key longevity interventions. For each PAAI, we generated a 
young as well as an old cohort of experimental animals and controls, all of which were 
analyzed concurrently. We chose the young group to be 3 months of age when the analyses 
commenced and ~5 months at their completion, implying that the measurements were carried 
out during a period of relative stability of most ASPs (Fig. 2; Extended Data Table 1; 
Supplementary Data 1). Accordingly, effects on ASPs seen in the young groups should be 
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largely interpreted as aging-independent effects. We chose the old groups to be ~20 months 
of age when the analyses started (completion at ~22 months) because the animals were old 
enough to have accumulated clear changes in ASPs but were still at an age before the steep 
increase in age-related mortality (Fig. 1a). This design choice was made to minimize 
confounding effects of differential survival in our analysis of mutant mice vs. controls.  
  
  
A loss-of-function Ghrhr mutation attenuated ASPs often via age-independent 
mechanisms 
  
We focused our analyses on two single-gene mutants, both associated with extension of 
lifespan in mice 25,26,29 and each affecting a pathway generally considered to be pivotal in 
regulating lifespan and aging 16,39-44. First, we analyzed a mouse line with a loss-of-function 
mutation in Ghrhr (coding for the growth hormone releasing hormone receptor) 28. These 
Ghrhrlit/lit mutant mice display deficiencies in growth hormone signaling, a dwarf phenotype, 
extension of lifespan and an amelioration of several age-sensitive phenotypes when analyzed 
in old age 29. 
  
PCA of the deep phenotyping dataset we generated for the Ghrhrlit/lit mutant line (Fig. 3; 
Extended Data Table 6; Extended Data Fig. 5; Supplementary Data 6) indicated similar 
genotype effects in the young and aged group of animals (see PC1 and PC2 in Fig. 3b). Based 
on axis contributions, the effect of genotype was about twice as large as the effect of age. Age 
effects on the first two principal components were similar in WT and Ghrhrlit/lit mutants (Fig. 
3b) with no clear evidence for an interaction of age and genotype.  
 
Analyses of individual phenotypes (based on two-way ANOVA or aligned rank transform; for 
details, see also Material and Methods) revealed that, out of 206 phenotypes examined, 96 
showed a significant main effect of age, 90 showed a significant main effect of genotype and 
30 showed a significant interaction between genotype and age (Fig. 3c). Out of the 96 age-
sensitive phenotypes, 35 were not significantly affected by genotype, 45 showed a significant 
main effect of genotype (but no interaction) and 16 featured a significant genotype × age 
interaction (Fig. 3c). Further analyses of ASPs based on the results of posthoc tests are 
described in Supplementary Results, Extended Data Fig. 7 and Supplementary Data 6.  
  
To assess whether genotype effects countered age effects or whether genotype and age 
effects influenced a phenotype in the same direction, we compared for each phenotype the 
directionality of Cohen’s d effect sizes of age with those of Cohen’s d effect sizes of genotype 
in the old group of mice. These analyses revealed that out of the set of 96 age-sensitive 
phenotypes 18 were further accentuated by the Ghrhrlit/lit genotype, while 38 were opposed by 
the Ghrhrlit/lit genotype (Fig. 3c; Extended Data Table 6; Supplementary Data 6; 5 ASPs 
could not be evaluated because Cohen’s d effect sizes could not be computed due to 0 values 
in the denominator). Most of the 38 ASPs counteracted by Ghrhrlit/lit genotype showed a 
significant main effect of genotype, but no significant interaction between genotype and age 
(Fig. 3c). Closer inspection of the ASPs featuring a significant interaction term (considering 
the directionality of change) indicated that ca. 10.4% of all ASPs identified correspond to ASPs 
counteracted by Ghrhrlit/lit in ways consistent with the “rate effect model” or “combined 
rate/baseline effect model” introduced in Fig. 1b. Based on a significant genotype main effect, 
but a lack of an interaction, ca. 29.2% corresponded to ASPs consistent with the “baseline 
effect model” shown in Fig. 1b. The remaining ASPs were not affected (ca. 36.5%), 
accentuated (ca. 18.8%) by Ghrhrlit/lit or could not be evaluated (ca. 5.2%). All the Ghrhrlit/lit-
opposed ASPs we were able to evaluate had an age at first detectable departure from young 
adult baseline of 8 months (Fig. 3c); hence, all the corresponding genotype effects on ASPs 
in young animals appear independent of age-related change in those ASPs (since age-
dependent changes in ASPs have not yet manifested in young animals). 
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To examine further the relationships between age and genotype effects, we performed 
correlation analyses comparing the Cohen’s d effect sizes of age vs. the Ghrhrlit/lit genotype. 
We found a modest inverse relationship between age effects and genotype effects in old mice 
(Fig. 3d). We noted a similar inverse relationship when regressing the effect size of age with 
the effect size of the Ghrhrlit/lit mutation in the young cohort of animals (Fig. 3e). 
  
We next asked whether genotype effects are similar across age groups within the category of 
ASPs countered in Ghrhrlit/lit mutants (n=38 phenotypes). Towards this end, we performed 
linear regression analyses of genotype effects in the young vs. the old group of mice for these 
n=38 phenotypes. For all ASPs countered by the Ghrhrlit/lit genotype, these analyses revealed 
an overall high similarity of genotype effects across age groups (Fig. 3g; R=0.83, p=1.53E-
10), indicating that homozygosity for the Ghrhrlit mutant allele resulted in similar phenotypic 
consequences on ASPs irrespective of the age of the animal. The slope of the regression line 
was 0.91 ± 0.1 (95% CI: 0.70, 1.12; p=0.3975), thereby supporting the notion of overall similar 
effect sizes in young and old mice in this category of genotype-sensitive ASPs (Fig. 3g; 1 
corresponding to the same effect sizes in young and old; values significantly < 1 to effect sizes 
overall larger in young mice; values significantly > 1 to effect sizes overall larger in old mice). 
Similar results were obtained using intraclass correlation analyses (Fig. 3g; ICC=0.83, 
p=1.88E-11) which reflect not only the degree of correlation but also the agreement between 
measures in the young and old group. For instance, consistent with prior research 16,45, 
advancing age led to an increased latency to respond on the hot plate test, indicative of aging-
associated alterations in nociceptive function, and the Ghrhrlit allele antagonized this aging-
associated phenotype (Fig. 3c). However, we found similar effects of the Ghrhrlit allele in old 
mice as well as in young animals that were younger than the age at which age-dependent 
changes in this phenotype are first detectable (Fig. 3c). Statistical comparison of genotype 
effect sizes in young mice vs. effect sizes in old mice revealed only five cases in which there 
was a significantly larger Ghrhrlit effect in the aged group of animals (Fig. 3g), for instance 
blood hemoglobin concentration or plasma alkaline phosphatase activity. In most cases, 
however, effect sizes in young and old mice were not significantly different (Fig. 3g; Extended 
Data Table 6; Supplementary Data 6). Hence, based on the analysis of genotype effect sizes 
in young vs. old mice, only ca. 5.2% of ASPs were countered by the Ghrhrlit allele in ways 
consistent with either the “rate effect model” or “combined rate/baseline effect model” 
introduced in Fig. 1b (larger effect in old than in young). Ca. 34.4% of all ASPs were countered 
in ways consistent with the “baseline effect model” shown in Fig. 1b (effect in old not larger 
than in young). As mentioned above, the remaining ASPs were either not affected (ca. 36.5%), 
accentuated (ca. 18.8%) or could not be evaluated (5.2%). Clear correlations between 
genotype effects within young vs. aged animals were also observed when we analyzed either 
ASPs accentuated by genotype (Fig. 3h; ICC=0.53, p=0.009), age-insensitive phenotypes 
influenced by genotype (Fig. 3i; ICC=0.73, p=2.10E-07) or all of these categories combined 
(Fig. 3f; ICC=0.75, p=2.74E-19). Together, these observations indicate that Ghrhr genotype 
effects were, overall, largely independent of age and this was the case for the set of ASPs 
countered by genotype and other phenotypic categories (Fig. 3f-i).  
  
Our studies in Ghrhrlit/lit mice showed a range of physiological consequences of Ghrhr loss of 
function and highlighted how a subset interacts with age-dependent alterations in mice. We 
also wanted to explore whether GHRHR expression differences are associated with 
phenotypic consequences in humans and, if so, whether these effects are age-dependent or 
not (Fig. 3j-m, Extended Data Table 7). To address this question, we analyzed multi-
dimensional phenotypic data, covering a range of areas of human physiology (such as body 
composition, body fat distribution, cardiology, clinical chemistry, hematology, inflammation, 
immunology, muscle strength, ophthalmology and physical activity), collected from n=3034 
30- to 95-year old human individuals (Extended Data Table 8). We identified GHRHR-
sensitive phenotypes by stratifying the human phenotypic data by GHRHR genotype, taking 
advantage of a SNP (rs11772180), which is located upstream of the GHRHR gene and has 
been identified as an independent cis-eQTL, i.e. a polymorphism significantly associated with 
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GHRHR expression levels (Extended Data Fig. 8) 46. This eQTL had significant effects on 
several age-sensitive phenotypes examined, including platelet count and cholesterol-
associated measures (Fig. 3j-m). In one of these ASPs, the GHRHR variant associated with 
low expression appeared to influence the ASP in ways that counter the direction of age-
dependent change (Fig. 3k); there was no genotype x age interaction (Fig. 3k; Extended 
Data Table 7), which is in line with our observation of predominantly age-independent Ghrhr 
effects on ASPs (including ASPs countered by genotype) in mice. 
  
Together, these data indicate that changes in growth hormone signaling are associated with 
a range of phenotypic effects, including a subset of effects that counteract age-dependent 
changes. Our data support that most effects on ASPs are evident already in young animals, 
long before age-dependent changes in ASPs are detectable, indicating that these are age-
independent effects. We also identified ASPs that were influenced by the Ghrhrlit allele and 
showed larger effect sizes in old mice than in young mice. These ASPs potentially correspond 
to phenotypes in which aging trajectories were slowed by the Ghrhr mutation. 
  
  
A hypomorphic mTOR mutant allele attenuated ASPs via a mixture of age-
independent effects and effects that were more pronounced in old mice 
  
We then asked whether the pattern of observations in the Ghrhr mouse model would hold true 
for other candidate longevity interventions as well. We applied the same analytical approach 
to a hypomorphic mTOR mutant mouse line featuring mTOR expression levels reduced to 
25% of those seen in WT littermate controls 25 (Fig. 4; Extended Data Table 9; Extended 
Data Fig. 5; Supplementary Data 7). PCA-based dimensionality reduction of deep 
phenotyping data from young and old hypomorphic mTOR mutant mice as well as WT 
littermate controls suggested that age and genotype effects in 2D-PCA space are largely 
independent of each other (Fig. 4b). However, interestingly, the distance between the young 
and old groups of mice appeared reduced in the case of mTOR mutant mice relative to WT 
controls (Fig. 4b). 
  
Analyses of 208 individual phenotypes covered in these studies identified 117 phenotypes 
with a significant main effect of age, 98 with a significant main effect of genotype and 45 with 
a significant interaction between genotype and age (Fig. 4c). Out of the 117 age-sensitive 
phenotypes, 42 were not significantly affected by genotype, 45 showed a significant main 
effect of genotype (but no interaction) and 30 featured a significant genotype × age interaction 
(Fig. 4c). Further analyses of ASPs based on the results of posthoc tests are described in 
Supplementary Results, Extended Data Fig. 7 and Supplementary Data 7. 
  
To assess whether genotype effects counteracted or accentuated age effects, we compared 
for each phenotype the directionality of Cohen’s d effect sizes of age with those of Cohen’s d 
effect sizes of genotype (in the old group of mice). Out of 75 ASPs influenced by genotype, 
the clear majority (56) was countered by the mTORKI/KI genotype (Fig. 4c; Extended Data 
Table 9; Supplementary Data 7; 15 ASPs were accentuated by the mTORKI/KI genotype; 4 
ASPs could not be evaluated because Cohen’s d effect sizes could not be computed due to 0 
values in the denominator). Interestingly, a sizeable fraction (22 of the 56 ASPs) ameliorated 
by the mTORKI/KI genotype showed a significant interaction between genotype and age (Fig. 
4c). It should be noted, however, that the majority of these 56 ASPs showed a main effect of 
genotype, without evidence for a significant interaction (Fig. 4c). Further inspection of the 
ASPs with a significant interaction term (considering the directionality of change) indicated 
that ca. 16.2% of all ASPs identified correspond to ASPs counteracted by mTORKI/KI in ways 
consistent with the “rate effect model” or “combined rate/baseline effect model” introduced in 
Fig. 1b. Based on a significant genotype main effect, but a lack of an interaction, ca. 31.6% 
corresponded to ASPs consistent with the “baseline effect model” shown in Fig. 1b. The 
remaining ASPs were not affected (ca. 35.9%), accentuated (ca. 12.8%) by mTORKI/KI or could 
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not be evaluated (ca. 3.4%). All the mTORKI/KI-ameliorated ASPs we were able to evaluate 
had an age at first detectable departure from young adult baseline of 8 months (Fig. 4c), 
indicating that all corresponding genotype effects on ASPs in our young cohort are 
independent of age-related changes in these ASPs. 
  
Effect sizes of mTORKI/KI genotype showed a moderate inverse correlation with effect sizes of 
age (Fig. 4d,e); this was the case, when effect sizes of genotype in either the old (Fig. 4d) or 
young (Fig. 4e) group were used for correlation analyses. 
  
Next, we addressed whether genotype effects are similar across age groups within the 
category of ASPs counteracted in mTORKI/KI mutants (n=56 phenotypes). Linear regression 
analyses of mTORKI/KI genotype effect sizes in young vs. old animals showed clear correlations 
(Fig. 4g; R=0.69, p=3.95E-09), suggesting that the mTORKI/KI genotype resulted in overall 
similar phenotypic consequences on ASPs in young and old mice. This was also supported 
by the slope of the regression line, which did not significantly differ from 1 (slope estimate: 
0.91 ± 0.13; 95% CI: 0.65, 1.17; p=0.491). Similar results were obtained using intraclass 
correlation analyses (Fig. 4g; ICC=0.67, p=5.00E-09). Statistical comparison of genotype 
effect sizes in young vs. old mice revealed 11 cases in which there was a significantly larger 
mTORKI/KI effect in the aged group of animals (Fig. 4g), for instance hematocrit or plasma 
concentration of triglycerides. In most cases, however, effect sizes in young and old mice were 
not significantly different (Fig. 4g; Extended Data Table 9; Supplementary Data 7). 
Together, based on the analysis of genotype effect sizes in young vs. old mice, only ca. 9.4% 
of ASPs were countered by the mTORKI allele in ways consistent with either the “rate effect 
model” or “combined rate/baseline effect model” introduced in Fig. 1b (larger effect in old than 
in young). Ca. 38.5% of all ASPs were countered in ways consistent with the “baseline effect 
model” shown in Fig. 1b (effect in old not larger than in young). As mentioned above, the 
remaining ASPs were either not affected (ca. 35.9%), accentuated (ca. 12.8%) or could not 
be evaluated (3.4%). 
 
We also observed correlations between genotype effects within young vs. aged mice when 
either analyzing ASPs exacerbated in mTORKI/KI mice (Fig. 4h; ICC=0.75, p=0.0003) or 
genotype- but not age-sensitive phenotypes (Fig. 4i; ICC=0.71, p=2.74E-07), indicating that 
the mTORKI/KI genotype had overall very similar effects in young and old mice, irrespective of 
whether phenotypes were age-sensitive or not. 
 
We next wanted to establish whether transcriptomic effects on age-sensitive genes are similar 
in young and old mTORKI/KI mice. We performed RNA-seq analyses in spleen tissue of young 
(~3 months old; i.e., well before the onset of age-dependent transcriptomic changes; see Fig. 
2i) as well as old (~20 months old) mTOR mutants and WT littermate controls. These analyses 
identified 54 genes that were age-sensitive (FDR<0.05) and 855 genes that were genotype-
sensitive with an intersection between these populations of 9 genes (Extended Data Fig. 9a; 
Supplementary Data 8). The overlap of age- and mTOR-sensitive genes is greater than 
expected by chance (representation factor = 4.9, p=7.68E-05). No genes with a significant 
(FDR<0.05) genotype × age interaction were detected (Extended Data Fig. 9a). To assess 
whether the mTOR mutant allele counteracted or accentuated age-dependent gene 
expression alterations in spleen, expression levels were compared between young and old 
mTOR mutants and WT littermate controls. Aging-associated changes of five genes were 
counteracted and age-related alterations of four genes were accentuated in the mTORKI/KI 
mice (Extended Data Fig. 9b). 
  
We also wanted to explore how altered MTOR expression may affect age-sensitive 
phenotypes in human subjects. We assessed the associations between multi-dimensional 
phenotypic human data with polymorphisms at a SNP in the promoter region of the MTOR 
gene (rs2295079) that has previously been associated with variations in MTOR expression 
levels (Extended Data Fig. 8) 46. Out of 54 phenotypes (Fig. 4j), we identified 5 (Fig. 4j-o) to 
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be associated with variations in MTOR eQTL, including body fat content (Fig. 4k,l) and body 
weight (Fig. 4m), which are known to be sensitive to changes in mTOR function 16,25,47. Next, 
for these 5 MTOR-sensitive phenotypes, we examined whether the effects of MTOR eQTL 
was age-specific or not. For 3 out of 5 parameters, we found significant effects of MTOR eQTL 
as well as of age, but no genotype x age interaction (Fig. 4l-o; Extended Data Table 10), 
suggesting that MTOR eQTL was largely associated with similar effects in younger and older 
individuals. Two phenotypes (body fat and % body fat) showed a significant genotype x age 
interaction which appeared to be driven by an MTOR variant effect in the youngest group of 
individuals (Fig. 4k,l; Extended Data Table 10). The MTOR variant associated with low 
expression appeared to influence some age-sensitive phenotypes in ways that counter the 
direction of age-dependent change (Fig. 4k,l,n). In other cases, age and genotype effects 
were in the same direction (Fig. 4m,o). Altogether our mTOR-based analyses in mouse and 
humans indicate that mTOR effects on age-sensitive phenotypes (including ASPs countered 
by mTOR effects) are often similar in young and old groups; accordingly, age-independent 
mechanisms need to be taken into account when interpreting mTOR effects on age-sensitive 
parameters. 
  
