

1 Prevalence Estimates of Putatively Pathogenic Leptin Variants in

2 the gnomAD Database

3 Luisa Sophie Rajcsanyi^{1,2}, Yiran Zheng^{1,2}, Pamela Fischer-Posovszky³, Martin Wabitsch³,
4 Johannes Hebebrand¹ and Anke Hinney^{1,2*}

5 1 Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy,
6 University Hospital Essen, University of Duisburg-Essen, Essen, Germany

7 ² Center for Translational Neuro- and Behavioural Sciences, University Hospital Essen, Essen,
8 Germany

9 ³ Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent
10 Medicine University Medical Center Ulm, Ulm, Germany

11 * Corresponding author

12 E-mail: anke.hinney@uni-due.de (AH)

13

14

15

16

17

19

10

2

23 **Abstract**

24 Homozygosity for pathogenic variants in the leptin gene leads to congenital leptin deficiency
25 causing early-onset extreme obesity. This monogenic form of obesity has mainly been
26 detected in patients from consanguineous families. Prevalence estimates for the general
27 population using the Exome Aggregation Consortium (ExAC) database reported a low
28 frequency of leptin mutations. One in approximately 15 million individuals will be homozygous
29 for a deleterious leptin variant. With the present study, we aimed to extend these findings
30 utilizing the augmented Genome Aggregation Database (gnomAD) v2.1.1 including more than
31 140,000 samples. In total, 68 non-synonymous and 7 loss-of-function (LoF) leptin variants
32 were deposited in gnomAD. By predicting functional implications with the help of *in silico* tools,
33 like SIFT, PolyPhen2 and MutationTaster2021, the prevalence of hetero- and homozygosity
34 for putatively pathological variants (n = 32; pathogenic prediction by at least two tools) in the
35 leptin gene were calculated. Across all populations, the estimated prevalence for
36 heterozygosity for functionally relevant variants was approximately 1:2,100 and 1:17,860,000
37 for homozygosity. This prevalence deviated between the individual populations. Accordingly,
38 people from South Asia were at greater risk to carry a possibly damaging leptin variant than
39 individuals of other ancestries. Generally, this study emphasises the scarcity of deleterious
40 leptin variants in the general population with varying prevalence for distinct study groups.

41

42

43

44

45

46

47

48 **Introduction**

49 The leptin-melanocortin system modulates energy homeostasis and body weight regulation
50 via the hypothalamic arcuate nucleus (ARC). The hormone leptin (LEP) is secreted by the
51 adipose tissue into the bloodstream. In the ARC, leptin binds to the leptin receptor on pro-
52 opiomelanocortin (POMC) and agouti-related peptide (AgRP) expressing neurons, stimulating
53 POMC release and inhibiting AgRP expression. Subsequently, POMC is post-translationally
54 processed into e.g. the α -melanocyte-stimulating hormone. Eventually, the signalling of
55 melanocortin-4-receptor is stimulated and leads to decreased food intake due to satiety signals
56 (1-5).

57 Homozygous mutations in the *LEP* gene cause congenital leptin deficiency disrupting the
58 normal regulation of the body weight. Leptin levels in homozygous carriers of deleterious
59 mutations are in most cases extremely low to undetectable (5, 6). Some deleterious mutations
60 lead to a biologically inactive leptin. Leptin levels in these patients are seemingly normal for
61 their BMI (6). A rapid weight gain eventually leads to extreme obesity. Hyperphagia,
62 hypogonadism and impaired immune functions are concomitant symptoms (5, 7-9, 10). This
63 form of monogenic obesity is infrequent, with a prevalence between one and 5% and
64 predominantly affecting individuals with parental consanguinity (5, 7, 8, 11-14). In 1997, the
65 first deleterious *LEP* mutation (p.Gly133Valfs*15) was reported by Montague and colleagues
66 (7). It was detected in the homozygous state in two cousins descending from a
67 consanguineous family with the unaffected parents being heterozygous carriers of the variant.
68 Due to this frameshift mutation, the LEP protein was truncated as 14 aberrant amino acids and
69 a premature stop codon were introduced. This led to a rapid onset of obesity after normal birth
70 weight (7). Subsequent treatment with recombinant leptin led to a substantial weight loss and
71 a decrease in energy intake (11, 15). Further, besides frameshift mutations, pathogenic
72 nonsense, and non-synonymous variants as well as deletions in *LEP* have been reported (5).
73 The functional effects of these mutations are diverse. For instance, a deletion (p.Ile35del) that
74 has been detected in one homozygous obese patient leads to a complete loss of the second

