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ABSTRACT

By acting both upstream and downstream of biochemical organizers of the cytoskeleton,
physical forces function as central integrators of cell shape and movement. Here we use a
combination of genetic, pharmacological, and optogenetic perturbations to probe the role of the
conserved mechanoresponsive mTORC2 program in neutrophil polarity and motility. We find
that the tension-based inhibition of leading edge signals (Rac, F-actin) that underlies protrusion
competition is gated by the kinase-independent role of the complex, whereas the mTORC2
kinase arm is essential for regulation of Rho activity and Myosin Il-based contraction at the
trailing edge. Cells required mTORC2 for spatial and temporal coordination between the front
and back polarity programs and persistent migration under confinement. mTORC2 is in a
mechanosensory cascade, but membrane stretch did not suffice to stimulate mMTORC2 unless
the co-input PIP3 was also present. Our work suggests that different signalling arms of mTORC2
regulate spatially and molecularly divergent cytoskeletal programs allowing efficient coordination

of neutrophil shape and movement.
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INTRODUCTION
Directed cell migration underlies a wide range of physiological processes ranging from
developmental morphogenesis to immune cell responses (SenGupta et al., 2021). Single cells
move by extending a leading front that protrudes and a trailing rear that contracts and follows
the front. These programs exhibit not only spatial compartmentalization of distinct intracellular
signals to either the front or back of the cell (polarization) but also temporal coordination between
these domains (Ku et al., 2012; Tsai et al., 2019; Xu et al., 2003). Neutrophils are a type of innate
immune cell that rely on properly oriented cell polarity to migrate to sites of injury where they
hunt and kill invading pathogens (Lammermann et al., 2013; Liew and Kubes, 2019). In the cell
front, activation of small GTPase Rac helps sets the permissive zone for WAVE-regulatory
complex (WRC)-dependent actin polymerisation in protrusions (Koronakis et al., 2011;
Lebensohn and Kirschner, 2009; Rottner et al., 2021; Srinivasan et al., 2003; Wang et al., 2002;
Weiner et al., 2006). At the back, the GTPase RhoA stimulates myosin based contractility (Hind
et al., 2016; Tsai et al., 2019; Wong et al., 2006). These signaling domains are sustained by
short-range positive feedback loops within the modules and are spatially separated by mutual
antagonism between them (Ku et al., 2012; Wang et al., 2013; Xu et al., 2003). Coordination
within and between the modules is critical for polarity maintenance during persistent migration
(Maiuri et al., 2015; Tsai et al., 2019; Yang et al., 2015), but how this coordination is achieved is
not fully understood.

When cells protrude or contract, they alter the mechanical properties of the cell surface.
While mechanics was initially seen as a downstream output of cytoskeletal dynamics, emerging
evidence suggest that mechanics feeds back to regulate the upstream leading and trailing edge

biochemical signals (Diz-Mufioz et al., 2013; Graziano et al., 2019; Hetmanski et al., 2019; Lieber
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et al., 2013; Mueller et al., 2017; Saha et al., 2018). In neutrophils, membrane tension acts as a
long-range inhibitor of actin nucleation and polymerization to constrain the size and number of
cell protrusions (Houk et al., 2012). Increases in membrane tension trigger a mechanosensitive
signalling cascade to regulate actin dynamics in neutrophils. Actin-based polymerization in
protrusions stimulates Mechanistic target of Rapamycin Complex 2 (mTORC2) through the
activation of Phospholipase D2. By connecting increases in protrusion to decreases in actin
nucleation, mMTORC2 is a central component of the negative-feedback-based homeostat on
membrane tension (Diz-Mufioz et al., 2016).

MTOR kinase is an ancient and evolutionarily conserved regulator of cell growth,
proliferation, and survival (Saxton and Sabatini, 2017). mTOR forms two distinct multi-subunit
complexes in mammalian cells mTOR complex 1 (MTORC1) and mTOR complex 2 (ImMTORC2).
MTORC?2 is formed from the association of core mTOR subunits with Rictor and mSinl. Rictor
scaffolds the complex and is indispensable for the stability of the complex, whereas mSinl aids
the kinase activity of the complex (Frias et al., 2006; Jacinto et al., 2004; Sarbassov et al., 2004).
MTORC2 activity is thought to broadly localize to plasma membrane (Berchtold et al., 2012;
Ebner et al., 2017b; Riggi et al., 2020), where it relays growth factor signals by phosphorylating
its downstream effectors Akt, PKC and SGK1 and other targets to regulate a wide range of
cellular processes including cytoskeletal organisation and cell migration (Liu and Parent, 2011;
Oh and Jacinto, 2011).