  
An intermittent fasting-based variant of dietary restriction ameliorated ASPs 
frequently through age-independent mechanisms 
  
While genotype × age interactions were also observed, the data summarized above endorses 
an important role of age-independent effects on ASPs in the context of two central genetic 
interventions, targeting mTOR or Ghrhr. We also applied our analytical approach to a major 
environmental factor studied in aging and longevity - dietary restriction 48,49. Specifically, we 
assessed whether and to what extent age-dependent phenotypic changes in mice are 
ameliorated by intermittent fasting (IF)/every other day feeding (EOD) (for details regarding 
study design, see Fig. 5a and Methods section). We had previously reported a significant 
lifespan extension induced by IF in this cohort of mice 10. Food intake, body weight and body 
composition data have also been previously reported 10. PCA of all deep phenotyping data 
revealed an additive nature of age and IF effects (Fig. 5b): PC1 was shifted to the right by age 
in both groups. Fasting acted mainly by decrementing PC2. 
  
Analyses of individual phenotypes (157) revealed 102 with a significant main effect of age, 74 
with a significant main effect of diet and 30 with a significant diet × age interaction (Fig. 5c; 
Extended Data Table 11; Extended Data Fig. 5; Supplementary Data 9). Out of the 102 
phenotypes with a main effect of age (ASPs), 48 were not significantly influenced by diet, 34 
showed a significant main effect of diet (but no interaction) and 20 featured a significant diet 
× age interaction. Further analyses of ASPs based on the results of posthoc tests are 
described in Supplementary Results, Extended Data Fig. 7 and Supplementary Data 9. 
  
Next, we wanted to more closely examine ASPs influenced by diet (either via a main effect or 
a diet × age interaction). To do so, we computed Cohen’s d effect sizes of age and of diet (in 
the old cohort of mice) to examine whether they acted in opposing directions or not (Fig. 5c). 
These analyses showed that age and diet effects operated in opposing directions in 42 cases; 
11 ASPs were exacerbated by IF; 1 ASP could not be evaluated because Cohen’s d effect 
sizes could not be computed due to a 0 value in the denominator. Most of the 42 ASPs 
countered by IF showed a significant main effect of diet, but no significant interaction between 
diet and age (Fig. 5c). Further analysis of the ASPs featuring a significant interaction term 
(considering the directionality of change) indicated that ca. 13.7% of all ASPs identified 
correspond to ASPs counteracted by IF in ways consistent with the “rate effect model” or 
“combined rate/baseline effect model” introduced in Fig. 1b. Based on a significant genotype 
main effect, but a lack of an interaction, ca. 27.5% corresponded to ASPs consistent with the 
“baseline effect model” shown in Fig. 1b. The remaining ASPs were not affected (ca. 47.1%), 
accentuated (ca. 10.8%) by IF or could not be evaluated (ca. 1%). Most of the IF-attenuated 
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ASPs examined had an age at first detectable departure from the young adult baseline of 8 
months (Fig. 5c), implying that corresponding IF effects on ASPs in our young group are 
independent of age-related change in those ASPs. 
  
Correlation analyses of diet effect sizes in old (Fig. 5d) and young (Fig. 5e) mice vs. effect 
sizes of age showed a modest inverse correlation, which is consistent with an antagonistic 
relationship between IF and aging. 
  
We examined whether diet effects are similar across age groups within the category of ASPs 
countered by IF (n=42 phenotypes). Correlation analyses of IF effect sizes in young vs. old 
mice showed a significant positive relationship for ASPs antagonized by diet (Fig. 5g; R=0.60, 
p=3.16E-05), indicating that ASPs in young and old animals were affected by IF in similar 
ways. The slope of the regression line was 0.64 ± 0.14 (95% CI: 0.36, 0.92; p=0.0119), 
indicating that effects overall did not tend to be larger in old mice than in young mice. Similar 
results were obtained using intraclass correlation analyses (Fig. 5g; ICC=0.60, p=9.86E-06) 
which reflect not only the degree of correlation but also the agreement between measures in 
the young and old group. Statistical comparison of genotype effect sizes in young mice vs. 
effect sizes in old mice showed that in 31 out of 42 cases effect sizes in young and old mice 
were not significantly different (Fig. 5g; Extended Data Table 11; Supplementary Data 9). 
For instance, in agreement with previously published data 16,39,50,51, advanced age was 
associated with decreased exploratory locomotor activity in a novel environment and this 
aging-associated phenotype was antagonized by IF (Fig. 5c). We identified 11 phenotypes 
with significantly larger effect sizes in old mice than in young mice (Fig. 5g; Extended Data 
Table 11; Supplementary Data 9), for example average respiratory exchange rate or NKT 
cell count. Based on the analysis of genotype effect sizes in young vs. old mice, ca. 10.8% of 
ASPs were countered by IF in ways consistent with either the “rate effect model” or “combined 
rate/baseline effect model” introduced in Fig. 1b (i.e., larger effect in old than in young). Ca. 
30.4% of all ASPs were countered in ways consistent with the “baseline effect model” shown 
in Fig. 1b (i.e., effect in old not larger than in young). As mentioned above, the remaining 
ASPs were either not affected (ca. 47.1%), accentuated (ca. 10.8%) or could not be evaluated 
(1%). 
 
 
Finally, we wanted to address to what extent the phenotypes used in our analyses are 
potentially interrelated. To address this, we performed hierarchical clustering on the 
phenotypic data from the young control groups for each of our three intervention studies 
(Extended Data Fig. 9-11; Supplementary Data 10-12). These analyses revealed the 
expected consistently low distances between phenotypes known to be related, such as e.g. 
peripheral blood hemoglobin concentration and hematocrit. However, they also show relatively 
large distances between many of the phenotypes, suggesting that much of the variation in the 
data would be lost if our analyses were restricted to a small subset of phenotypes only. 
Analyses of intervention influences on clusters (based on different cluster definitions) are 
summarized in Supplementary Data 10-12.     
 
For all PAAIs assessed in the present study, pro-longevity effects have been demonstrated 
previously 10,26,29. We have shown IF-induced lifespan extension in a prior study 10 that was 
carried out side-by-side with the collection of the aging data on which the current analyses are 
based. Although our present experiments were not designed to ascertain pro-longevity effects 
(which would have required aging substantially larger groups of animals over longer time 
periods), provisional survival estimates based on animals aged in our facility are not 
inconsistent with previously reported pro-longevity effects of the Ghrhrlit/lit and mTORKI/KI 

genotype, respectively (Extended Data Fig. 6). Moreover, comprehensive macropathological 
and histopathological analyses revealed significantly reduced tumor burden in mTORKI/KI and 
Ghrhrlit/lit mutants relative to their wildtype littermate controls (Extended Data Fig. 6), which is 
consistent with earlier findings in mTORKI/KI 26 and dwarf mice 52,53, respectively. Neoplastic 
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disease is a major factor in limiting natural lifespan in C57BL/6J animals as well as other 
stocks of mice 5-10.  
 
As outlined above, aging and neoplastic disease often are overlapping conditions. We 
deliberately made no attempt to pre-select animals (for inclusion in our study) based on their 
apparent fitness or health status as this could have complicated the interpretation of our 
findings. For instance, if a longevity intervention does not improve age-sensitive phenotypes 
in a pre-selected set of healthy mice, this observation is difficult to interpret: Possibly, the 
intervention has truly no effects on age-sensitive phenotypes but, alternatively, differential 
inclusion could confound this analysis (e.g. controls with the poorest aging outcomes may 
have been excluded from the analysis and, hence, cannot be analyzed, while mice with poor 
- but not sufficiently poor to lead to exclusion - aging outcomes may still be existing in the 
intervention group, thereby resulting in a biased estimate of aging outcomes across these two 
populations). Nonetheless, in order to address whether neoplastic disease could have 
influenced some of our parameter estimates in aging mice, we subjected all animals to a 
macropathological assessment after completion of phenotypic analyses. Repeating the 
analyses outlined above on the tumor-free (i.e., free of macropathologically detectable tumors) 
set of mice revealed qualitatively similar results compared to the entire set of animals 
(Extended Data Fig. 13-16; Supplementary Data 1,6,7,9), suggesting that key observations 
of our study also hold up when considering only aged animals that are free of detectable 
neoplastic disease. 
 
Altogether, our deep phenotyping analyses based on three different central longevity 
interventions revealed that intervention-sensitive ASPs are in many cases influenced in age-
independent ways, with similar effects in aged mice and in animals younger than the age of 
onset of change in the corresponding phenotypes. These observations provide support for the 
view that age-dependent phenotypic change in these cases is not broadly slowed by these 
interventions. Rather, ASPs tend to alter the point of departure under these interventions; the 
progression of aging remains unaltered in these cases. We also identified some phenotypes 
that were predominantly influenced by PAAIs in old mice (with more limited or no clear effects 
in young mice). These cases represent phenotypes in which the progression of age-related 
change appears to be modified by PAAIs, consistent with a slowed rate of aging. 
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Discussion 
  
  
We herein defined aging trajectories of hundreds of phenotypes and thousands of molecular 
markers across the lifespan of male C57BL/6J mice. Our newly established atlas revealed that 
most age-sensitive phenotypes (ASPs) showed relative stability in young adulthood (between 
3 and 5 months). Moreover, age-dependent changes in ASPs mostly began to be detectable 
in the second year of life in our dataset. These data serve as a critical resource for the proper 
interpretation of the nature of anti-aging effects induced by genetic, pharmacological or dietary 
interventions in mice. 
  
We also analyzed central genetic and environmental longevity regulators (putative anti-aging 
interventions; PAAIs) for their mechanistic influences on hundreds of phenotypes in young 
and old cohorts of animals. Integration of these data with our aging trajectory dataset revealed 
that many intervention effects were clearly measurable not only in the old but also, with similar 
effect sizes, in the young cohorts of mice, at an age long before age-dependent changes in 
ASPs began to be detectable. Accordingly, these PAAI effects cannot be taken as evidence 
that the PAAIs slowed aging (age-dependent change). These observations are consistent with 
data we obtained in humans that also showed age-independent effects on age-sensitive 
phenotypes of GHRHR and MTOR genetic variants. In addition to ASPs that were influenced 
in age-independent ways, we also identified subsets of ASPs that were predominantly affected 
in the old cohort of animals, suggesting that PAAIs may potentially target age-dependent 
changes in these traits. Hence, our dataset allowed us to isolate different modes of actions 
(age-independent vs. age-dependent influences) of PAAIs acting on different ASPs. 
  
Prevailing molecular damage theories of aging posit that aging is fundamentally caused by 
the age-dependent accumulation of molecular damage linked to progressive telomere 
shortening, accumulation of misfolded proteins, genomic instability, epigenetic changes, 
increased numbers of senescent cells, metabolic dysfunction, progressive and irreversible 
changes of the extracellular matrix, etc. 4. However, one current limitation of these concepts 
of the biology of aging is that they are largely based on lifespan data or on analyses of aging 
traits more limited in scope than the present study. There is also in particular a shortage of 
studies in mammalian models and of research that considers the controls we built in the 
present work. Our study shows that the PAAIs we examined - that are concerned with some 
of the very core mechanisms proposed to be involved in aging 4 -  did often not seem to work 
through targeting age-dependent change (Fig. 6). This is not to say that we did not observe 
individual anti-aging effects that were consistent with a slowed aging rate; parameters that 
followed this pattern did, however, represent the minority of cases of anti-aging influences 
observed in the present study. We were able to come to this conclusion because we had 
included young treated (mutant, fasted) groups in our study design and determined the age at 
which phenotypic change began to be detectable for the parameters examined. Had we not 
done this, we would have substantially overestimated PAAI effects on the progression of 
aging. We recommend that comprehensive phenotyping, including the controls built in our 
study, should be adopted in future work investigating PAAIs, since this facilitates the proper 
interpretation of the mechanistic mode by which PAAIs influence biological aging. 
  
In fact, the molecular and cellular mechanisms underlying aging-associated phenotypic 
changes, examined in the present study, are currently still poorly defined; they are likely 
complex and may vary from phenotype to phenotype 15,54. Importantly, our approach does not 
require knowledge of the mechanisms underlying age-dependent change. In the absence of 
this knowledge, using the approach outlined in this paper, we are still able to address whether 
PAAIs may act by targeting age-dependent phenotypic change. It will be an important 
challenge for future research to define the underlying mechanisms. Our findings also suggest 
that a reexamination of the ‘hallmarks of aging’ processes 4, using large-scale phenotyping 
with the controls outlined in this paper, is warranted to address whether these processes 
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indeed broadly regulate aging or are primarily the ‘hallmarks of lifespan’ with more limited roles 
in aging. 
  
Our observations are consistent with early considerations by Richardson & Carter who noted 
that, among a handful of age-sensitive phenotypes responsive to caloric restriction (CR), CR 
effects were seen in young animals as well, indicating that in these cases CR shifted the level 
of the process and did not affect the rate of age-dependent change 19. Our deep phenotyping 
approach places this notion on a solid foundation (we analyzed hundreds of phenotypes) and 
extends this early consideration to IF-based models of dietary restriction as well as central 
genetic models of longevity, targeting mTOR and growth hormone signaling pathways. Our 
findings, therefore, raise the possibility that the age-independent nature of ‘anti-aging’ effects 
may be common among longevity interventions. This would imply that many ‘anti-aging’ effects 
are unlikely to arise from targeting the causal factors driving aging. 
  
Our findings are in agreement with the notion that genetic effects tend not to be strictly age-
specific but mostly affect the organism across its lifespan 54. Accordingly, given that our PAAIs 
often had effects in young individuals, which were frequently of similar effect size as those in 
old subjects, relatively shorter-term exposure to treatment may to some extent be sufficient to 
induce sizeable PAAI effects at a young age. Therefore, an important next step is to address 
whether PAAIs can also induce sizeable treatment effects when old individuals with 
established phenotypic change are subjected to short-term interventions. This may 
substantially simplify the development of therapeutics because of shortened treatment periods 
and the possibility that treatment may, at least in some cases, come with therapeutic benefit 
even after the onset of age-dependent change. These treatments would be considered 
symptomatic, not causal, in nature but may still provide valuable alleviation of a subset of 
aging phenotypes. 
  
Our results also imply that future research should not only identify the molecular and cellular 
mechanisms underlying age-dependent change in ASPs but also compare them to those by 
which PAAIs affect ASPs in young animals (i.e., prior to the onset of age-dependent change). 
For instance, we have found here that age-related alteration in nociceptive function was 
ameliorated by Ghrhrlit/lit genotype (Fig. 3c). The Ghrhrlit allele increased thermal sensitivity in 
old mice as well as in young animals (Fig. 3c). The age-dependent loss of thermal sensitivity 
has been previously linked to a reduced expression, on the protein but not the mRNA level, of 
Trpv1 in dorsal root ganglion cells in 15-month and 2-year old mice compared to 6-week old 
controls 55. Growth hormone deficiency has been shown to induce thermal hypersensitivity in 
neonatal mice and this phenotype has been suggested to be linked to a transcriptional 
upregulation of Igfr1, P2x3, Piezo2, Trpv1 and P2y1 in the neonatal mutants 56. These 
observations confirm that thermal hypersensitivity is influenced by growth hormone deficiency 
long before age-dependent changes in this ASP develop. They also suggest that aging and 
growth hormone deficiency act on this ASP via separable mechanisms. Given that the ASPs 
examined in the present study tend to be complex phenotypes, being shaped through a 
plethora of molecular and cellular regulators, we put forth the testable prediction that, based 
on probability, it is unlikely that there is a large common base between the mechanisms 
underlying PAAI effects on ASPs in young mice and those driving age-dependent change of 
the same phenotypes. 
  
Our study has some limitations. We did not use a longitudinal study design to infer aging 
trajectories and intervention effects. Rather, we employed a cross-sectional study design that 
compared different sets of mice to extract age and intervention effects. While longitudinal 
analyses have their strengths (i.e., being able to take repeated measurements on the same 
animal, at least for the sets of phenotypes where repeated measurements are possible), they 
are certainly not without complications and have their own sets of limitations: An important 
complication of performing assays within longitudinal designs are order effects, referring to 
the phenomenon that having been tested once or more times has effects on the outcome of 
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subsequent tests (e.g., in behavioral assays). Another important issue inextricably linked to 
longitudinal designs is that measurements cannot be taken at the same time but instead 
require comparison of data collected at different points in time (which would be up to 2 years 
apart in our study). Hence, although there may be exceptions depending on what parameters 
one specifically considers, longitudinal data may not necessarily generate more robust 
estimates of aging trajectories in mouse populations than population estimates derived from 
cross-sectional data collected at the same time, by the same person and under the same well-
controlled conditions. Please also note that a considerable number of parameters we 
measured was collected in the context of terminal procedures, precluding repeated data 
collection from the same animal. In line with all of these considerations, it is common practice 
to infer aging trajectories from studies using cross-sectional designs 57-62.  
 