75 exon of *LEP* and the removal of an isoleucine from the N-terminus of the protein (16).
76 Interestingly, the non-synonymous variant p.Asp100Tyr was detected in an extremely obese
77 boy from a consanguineous family. He showed high serum leptin levels and a pronounced
78 history of infections. Functional analyses revealed normal leptin expression and secretion but
79 a dysfunctional bio-inactive leptin that did not induce Stat3 phosphorylation (6, 14).
80 In 2017, Nunziata et al. (17) estimated the prevalence of putatively damaging mutations in the
81 *LEP* gene using the Exome Aggregation Consortium (ExAC) database. Based on data from
82 60,706 samples, it was estimated that one in 15,000,000 individuals is potentially a
83 homozygous carrier of a deleterious *LEP* mutation (determined by *in silico* tools), while
84 approximately one in 2,000 individuals harbours a heterozygous leptin variant (17). Upon
85 inclusion of functionally relevant *LEP* variants described in the literature, the authors estimated
86 higher prevalence of hetero- and homozygosity of 1:1,050 and 1:4,400,000, respectively (17).
87 To date, ExAC has been augmented into the Genome Aggregation Database (gnomAD)
88 including more than 140,000 samples (version v2.1.1; 18). Therefore, we aimed to estimate
89 the prevalence of putatively deleterious non-synonymous, frameshift and nonsense (loss-of-
90 function: LoF) mutations in the *LEP* gene based on this extended dataset represented in
91 gnomAD v2.1.1.

92 **Methods**

93 **gnomAD**

94 The gnomAD database (<https://gnomad.broadinstitute.org/>, accessed: Jan 24th, 2022),
95 encompasses 15,708 full genome and 125,748 exome sequencing datasets from individuals
96 of diverse populations (v2.1.1, GRCh37/hg19) comprising more than 200 million genetic
97 variants. The sequencing data predominantly originates from case-control studies of diseases
98 diagnosed in adulthood, such as cardiovascular diseases or psychiatric disorders. To ensure
99 high quality data, all samples were subjected to a quality control, excluding samples with low
100 sequencing quality, samples from second-degree relatives or higher, and data from patients
101 with severe pediatric diseases. In total, six global and eight sub-continental populations are

102 included, while populations from the Middle East, Central and Southeast Asia, Oceania and
103 Africa are generally underrepresented. The mean coverage of the *LEP* gene was ~ 80x for
104 exome and ~ 30x for genome data (18).

105 **Leptin Variants and their Predicted Functional Implications**

106 In gnomAD, the *LEP* gene (canonical transcript ENST00000308868.4) was analysed and data
107 pertaining to non-synonymous and LoF variants as well as the corresponding population-
108 specific allele counts, and frequencies were extracted.

109 Consequences on the leptin protein by non-synonymous variants were predicted utilizing
110 various *in silico* tools, namely Sorting Intolerant From Tolerant (SIFT, 19), Polymorphism
111 Phenotyping v2 (PolyPhen2, 20), MutationTaster2021 (21), Functional Analysis through
112 Hidden Markov Models – multiple kernel learning (FATHMM-MKL, 22) and Protein Variation
113 Effect Analyzer (PROVEAN, 23). Predictions by SIFT, FATHMM-MKL and PROVEAN were
114 obtained with the help of the Variant Effect Predictor (VEP, 24). For LoF, gnomAD presents
115 predictions whether the respective LoF variant is a high- or low-confidence LoF based on
116 results of either the LOFTEE tool or a manual curation, shown below the information of VEP
117 on gnomAD's variant page (18, 25).

118 SIFT classifies variants as either 'tolerated' or 'deleterious', while PolyPhen2 categorizes the
119 mutations into 'benign', 'possibly damaging' and 'probably damaging'. For PolyPhen2, the
120 'HumVar' classifier model was applied. MutationTaster2021 subjects each variant to several
121 *in silico* tools itself and subsequently annotates each substitution as either 'benign' or
122 'deleterious'. FATHMM-MKL and PROVEAN classify the variants into two categories: 'neutral'
123 and 'damaging'. Except MutationTaster2021, all these tools exclusively analyse non-
124 synonymous variants. Thus, we annotated frameshift mutations with the LoF confidence
125 predictions stated on the variant's page.

126 Based on the preceding *in silico* analyses, the probability of hetero- and homozygous variants
127 predicted to be pathogenic was calculated applying the Hardy-Weinberg equilibrium with the

128 assumption of a perfect population (see Equation (1); p = allele frequency of allele A, q = allele
129 frequency of allele a).