One goal of our analyses was to estimate, using pairwise comparisons against the 3-month 
old group, when mouse phenotypes show first measurable departures from our young adult 
baseline (i.e., from the 3-month old group). Note that the sensitivity to detect differences 
between these groups (i.e., the limit of detection) depends on sample size. Increasing sample 
size could almost arbitrarily lower the limit of detection and potentially reveal additional 
smaller-sized group differences if they exist.  
 
We identified a number of ASPs that appeared to be affected by a combination of a baseline 
and a rate effect (i.e. ASPs were affected in both young and old mice; the effect size was 
larger in old mice than in young mice). One possible interpretation is that age-dependent 
phenotypic change is in fact slowed in these mice (additionally to an age-independent effect 
on these ASPs). However, an alternative explanation is that shorter intervention exposure 
times in young mice account for smaller effects relative to old mice that were exposed to the 
intervention for a longer period. The shorter-term exposure to intermittent fasting in young 
mice (IF was initiated 4 weeks prior to the commencement of analyses), for instance, may 
have led to similar but smaller effects on some ASPs than the more long-term exposure 
(animals were on IF for 19 months prior to starting the analysis) in our aged cohort of animals. 
Future experiments should help distinguish between these scenarios by varying exposure time 
during a period in life where ASPs are relatively stable. 
 
In our intervention studies, we examine cross-sectionally age-dependent changes in 
phenotypes between two time points (young adult vs. ca. 20 months old). As a consequence, 
our rate of change estimates refer to an overall change across this time period. A PAAI could 
potentially not only alter the rate of change but also modify the onset of age-dependent change 
(e.g., an intervention could lead to an earlier onset of change from baseline associated with a 
slower rate of change). We cannot address this possibility with our present dataset because 
that would require a study design with a number of age groups in between the young adult 
and aged group. Note though that rate of change estimates based on our two time points are 
well suited to measure the overall change on a population level that accumulates between 
young adulthood and 20 months of age. 
 
We chose a large set of parameters for our analyses in mice to cover a broad range of age-
related changes across numerous physiological systems and tissue contexts, spanning across 
multiple levels of biological organization (molecular, cellular, tissue, organismal). Our prior 
analyses established that a large and diverse number of ASPs can be captured using this 
approach 10,16. However, despite the comprehensive nature of our analysis it is important to 
note that our conclusions are based on the specific sets of parameters included in our 
assessment of age-related changes in mice. It will be important for the field to complement 
our analyses with assessments of additional measures and extend our observations beyond 
the one genetic background (C57BL/6J) and sex (male) examined here. 
 
In all our intervention studies, the aged groups of mice were ca. 20 months old when our 
analyses were started. Although this leaves unexamined older age groups with potentially 
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additional aging-associated changes, we have chosen to examine 20-month old mice (and not 
older ones) to avoid interpretational issues that may arise from differential survival.  For 
instance, if a longevity intervention does not improve age-sensitive phenotypes in 30-month 
old mice, this observation is difficult to interpret: Possibly, the intervention has truly no effects 
on age-sensitive phenotypes but, alternatively, differential survival could confound this 
analysis (e.g. controls with the poorest aging outcomes may have been eliminated from the 
population and, hence, cannot be analyzed, while mice with poor, but not yet detrimental aging 
outcome may still be existing in the intervention group, thereby resulting in a biased estimate 
of aging outcomes across these two populations). Assessing aged mice at 20 months largely 
eliminated differential survival as a confounding factor from our analysis (at 20 months, there 
has not yet been appreciable population attrition in the controls; see Fig. 1a). 
 
The determination of when aging begins to manifest is ultimately a matter of one’s viewpoint 
and depends on the parameters one chooses to assess the consequences of aging 63. We 
applied a set of parameters that are relatively stable over at least some months in younger 
adult animals. If one intends to assess PAAIs in the context of parameters other than the ones 
used in the present study, it may be necessary to establish these parameters’ individual 
lifetime profiles and to adjust the age of the young treated reference group, so that the PAAI 
can be restricted to a period prior to the onset of detectable age-dependent change. 
  
Our conclusions are based on the specific set of PAAIs that were investigated in our current 
study (loss of function of Ghrhr, mTOR; intermittent fasting-based version of dietary restriction; 
see also Supplementary Discussion). As outlined above, our longevity mouse lines were 
chosen to represent important and central genetic/environmental lifespan-extending 
interventions established by prior research. mTOR signaling and growth hormone signaling 
are not only among the most well-established pathways in lifespan regulation, they also 
feature many links to cellular processes thought to generally play important roles in aging, 
such as proteostasis, nutrient sensing, inflammation and others 4,41,64. Similarly, dietary 
restriction regimens are thought to broadly influence a range of cellular processes linked to 
aging 4,49. Thus, our findings have some generalizability beyond these three interventions. 
Nevertheless, how manipulations of other longevity-associated pathways interact with age-
dependent change needs to be addressed in further studies examining additional genetic 
mutants and/or environmental manipulations. 
 
A number of studies have applied multidimensional analytical approaches to measure 
organismal changes accompanying the aging process 65-69. An important feature of our study 
is that it uses multidimensional phenotypic data, covering multiple levels of complexity from 
molecular markers to complex physiological and tissue functions, towards testing for a 
possible modulatory effect of genetic and environmental intervention effects on the aging 
process. Unlike studies in invertebrate models, our approach in mice captures mammalian 
physiology. In comparison to studies in humans, the experiments in mice facilitate causal and 
invasive experimentation (such as the genetic and fasting studies as well as the collection of 
many invasively obtained phenotypes that would be impossible to get in humans); they also 
facilitate the lifelong (or almost lifelong) exposure to experimental regimes (such as genetic 
and environmental manipulations that cover much of the organismal lifespan of a mouse). 
 
Besides phenotypic analyses, we carried out transcriptome studies to test for age-dependent 
changes in tissue level gene expression. In addition to the full set of differentially expressed 
genes, we provide results derived from pathway analyses that were performed to detect 
whether specific pathways were enriched among the sets of differentially expressed genes. 
Note that the results for some of these annotated processes may seem counterintuitive, 
although they are expected. For instance, based on gene expression changes associated with 
advanced age, Ingenuity pathway analysis (IPA) derived predictions of reduced “organismal 
death” and “morbidity/mortality” in old mice. While these predictions appear to be inconsistent 
with the actually increased mortality rate associated with aging, they are expected 70 and are 
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based on gene expression changes well known to be associated with aging (increased 
expression of inflammation-related genes in the context of aging 71) that lead IPA to predict a 
downregulation of the processes “organismal death” and “morbidity/mortality”. We also note 
that some of the IPA categories (such as many of the canonical pathways) contain a small 
number of member genes and/or may intersect with a small number of differentially expressed 
genes which can render these categories susceptible to variable results. These findings 
should not be over-interpreted without further study and corroboration. 
 
Although there are few studies employing multi-point profiling of gene expression changes in 
rodent models, recent reports based on various rat and mouse tissues 59,72, indicated that most 
of the differentially expressed genes were first detectable during middle-ages (12-15 months) 
with progressive gradual changes till advanced age. However, there were notable differences 
across tissues, with the spleen for instance exhibiting more robust age-associated 
transcriptomic changes and in contrast, the brain being more resistant to aging 59. Moreover, 
pathway analysis of the differentially expressed genes associated with aging in these studies 
suggested the presence of both organ specific and global molecular signatures 59,72. These 
findings are consistent with our observations from spleen and brain bulk RNA-seq datasets 
(Fig. 2g–j, Extended Data Fig. 3). 
 
In the present study, many age-sensitive phenotypes did not provide support for a slowing of 
age-dependent change in the PAAI groups, indicating that PAAIs did not exert their effects by 
inhibiting the accumulation of aging-associated damage (at least with respect to the ASPs 
examined). There are interesting parallels between these results and earlier observations: 
Dietary restriction (DR) in Drosophila melanogaster was found to reduce mortality risk entirely 
via short-term effects; flies that were transiently food-restricted and then switched to free 
access to food quickly adopted the mortality risk of flies that had free access to food throughout 
their lives 73, indicating that DR had no sustained influence on mortality risk (as one might 
expect if DR were to reduce mortality risk by slowing the accumulation of aging-associated 
damage).  
 
Analyses of survival curves in pro-longevity mouse models indicated that the rate at which 
mortality risk increases with advancing age (captured in the Gompertz function parameter “G”) 
was unaffected 74; instead, pro-longevity interventions in mice shifted the age at which 
mortality risk started to increase (captured in the Gompertz function parameter “A”) to older 
ages, without changing the rate of increase thereafter. Although it remains unclear how 
specifically these findings relate to ours, this observation has been interpreted as evidence 
that changes in the “rate of aging” (based on a lack of effect on the parameter “G”) may not 
underlie the pro-longevity influences in mice, but rather changes in “baseline vulnerability” to 
adverse effects of disease and environmental factors (based on an effect on the parameter 
“A”) 74. In fact, resistance to the development of lethal neoplastic disease could represent such 
a change in “baseline vulnerability” in long-lived mutant mouse lines. 
 
It is important to complement lifespan analyses with additional measures capturing age-
dependent change, if one wishes to make statements about aging. This is particularly relevant 
in cases where it is unclear how well lifespan reflects broad changes across a range of 
physiological systems. In mice, for instance, lifespan is well known to be limited by the 
development of lethal neoplastic disease, indicating that it is determined by a rather narrow 
set of pathologies and hence cannot reflect aging-associated changes across a broader set 
of physiological systems 5-10. It will be an important task to further define the sets of biological 
processes that limit lifespan in other organisms, specifically in those that heavily informed the 
biology of aging via studies of lifespan (such as C. elegans and D. melanogaster) 75-78. 
 
In the present work, we used age-dependent phenotypic change across a range of molecular, 
cellular, physiological and pathological markers as a proxy for biological aging. This does not 
imply that all aging-associated change is necessarily adverse. In fact, it has been pointed out 
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that aging-associated alterations can have adaptive and beneficial effects for the aged 
organism 79,80. Future work will need to address which of the phenotypes employed in our 
present study design may serve adaptive purposes vs. may have detrimental effects for aging 
mice. 
  
A unique strength of the current study is that we included young adult treated (mutant/fasted) 
groups as well as an assessment of onset of measurable age-dependent phenotypic change 
in our comprehensive large-scale analyses of phenotypic and molecular alterations. This 
permitted us to separate age-independent PAAI effects from interactions of PAAI with age-
dependent phenotypic change. Any study not considering these controls is bound to 
substantially overestimate the extent by which PAAIs slow the aging process. 
 
Aging is a multi-faceted process that transforms young adult into aged organisms. We believe 
that the identification of molecular regulators influencing aging will require approaches that 
measure many aspects of this organismal transformation directly, rather than relying on single 
or a small number of proxy markers. The isolated focus on lifespan, for instance, bears the 
risk of bias by putting center stage the subset of aging processes directly linked to lifespan 
(such as specific pathologies), but with potentially limited relevance for other facets of aging 
that do not per se determine the end of life. Much of what we currently think we know about 
molecular regulators of aging (summarized, e.g., in the “hallmarks of aging” 4) has been 
derived from studies utilizing such proxy markers of aging. We therefore look forward to seeing 
more studies attempting to validate these regulators in the context of multidimensional 
phenotypic studies. 
  
In conclusion, the PAAIs examined (i.e. mTOR loss of function, Ghrhr loss of function, 
intermittent fasting-based version of dietary restriction) often influenced age-sensitive traits in 
a direct way and not by slowing age-dependent change. These findings have important 
implications regarding the extent to which the aging process can be modulated. Having said 
that, we also identified ASPs predominantly influenced in the old groups of mice, indicating 
that, on a subset of ASPs, PAAIs exerted their effects by slowing the rate of age-dependent 
change. Our analytical approach provides a valuable resource as well as an important 
framework for future research aimed at parsing how genetic and environmental factors interact 
with the mammalian aging process. 
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Figure legends 
  
  
Figure 1: 
a, Large-scale assessment of age-sensitive phenotypes (ASPs) to measure age-
dependent phenotypic change in mice. We assessed a large number of phenotypes across 
the lifespan of C57BL/6J mice (3, 5, 8, 14, 20 and 26 months old), including hundreds of 
phenotypes derived from multi-dimensional deep phenotyping, a range of molecular markers 
as well as transcriptomic profiles. The panel to the left shows how these age groups relate to 
the natural survival curve of C57BL/6J mice in our setting (few losses up to 20 months; approx. 
30% of the population is lost between 20 and 26 months). This baseline study served to 
estimate aging trajectories for individual age-sensitive phenotypes (ASPs). All data were 
collected from a single synchronized cohort of animals using a cross-sectional study design. 
We hypothesized that ASPs follow different lifetime trajectories but that there is an initial stage 
of relative stability in young adulthood with more limited measurable changes in most of the 
parameters examined (see schematic to the right). 
b, To what extent can aging be slowed? We assessed three important pro-longevity 
interventions for their effects on aging: loss-of-function genetic manipulations of growth 
hormone signaling (Ghrhrlit/lit mice) as well as mTOR signaling (hypomorphic mTORKI/KI mice) 
and a dietary restriction model (intermittent fasting/every other day feeding). For each PAAI, 
we generated a young as well as an old cohort of experimental animals and controls, all of 
which were analyzed concurrently in one single study (i.e., using a cross-sectional study 
design). If not stated otherwise, we performed multi-dimensional phenotypic analyses in 
cohorts of young (~3 months old) and aged (~20 months old) control as well as experimental 
animals for each PAAI. For each phenotype in each of these studies, we determined age 
effects, intervention effects and intervention × age interactions based on the data derived from 
young and old control as well as experimental animals. These analyses revealed that some 
ASPs were influenced (countered or accentuated) by the PAAIs, others not. For ASPs 
countered by PAAIs, we considered the following scenarios: PAAIs could influence ASPs in a 
way consistent with slowing the rate of age-dependent change in ASPs (rate effect), via age-
independent effects on ASPs (baseline effect) or via a combination of rate and baseline 
effects. To address what the age at first detectable change is for each ASP influenced by an 
intervention, we intersected data on ASPs from these intervention studies (see panel b) with 
data from our baseline study (see panel a). We compared effect sizes to examine for each 
ASP individually whether PAAI effects differed measurably between young and old mice. In 
addition, we used dimensionality reduction approaches as well as intraclass correlation 
analyses of intervention effect sizes in young and old animals to determine whether PAAIs 
overall act on ASPs primarily in a way consistent with slowing their rate of age-dependent 
change (left panels; in this case, one would expect PAAI effects in the old but not in the young 
animals), via age-independent effects (right panels; under this scenario, one would expect 
similar PAAI effects in young and old animals) or via a combination of rate and baseline effects 
(middle panels; under this scenario, one would expect PAAI effects in young and old mice, 
however, with larger effects in old than in young animals). For further details on our analytical 
approach, see Extended Data Figure 1.  
  
Figure 2: Multidimensional analyses of age-dependent phenotypic change in C57BL/6J 
mice. a–f, Deep phenotyping results in wildtype C57BL/6J mice. a, Schematic illustration of 
deep phenotyping study design (number of mice per group: 3-month, n=15; 5-month, n=14; 8-
month, n=15; 14-month, n=14; 20-month, n=15; 26-month, n=14). b, Relative proportion of 
age-sensitive phenotypes among all phenotypes examined. c,d, Age at first detectable change 
(c) and age at full manifestation (d) of age-sensitive phenotypes (ASPs) shown as proportion 
of all ASPs. e, Representative examples of ASPs with various ages at first detectable 
phenotypic change (number of mice per group: acoustic startle amplitude at 110 dB, n≧13; 
CD4+CD62L+ T cells % of CD4+ T cells, n=5; duration of the QRS interval measured by 
electrocardiography, n≧11; total distance traveled in the open field test, n≧14; platelet large 
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cell ratio, n≧10; fat mass as measured by nuclear magnetic resonance, n≧13; plasma glycerol 
concentration, n≧13; for full information, see Supplementary Data 1). f, Principal component 
analysis of deep phenotyping data. g–j, Summary of RNA-seq data. g, Schematic illustration 
of RNA-seq study design (number of mice per group: 3-month, n=7; 5-month, n=9; 8-month, 
n=8; 14-month, n=9; 20-month, n=7; 26-month, n=5). h,i, Venn diagram shows, for brain (h; 
number of mice per group: n≧5) and spleen (i; number of mice per group: n≧5), the number 
of differentially expressed genes (FDR<0.05) relative to the 3-month old reference group 
together with the intersection of the corresponding gene sets. j, Ingenuity Pathway Analysis 
shows top canonical pathways, diseases and biological functions as well as predicted 
upstream regulators of genes differentially expressed in spleen relative to the 3-month old 
group. Positive z-scores (in orange) indicate activating effects, while negative z-scores (in 
blue) indicate inhibitory effects on corresponding processes. Pathway analyses of brain data 
are shown in Extended Data Fig. 3. k–n, Summary of molecular analyses designed to study 
putative driver mechanisms of aging in spleen, lung and brain. k, Schematic illustration of 
study design (for sample size information, see Supplementary Data 5). l, Proportion of age-
sensitive molecular parameters obtained in individual tissue types. m, Proportion of the 
different age-at-first-detectable-change categories among all age-sensitive molecular markers 
in individual tissue types. n, Representative examples of molecular markers covering the 
different hallmarks of aging (number of mice per group: Cox1 abundance in lung, n=8; 
Cdkn2a/p16ink4a expression in lung, n=6; RpS6 abundance in spleen, n≧3; L1 5’UTR 
abundance in spleen, n≧5; Hsp70 abundance in brain, n=4; Sod2 abundance in spleen, n≧3; 
Ccnd2 expression in lung, n=12; for full information, see Supplementary Data 5). Line plots 
(e,n) show means +/- S.D. (individual data points are superimposed; we did not use jittering 
to separate data points with identical values). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 
relative to 3-month young adult reference group. 
  