130
$$p^2 + 2pq + q^2 = 1 \quad (1)$$

131 Hence, the prevalence of the heterozygous ($2pq$) and homozygous (including compound
132 heterozygous; q^2) variants were determined (see Equation (1)). To assess the prevalence of
133 homozygous variants, the frequencies (q^2) of the individual alleles were calculated and
134 subsequently summed up. Subtraction of the prevalence of homozygosity from the prevalence
135 of homozygous including the compound heterozygous variants revealed the corresponding
136 frequencies for the compound heterozygotes.

137 When analysing the individual populations, substitutions were considered pathogenic if at least
138 two of the applied *in silico* tools identified the variant as 'damaging' or 'deleterious' or if it was
139 a high-confidence LoF variant.

140

141 **Results**

142 In total, 75 non-synonymous and LoF variants in the *LEP* gene were deposited in gnomAD. Of
143 these, 68 were non-synonymous (90.70%), five were frameshift (6.67%) and one each was an
144 in-frame deletion (1.33%) or splice acceptor variant (1.33%). Across all populations, the non-
145 synonymous variant rs17151919 (p.Val94Met) was the most frequent polymorphism with an
146 overall allele frequency (AF) of 0.84% (see Table 1). A total of 105 homozygous and 2,167
147 heterozygous carriers of rs17151919 were observed (see S1 Table). Yet, *in silico* tools
148 predicted a non-pathogenic potential (see S1 Table).

149 **Table 1: Summary of non-synonymous and LoF variants in the *LEP* gene as deposited**
150 **in gnomAD.**

Population	Sample size	Total number of variants*	Number of non-synonymous variants	Number of LoF variants	Most common variant (AF)
All populations	141,456	75	68	7	rs17151919 (0.84%)
African-American	12,487	13	12	1	rs17151919 (8.41%)
Ashkenazi Jewish	5,185	1	1	0	rs17151919 (0.26%)
East-Asian	9,977	14	13	1	rs148407750 (0.31%)
European, Finnish	12,562	3	3	0	rs751272426 (0.04%)
European, non-Finnish	64,603	41	37	4	rs17151919 (0.04%)
Latino/Admixed American	17,720	14	14	0	rs17151919 (0.45%)

					rs17151919
Others	3,614	8	8	0	(0.38%)
South Asian	15,308	16	14	2	(0.03%)

151 Table 1 summarizes the number of *LEP* variants (non-synonymous and LoF*) deposited in gnomAD. The most
152 common variants detected in various populations were predicted to be benign (see S1 Table). AF: allele frequency.
153 LoF: loss-of-function.

154 Considering the populations individually, the aggregation of samples of multiple smaller
155 populations denominated as 'Other' showed the highest occurrence of non-synonymous and
156 LoF variants when correcting for the respective population size (0.0022; eight variants in total;
157 see Table 1). Occurrence rates of these variants in populations from East and South Asian
158 countries were lower with 0.0014 (total of 14 variants) and 0.0010 (total of 16 variants),
159 respectively. Within the African-American population, non-synonymous and LoF variants
160 showed a population size-corrected frequency of 0.00104 (total of 13 variants). Lower
161 occurrences were detected in the Latino/Admixed population (0.0008; total of 14 variants), the
162 European, non-Finnish (0.0006; total of 41 variants), the European, Finnish (0.00024; total of
163 three variants) and the Ashkenazi Jewish population (0.0002; solely one variant; see Table 1).
164 Generally, for all populations, the majority of variants was annotated as non-synonymous
165 mutations (> 85%) and were rare (AF < 1%, see Table 1). Solely, the non-synonymous and
166 putatively benign single nucleotide polymorphism (SNP) rs17151919 (see S1 Table) was
167 frequent in African-Americans with an AF of 8.4%. Further, this SNP was the most commonly
168 detected variant in European, non-Finnish individuals as well as in the African-American,
169 Latino/Admixed American, Ashkenazi Jewish, South Asian and 'other' populations (see Table
170 1). Conversely, in Finnish samples, the variant rs751272426 (AF = 0.0047%) was the most
171 common, while rs148407750 (AF = 0.311%) was the most abundant SNP in people from East
172 Asia.

173 To assess functional implications of the *LEP* variants in gnomAD, we analysed the variants
174 with various *in silico* tools (see S1 Table). Accordingly, SIFT assigned nine variants as