Figure 3: ‘Anti-aging’ effects induced by the Ghrhrlit/lit mutation manifested mostly in 
young mice (prior to detectable age-dependent phenotypic changes). a–i, Deep 
phenotyping results in Ghrhrlit/lit mice. a, Schematic illustration of deep phenotyping study 
design (number of mice per group: young WT, n=30; young Ghrhrlit/lit, n=20; old WT, n=29; old 
Ghrhrlit/lit, n=30). b, Principal component analysis of deep phenotyping data. c, Top middle 
panel: Venn diagram shows the number of age-sensitive phenotypes, genotype-sensitive 
phenotypes, phenotypes with a genotype × age interaction and their intersection. c, Bottom 
middle panel: Sunburst chart shows the number of age-sensitive phenotypes either unaltered 
(in grey), counteracted (in green) or accentuated (in magenta) by the Ghrhrlit/lit mutation. For 
age-sensitive phenotypes counteracted by the Ghrhrlit/lit mutation, the inner ring shows the 
proportion of phenotypes with a main effect of genotype (in dark green), a genotype × age 
interaction (in violet) or both a main effect and an interaction (in yellow). The outer ring shows 
when changes in the corresponding ASPs were first detected based on data available from 
our baseline study. Line charts (top left/right and bottom left/right panels) show representative 
examples of phenotypes influenced by age and/or intervention in the different possible ways 
(number of mice per group: duration of the RR interval measured during electrocardiography, 
n≧20; total distance traveled in the open field test, n≧20; latency to first response in the hot 
plate test, n≧20; corrected mass of the left ventricle as measured by echocardiography, 
n≧20). Data were transformed to z-scores (normalized to the young WT group) and are plotted 
as mean +/- S.D. for each group (individual data points are superimposed). *p<0.05, **p<0.01, 
***p<0.001 relative to age-matched wildtype littermate controls. Life-time trajectories of the 
corresponding phenotypes are shown by the grey-shaded area in the background (upper 
bound: mean + S.D.; lower bound: mean – S.D.) which represent the measurements obtained 
in 3-, 5-, 8-, 14-, 20- as well as 26-month old C57BL/6J wildtype mice (values standardized to 
the 3-month old reference group). d,e, Scatter plot shows the effect size of Ghrhrlit/lit genotype 
in old mice (d) or young mice (e) plotted vs.  the effect size of age (20 months vs. 3 months; 
data from baseline study shown in Fig. 2 to ensure independence of measures used in 
correlation analysis) for all ASPs (all data points) and those intersecting with genotype (via a 
genotype main effect and/or interaction; in yellow).  f–i, Scatter plots show the effect size of 
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Ghrhrlit/lit genotype in young mice plotted vs. the effect size of Ghrhrlit/lit genotype in old mice 
for different sets of phenotypes: g, ASPs ameliorated by genotype via a main effect and/or an 
interaction (i.e., corresponding to the central green section of the sunburst chart in c); green 
dots denote phenotypes in which genotype effects in young and old mice did not differ 
significantly; orange denotes phenotypes in which anti-aging effects of genotype were 
significantly larger in old mice than in young mice; red denotes phenotypes in which anti-aging 
effects of genotype were significantly larger in young mice than in old mice. h, ASPs 
accentuated by genotype. i, Phenotypes featuring a main effect of Ghrhrlit/lit genotype and/or 
a genotype × age interaction but not a main effect of age; blue dots denote phenotypes in 
which the genotype effect did not differ significantly between young and old mice. Yellow 
denotes phenotypes in which the genotype effect size differed significantly between young 
and old mice. f, all phenotypes shown in g-i collapsed into one panel. ICC = intraclass 
correlation. For further details, see Supplementary Data 6. j–m, Phenotyping results in a 
large deep-(endo)phenotyped human cohort. j, change in phenotype (in standard deviations 
(SD) from the mean) associated with GHRHR eQTL dosage with the horizontal whiskers 
indicating the 95% confidence intervals of the mean effect estimate; * denotes p<0.05 for the 
linear association between GHRHR eQTL dosage and (endo)phenotype. k–m, Change of 
platelet count (k), total cholesterol (l) and LDL-cholesterol (m) associated with GHRHR eQTL 
dosage in 30 – 49 years old (red line), 50 – 69 years old (green line) and 70 – 95 years old 
humans (blue line); the lines represent the best-fit least squares regression lines with 
surrounding 95% confidence intervals of the mean indicated in grey. The eQTL dosage was 
coded as GG=0, AG=1, and AA=2 (GG is associated with lowest expression levels, AA with 
highest; see Extended Data Fig. 8a). 
 
Figure 4: A hypomorphic mTOR mutant allele attenuated ASPs via a mixture of age-
independent effects and effects that were more pronounced in old mice. a–i, Deep 
phenotyping results in mTORKI/KI mice. a, Schematic illustration of deep phenotyping study 
design (number of mice: young WT, n=27; young mTORKI/KI, n=21; old WT, n=26; old 
mTORKI/KI, n=19). b, Principal component analysis of deep phenotyping data. c, Top middle 
panel: Venn diagram shows the number of age-sensitive phenotypes, genotype-sensitive 
phenotypes, phenotypes with a genotype × age interaction and their intersection. c, Bottom 
middle panel: Sunburst chart shows the number of age-sensitive phenotypes either unaltered 
(in grey), counteracted (in green) or accentuated (in magenta) by the mTORKI/KI mutation. For 
age-sensitive phenotypes counteracted by the mTORKI/KI mutation, the inner ring shows the 
proportion of phenotypes with a main effect of genotype (in dark green), a genotype × age 
interaction (in violet) or both a main effect and an interaction (in yellow). The outer ring shows 
when changes in the corresponding ASPs were first detected based on data available from 
our baseline study. Line charts (top left/right and bottom left/right panels) show representative 
examples of phenotypes influenced by age and/or intervention in the different possible ways 
(number of mice per group: red blood cell distribution width, n≧14; NK cells % of all leukocytes, 
n≧8; CD44++CD8+ T cells % of CD8+ T cells, n≧8; free body fluid as measured by nuclear 
magnetic resonance, n≧15). Data were transformed to z-scores (normalized to the young WT 
group) and are plotted as mean +/- S.D. for each group (individual data points are 
superimposed). *p<0.05, **p<0.01, ***p<0.001 relative to age-matched wildtype littermate 
controls. Life-time trajectories of the corresponding phenotypes are shown by the grey-shaded 
area in the background (upper bound: mean + S.D.; lower bound: mean – S.D.) which 
represent the measurements obtained in 3-, 5-, 8-, 14-, 20- as well as 26-month old C57BL/6J 
wildtype mice (values standardized to the 3-month old reference group). d,e, Scatter plot 
shows the effect size of mTORKI/KI genotype in old mice (d) or young mice (e) plotted vs. the 
effect size of age (20 months vs. 3 months; data from baseline study shown in Fig. 2 to ensure 
independence of measures used in correlation analysis) for all ASPs (all data points) and 
those intersecting with genotype (via a genotype main effect and/or interaction; in yellow). f–
i, Scatter plots show the effect size of mTORKI/KI genotype in young mice plotted vs. the effect 
size of mTORKI/KI genotype in old mice for different sets of phenotypes: g, ASPs countered by 
genotype via a main effect and/or an interaction (i.e., corresponding to the central green 
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section of the sunburst chart in c); green dots denote phenotypes in which genotype effects 
in young and old mice did not differ significantly; orange denotes phenotypes in which anti-
aging effects of genotype were significantly larger in old mice than in young mice; red denotes 
phenotypes in which anti-aging effects of genotype were significantly larger in young mice 
than in old mice. h, ASPs accentuated by genotype. i, Phenotypes featuring a main effect of 
mTORKI/KI genotype and/or a genotype × age interaction but not a main effect of age; blue dots 
denote phenotypes in which the genotype effect did not differ significantly between young and 
old mice. Yellow denotes phenotypes in which the genotype effect size differed significantly 
between young and old mice. f, all phenotypes shown in g-i collapsed into one panel. ICC = 
intraclass correlation. For further details, see Supplementary Data 7. j–o, Phenotyping 
results in humans. j, Change in phenotype associated with MTOR eQTL dosage in a large 
deep-(endo)phenotyped human cohort, with the horizontal whiskers indicating the 95% 
confidence intervals of the mean effect estimate; * denotes p<0.05 for the linear association 
between MTOR eQTL dosage and (endo)phenotype. k–o, Change of body fat (k), percentage 
of body fat (l), body weight (m), plasma creatine concentration (n) and metabolic equivalent 
hours (o) associated with MTOR eQTL dosage in 30 – 49 years old (red line), 50 – 69 years 
old (green line) and 70 – 95 years old humans (blue line); the lines represent the best-fit least 
squares regression lines with surrounding 95% confidence intervals of the mean indicated in 
grey. The eQTL dosage was coded as GG=0, CG=1, and CC=2 (GG is associated with lowest 
expression levels, CC with highest; see Extended Data Fig. 8b). 
  
Figure 5: ‘Anti-aging’ effects induced by intermittent fasting (IF) often manifest in young 
mice (prior to detectable age-dependent phenotypic changes). a, Schematic illustration 
of deep phenotyping study design (number of mice: young AL, n=16; young IF, n=16; old AL, 
n=23; old IF, n=23). Intermittent fasting was initiated at 8 weeks of age and was continued 
throughout the study. b, Principal component analysis of deep phenotyping data. c, Top 
middle panel: Venn diagram shows the number of age-sensitive phenotypes, diet-sensitive 
phenotypes, phenotypes with a diet × age interaction and their intersection. c, Bottom middle 
panel: Sunburst chart shows the number of age-sensitive phenotypes either unaltered (in 
grey), counteracted (in green) or accentuated (in magenta) by IF. For age-sensitive 
phenotypes counteracted by IF, the inner ring shows the proportion of phenotypes with a main 
effect of diet (in dark green), a diet × age interaction (in violet) or both a main effect and an 
interaction (in yellow). The outer ring shows when changes in the corresponding ASPs were 
first detected based on data available from our baseline study. Line charts (top left/right and 
bottom left/right panels) show representative examples of phenotypes influenced by age 
and/or intervention in the different possible ways (number of mice per group: latency to fall in 
the rotarod task, n≧16; duration of the QRS interval measured by electrocardiography, n≧16; 
locomotor activity during the SHIRPA test, n≧16; average respiratory exchange ratio 
determined by indirect calorimetry, n=16). Data were transformed to z-scores (normalized to 
the young WT group) and are plotted as mean +/- S.D. for each group (individual data points 
are superimposed). *p<0.05, **p<0.01, ***p<0.001 relative to age-matched wildtype littermate 
controls. Life-time trajectories of the corresponding phenotypes are shown by the grey-shaded 
area in the background (upper bound: mean + S.D.; lower bound: mean – S.D.) which 
represent the measurements obtained in 3-, 5-, 8-, 14-, 20- as well as 26-month old C57BL/6J 
wildtype mice (values standardized to the 3-month old reference group). d,e, Scatter plot 
shows the effect size of IF in old mice (d) or young mice (e) plotted vs. the effect size of age 
(20 months vs. 3 months; data from baseline study shown in Fig. 2 to ensure independence 
of measures used in correlation analysis) for all ASPs (all data points) and those intersecting 
with diet (via a diet main effect and/or interaction; in yellow). f–i, Scatter plots show the effect 
size of IF in young mice plotted vs. the effect size of IF in old mice for different sets of 
phenotypes: g, ASPs counteracted by IF via a main effect and/or an interaction (i.e., 
corresponding to the central green section of the sunburst chart in c); green dots denote 
phenotypes in which IF effects in young and old mice did not differ significantly; orange 
denotes phenotypes in which anti-aging effects of IF were significantly larger in old mice than 
in young mice; red denotes phenotypes in which anti-aging effects of IF were significantly 
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larger in young mice than in old mice. h, ASPs accentuated by IF. i, Phenotypes featuring a 
main effect of diet and/or a diet × age interaction but not a main effect of age; blue dots denote 
phenotypes in which the diet effect did not differ significantly between young and old mice. 
Yellow denotes phenotypes in which the diet effect size differed significantly between young 
and old mice. f, all phenotypes shown in g-i collapsed into one panel. ICC = intraclass 
correlation. For further details, see Supplementary Data 9.  
  
Figure 6: ‘Anti-aging’ effects were frequently age-independent in nature. The schematic 
illustrates major scenarios by which PAAIs could influence aging phenotypes. First, 
interventions could have no measurable effect on a set of phenotypes or even accentuate 
age-dependent phenotypic change. ASPs countered by an intervention could be influenced in 
ways consistent with a targeting of the mechanisms underlying age-dependent phenotypic 
change: In this case, PAAI effects should become apparent only after the onset of aging-
associated phenotypic change, but not at younger ages (rate effect). PAAI effects at a young 
age (prior to the age when age-dependent phenotypic change becomes first detectable) 
indicate that it is not the age-dependent change that is being targeted (baseline effect). 
Although our studies revealed examples of both rate and baseline effects, many ‘anti-aging’ 
effects fell into the latter category (age-independent effects that do not provide evidence for a 
slowed aging pace). Ignoring this distinction would lead to a substantial overestimation of the 
extent by which PAAIs slow the aging process. 
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Material and methods 
 
  
Mice, age-sensitive parameters and interventions 
We used wild-type C57BL/6J mice to determine the trajectories of ASPs in mice. All the 
analyses described in the paper were restricted to male mice only. Animals for the 
quantification of ASP trajectories were assessed at 3, 5, 8, 14, 20 and 26 months of age: We 
had one cohort of mice for all deep phenotyping as well as RNA-seq analyses (data shown in 
Supplementary Data 1-4) and a separate cohort from which we harvested tissues for the 
molecular analyses presented in Supplementary Data 5. Three major longevity mouse lines 
were included in our analysis to address to what extent the corresponding interventions may 
or may not delay aging trajectories: These featured either a loss-of-function mutation in the 
Ghrhr gene (Ghrhrlit mutation), were engineered to carry a hypomorphic mTOR mutant allele 
or were subjected to almost lifelong intermittent fasting. Ghrhrlit mutants 28,29, also known as 
B6-little, were obtained from the Jackson Laboratory (stock no. 000533) (data summarized in 
Supplementary Data 6 and 10). Founder animals of the hypomorphic mTOR mouse line 25, 
bearing a knock-in sequence replacing exon 12 within the murine mTOR gene, were kindly 
provided by Dr. Wendy DuBois (Laboratory of Cancer Biology and Genetics, Center for Cancer 
Research, National Cancer Institute, Bethesda, MD, US) (data summarized in 
Supplementary Data 7, 8 and 11). After arrival at our facility, mice carrying the hypomorphic 
mTOR allele were crossed with wild-type C57BL/6J mice for five generations prior to use of 
the mice in the current analyses. The intermittent fasting (IF) cohort has been previously 
described and was generated using an every-other-day feeding paradigm in group-housed 
male wild-type C57BL/6J mice 10 (current analysis summarized in Supplementary Data 9 and 
12). In brief, intermittent fasting (IF) animals were subjected to alternating 24h-cycles of free 
access to food (Altromin 1314 standard rodent chow) and complete food deprivation, starting 
at the age of 8 weeks and continued throughout life of the animals. The Altromin 1314 chow 
came in solid pellets. Pilot experiments showed that mice did not crumble these pellets. 
Accordingly, removing the pellets on the restriction days was sufficient to fully deprive the 
animals of food (no cage change required). IF mice were compared to controls with ad libitum 
(AL) access to food throughout the course of the study. To evaluate whether these 
interventions’ effects on ASPs are primarily due to either altering the rate of age-dependent 
change in ASPs or due to age-independent effects on ASPs, we analyzed aged mutant/fasted 
animals/wildtype littermate controls (if not stated otherwise, ~20 months old at the 
commencement of the deep phenotyping analysis) side-by-side with young mutant/fasted 
mice/wildtype littermate controls (~3 months old at the commencement of the deep 
phenotyping analysis). 
  
Our deep phenotyping approach covered a wide range of analyses, including assessments of 
anatomical, physiological, metabolic, neuropsychiatric, cardiovascular, immunological, 
sensory, molecular, cellular and histopathological parameters. The following analyses were 
carried out in the order listed and were completed within a period of 11 weeks, if not stated 
otherwise 81,82: modified SHIRPA (week 1), open field (week 1), grip strength (week 1), rotarod 
(week 2), acoustic startle response and pre-pulse inhibition (week 2), clinical chemistry after 
fasting (week 3), hot plate test (week 4), body surface temperature (week 4), transepidermal 
water loss (week 4), indirect calorimetry (week 5), body composition analysis (week 5), 
glucose tolerance test (week 6), electrocardiography (week 7), echocardiography (week 7), 
Scheimpflug imaging (week 8), optical coherence tomography (week 8), laser interference 
biometry (week 8), virtual drum vision test (week 8), auditory brain stem response (week 9), 
bone densitometry (week 9), clinical chemistry (week 11), hematology (week 11), FACS-based 
analysis of blood leukocyte populations (week 11), immunoglobulins and plasma biomarkers 
(week 11), lymphocyte proliferation assay (week 11) and pathology (week 11). In general, 
animals, within their home cage, were allowed to habituate to the test room for a period of at 
least 15 min prior to the start of experimental procedures, if not stated otherwise. In all cases, 
experiments were carried out according to the IMPReSS (International Mouse Phenotyping 
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Resource of Standardised Screens) workflow in compliance with the International Mouse 
Phenotyping Consortium (IMPC) (https://www.mousephenotype.org/) and the metadata was 
recorded. Analyses and procedures were always balanced across experimental groups. The 
number of animals examined depended on the specific experiment and assay used and is 
indicated in the data provided (for details, see Supplementary Data 1, 5-7, 9). Of note, 
assessments in IF mice were performed after a feeding day to avoid measuring acute hunger 
effects. 
  
All mice were housed in individually ventilated cages (IVC) under specific pathogen-free 
conditions (according to FELASA guidelines) in groups of 2-5 mice. All mice were fed with 
Altromin 1314 standard rodent chow (composition: 5.1% fat (equivalent to 14% of total 
metabolizable energy), 22.5% protein (equivalent to 27% of total metabolizable energy) and 
40.4% carbohydrates (equivalent to 59% of total metabolizable energy)). Husbandry 
conditions included a constant temperature of 22 °C, a 12h:12h light/dark cycle as well as ad 
libitum access to food (except for IF animals as described above) and water. Local and federal 
regulations regarding animal welfare were followed. In accordance with the German Animal 
Welfare Act, the present study was approved by the “Landesamt für Natur, Umwelt und 
Verbraucherschutz Nordrhein-Westfalen” (Recklinghausen, Germany) as well as the 
“Regierung von Oberbayern” (Munich, Germany). 
  
Modified SHIRPA 
The modified SHIRPA protocol was designed as a rapid semi-quantitative screen to detect 
phenotypic anomalies in mice 83. Our SHIRPA test battery started with the inspection-based 
assessment of the animals’ general appearance as well as their undisturbed behavior as 
observed in a transparent glass cylinder (11 cm in diameter). Mice were then transferred to a 
transparent Perspex box (420 mm x 260 mm x 180 mm), marked with a grid on the floor, for 
an assessment of general neurological status. A set of 17 tests were performed including 
assessments of the acoustic startle reflex, biting behavior, body position, contact righting 
reflex, defecation, gait, head bobbing, limb grasping, locomotor activity, pinna reflex, tail 
elevation, touch escape, transfer arousal, tremor, trunk curl, urination and vocalization. 
  
Open field 
To measure general locomotor activity in a novel environment, we subjected animals to an 
open field assay using a transparent and infrared light-permeable acrylic test box (45.5 cm x 
45.5 cm x 39 cm inner dimensions) equipped with evenly spaced infrared light beams along 
the x- and y-axis and a rearing indicator covering the z-axis (ActiMot, TSE, Bad Homburg, 
Germany). Illumination in the center of the test box was set to ~200 lux; light intensity in the 
corners was ~150 lux. Animals were transferred to an area immediately adjacent to the test 
room where they were left undisturbed for a period of 30 min prior to commencement of open 
field analysis. In the open field assay, mice were allowed to freely explore the novel 
environment (the open field box) for 20 min. Our analysis included the following parameters: 
distance traveled within the first 5 min, total distance traveled, number of rearings within the 
first 5 min, total number of rearings, percentage of distance traveled in the center of the box 
within the first 5 min, percentage of total distance traveled in the center of the box, percentage 
of the first 5 min spent in the center of the box, percentage of total time spent in the center of 
the box, average velocity. 
  
Grip strength 
Grip strength was measured using a grip strength meter system (Bioseb, Pinellas Park, FL, 
US). The animal, held by its tail, was allowed to grab a metal grid with either two or four paws 
and was then pulled back horizontally. The maximum force applied to the grid, just prior to the 
animal losing grip, was recorded as the peak tension by a force sensor. Three trials were given 
to each mouse over the course of 1 min. Two-paw/four-paw grip strength was calculated by 
averaging the animals’ performance over three consecutive trials. 
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Rotarod 
Motor coordination and balance were evaluated on an accelerating rotarod (Bioseb, Pinellas 
Park, FL, US) 84. After the mouse was placed on the apparatus, the rod was subjected to linear 
acceleration from 4 to 40 rpm over the course of the 5 min test period. The trial was terminated 
once the animal fell off the rod, displayed passive cycling or the 5 min time period had elapsed, 
whichever came first. Latency to fall was averaged across three trials given to each mouse 
with inter-trial intervals of 15 min. 
  
Acoustic startle response and pre-pulse inhibition 
Acoustic startle reflex and pre-pulse inhibition were assessed using a startle apparatus (Med 
Associates, Fairfax, VT, US) equipped with four identical sound attenuating chambers (inner 
dimensions: 55.88 cm x 34.29 cm x 36.83 cm). Animals were left undisturbed in an area 
adjacent to the testing room for 30 min prior to the start of the experiment. Next, each mouse 
was habituated to the test compartment (a mouse restrainer) over a period of 5 min. 
Background noise was set to 65 dB. Bursts of white noise (40 ms in duration) were used as 
startle pulses. The protocol applied began with a 5 min acclimation period succeeded by five 
leader startle pulses at 110 dB that were excluded from analysis. Trial types for pre-pulse 
inhibition included four different pre-pulse intensities (67, 69, 73 and 81 dB) and generally 
preceded the startle pulse (110 dB) by 50 ms. Each trial type was presented 10 times in 
random order, organized in 10 blocks, each trial type occurring once per block. 
  
Hot plate test 
The hot plate test was carried out using an Analgesia Meter Hot Plate apparatus (TSE, Bad 
Homburg, Germany). In brief, the animal was placed on a metal surface maintained at 52 ± 
0.2 °C which was surrounded by a cylindric plexiglas restrainer (20 cm high, 18 cm diameter) 
in order to restrict movement of the animal. The trial was terminated once we observed one of 
three typical indications of pain (hind paw licking, hind paw shake/flutter or jumping); the 
mouse was then immediately removed from the metal plate. Latencies and response type 
(hind paw licking, hind paw shake/flutter or jumping) were recorded. The maximum duration 
of this test was limited to 30 s in order to avoid tissue damage. 
  
Body surface temperature 
Body surface temperature was assessed using infrared thermovision. Specifically, we 
determined maximal, average and minimal body surface temperature using a FLIR A655sc 
camera system (FLIR Systems, Wilsonville, OR, US). 
  
Transepidermal water loss 
Transepidermal water loss via diffusion or evaporation was assessed non-invasively with an 
AquaFlux AF200 evaporimeter (Biox Systems, London, UK). To quantify the amount of 
transepidermal water loss, the probe was placed on the skin of the mouse for a period of 60 – 
90 s. 
  
Indirect calorimetry 
Metabolic turnover was analyzed via indirect calorimetry. Mice were single-housed in 
individually ventilated metabolic cages (Phenomaster, TSE, Bad Homburg, Germany) at 23 
°C and were maintained on a 12h:12h light dark cycle (lights on at 6 am, light off at 6 pm). 
Metabolic cages were constantly supplied with fresh air and changes in O2 and CO2 levels 
were recorded by high precision sensors in every cage. Additionally, locomotion and rearing 
activity were detected by infrared sensors surrounding the cages. Animals were habituated to 
the metabolic cages for a period of 2 hours prior to starting measurements. Recordings were 
generally carried out over a period of 24 hours, except for the study of IF mice in which we 
measured for 47 hours to accommodate metabolic analyses during both feeding and fasting 
days. All mice were granted free access to food and water with the exception of IF mice which 
were only fed during the first 24 hours. Relevant parameters determined by indirect calorimetry 
included minimal O2 consumption, average O2 consumption, maximal O2 consumption, 
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minimal respiratory exchange rate (RER, computed as volume of CO2 generated 
(VCO2)/volume of O2 consumed (VO2)), average RER, maximal RER, ΔRER (maximal RER – 
minimal RER), minimal heat production (calculated using the formula: heat production (mW) 
= (4.44 + 1.43 x RER) x VO2 (ml/h)), average heat production, maximal heat production, 
cumulative food intake, cumulative water consumption, total distance traveled, cumulative 
number of rearings and cumulative number of fine movements. In addition, body weight was 
measured at the beginning and at the end of the metabolic assessments. 
  
Body composition analysis 
Time Domain Nuclear Magnetic Resonance (TD-NMR)-based body composition analysis was 
carried out by placing animals into a Minispec Whole Body Composition Analyzer (Bruker, 
Billerica, MA, US). Measures of interest were lean mass, fat mass, and total amount of free 
body fluid. 
  
Glucose tolerance test 
We carried out an intraperitoneal glucose tolerance test (IpGTT) subsequent to six hours of 
food deprivation. Body weight was recorded before and after the fasting period. The tip of the 
tail was scored and a small drop of blood was used to determine the base glucose level via 
an Accu-Chek Aviva glucose analyzer (Roche, Basel, Switzerland). After 2 g glucose per kg 
body weight was injected intraperitoneally, blood glucose levels were sequentially measured 
at four additional time points (15, 30, 60 and 120 min after injection). 
  
Electrocardiography 
Non-invasive electrocardiographs (ECG) were recorded using ECGenie (Mouse Specifics, 
Framingham, MA, US) in conscious animals 85 in order to avoid effects of anaesthesia on 
cardiac function 86. Cardiac electrical activity was measured through the paws of the animal 
staying on a shielded acquisition platform. Intervals and amplitude from at least 15 consecutive 
ECGs were averaged. Heart rate was calculated from peak detections. P, Q, R, S and T waves 
were analyzed such that unfiltered noise or motion artifacts were excluded. The corrected QT 
interval (QTc) was calculated by dividing the QT interval by the square root of the preceding 
RR interval. QT dispersion represents inter-lead variability between QT intervals. QTc 
dispersion was calculated as the rate QTc dispersion.  Relevant parameters included were: 
duration of the P wave, PR interval, QRS interval, QT interval, QT dispersion, QTc, QTc 
dispersion and RR interval. 
  
Echocardiography 
We performed transthoracic echocardiography in awake animals using the Vevo 2100 Imaging 
System (Visual Sonics, Toronto, Canada) equipped with a 30 MHz transducer. Anatomic 
structure and cardiac function of the left ventricle were analyzed by dual mode imaging. 
Specifically, left ventricular parasternal short- and long-axis views were imaged in B-mode and 
left ventricular parasternal short-axis imaging was performed in M-mode at the papillary 
muscle level. Short-axis M-mode images derived from three consecutive heart beats were 
used to measure the following anatomic parameters: left ventricular end-diastolic internal 
diameter (LVIDd), left ventricular end-systolic internal diameter (LVIDs), diastolic septal wall 
thickness (IVSd), systolic septal wall thickness (IVSs), thickness of the left ventricle posterior 
wall during diastole (LVPWd) and thickness of the left ventricle posterior wall during systole 
(LVPWs). Corrected mass of the left ventricle (LV mass corr) was computed as LV mass corr 
= 0.8 x (1.053 x ((LVIDd + LVPWd + IVSd)3 – LVIDd3)). Additionally, we determined ejection 
fraction (ES), fractional shortening (FS) as well as stroke volume (SV). EF was calculated as 
EF% = 100 x ((LVvolD – LVvolS)/LVvolD) with LVvol = ((7.0/(2.4 + LVID) x (LVID3). The 
formula FS% = ((LVIDd – LVIDs/LVIDd) x 100 was used to calculate FS. The difference 
between the end-diastolic and the end-systolic blood volumes during one heartbeat was 
defined as SV. We also measured heart and respiration rates during echocardiographic 
assessment. 
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Scheimpflug imaging 
Optical density and morphology of lens as well as cornea were assessed in a contact-free 
manner using the Pentacam system (Oculus, Wetzlar, Germany). For the acquisition phase, 
the mouse was placed on a platform in front of the apparatus and the eye was positioned 
towards a vertical light source (LEDs, 475 nm). The distance between eye and the Pentacam 
device was adjusted automatically by the software to gain optimal focus. 
  
Optical coherence tomography 
The posterior segment of the eye, including retina and fundus, were evaluated in 
anaesthetized mice using a Spectralis OCT device (Heidelberg Engineering, Heidelberg, 
Germany). After 1% atropine was administered to widen the pupils, a small amount of 
Methocel 2% (OmniVision, Puchheim, Germany) was used to carefully place a contact lens of 
10 mm focal length (Roland Consult, Brandenburg an der Havel, Germany) onto the eye. For 
measurements, the animal was placed on an elevated platform in order to optimally position 
the eye in front of the transducer of the recording unit. Images were taken as described 
previously 87. We measured thickness and morphology of the retina, as well as morphology of 
the optical disk, fundus pigmentation and the number of main blood vessels. 
  
Laser interference biometry 
Eye size measurements were performed using the AC Master system (Carl Zeiss Meditec, 
Jena, Germany). Briefly, anaesthetized mice were placed on a platform. Proper positioning of 
the animals was supported by light signals from six infrared LEDs arranged in a circle that 
must be placed in the center of the pupil. Eyes were treated with 1% atropine to ensure pupil 
dilation. Central measurements of axial eye length were performed as described elsewhere 
88. 
  
Virtual drum vision test 
Visual acuity was tested using OptoMotry, a virtual optomotor system (Cerebral Mechanics, 
Westchester County, New York, US) as described previously 89. Prior to the start of the 
assessments, animals were placed on an elevated platform surrounded by four computer 
monitors. Animals were then allowed to track a virtual rotating cylinder comprised of a sine 
wave grating and their movements were recorded by an overhead camera. A lack of 
compensatory head and neck movements countering the motion of the sine wave grating 
indicates an inability to discern the displayed visual pattern. Rotation speed and contrast of 
this test was set to 12 d/s and 100%, respectively. 
  
Auditory brain stem response 
Non-invasive assessments of hearing sensitivity were performed using an auditory brain stem 
response (ABR) test (Industrial Acoustics Company, North Aurora, IL, US). After 
anaesthetizing the animals via i.p. injection of a ketamine/xylazin mixture, mice were placed 
on a heated blanket (37-38 °C) and were then transferred to the acoustic chamber. 
Subsequently, three electrodes were placed subcutaneously (COM-electrode behind the right 
ear, G1-electrode on top of the skull and G2-electrode underneath the left ear). Auditory brain 
stem responses were induced using different acoustic stimuli, including clicks of 0.01 ms 
duration and beeps of a given frequency (6, 12, 18, 24 and 30 kHz; 5 ms duration, 1 ms rise/fall 
time). Hearing threshold levels for the respective stimuli were determined by gradually 
elevating sound intensity from 5 to 85 dB SPL in 5 dB steps. 
  
Bone densitometry 
Bone densitometry was performed non-invasively using either dual-energy X-ray 
absorptiometry (DXA) or micro-CT imaging in anesthetized animals. DXA analyses were 
performed using an UltraFocus DXA system (Faxitron Bioptics, LLC). Relevant parameters 
examined included bone area, bone mineral content, bone mineral density and volumetric 
bone mineral density of the whole animal excluding the skull. Micro-CT analysis of tibiae of IF 
mice and their controls was processed using a SkyScan 1172 micro-CT scanner (Bruker, 
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Billerica, MA, US). A resolution of 7.88 µm pixel was achieved at 80 kV voltage, 100 mM 
current and using a 0.5 mm aluminum filter. Images acquired from cross-sectional slices of 
the distal tibia (197 µm from 25 slices halfway between the tibia-fibula junction and the distal 
end of the tibia) were reconstructed by the SkyScan volumetric NRecon reconstruction 
software (Bruker, Billerica, MA, US) and further analysis was performed using the CT Analyser 
software (CTAn, v.1.15) (Bruker, Billerica, MA, US). Relevant parameters were: total tissue 
area, bone area, marrow area, cortical thickness and polar moment of inertia. 
  
Blood sampling 
For blood sample collection, the animals’ retrobulbar sinus was punctured using non-
heparinized glass capillaries (1 mm diameter) after inducing anesthesia with isoflurane. To 
assess metabolic parameters in the fasted state, blood specimens were collected in 
heparinized tubes from animals after an overnight 16-hour food withdrawal. Blood collected 
from animals in the fed state were distributed into three portions. While the larger fraction was 
collected in heparinized tubes, we also collected two portions in EDTA-coated tubes. To 
ensure homogeneous distribution of the anticoagulant, tubes were inverted five times after 
blood collection. Samples were then stored at room temperature for 1-2 h. Next, heparinized 
tubes were centrifuged for 10 min at 4 °C and 4200 g to pellet the blood cells for the collection 
of plasma. Plasma from the heparinized blood samples were used in part for the 
immunoglobulin and plasma biomarker measurements. Another fraction was used for clinical 
chemistry-based measures in the fasted and fed state. Hematological analyses were 
performed using one portion of EDTA blood samples derived from animals in the fed state. 
Another portion of EDTA blood samples was used for FACS-based quantification of leukocyte 
populations. 
  
Clinical chemistry 
Assessments of clinical chemistry parameters were performed using an AU480 Automated 
Chemistry Analyzer (Beckman Coulter, Brea, CA, US) and specific kits for free fatty acids 
(Wako Chemicals, Neuss, Germany), glycerol (Randox Laboratories, Crumlin, UK) as well as 
all other parameters covered by the present study (Beckman Coulter, Brea, CA, US) 90. A set 
of 21 parameters consisting of specific metabolite levels, electrolyte concentrations and 
enzyme activities was measured in fed mice: albumin, α-amylase, alkaline phosphatase (AP), 
aspartate-aminotransferase (ASAT/GOT), alanine-aminotransferase (ALAT/GPT), calcium, 
cholesterol, chloride, creatinine, fructosamine, glucose, iron, lactate, lactate dehydrogenase 
(LDH), phosphate, potassium, sodium, total protein, triglycerides, urea and unsaturated iron-
binding capacity. In addition, a selection of parameters (cholesterol, glucose, glycerol, HDL-
cholesterol, non-esterified fatty acids (NEFA), non-HDL cholesterol and triglycerides) was 
measured in fasted animals after 4 (Ghrhr study), 6 (IF study) or 16-18 hours (mTOR study, 
C57BL/6J baseline study) of food deprivation. Plasma insulin levels were measured using a 
commercial kit based on immuno-electrofluorescence (Mesoscale Discovery, Rockville, 
Maryland, USA) or ELISA technology (Mercodia, Uppsala, Sweden). 
  