175 'deleterious', while PolyPhen2 predicted 13 variants to be 'possibly damaging' and 16 to be
176 'probably damaging'. Ten variants were assigned as 'deleterious' by MutationTaster2021.
177 'Damaging' classifications for 24 and 20 variants were obtained by FATHMM-MKL and
178 PROVEAN, respectively (see Fig. 1 and S1 Table). Additionally, five of six LoF variants were
179 indicated to be high-confidence LoF variants (see S1 Table). Twenty-two variants across all
180 populations were predicted to be benign (see Table 2 and S1 Table). Fifty-three variants were
181 indicated to be pathogenic by at least one tool, while 32 and 19 revealed a deleterious effect
182 in at least two and three tools, respectively. Collectively, one in approximately 53 individuals
183 will be a carrier of a non-synonymous or LoF variant located in *LEP* regardless of the
184 pathogenicity (see Table 2). The prevalence for a homozygous and compound heterozygous
185 variant is ~1:14,100 and ~1:50,000, respectively. Lower prevalence were detected for
186 variants predicted to be benign (see Table 2 and S1 Table). Generally, for indicated deleterious
187 variants across all populations regardless of the number of tools predicting pathogenicity, the
188 prevalence of compound heterozygosity is higher than the prevalence of homozygous variants
189 (see Table 2). Further, when applying various pathogenicity definitions based on the number
190 of *in silico* tools predicting a damaging effect, it is evident that the more stringent this definition,
191 the lower the prevalence (see Table 2). Consequently, we decided to classify variants as
192 pathogenic if at least two *in silico* tools indicated a deleterious impact (definition applied for
193 subsequent analyses). A total of 67 individuals throughout all populations carried at least one
194 of these variants heterozygous, while no homozygous carriers were detected. Hence, the
195 estimated the estimated prevalence of heterozygosity for a putatively harmful *LEP* mutation
196 was approximately 1:2,100, while the prevalence for a homozygous variant was ~1:17,860,000
197 for individuals of all populations (see Tables 2 and 3).

198 **Table 2: Estimated prevalence of hetero- and homozygous as well as compound heterozygous variants across all populations.**

Number of tools predicting deleterious effect	Number of deleterious variants*	Number of carriers of deleterious variants	Estimated prevalence for heterozygous mutations	Estimated prevalence for homozygous and compound heterozygous mutations	Estimated prevalence of homozygous mutations	Estimated prevalence of compound heterozygous mutations	
0	22 ^a	2,254 ^a	105 ^a	1 : 58	1 : 13,200	1 : 14,200	1 : 193,000
≥0	75 ^a	2,486 ^a	105 ^a	1 : 53	1 : 11,000	1 : 14,100	1 : 50,000
≥1	53	232	0	1 : 610	1 : 1,490,000	1 : 7,000,000	1 : 1,900,000
≥2	32	67	0	1 : 2,100	1 : 17,860,000	1 : 326,740,000	1 : 18,850,000
≥3	19	32	0	1 : 4,400	1 : 78,160,000	1 : 741,000,000	1 : 87,330,000

199 Here, the rounded estimated prevalence for variants in all populations are presented. Variants were considered deleterious if the stated number of *in silico* tools revealed a pathogenic
 200 prediction (*). Due to varying allele frequencies across the individual populations, the Hardy-Weinberg-Equilibrium is not fulfilled when investigating exclusively the benign variants
 201 or all variants (^a).

202

203 **Table 3: Estimated prevalence for the populations in gnomAD.**

Population	Sample size	Number of putatively deleterious mutations*	Estimated prevalence for heterozygous mutations	Estimated prevalence for homozygous/compound heterozygous mutations
All populations	141,456	32	1 : 2,100	1 : 17,860,000
All populations (females)	64,754	19	1 : 2,200	1 : 18,640,000
All populations (males)	76,702	22	1 : 2,100	1 : 17,190,000
African-American	12,487	4	1 : 1,800	1 : 12,730,000
Ashkenazi Jewish	5,185	0	NA	NA
East-Asian	9,977	6	1 : 770	1 : 2,360,000
European, Finnish	12,562	0	NA	NA
European, non-Finnish	64,603	16	1 : 2,700	1 : 28,980,000
Latino/Admixed American	17,720	5	1 : 4,400	1 : 78,500,000
Others	3,614	5	1 : 900	1 : 3,270,000
South Asian	15,308	3	1 : 1,300	1 : 6,510,000

204 Estimated rounded prevalence for deleterious *LEP* variants are shown. Variants were considered deleterious if at
205 least two *in silico* tools revealed a pathogenic prediction (*).

206

207 **Figure 1: Predictions of the applied *in silico* tools.** All 75 non-synonymous and LoF variants
208 located in *LEP* were analysed with SIFT, PolyPhen2, MutationTaster2021, FATHMM-MKL and
209 PROVEAN. Unless MutationTaster2021, all tools were unable to predict implications of the
210 seven LoF variants (grey).

211 gnomAD further provides sex-specific allele counts for each variant. Thus, we replicated the
212 probability estimations of possibly pathogenic variants (as defined above) for both sexes
213 separately. This revealed that about one in 2,200 women carries a heterozygous and possibly
214 harmful *LEP* variant. In males, the prevalence of a heterozygous variant was marginally higher
215 with ~1:2,100. The chance to harbour a homozygous/compound heterozygous, pathogenic
216 variant in females was estimated to be ~1:18,640,000. For males, this prevalence was again
217 higher at ~1:17,190,000.

218 Next, we determined the likelihood of a putatively deleterious *LEP* variant in the distinct
219 populations. As none of the variants detected in the Finnish and Ashkenazi Jewish population
220 was predicted to have a pathogenic effect, we were unable to calculate the correlated
221 prevalence (see Table 3). Generally, pronounced variations between the global populations
222 were observed (see Table 3). East Asians were determined to be at highest risk to harbour a
223 putatively pathogenic *LEP* variant either hetero- or homozygous. The lowest risk for both
224 hetero- and homozygous variants were found in the Latino/Admixed population (see Table 3).

225

226 **Discussion**

227 Homozygous deleterious mutations in the leptin gene lead to deficiency of biologically active
228 leptin and cause severe early onset obesity (5, 7, 8, 11, 14). Through the implementation of
229 reference databases, such as ExAC and gnomAD, assessments of prevalence of potentially
230 harmful variants in the general population have become feasible. Yet solely one study has
231 explored the prevalence of *LEP* variants in the general population using these reference
232 datasets (17). As of today, the gnomAD database is the largest publicly available databases
233 containing data of genetic variants (25). More than 125,000 exome and 15,000 whole genome
234 sequence datasets are contained in gnomAD v2.1.1 (18). Based on these datasets, it had been
235 estimated that each individual carries approximately 200 coding variants with allele
236 frequencies less than 0.1%. Despite the large sample size, gnomAD will lack on average $27 \pm$
237 13 novel coding mutations per exome based on the current number of samples included (25).
238 The data contained in gnomAD has been subjected to a stringent quality control excluding data
239 of participants with known severe pediatric diseases or related individuals (18, 25). Notably,
240 due to this removal of samples with known pediatric diseases, potentially relevant and
241 pathogenic variants with regard to early manifested obesity may have been omitted.
242 Additionally, variation data regarding global cohorts are deposited in gnomAD. Still, European,
243 non-Finnish samples are overrepresented, while samples from the Middle East, Central Asia
244 and Africa are generally underrepresented. Since congenital leptin deficiency caused by
245 mutations in leptin are more prevalent in patients from Pakistan and the Middle East (5, 7, 11,
246 16), there is a lack of data pertaining to deleterious leptin mutations in the general Middle
247 Eastern population. It can be assumed that higher incidence of putatively harmful variants
248 might be observed in these populations. Additionally, no individual-level phenotype data is
249 available. Thus, it is unclear whether the datasets might be skewed for overweight or obese
250 individuals, which is feasible considering the globally increasing prevalence of both (26).
251 We are aware that *in silico* tools are no substitute for functional *in vitro* analyses. This is
252 particularly evident for the deletion p.Ile35del, as neither gnomAD, nor most *in silico* tools do

253 provide predictions of functional implications. Yet, it is known that this deletion causes the loss
254 of exon 2 of the *LEP* gene and thus a congenital leptin deficiency with resultant obesity (5, 16).
255 Additionally, the performance of the individual tools varies considerably. A previous study has
256 demonstrated that SIFT and PROVEAN yield the most accurate prediction of pathogenicity.
257 MutationTaster2011 and FATHMM had comparatively low accuracy and specificity (27).
258 Further, the more stringent the criteria of pathogenicity are defined, the lower the obtained
259 prevalence (see Table 2). Accordingly, we classified variants as potentially harmful if at least
260 two tools indicated a damaging effect. Generally, these tools do help to gain preliminary
261 indications of putatively deleterious variants.

262 Across all populations, we detected that approximately one in 2,100 carries a potentially
263 deleterious (when at least two *in silico* tools indicated a pathogenicity) heterozygous variant in
264 *LEP*. In addition, the prevalence of a homozygous variant was about 1:17,860,000 among all
265 populations. Despite the larger sample size, a resultant greater number of variants in gnomAD
266 and a stricter definition of pathogenicity, our results resemble the estimated prevalence based
267 on the ExAC database reported by Nunziata and colleagues (17). Thus, the here obtained
268 prevalence of a harmful *LEP* variant in the general population confirms the low incidence of
269 leptin variants reported in the previous study. Higher prevalence rates of hetero- and
270 homozygosity are expected upon inclusion of functionally relevant variants reported in the
271 literature (17). Generally, heterozygous variants were previously detected in unaffected
272 individuals (5, 7). Heterozygous carries generally show lower BMI z-scores and lower body fat
273 percentage than homozygous individuals (28). Yet, it is feasible that an additive effect of
274 heterozygous variants may still have an impact on the carrier's body weight. Throughout all
275 populations, we report that compound heterozygous variants are less prevalent than single
276 heterozygous variants but more frequent than homozygosity. In addition, we observed
277 variations in prevalence rates between populations. For example, individuals from East Asia
278 showed a higher prevalence of both heterozygous and homozygous mutations in *LEP* than
279 other populations. Strong disparities were also evident at the SNP level. For example, the SNP
280 rs17151919 was generally infrequently detected. In African-Americans, however, it was found