Hematology 
EDTA-blood samples were diluted 1:5 in Sysmex Cell-Pack buffer (Sysmex, Kobe, Japan) 
prior to performing blood cell counts via a Sysmex XT2000iV device (Sysmex, Kobe, Japan). 
Parameters analyzed included red blood cell count (RBC), hematocrit (HCT), hemoglobin 
concentration (HBG), mean corpuscular hemoglobin content (MCH), mean corpuscular 
hemoglobin concentration (MCHC), mean corpuscular volume (MCV), red blood cell width 
distribution (RDW), platelet count (PLT), mean platelet volume (MPV), platelet distribution 
width (PDW), platelet large cell ratio (PLCR, >12 fl) and total white blood cell count (WBC). 
  
FACS-based analysis of peripheral blood leukocytes 
Whole blood samples were incubated with Fc block (clone 2.4G2) for 5 min at 4–10 °C. 
Subsequently, blood leukocytes were stained using a mixture of fluorescence-conjugated 
monoclonal antibodies (BD Biosciences, Franklin Lakes, NJ, US) for 1 h at 4–10 °C. After lysis 
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of erythrocytes and a formalin-based fixation, samples were analyzed using a Gallios ten-color 
flow cytometer (Beckman Coulter, Brea, CA, US) combined with an IntelliCyt HyperCyt 
sampler (Sartorius, Göttingen, Germany). The acquisition threshold (trigger) was set on the 
CD45-channel 91. A total number of 10,000-50,000 leukocytes per sample was examined. 
Frequencies of leukocyte populations were determined by software-based analysis (Flowjo, 
TreeStar Inc, USA; and SPICE 92). Gates for each parameter were based on formerly 
performed ‘fluorescence minus one’ (FMO) controls 93. Surface antigens used to define 
leukocyte populations were: B220, CD3, CD4, CD5, CD8, CD11b, CD11c, CD19, CD25, 
CD44, CD62L, Ly6C, Ly6G, NK1.1, NKp46 and gamma delta T cell receptor (gdTCR). 
Detailed information regarding the definition of relevant cell subpopulations is provided in 
Extended Data Table 1 as well as Extended Data Fig. 17 and 18. The list of antibodies 
applied is provided in Extended Data Table 2. 
  
Analysis of cytokine and immunoglobulin abundance in plasma samples 
The abundance of several plasma biomarkers was determined using MULTI-ARRAY 
technology MSD (Meso Scale Discovery, Rockville, MD, US). MSD-Mouse Isotyping Panel 
(IgA, IgM, IgG1, IgG2a, IgG2b, IgG3), MSD-Mouse Proinflammatory Panel (IFN-γ, IL-1β, IL-
2, IL-4, IL-5, IL-6, IL-10, IL-12p70, KC/GRO) and MSD-U-PLEX Custom (IgE, Insulin, IL-6, 
and TNF-a) were quantified side by side on MULTI-SPOT plates. 
  
Lymphocyte proliferation assay 
For monitoring T and B cell proliferation rates, single cell suspensions were prepared from 
spleens of mice at different ages. Cells were then stimulated in vitro as described below. 
Assessment of Class Switch Recombination was performed using stimulation with a mixture 
of anti-CD40 antibody and IL-4 (applied at concentrations of either 1 μg/ml anti-CD40 + 5 
ng/ml IL-4 or 5 μg/ml anti-CD40 + 10 ng/ml IL-4) followed by a cultivation period of 7 days. For 
the assessment of T cell proliferation, cells were treated with a mixture of anti-CD3 antibody 
and IL-2 (at 1 µg/ml anti-CD3 + 1 ng/ml IL2 or 5 µg/ml anti-CD3 + 10 ng/ml IL-2) followed by 
cultivation for 3 days. The CellTiter-Glo (Promega) Luminescent Cell Viability Assay kit was 
used for proliferation measurements following the manufacturer's instructions. The 
luminescence signal was read using a Microplate Reader (TECAN Infinite M200). 
  
Pathology 
During necropsy, mice were examined morphologically. Body and organ weights/length 
measurements as well as any tissue lesions were documented by experienced necropsy 
technical personnel using an annotation approach developed for high-throughput mouse 
phenotyping (https://www.mousephenotype.org/impress/procedures/14). The following 
organs were collected, fixed in 4 % neutral buffered formalin and embedded in paraffin: 
abdominal aorta, adipose tissue (brown and white), adrenal gland, brain, bone (femur), 
epididymis, heart, intestine, kidney, liver, lung, pancreas, reproductive organs, skeletal 
muscle, skin, spleen, stomach, thymus, thyroid gland and urinary bladder. For histological 
examination, we generated 2-µm sections from the respective organ samples and stained 
them with either Haematoxylin-Eosin (HE), Periodic Acid Schiff (PAS), Van Gieson or Movat 
Pentachrome. Digital scans of stained slides were processed using a NanoZoomer HT2.0 
slide scanning system (Hamamatsu Photonics, Hamamatsu, Japan) and were analyzed by 
two experienced pathologists. 
  
Organ harvest and processing for molecular analyses 
After animals were sacrificed with CO2, organs (brain, lung and spleen) were harvested 
quickly, snap-frozen in liquid nitrogen and stored at -80 °C. Frozen tissue samples were then 
pulverized in liquid nitrogen using a porcelain mortar and pestle (MTC Haldenwanger, 
Waldkraiburg, Germany) maintained on dry ice. Several aliquots of tissue powder were made 
and stored at -80 °C until further use. 
  
RNA extraction, RNA-seq and data processing 
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Total RNA isolation from mouse tissues was performed with TRI-Reagent (Merck, Darmstadt, 
Germany). Briefly, 1 ml TRI-Reagent was added to an aliquot of frozen tissue powder followed 
by solubilization via ten passages through a 24-gauge needle. Further processing steps were 
performed according to the manufacturer’s recommendations. Total RNA was purified with the 
Monarch RNA Cleanup kit (New England Biolabs, Ipswich, MA, US). 
  
A previously described protocol 94 was used for mRNA isolation and cDNA library preparation 
with a few modifications. Briefly, mRNA was isolated from purified 1 µg total RNA using oligo-
dT beads (New England Biolabs, Ipswich, MA, US) and fragmented in reverse transcription 
buffer by incubating at 85 °C for 7 min, before cooling on ice. SmartScribe reverse 
transcriptase (Taraka Bio, Kusatsu, Japan) with a random hexamer oligo (HZG883: 
CCTTGGCACCCGAGAATTCCANNNNNN) was used for cDNA synthesis. Samples were 
then treated with RNase A and RNase H to remove RNA, followed by purification of cDNA on 
Agencourt AMPure XP beads (Beckman Coulter, Brea, CA, US). The single stranded cDNA 
was ligated with a partial Illumina 5´ adaptor 
(HZG885:/5phos/AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTddC) using T4 RNA 
ligase 1 (New England Biolabs, Ipswich, MA, US) and incubated overnight at 22 °C. Ligated 
cDNA was purified on AMPure XP beads and amplified by 20 cycles of PCR using FailSafe 
PCR enzyme (Epicenter Technologies, Thane, India) and oligos that contain full Illumina 
adaptors (LC056: 
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT 
and unique index primers: 
CAAGCAGAAGACGGCATACGAGATnnnnnnnnnnGTGACTGGAGTTCCTTGGCACCCGAG
AATTCCA, where nnnnnnnnnn indicates index nucleotides) for each sample. The resulting 
cDNA libraries were purified on AMPure XP beads, size selected using SPRIselect beads 
(Beckman Coulter, Brea, CA, US), and quantified by Qubit dsDNA HS Assay Kit (Thermo 
Fisher Scientific, Waltham, MA, US) prior to pooling. The pooled library was run on an Agilent 
High Sensitivity DNA chip (Agilent Technologies, Santa Clara, CA, US) with an Agilent 2100 
Bioanalyzer instrument (Agilent Technologies, Santa Clara, CA, US) to check the quality and 
average fragment size. 
  
Pooled indexed cDNA libraries were sequenced on an Illumina NovaSeq 6000 system 
(Illumina, San Diego, CA, US) with a single 111 bp read and 10 bp index read. Demultiplexing 
and data transformation to generate fastq files was done using bcl2fastq2 (v2.20). Sequencing 
reads were trimmed using CutAdapt (https://usegalaxy.org/) to remove adapter sequences. 
Trimmed reads were mapped to the mouse transcriptome (GRCm38, mm10) using HISAT2 
(v2.1.0) in Galaxy (https://usegalaxy.org/) with forward strand information and default settings. 
Bam files were indexed using Samtools and count matrices generated by Genomic Alignments 
in R. Gene count matrices were generated using annotation information from a 
Mus_musculus.GRCm38.102.chr.gtf file imported with the rtracklayer 95 package into R. All 
downstream analyses were performed using R (Version 3.5.1, https://cran.r-project.org/). 
Library normalization and expression differences between samples were quantified using the 
DESeq2 package 96. A false discovery rate (FDR) < 0.05 was used as a cutoff in differential 
expression analyses. Assessment of the significance of the overlap of mTOR- and age-
sensitive genes was performed based on exact hypergeometric probability. 
 
Sample sizes for RNA-seq analyses were as follows: 3 months, n=7 mice; 5 months, n=9 mice; 
8 months, n=8 mice; 14 months, n=9 mice; 20 months, n=7 mice; 26 months, n=5 mice 
(Supplementary Data 2, 3); young/old mTOR mutant mice and WT littermate controls, each 
n=3 mice per group (Supplementary Data 8). 
  
Real-time quantitative PCR 
Total RNA was reverse-transcribed by the iScript cDNA Synthesis Kit (Bio-Rad Laboratories, 
Hercules, CA, US). Real-time quantitative PCR based on the SYBR Green method was 
performed using the PowerUP SYBR Green Master Mix (Thermo Fisher Scientific, Waltham, 
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MA, US) on a StepOnePlus Real-Time PCR System (Thermo Fisher Scientific, Waltham, MA, 
US). The threshold cycle value (Ct) of each target gene was normalized to the corresponding 
Ct value of β-actin (Actb). Primer sequences used are provided in Extended Data Table 4. 
  
Protein isolation 
To generate tissue homogenates suitable for measuring levels of lipid peroxidation, 20S 
proteasome activity as well as reactive oxygen species production, 300 µl Tris-Buffered Saline 
(TBS, pH 7.6) and 1% Triton X-100 (Merck, Darmstadt, Germany) were added to a tissue 
powder aliquot and homogenization was performed using ten consecutive passages through 
a 24-gauge needle on ice. After a 30 min incubation step on ice, samples were centrifuged at 
15000 x g for 30 min at 4 °C. The supernatant was aliquoted into new tubes and stored at -80 
°C until use. To generate protein homogenates suitable for western blot analysis, 300 µl Tris-
Buffered Saline (TBS, pH 7.6) + 1% Triton X-100 (Merck, Darmstadt, Germany) supplemented 
with 1x Protease Inhibitor Cocktail (Roche, Basel, Switzerland) and 1x PhosSTOP 
Phosphatase Inhibitor Cocktail (Roche, Basel, Switzerland) was added to a tissue powder 
aliquot. Further processing steps were analogous to the ones described above. 
  
Lipid peroxidation 
Levels of thiobarbituric acid reactive substances (TBARS), a byproduct of lipid peroxidation, 
were determined using a TBARS Assay Kit (Cayman Chemical, Ann Arbor, MI, US) following 
the manufacturer’s instructions. 
  
Proteasome activity 
The 20S proteasome activity was assessed in vitro using a protocol published elsewhere 97. 
Developing buffer (50 mM Tris (pH7.5), 150 mM NaCl, 5 mM MgCl2) containing 30 µg protein 
in a total volume of 94 µl was loaded onto a black 96-well plate (Sarstedt, Nümbrecht, 
Germany). Two µl 50 mM ATP-Mg2+ (Merck, Darmstadt, Germany), 2 µl 5 mM Suc-LLVY-AMC 
substrate (Cayman Chemical, Ann Arbor, MI, US) and 2 µl 1% SDS (Carl Roth, Karlsruhe, 
Germany) were added immediately prior to commencing the experiment. Reaction 
suspensions were incubated in the dark at 37 °C for 30 min and fluorescent signals (excitation 
380 nm, emission 460 nm) were acquired using a Tecan Infinite M200 Pro plate reader (Tecan, 
Männedorf, Switzerland). 
  
Reactive oxygen species 
Production of reactive oxygen species (ROS) in mouse tissues was measured in vitro using a 
previously described protocol 98 with a few modifications. All chemicals used in this assay were 
purchased from Merck (Darmstadt, Germany). We mixed 45 µl protein samples (30 µg protein) 
with 50 µl ice-cold 2x Locke’s buffer (308 mM NaCl, 11.2 mM KCl, 7.2 mM NaHCO3, 4 mM 
CaCl2, 20 mM D-glucose, 10 mM HEPES (pH7.4)) and loaded this mixture onto a black 96-
well plate (Sarstedt, Nümbrecht, Germany). We then added 5 µl 200 µM 2´,7´-
dichlorodihydrofluorescein diacetate (DCFH-DA) and the reaction mixture was incubated in 
the dark on an orbital shaker for 30 min at room temperature and 50 rpm. Fluorescent 
intensities (excitation 485 nm, emission 530 nm) were acquired using a Tecan Infinite M200 
Pro plate reader (Tecan, Männedorf, Switzerland). 
  
Western blot 
All chemicals and reagents used in this procedure were purchased from Merck (Darmstadt, 
Germany), if not specified otherwise. We mixed 30 mg protein samples with the appropriate 
amount of 4x loading buffer (240 mM Tris-HCl (pH 6.8), 8% SDS, 5% beta-mercaptoethanol, 
40% glycerol and 0.04% bromophenolblue) and ran this mixture through handcast Tris-glycine 
gels prior to blotting onto nitrocellulose membranes with 0.1 µm pore size (GE Healthcare, 
Chicago, IL, US). Subsequently, the membranes were incubated with Phosphate-Buffered 
Saline (PBS) + 10% skim milk powder for 1h at room temperature to reduce background noise. 
Primary antibody solutions, diluted in PBS + 1% milk, were applied overnight at 4 °C. A 
detailed list of primary antibodies used is provided in Extended Data Table 5. Secondary 
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antibodies, either goat anti-rabbit (Promega, Madison, WI, US) at 1:3000 dilution or goat anti-
mouse (Agilent Technologies, Santa Clara, CA, US) at 1:10000 dilution, were used at room 
temperature with an incubation time of 90 min. Immunoreactivity was visualized via enhanced 
chemiluminescence (Advansta, Menlo Park, CA, US) and band densities were quantified using 
ImageJ software (version 1.50e, National Institute of Health). Phosphorylated proteins were 
normalized to the respective total protein band on the same lane.  In all other cases, 
normalization was carried out using the Actin signal derived from the same lane. Whenever 
multiple protein targets were determined on the same membrane, signals derived from 
preceding visualizations were erased by adding a sodium azide incubation step in between 
protein target measurements. 
  
Aging-related (endo)phenotypes in humans 
The human data were collected in the context of the Rhineland Study, which is an ongoing, 
large-scale, single-center, population-based prospective cohort study among people aged 30 
years and above in Bonn, Germany. The only exclusion criterion is insufficient command of 
the German language to provide informed consent. Persons living in the recruitment areas are 
predominantly German from Caucasian descent. One of the Rhineland Study’s primary 
objectives is to identify determinants and markers of healthy aging, utilizing a deep-
phenotyping approach. Approval to undertake the study was obtained from the ethics 
committee of the University of Bonn, Medical Faculty. We obtained written informed consent 
from all participants in accordance with the Declaration of Helsinki. 
  
For these analyses, we used baseline data of the first 3034 participants of the Rhineland Study 
who had both phenotype and genotype data available. Fifty-four aging-related 
(endo)phenotypes representing ten physiological functional domains, including body 
composition (n=5), body fat distribution based on magnetic resonance imaging (MRI) (n=4), 
cardiology (n=7), clinical chemistry (n=11), hematology (n=9), inflammation (n=4), 
immunology (n=6), muscle strength (n=2), ophthalmology (n=2) and physical activity (n=4), 
were included. Further details of the study have been described previously 30,99,100. 
  