281 frequently with an AF of well above 5%. One study has shown that the association of this SNP
282 with lower leptin levels was specific for the African ancestry (29). Further, the functionally
283 benign SNP rs17151919 was associated with a higher BMI in African children, but not in adults
284 (29). Certain variants deposited in gnomAD and predicted to be pathogenic were previously
285 associated with congenital leptin deficiency. The non-synonymous mutations p.Asp100Asn
286 (rs724159998, 30), p.Asn103Lys (rs28954113, 6, 31, 32) and the frameshift mutation
287 p.Gly133ValfsTer15 (rs1307773933, 7) were detected in extremely obese children being
288 homozygous carriers (5). Another study showed that BMI z-scores of carriers of homozygous
289 *LEP* variants are generally higher than those of the heterozygous or wildtype individuals
290 carrying the same variant (28).

291 **Conclusion**

292 The gnomAD database is the largest publicly available reference dataset including various
293 global study groups. By utilizing these datasets, we estimated the prevalence of putatively
294 damaging leptin variants. We identified 19 possibly damaging mutations in 32 heterozygous
295 and no homozygous carriers. The prevalence of a heterozygous variant was roughly 1:2,100,
296 while the probability for homozygosity was 1:17,860,000 across all populations. Investigating
297 each study group separately, this prevalence varied significantly, with East Asians being at
298 greater risk of harbouring a hetero- or homozygous mutation with a harmful consequence. Yet,
299 higher prevalence of functionally relevant variants could be obtained when reported case
300 studies are included. In general, mutations in the *LEP* gene, which frequently result in
301 congenital leptin deficiency, are extremely rare in the general population. Continued analysis
302 of leptin mutations along phenotypic and clinical data may improve our understanding of
303 monogenic obesity.

304

305

306

307 **References**

308 1. Friedman JM. Leptin and the endocrine control of energy balance. *Nat Metab.*
309 2019;1(8):754-64.

310 2. Jais A, Bruning JC. Hypothalamic inflammation in obesity and metabolic disease. *J Clin*
311 *Invest.* 2017;127(1):24-32.

312 3. Loos RJF, Yeo GSH. The genetics of obesity: from discovery to biology. *Nat Rev Genet.*
313 2021.

314 4. Mendoza-Herrera K, Florio AA, Moore M, Marrero A, Tamez M, Bhupathiraju SN, et al.
315 The Leptin System and Diet: A Mini Review of the Current Evidence. *Front Endocrinol*
316 (Lausanne). 2021;12:749050.

317 5. Salum KCR, Rolando JM, Zembrzuski VM, Carneiro JRI, Mello CB, Maya-Monteiro CM,
318 et al. When Leptin Is Not There: A Review of What Nonsyndromic Monogenic Obesity Cases
319 Tell Us and the Benefits of Exogenous Leptin. *Front Endocrinol (Lausanne)*. 2021;12:722441.

320 6. Wabitsch M, Funcke JB, von Schnurbein J, Denzer F, Lahr G, Mazen I, et al. Severe
321 Early-Onset Obesity Due to Bioinactive Leptin Caused by a p.N103K Mutation in the Leptin
322 Gene. *J Clin Endocrinol Metab.* 2015;100(9):3227-30.

323 7. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, et al.
324 Congenital leptin deficiency is associated with severe early-onset obesity in humans. *Nature.*
325 1997;387(6636):903-8.

326 8. Ozata M, Ozdemir IC, Licinio J. Human leptin deficiency caused by a missense
327 mutation: multiple endocrine defects, decreased sympathetic tone, and immune system
328 dysfunction indicate new targets for leptin action, greater central than peripheral resistance to
329 the effects of leptin, and spontaneous correction of leptin-mediated defects. *J Clin Endocrinol*
330 *Metab.* 1999;84(10):3686-95.

331 9. Strobel A, Issad T, Camoin L, Ozata M, Strosberg AD. A leptin missense mutation
332 associated with hypogonadism and morbid obesity. *Nat Genet.* 1998;18(3):213-5.

333 10. Hebebrand J, Milos G, Wabitsch M, Teufel M, Fuhrer D, Buhlmeier J, et al. Clinical
334 Trials Required to Assess Potential Benefits and Side Effects of Treatment of Patients With
335 Anorexia Nervosa With Recombinant Human Leptin. *Front Psychol.* 2019;10:769.

336 11. Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH, Prentice AM, et al.
337 Effects of recombinant leptin therapy in a child with congenital leptin deficiency. *N Engl J Med.*
338 1999;341(12):879-84.

339 12. Hebebrand J, Hinney A, Knoll N, Volckmar AL, Scherag A. Molecular genetic aspects
340 of weight regulation. *Dtsch Arztebl Int.* 2013;110(19):338-44.

341 13. van der Klaauw AA, Farooqi IS. The hunger genes: pathways to obesity. *Cell.*
342 2015;161(1):119-32.

343 14. Wabitsch M, Funcke JB, Lennerz B, Kuhnle-Krahl U, Lahr G, Debatin KM, et al.
344 Biologically inactive leptin and early-onset extreme obesity. *N Engl J Med.* 2015;372(1):48-54.

345 15. Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C, et al. Beneficial
346 effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic
347 dysfunction of human congenital leptin deficiency. *J Clin Invest.* 2002;110(8):1093-103.

348 16. Fatima W, Shahid A, Imran M, Manzoor J, Hasnain S, Rana S, et al. Leptin deficiency
349 and leptin gene mutations in obese children from Pakistan. *Int J Pediatr Obes.* 2011;6(5-
350 6):419-27.

351 17. Nunziata A, Borck G, Funcke JB, Kohlsdorf K, Brandt S, Hinney A, et al. Estimated
352 prevalence of potentially damaging variants in the leptin gene. *Mol Cell Pediatr.* 2017;4(1):10.

353 18. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, et al. The
354 mutational constraint spectrum quantified from variation in 141,456 humans. *Nature.*
355 2020;581(7809):434-43.

356 19. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants
357 on protein function using the SIFT algorithm. *Nat Protoc.* 2009;4(7):1073-81.

358 20. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A
359 method and server for predicting damaging missense mutations. *Nat Methods.* 2010;7(4):248-
360 9.

361 21. Steinhaus R, Proft S, Schuelke M, Cooper DN, Schwarz JM, Seelow D.
362 MutationTaster2021. *Nucleic Acids Res.* 2021;49(W1):W446-W51.

363 22. Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GL, Edwards KJ, et al.
364 Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions
365 using hidden Markov models. *Hum Mutat.* 2013;34(1):57-65.

366 23. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of
367 amino acid substitutions and indels. *PLoS One.* 2012;7(10):e46688.

368 24. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, et al. The Ensembl
369 Variant Effect Predictor. *Genome Biol.* 2016;17(1):122.

370 25. Gudmundsson S, Singer-Berk M, Watts NA, Phu W, Goodrich JK, Solomonson M, et
371 al. Variant interpretation using population databases: Lessons from gnomAD. *Hum Mutat.*
372 2021.

373 26. Blüher M. Obesity: global epidemiology and pathogenesis. *Nat Rev Endocrinol.*
374 2019;15(5):288-98.

375 27. Pshennikova VG, Barashkov NA, Romanov GP, Teryutin FM, Solov'ev AV, Gotovtsev
376 NN, et al. Comparison of Predictive In Silico Tools on Missense Variants in GJB2, GJB6, and
377 GJB3 Genes Associated with Autosomal Recessive Deafness 1A (DFNB1A).
378 *ScientificWorldJournal.* 2019;2019:5198931.

379 28. Koerber-Rosso I, Brandt S, von Schnurbein J, Fischer-Posovszky P, Hoegel J,
380 Rabenstein H, et al. A fresh look to the phenotype in mono-allelic likely pathogenic variants of
381 the leptin and the leptin receptor gene. *Mol Cell Pediatr.* 2021;8(1):10.

382 29. Yaghoodeh H, Zhang Y, Spracklen CN, Karaderi T, Huang LO, Bradfield J, et al.
383 Genetic Studies of Leptin Concentrations Implicate Leptin in the Regulation of Early Adiposity.
384 *Diabetes.* 2020;69(12):2806-18.

385 30. Dayal D, Seetharaman K, Panigrahi I, Muthuvel B, Agarwal A. Severe Early Onset
386 Obesity due to a Novel Missense Mutation in Exon 3 of the Leptin Gene in an Infant from
387 Northwest India. *J Clin Res Pediatr Endocrinol.* 2018;10(3):274-8.

388 31. Shabana, Hasnain S. The p. N103K mutation of leptin (LEP) gene and severe early
389 onset obesity in Pakistan. Biol Res. 2016;49:23.