Statistics and data analysis 
Phenotypic and molecular data were analyzed across age groups using one-way ANOVAs 
with the between-subjects factor age, followed by Fisher’s LSD posthoc analyses if 
appropriate (using base R version 3.6.1 and the package ‘agricolae’ version 1.3-1). We 
analyzed non-parametric data across age-groups using Kruskal-Wallis tests, followed by Dunn 
tests where appropriate (using base R version 3.6.1 and the package ‘FSA’ version 0.8.26). 
Count-based data (histopathology) were analyzed using Fisher’s exact test across all age 
groups, followed by pairwise comparisons against the 3 months old reference group if 
appropriate (using base R version 3.6.1 and the package ‘rcompanion’ version 2.3.7). 
Throughout the manuscript, we report two-tailed p-values. Age-sensitivity of parameters was 
determined by evaluating the p-value (p<0.05) of the global comparison (i.e., ANOVA, Kruskal-
Wallis or Fisher’s exact test). The age at first detected phenotypic change was determined by 
assessing the results of the posthoc tests vs. the 3 months old reference group. For instance, 
we considered a phenotype to be age-sensitive and to feature an age at first detected change 
of 8 months if the global test (i.e., ANOVA, Kruskal-Wallis or Fisher’s exact test) for an age 
effect was significant (p<0.05) and the posthoc analyses vs. the 3 months old group were not 
significant for the comparison 3 vs. 5 months, but significant for all other tests (3 vs. 8, 3 vs. 
14, 3 vs. 20, 3 vs. 26) with the maximum possible exception of one comparison. For PCA of 
phenotypic data, all continuous variables available were included in the analysis. PCA was 
performed using base R version 3.6.1 and the packages ‘FactoMineR’ (version 2.0) and 
‘factoextra’ (version 1.0.6). Multivariate imputation by chained equations was used for 
imputation in case of missing values (using base R version 3.6.1 and the package ‘mice’ 
version 3.13.0). 
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Phenotypic data from our intervention studies (mTOR, Ghrhr, IF) were analyzed using two-
way ANOVAs with the between-subjects factors age and intervention (genotype or diet). We 
used a full ANOVA model, including an intervention × age interaction term. These analyses 
were followed by Fisher’s LSD posthoc tests where appropriate (using base R version 3.6.1 
and the package ‘agricolae’ version 1.3-1). Non-parametric data (SHIRPA outcomes, data 
from auditory brain stem responses) were analyzed using Aligned Rank Transform with the 
factors age and intervention (including an intervention × age interaction term), followed by 
Mann-Whitney U tests for posthoc analyses if appropriate (using base R version 3.6.1 and the 
package ‘ARTool’ version 0.10.6). Count-based data (histopathology) were analyzed using 
Fisher’s exact test across age and intervention groups, followed by pairwise comparisons if 
appropriate (using base R version 3.6.1 and the package ‘rcompanion’ version 2.3.7). We 
visualized the relationship of age and intervention effects using Venn diagrams (shown in 
panels c of Figures 3-5). These show the numbers of age-sensitive phenotypes (parameters 
with a main effect of age, p<0.05), genotype/diet-sensitive phenotypes (parameters with a 
main effect of genotype/diet), the number of parameters with a significant genotype/diet × age 
interaction (p<0.05), as well as the intersection between these parameter sets. Sunburst 
diagrams in panels c of Figures 3-5 focus on all age-sensitive phenotypes (ASPs) shown in 
the Venn diagram and dissect these into ASPs not influenced by genotype/diet, ASP 
accentuated by genotype/diet and ASP ameliorated by genotype/diet. To address whether 
age-sensitive phenotypes in the intersection (associated with both age and diet) are 
ameliorated or accentuated by the intervention (genotype/diet) we evaluated effect sizes 
(Cohen’s d; computed using the R package effsize version 0.7.6) of age, as well as 
intervention in the old group: If Cohen’s d values pointed in the same direction, ASPs were 
considered to be accentuated, if they were in opposing directions, ASPs were considered to 
be ameliorated by the intervention. ASPs were not considered in cases where Cohen’s d 
values could not be computed (because of 0 values in the denominator). For ASPs 
ameliorated by genotype/diet, the sunburst diagrams also provide the proportion of ASPs 
influenced via either a genotype/diet main effect and/or via a genotype/diet × age interaction 
(inner ring of the sunburst diagrams). The outer ring of the sunburst diagrams shows the 
proportional distribution of the age at first detected phenotypic change of ASPs (based on the 
parameters for which this information had been collected in the context of our aging 
trajectories baseline study). We used an analogous approach for the analysis of gene 
expression data: In this case, the Venn diagram shows the number of age-sensitive genes 
(genes with a main effect of age, FDR<0.05), genotype-sensitive genes (genes with a main 
effect of genotype, FDR<0.05), genes with a significant genotype × age interaction 
(FDR<0.05), as well as the intersection between these parameter sets. Instead of Cohen’s d 
values, we used log2 fold changes for the comparisons of age and genotype effects but 
otherwise the proceeding was analogous to the approach used for the assessment of 
phenotypic data described above. Linear regression analyses of effect size estimates were 
carried out using GraphPad Prism version 8 (La Jolla, CA, US). We performed intraclass 
correlation analyses using base R version 3.6.1 and the package ‘psych’ (version 2.0.7). 
Statistical comparison of Cohen’s d effect sizes for individual phenotypes was carried out as 
described in 78 (for further details, see also our analysis code available at 
https://github.com/ehningerd/Xie_et_al-longevity_regulators). 
  
For the statistical analyses in humans, characteristics of the study participants were reported 
as means (standard deviations (SD) and ranges) for continuous variables and numbers and 
percentages for categorical variables. The eQTL dosage was coded as GG=0, AG=1, and 
AA=2 for GHRHR, and as GG=0, CG=1, and CC=2 for MTOR. All variables representing 
(endo)phenotypes were standardized before further analyses in order to enable better 
comparison of the effect sizes across different physiological and functional domains. Given 
the low rate of missingness (<5%), all analyses were based on cases with complete data. 
Multiple linear regression analyses were applied to quantify the association between eQTL 
dosage (determinant) and each (endo)phenotypic measure (outcome). Models were adjusted 
for age, sex and population stratification using the first ten genetic principal components. In 
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addition, inflammation markers were adjusted for batch information, MRI-based fat 
measurements were adjusted for height of the segmented region as described previously 
30,99,100, and physical activity variables were adjusted for examination season and the number 
of valid recoding days. For (endo)phenotypes where a GHRHR- and/or an MTOR-genotype 
effect was observed, we further assessed the interaction between age and each eQTL to 
evaluate age-(in)dependency of the effect estimates. All standardized effect estimates are 
reported together with their 95% confidence intervals (CIs). 
  
Statistical analyses were carried out using R version 3.6.1, including the packages 
FactoMineR_2.0, factoextra_1.0.6, ggplot2_3.2.1, psych_2.0.7, ARTool_0.10.6, mice_3.13.0, 
effsize_0.7.6, car_3.0-5, Rmisc_1.5, agricolae_1.3-1, rcompanion_2.3.7, FSA_0.8.26, 
lattice_0.20-38, plyr_1.8.5, and GraphPad Prism version 8 (La Jolla, CA, US). Pathway 
enrichment analyses were performed using Ingenuity Pathway Analysis version 01-18-06 
(Ingenuity Systems, Redwood City, CA, US). 
  
Data and code availability 
Raw phenotypic and molecular data from Fig. 2, 3, 4 and 5 were deposited on Mendeley at 
https://data.mendeley.com/datasets/ypz9zyc9rp/draft?a=09b16f74-4581-48f7-94af-
469e01757949. Raw sequencing data from Fig. 2, Extended Data Fig. 3 and 9 are available 
through GEO datasets at accession number GSE168068. Analysis code is available at 
https://github.com/ehningerd/Xie_et_al-longevity_regulators. 
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Supplementary results 
  
 
We sought to extract from our dataset ASPs sensitive to PAAI-mediated amelioration 
specifically in the old group (but not the young group) by selecting phenotypes with an overall 
significant main effect of age (on the 2-way ANOVA) and a significant difference on the 
posthoc test between the old intervention group and the old control group, but not on the 
comparison young intervention group vs. young control group (see Supplementary Data 6,7,9 
for full information on results from statistical analyses which these analyses are based upon). 
This would be ASPs corresponding to the “rate effect model” introduced in Fig. 1b. 
  
The analysis of our Ghrhrlit/lit dataset revealed that 7.3% of all ASPs (corresponding to 7 ASPs) 
followed this pattern (i.e., showed a significant difference between mutant and control in old 
but not young mice) (Extended Data Fig. 7a). Statistical comparison of Ghrhrlit/lit effect sizes 
in young vs. old mice also identified one of these ASPs as significantly different between age 
groups (activity of Alkaline Phosphatase in the blood plasma; Extended Data Fig. 7b). 
  
In the case of our mTORKI/KI cohort, 15.4% of all ASPs (corresponding to 18 ASPs) showed a 
significant effect of genotype in the old but not the young group based on the posthoc tests 
(Extended Data Fig. 7a). The effect size plot in Extended Data Fig. 7c examines how this 
subset of ASPs was influenced by genotype in the old vs. the young group. This analysis 
confirms that, based on statistical comparison of Cohen's d effect sizes, several ASPs were 
differentially ameliorated by mTORKI/KI genotype in the old vs. the young group (p<0.05; 
hemoglobin, hematocrit, plasma triglyceride concentration, subpopulations of CD4+ T cells). 
However, many of these ASPs appeared to show similar effect sizes in the young vs. the old 
group of animals (Extended Data Fig. 7c). Intraclass correlation analyses of effect sizes in 
young vs. old mice for this set of ASPs revealed an overall significant correlation (ICC=0.49, 
p=0.01; Extended Data Fig. 7c), suggesting that our strategy to extract ASPs of interest (i.e., 
ASPs selectively ameliorated in old mice) based on the pattern of posthoc results may 
generate some false positives. 
  
The analysis of our IF cohort revealed that 22.5% of all ASPs (corresponding to 23 ASPs) 
followed this pattern (Extended Data Fig. 7a). Several of these ASPs were also corroborated 
by comparison of effect sizes in young vs. old mice, such as plasma insulin concentration, 
plasma urea concentration, respiratory exchange ratio and the abundance of NKT cells 
(Extended Data Fig. 7d). However, we again noted that in a number of cases diet effect sizes 
appeared to be similar in young and old mice (despite the posthoc test not revealing a 
difference between the young IF and young control group upon selection of these ASPs) with 
an overall significant intraclass correlation of diet effect sizes in young vs. old mice in this set 
of ASPs (ICC=0.44; p= 0.01; Extended Data Fig. 7d). 
  
In conclusion, while these analyses were able to identify ASPs whose selective amelioration 
in the old group of mice is convincing (see examples discussed above; see also yellow 
datapoints in effect size plots shown in Extended Data Fig. 7b-d), it also suggested some 
ASPs that are likely false positives (given that effect sizes in the young group were similar to 
those in the old group). Based on these analyses, the upper bound of our estimate of ASPs 
following the pattern of selective amelioration in the old group is the one shown in Extended 
Data Fig. 7a. A lower bound may be derived from the number of ASPs with a significant effect 
size difference between young and old mice (i.e., the yellow datapoints in Extended Data Fig. 
7b-d); this would suggest that about 1% of all ASPs in the Ghrhrlit/lit dataset, 4.3% of all ASPs 
in the mTORKI/KI cohort and 5.9% of all ASPs in the IF dataset correspond to ASPs selectively 
ameliorated in old mice but not young mice (i.e., ASPs corresponding to the “rate effect model” 
introduced in Fig. 1b). 
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Supplementary discussion 
  
  
Our analyses generated a large dataset on phenotypes associated with Ghrhr loss of function 
in mice. Novel findings in Ghrhrlit/lit mice included, for instance, a higher auditory sensitivity, 
reduced visual acuity as well as an electrocardiographic shortening of the PR interval that may 
predispose for arrhythmias. In other cases, we confirmed previously reported effects of growth 
hormone deficiency, such as reduced bone mineral density 101, higher nociceptive sensitivity 
102, as well as changes in body composition and metabolism 103, which we found across age 
groups in Ghrhrlit/lit mice. Our observation of reduced activity levels in young and old Ghrhrlit/lit 

mice, notable across different assays employed (open field, SHIRPA and metabolic 
phenotyping) is in contrast to a prior report of increased locomotor activity in Ghrh (encoding 
growth hormone releasing hormone) mutant mice 104. 
  
Previous work had established that hypomorphic mTOR mutant mice feature a ca. 20% 
extension of median lifespan which was associated with a reduced incidence of neoplastic 
diseases in the mutants 26. Lifespan studies using the oral mTOR inhibitor rapamycin in mice 
had yielded median lifespan extensions ranging from 4-26%, depending on dose, age at onset 
of treatment, sex and site of investigation 9,40,105,106. A large number of the phenotypic effects 
we observed in mTOR mutants were similar to effects seen under chronic treatment with the 
pharmacological mTOR inhibitor rapamycin 16,39: For instance, both the genetic and 
pharmacological manipulations were associated with age-independent increases in 
exploratory locomotor activity, red blood cell counts, naïve CD4+- and CD8+-T-cell counts as 
well as age-independent decreases in hepatic microgranulomas, bronchus-associated 
lymphatic tissue and unsaturated iron binding capacity. Moreover, both were also associated 
with a prevention of age-related cardiac hypertrophy and a reduced cancer incidence in old 
mice and shared adverse effects, such as testicular degeneration, impaired glucose tolerance 
and an exacerbation of the age-related decrease in NK cells. 
  
However, we also noted a number of effects seen in the mTOR mutants, which we did not 
observe in mice under chronic rapamycin treatment 16. For instance, while the specific 
rapamycin treatment approach we employed previously 16 did not have consistent effects on 
body and organ weights across treatment cohorts (heart, liver, spleen, brain, kidney; an 
exception was testis with dramatically reduced weights due to testicular degeneration), the 
mTOR mutant allele led to clear reductions in body mass, organ weights (brain, heart, kidney, 
liver, lung, muscle, pancreas, spleen and testis) and reduced retinal thickness. Additional 
phenotypic effects restricted to the mTOR mutants included a protection against age-related 
glomerular pathology and elevations in white blood cell and platelet counts. While some of 
these differential effects may be a matter of rapamycin dosage (e.g., body weight reductions 
were also seen with higher rapamycin doses 105), others may not (e.g., chronic oral rapamycin 
was associated with renal toxicity 16; mTOR mutants, in contrast, were protected against age-
related glomerular pathology and showed no signs of renal toxicity). One limitation of the 
hypomorphic mTOR mutant mouse model is that it is associated with some degree of 
embryonic lethality 25-27. Advantages, relative to (oral) pharmacological approaches, include 
the specific targeting of mTOR (due to the genetic nature of the manipulation) as well as the 
fact that mTOR inhibition is independent of food intake (which typically declines in old mice). 
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Extended Data Figure legends 
 
 
Extended Data Figure 1: Schematic illustration of the analytical workflow of the current 
study. The figure summarizes our analytical approach. We performed large-scale phenotypic 
analyses in 3-month, 5-month, 8-month, 14-month, 20-month and 26-month old C57BL/6J 
mice to identify age-sensitive phenotypes (ASPs) and estimate their aging trajectories. To 
identify ASPs, we performed one-way ANOVA with the between-subjects factor age (or 
Kruskal-Wallis test in the case of non-parametric data). For each ASP, we used posthoc 
analyses to determine at which age phenotypes first differed significantly from the 3-month 
reference group (results are presented in Fig. 2a–e and fully described in Supplementary 
Data 1). We carried out PCA to visualize how these six age groups differed from each other 
when extracting the first 2 principal components from this multidimensional dataset (results 
are presented in Fig. 2f). 
We examined three pro-longevity interventions for their effects on age-dependent phenotypic 
change. For each intervention, we carried out large-scale phenotypic analyses using a study 
design that included a young control group, a young intervention group, an aged control group 
and an aged intervention group.  
To visualize overall age and intervention effects in our multidimensional dataset, we carried 
out PCA on all continuously distributed phenotypes. We provide, for each animal, the values 
of the first 2 principal components in a scatter plot (results are presented in Fig. 3–5b; 
compare to schematics outlined in Fig. 1b).  
On the level of individual phenotypes, we used two-way ANOVAs with the between-subject 
factors age and intervention (or aligned rank transform in the case of non-parametric data) to 
extract main effects of age, main effects of intervention as well as intervention × age 
interactions (Extended Data Fig. 5; Supplementary Data 6, 7 and 9). These analyses help 
to differentiate, on the level of individual phenotypes, between the “rate effect” model as well 
as “combination of rate effect and baseline effect” model on the one hand (Fig. 1b, left and 
middle panels; ASPs with a significant interaction term) and the “baseline effect model” on the 
other hand (Fig. 1b, panels to the right; ASPs without a significant interaction term). We show 
Venn diagrams featuring the number of phenotypes with main effects and/or an interaction 
(Fig. 3–5c). We further examine phenotypes with a main effect of age (age-sensitive 
phenotypes, ASPs): Sunburst charts show the proportion of ASPs opposed (effect sizes of 
age and intervention are in opposing directions; in green), accentuated (effect sizes of age 
and intervention are in the same direction; in magenta) or not influenced by an intervention (in 
grey) (Fig. 3–5c). For ASPs ameliorated by an intervention, the inner circle of the sunburst 
chart shows the proportion of ASPs that features a significant main effect of intervention and/or 
a significant intervention × age interaction. The outer circle of the sunburst chart shows at 
which age changes in the corresponding ASPs were first detected based on data available 
from our baseline study. We carried out posthoc analyses in an attempt to identify ASPs 
opposed by intervention only in the old but not in the young group of mice (Extended Data 
Fig. 7); these analyses were meant to identify ASPs consistent with the “rate effect” model 
(Fig. 1b, left panels). 
To show how intervention effect sizes in young mice relate to intervention effect sizes in aged 
mice (overall and on the level of individual phenotypes), we provide effect size plots for 
different subsets of phenotypes: 1) ASPs countered by intervention (i.e., ASPs with a 
significant main effect of intervention and/or a significant intervention × age interaction and 
effect sizes of age and intervention that go in opposing directions; this corresponds to the 
central green section of the sunburst chart) (Fig. 3–5g). 2) ASPs accentuated by intervention 
(i.e., ASPs with a significant main effect of intervention and/or a significant intervention × age 
interaction and effect sizes of age and intervention that go in the same direction; this 
corresponds to the central magenta section of the sunburst chart) (Fig. 3–5h). 3) Phenotypes 
featuring a main effect of intervention and/or an intervention × age interaction but not a main 
effect of age (Fig. 3–5i).  
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We examined, for each phenotype individually, whether intervention effects differed 
significantly between young and old mice (phenotypes with significant differences are 
highlighted in the effect size plots) (Fig. 3–5f–i). These analyses were also used to help 
differentiate, on the level of individual phenotypes, between the “rate effect” model as well as 
“combination of rate effect and baseline effect” model on the one hand (Fig. 1b, left and middle 
panels; ASPs with a significant difference in intervention effect size when comparing young 
vs. old mice) and the “baseline effect model” on the other hand (Fig. 1b, ASPs without a 
significant difference in intervention effect size when comparing young vs. old mice). We 
performed linear regression to test how well effects in young and old mice are correlated 
across these sets of phenotypes (Fig. 3–5f–i). Additionally, we performed intraclass 
correlation analyses which reflect not only the degree of correlation but also the agreement 
between measures in the young and old group (Fig. 3–5f–i). These analyses were performed 
to help differentiate between the models outlined in Fig. 1b. 
 