390 32. Mazen I, El-Gammal M, Abdel-Hamid M, Amr K. A novel homozygous missense
391 mutation of the leptin gene (N103K) in an obese Egyptian patient. Mol Genet Metab.
392 2009;97(4):305-8.

393 **Supporting Information Captions**

394 **S1 Table: Summary of the results of the *in silico* analyses of *LEP* variants deposited in**
395 **gnomAD.** Supplementary Table S1 represents the *in silico* predictions for each variant present
396 in all populations by various tools, namely SIFT (19), PROVEAN (23), PolyPhen2 (20),
397 MutationTaster2021 (21) and FATHMM-MKL (22). The tools are ordered by their reported
398 accuracy (left: highest accuracy; right: lowest accuracy; 27).

399

400

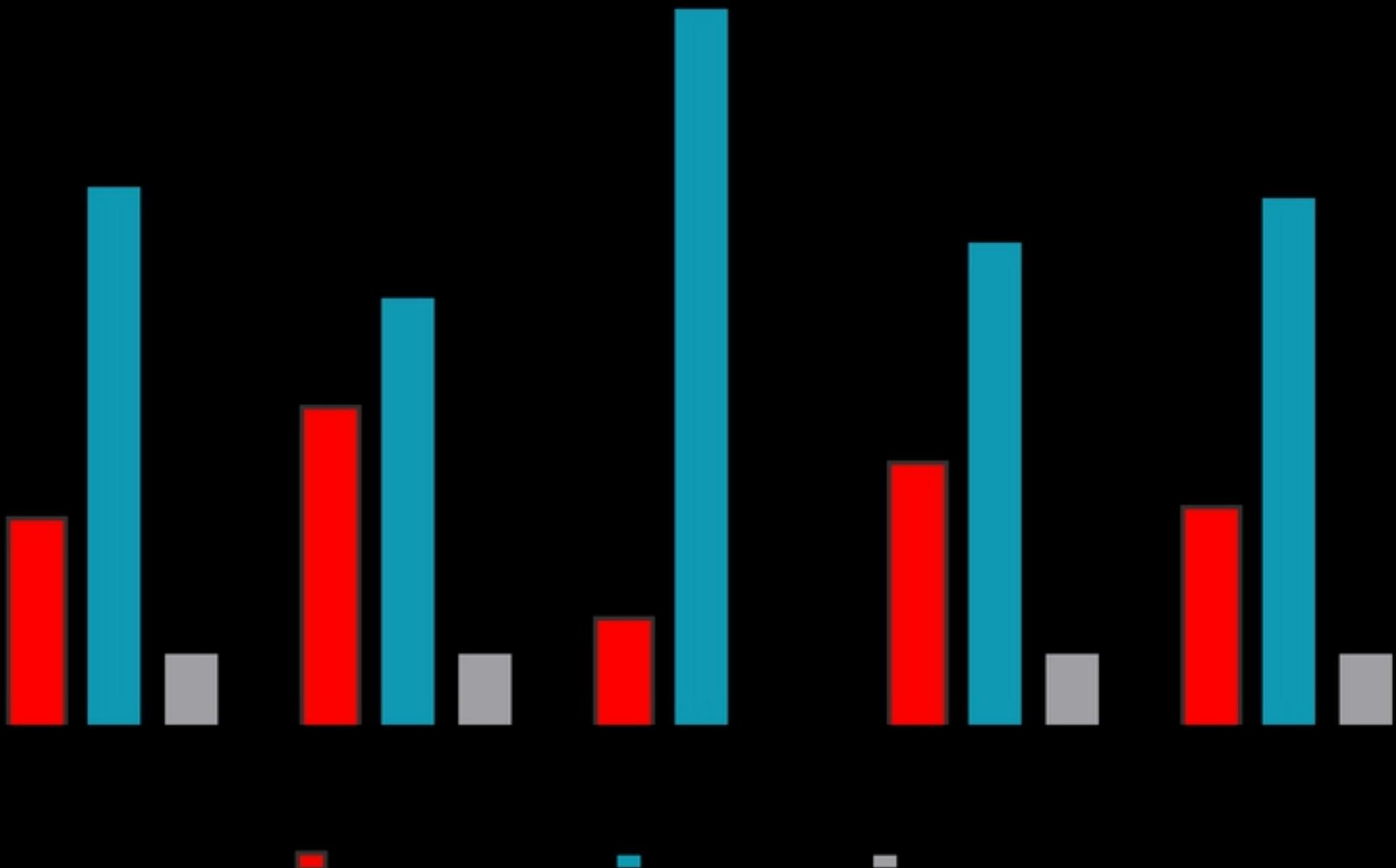


Fig1