Extended Data Figure 2: Pathological findings in aging C57BL/6J mice. The graphs show 
the relative proportion of animals in each age group affected by inflammation in the accessory 
glands (a, scale bar: 250 µm), inflammatory infiltrates in the epididymides (b, scale bar: 500 
µm), heart fibrosis (c, scale bar: 1 mm), chronic progressive nephropathy (d, scale bar: 250 
µm), perivascular infiltrates in the kidneys (e, scale bar: 500 µm), tubular regeneration in the 
kidneys (f, scale bar: 250 µm), lateral meniscus tissue structure changes in the knees (g, scale 
bar: 1 mm), Russel bodies in the spleen (h, scale bar: 250 µm), adenoma (i, scale bar: 250 
µm) or goiter (j, scale bar: 250 µm) of the thyroid gland. Representative examples of 
histopathological findings in older mice (alongside healthy tissue in younger mice) are shown 
in the images accompanying the graphs. Data are based on n=5 mice per age group. For 
further details, see Supplementary Data 1. 
 
Extended Data Figure 3: RNA-seq-based transcriptome analysis captures gene 
expression changes in the brain across the lifespan in male C57BL/6J mice. Ingenuity 
Pathway Analysis shows top canonical pathways, diseases and biological functions as well as 
predicted upstream regulators of genes differentially expressed in the brain relative to the 3-
month old group (FDR<0.05). Positive z-scores (in orange) indicate activating effects, while 
negative z-scores (in blue) indicate inhibitory effects on corresponding processes. 
  
Extended Data Figure 4: Western-blot-based quantification of proteins linked to 
hallmarks of aging. Representative band densities are shown for proteins detected in brain 
(a), lung (b) and spleen (c). 
 
Extended Data Figure 5: PAAIs - systematic analysis of main effects of age, main effects 
of intervention and intervention × age interactions. a,d,g: These plots show, for all 3 PAAIs 
examined in the present paper, cumulative frequencies of -log10(p-values) for age effects, 
intervention effects and intervention × age interactions for all phenotypes analyzed via two-
way ANOVA or aligned rank transform. The vertical dotted line marks the significance 
threshold (p<0.05; corresponding to ~1.3 after the log transformation and multiplication with -
1). b,e,h: These scatter plots show, for all PAAIs assessed, -log10(p-values) for intervention 
main effects plotted vs. -log10(p-values) of intervention × age interactions for all phenotypes 
analyzed via two-way ANOVA or aligned rank transform. The vertical and horizontal dotted 
lines mark the significance threshold (p<0.05). The graphs also show regression lines, 
correlation coefficients and p-values derived from linear regression analyses. c,f,i: These 
scatter plots show, for all PAAIs assessed, -log10(p-values) for intervention main effects 
plotted vs. -log10(p-values) of intervention × age interactions for age-sensitive phenotypes 
countered by intervention. The vertical and horizontal dotted lines mark the significance 
threshold (p<0.05). The graphs also show regression lines, correlation coefficients and p-
values derived from linear regression analyses.  
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Extended Data Figure 6: Survival and pathological analyses in Ghrhrlit/lit and 
hypomorphic mTORKI/KI mice. The figure shows provisional survival data as well as 
summarizes histopathological analyses for aging Ghrhrlit/lit (a-g) and mTORKI/KI (h-p) mice and 
the corresponding WT littermate controls. a,h: Provisional survival curves were established 
based on cases of natural deaths in Ghrhrlit/lit and mTORKI/KI cohorts aged in our facility (p-
values shown are based on analyses via Log-rank (Mantel-Cox) test). b-d, i-j: These panels 
show the percentage of aged mutant vs. WT animals affected by the pathological findings 
specified in the graphs (p-values are based on analysis via Fisher’s exact test). *p<0.05, 
**p<0.01, ***p<0.001, ****p<0.0001. BALT: bronchus-associated lymphoid tissue; KALT: 
kidney-associated lymphoid tissue. e-g, k-p: The images show representative examples of 
histopathological findings in aged mice as well as the corresponding healthy intact tissue in 
young animals. e, Lipofuscin deposits in the adrenal gland; scale bar: 100 µm. f, Bronchus-
associated lymphoid tissue (BALT); scale bar: 500 µm. g, Thyroid gland adenoma; scale bar: 
250 µm. k, Lymphoid infiltrates in the liver; scale bar: 500 µm. l, Microgranulomas in the liver; 
scale bar: 50 µm. m, Bronchus-associated lymphoid tissue (BALT); scale bar: 500 µm. n, 
Glomerular lesions in the kidney; scale bar: 50 µm. o, Kidney-associated lymphoid tissue 
(KALT); scale bar: 500 µm. p, Tubular degeneration in the testis; scale bar: 100 µm. Additional 
information is available in Supplementary Data 6 and 7. 
 
Extended Data Figure 7: Analysis of ASPs sensitive to PAAI-mediated effects 
specifically in the old groups of mice. a, Percentage of ASPs that feature a significant 
intervention effect in the old group (posthoc test old invention group vs. old control group, 
p<0.05), but not the young group of animals (posthoc test young intervention group vs. young 
control group, p>0.05). b-d, Effect size plots show Cohen’s d effect sizes of intervention (b: 
Ghrhrlit/lit vs. WT; c: mTORKI/KI vs. WT; d: IF vs. AL) in the young group vs. the old group of 
animals. To assess overall relationships between phenotypic intervention effect sizes in young 
vs. old animals, we performed linear regression (see correlation coefficient R, p-value, linear 
regression equation; black line: regression line; blue line: line through origin with slope 1) and 
intraclass correlation (see ICC, p-value) analyses. The graphs also show whether individual 
phenotypes had significantly different effect sizes in young vs. old mice (phenotypes with 
significant differences are identified by their abbreviated name; see Supplementary Data 6, 
7 and 9 for full description). 
 
Extended Data Figure 8: Effect sizes of GHRHR and mTOR eQTLs on gene expression 
levels. Violin plots of GHRHR expression levels (a), stratified by the cis-eQTL at SNP 
rs11772180 (chr7: 30810998_A_G), as well as MTOR expression levels (b), stratified by the 
cis-eQTL at SNP rs2295079 (chr1: 11262508_C_G), as obtained from the Genotype Tissue 
Expression portal (genome build 38). Note that eQTLs for GHRHR have thus far only been 
assessed in human liver tissue. The MTOR eQTL has been validated in a wide range of human 
tissues, including brain, heart, skin, muscle and various gastrointestinal tissues (b shows 
expression levels in blood). The numbers below the horizontal axes indicate the number of 
samples assessed for each genotype for estimating gene expression levels. The shaded 
regions represent the density distributions of the samples for each genotype. The box plots 
indicate the interquartile ranges (black) and the median value (white lines) of gene expression 
for each genotype. 
 
Extended Data Figure 9: RNA-seq-based transcriptome analysis of spleen in young and 
old mTORKI/KI mice as well as wildtype littermate controls. This figure summarizes the 
results of an RNA-seq-based differential expression analysis comparing gene expression in 
the spleen of young and old mTORKI/KI mice as well as WT littermate controls (n=3 per group). 
a, Venn diagram shows the number of age-sensitive genes (FDR<0.05), genotype-sensitive 
genes (FDR<0.05), genes with an interaction (FDR<0.05) as well as the intersection of these 
sets. b, Sunburst chart shows the number of age-sensitive genes either unaltered (in grey), 
countered (in green) or accentuated (in magenta) by the mTORKI/KI genotype. For age-
sensitive genes (ASGs) countered by mTORKI/KI genotype, the inner ring shows the proportion 
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of genes with a main effect of genotype (in dark green), a genotype × age interaction (in violet) 
or both a main effect and an interaction (in yellow). The outer ring shows when changes in the 
corresponding ASGs were first detected based on data available from our baseline study.  
 
Extended Data Figure 10: Cluster analysis of phenotypes in Ghrhrlit/lit cohort. The figure 
shows results of hierarchical clustering applied to the phenotypic data obtained in the context 
of our Ghrhrlit/lit cohort. In order to be able to see what relationships might exist between 
phenotypes within our young control group, we performed hierarchical clustering on the young 
WT animals only (hence, yielding phenotype clusters that are independent of age- and 
genotype-associated phenotypic variation); the resulting clusters and distances between them 
can be extracted from the dendrogram shown in the figure. The heatmap to the left 
demonstrates standardized phenotype values for all phenotypes and animals (including young 
mutant mice and the old groups). How many clusters one identifies depends on the distance 
at which the dendrogram is cut. Analyses of genotype influences on clusters derived from 
different ways to cut the dendrogram (based on different minimal inter-cluster distances) are 
summarized in Supplementary Data 10.  
 
Extended Data Figure 11: Cluster analysis of phenotypes in mTORKI/KI cohort. The figure 
shows results of hierarchical clustering applied to the phenotypic data obtained from our 
mTORKI/KI cohort. In order to be able to see what relationships exist between phenotypes within 
our young control group, we performed hierarchical clustering on the young WT animals only 
(hence, yielding phenotype clusters that are independent of age- and genotype-associated 
phenotypic variation); the resulting clusters and distances between them can be extracted 
from the dendrogram shown in the figure. The heatmap to the left demonstrates standardized 
phenotype values for all phenotypes and animals (including young mutant mice and the old 
groups). How many clusters one identifies depends on the distance at which the dendrogram 
is cut. Analyses of genotype influences on clusters derived from different ways to cut the 
dendrogram (based on different minimal inter-cluster distances) are summarized in 
Supplementary Data 11.  
 
Extended Data Figure 12: Cluster analysis of phenotypes in IF cohort. The figure shows 
results of hierarchical clustering applied to the phenotypic data obtained from our IF cohort. In 
order to be able to see what relationships exist between phenotypes within our young control 
group, we performed hierarchical clustering on the young AL animals only (hence, yielding 
phenotype clusters that are independent of age- and diet-associated phenotypic variation); 
the resulting clusters and distances between them can be extracted from the dendrogram 
shown in the figure. The heatmap to the left demonstrates standardized phenotype values for 
all phenotypes and animals (including young IF mice and the old groups). How many clusters 
one identifies depends on the distance at which the dendrogram is cut. Analyses of diet 
influences on clusters derived from different ways to cut the dendrogram (based on different 
minimal inter-cluster distances) are summarized in Supplementary Data 12.  
 
Extended Data Figure 13: Deep phenotyping analyses of age-dependent changes in 
tumor-free C57BL/6J mice. a–d, Deep phenotyping results in wildtype tumor-free C57BL/6J 
mice. a, Principal component analysis of deep phenotyping data (number of mice: 3-month 
old, n=15; 5-month old, n=14; 8-month old, n=15; 14-month old, n=13; 20-month old, n=15; 
26-month old, n=13). b, Relative proportion of age-sensitive phenotypes among all 
phenotypes examined. c,d, Age at first detectable change (c) and age at full manifestation (d) 
of age-sensitive phenotypes (ASPs) shown as proportion of all ASPs. 
 
Extended Data Figure 14: Anti-aging effects induced by the Ghrhrlit/lit mutation; analysis 
restricted to tumor-free mice. a, Principal component analysis of deep phenotyping data  
(number of mice: young WT, n=30; young Ghrhrlit/lit, n=20; old WT, n=25; old Ghrhrlit/lit, n=29). 
b, Venn diagram shows the number of age-sensitive phenotypes, genotype-sensitive 
phenotypes, phenotypes with a genotype × age interaction and their intersection. c, Sunburst 
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chart shows the number of age-sensitive phenotypes either unaltered (in grey), counteracted 
(in green) or accentuated (in magenta) by the Ghrhrlit/lit mutation. For age-sensitive phenotypes 
counteracted by the Ghrhrlit/lit mutation, the inner ring shows the proportion of phenotypes with 
a main effect of genotype (in dark green), a genotype × age interaction (in violet) or both a 
main effect and an interaction (in yellow). The outer ring shows when changes in the 
corresponding ASPs were first detected based on data available from our baseline study. d–
g, Scatter plots show the effect size of Ghrhrlit/lit genotype in young mice plotted vs. the effect 
size of Ghrhrlit/lit genotype in old mice for different sets of phenotypes: e, ASPs counteracted 
by genotype via a main effect and/or an interaction (i.e., corresponding to the central green 
section of the sunburst chart in c); green dots denote phenotypes in which genotype effects 
in young and old mice did not differ significantly; orange denotes phenotypes in which anti-
aging effects of genotype were significantly larger in old mice than in young mice; red denotes 
phenotypes in which anti-aging effects of genotype were significantly larger in young mice 
than in old mice. f, ASPs accentuated by genotype. g, Phenotypes featuring a main effect of 
Ghrhrlit/lit genotype and/or a genotype × age interaction but not a main effect of age; blue dots 
denote phenotypes in which the genotype effect did not differ significantly between young and 
old mice. Yellow denotes phenotypes in which the genotype effect size differed significantly 
between young and old mice. d, all phenotypes shown in e-g collapsed into one panel. ICC = 
intraclass correlation. For further details, see Supplementary Data 6. 
 
Extended Data Figure 15: Anti-aging effects induced by a hypomorphic mTOR 
mutation; analysis restricted to tumor-free mice.  a, Principal component analysis of deep 
phenotyping data (number of mice: young WT, n=27; young mTORKI/KI, n=21; old WT, n=18; 
old mTORKI/KI, n=19). b, Venn diagram shows the number of age-sensitive phenotypes, 
genotype-sensitive phenotypes, phenotypes with a genotype × age interaction and their 
intersection. c, Sunburst chart shows the number of age-sensitive phenotypes either unaltered 
(in grey), counteracted (in green) or accentuated (in magenta) by the mTORKI/KI mutation. For 
age-sensitive phenotypes counteracted by the mTORKI/KI mutation, the inner ring shows the 
proportion of phenotypes with a main effect of genotype (in dark green), a genotype × age 
interaction (in violet) or both a main effect and an interaction (in yellow). The outer ring shows 
when changes in the corresponding ASPs were first detected based on data available from 
our baseline study. d–g, Scatter plots show the effect size of mTORKI/KI genotype in young 
mice plotted vs. the effect size of mTORKI/KI genotype in old mice for different sets of 
phenotypes: e, ASPs counteracted by genotype via a main effect and/or an interaction (i.e., 
corresponding to the central green section of the sunburst chart in c); green dots denote 
phenotypes in which genotype effects in young and old mice did not differ significantly; orange 
denotes phenotypes in which anti-aging effects of genotype were significantly larger in old 
mice than in young mice; red denotes phenotypes in which anti-aging effects of genotype were 
significantly larger in young mice than in old mice. f, ASPs accentuated by genotype. g, 
Phenotypes featuring a main effect of mTORKI/KI genotype and/or a genotype × age interaction 
but not a main effect of age; blue dots denote phenotypes in which the genotype effect did not 
differ significantly between young and old mice. Yellow denotes phenotypes in which the 
genotype effect size differed significantly between young and old mice. d, all phenotypes 
shown in e-g collapsed into one panel. ICC = intraclass correlation. For further details, see 
Supplementary Data 7. 
 
Extended Data Figure 16: Anti-aging effects induced by every-other-day fasting; 
analysis restricted to tumor-free mice. a, Principal component analysis of deep phenotyping 
data (number of mice: young AL, n=16; young IF, n=16; old AL, n=22; old IF, n=22). b, Venn 
diagram shows the number of age-sensitive phenotypes, diet-sensitive phenotypes, 
phenotypes with a diet × age interaction and their intersection. c, Sunburst chart shows the 
number of age-sensitive phenotypes either unaltered (in grey), counteracted (in green) or 
accentuated (in magenta) by IF. For age-sensitive phenotypes counteracted by IF, the inner 
ring shows the proportion of phenotypes with a main effect of diet (in dark green), a diet × age 
interaction (in violet) or both a main effect and an interaction (in yellow). The outer ring shows 
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when changes in the corresponding ASPs were first detected based on data available from 
our baseline study. d–g, Scatter plots show the effect size of IF in young mice plotted vs. the 
effect size of IF in old mice for different sets of phenotypes: e, ASPs counteracted by diet via 
a main effect and/or an interaction (i.e., corresponding to the central green section of the 
sunburst chart in c); green dots denote phenotypes in which diet effects in young and old mice 
did not differ significantly; orange denotes phenotypes in which anti-aging effects of diet were 
significantly larger in old mice than in young mice; red denotes phenotypes in which anti-aging 
effects of diet were significantly larger in young mice than in old mice. f, ASPs accentuated by 
diet. g, Phenotypes featuring a main effect of diet and/or a diet × age interaction but not a 
main effect of age; blue dots denote phenotypes in which the diet effect did not differ 
significantly between young and old mice. Yellow denotes phenotypes in which the diet effect 
size differed significantly between young and old mice. d, all phenotypes shown in e-g 
collapsed into one panel. ICC = intraclass correlation. For further details, see Supplementary 
Data 9. 
 
Extended Data Figure 17: Gating strategy of peripheral blood FACS analysis. 
  
Extended Data Figure 18: Gating strategy of peripheral blood FACS analysis. 
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