MTORC2 plays a homeostatic role in response to membrane stretch in a wide variety of
cell types, ranging from yeast (Berchtold et al., 2012; Riggi et al., 2020, 2018) to immune cells
(Diz-Mufioz et al., 2016) to Dictyostelium (Artemenko et al., 2016; Kamimura et al., 2008). In S.

cerevisiae, plasma membrane (PM) stretch activates TORC2 to stimulate sphingolipid
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biosynthesis, sterol recycling and bilayer asymmetry as homeostatic mechanisms to reset
membrane tension and restore membrane trafficking (Riggi et al., 2020; Roelants et al., 2017).
In neutrophils, where membrane tension increases arise from protrusive forces of F-actin,
MTORC2 based inhibition of actin polymerisation serves a mechanism to maintain the tension
setpoint as well as restrict polarity signals (Diz-Muioz et al., 2016; Houk et al., 2012; Liu et al.,
2010). A conserved role of mMTORC2 also involves gating chemoattractant signaling to cyclic-
AMP production to regulate myosin contractility and drive tail retraction in neutrophils (Liu et al.,
2014, 2010). The Dictyostelium homolog of Rictor, Pianissimo was initially identified in a genetic
screen for regulators of chemotaxis before it was known to be part of TORC2 (Chen et al., 1997).
Perturbation of mMTORC2 component Rictor led to impaired chemotaxis in neutrophils, fibroblasts
and Dictyostelium consistent with reports of its role in regulating actin cytoskeleton (Agarwal et
al., 2013; He et al., 2013; Lee et al., 2005; Liu et al., 2010). These wide arrays of cytoskeletal
defects are thought to rise from both positive (He et al., 2013) and negative inputs (Diz-Mufioz
et al.,, 2016; Huang et al., 2017) to front and back polarity programs and have been hard to
decouple.

Here, we investigate the relative contributions of the kinase dependent versus
independent arms of Rictor/mTORC2 in regulating front and back polarity activation and
coordination (Fig 1A). The kinase-independent arm of mMTORC2 restricts actin polymerization at
the cell front, whereas the kinase arm regulates myosin contractility at the cell back. Whereas
front/back regulation are normally highly coordinated, they lose their coordination in the absence
of mMTORC2. These defects are particularly profound when neutrophils explore and move in

confined environments. Stretch alone is not sufficient to activate mTORC2 unless the co-input
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of PIPs is also present. Our work reveals a role for mTORC2 in coordinating front and back

regulation through different effector arms of this highly-conserved mechanosensor.

RESULTS

Rictor/mTORC2 is a mechanoresponsive regulator of neutrophil ameboid motility

How is mechanoresponsive triggering of TORC2 linked to its regulation of cell migration ? One
possible route to regulating motility is through altering the dynamics of actin polymerisation or
myosin contractility (Fig 1A). Earlier studies in neutrophils using partial knockdown of Rictor or
mSinl (using shRNAs) have found both positive and negative roles of TORC2 on cytoskeletal
effectors (Rac, Cdc42, RhoA) confounding a clear understanding of the logic of this regulation
(Diz-Muiioz et al., 2016; He et al., 2013; Liu et al., 2010). We reasoned genetic nulls with
complete loss of MTORC2 specific subunits in neutrophil-like dHL60 cells would offer a more
surgical approach to dissect these mechanisms, following the success of this strategy in other
cell-based models (Agarwal et al., 2013; Guertin et al., 2006; Huang et al., 2017).

To distinguish between the relative contribution of the kinase roles of mMTORC2 and the
kinase-independent scaffolding roles of Rictor, we devised a CRISPR-Cas9 based approach (S1
Fig A, B) to knock-out two key components of mTORC2 in dHL60 cells - its scaffolding sub-unit
Rictor and its kinase accessory subunit mSinl (Fig 1B, C). Rictor null (Rictor KO) cells impair
both mTORC2 kinase and non-kinase roles, whereas mSinl null (mSinl KO) cells specifically
affect the kinase roles (Guertin et al., 2006; Jacinto et al., 2006, 2004; Sarbassov et al., 2004).
As a pharmacological approach to impair the kinase function of mMTOR, we used a specific
inhibitor of MTOR Kinase Ku-0063794 (KU) (Garcia-Martinez et al., 2009). To read out the

kinase activity of mTORC2, we assayed the phosphorylation of the well-characterized mTORC2


https://doi.org/10.1101/2022.03.25.484773
http://creativecommons.org/licenses/by-nd/4.0/

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.25.484773; this version posted March 27, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

substrate Akt (Ebner et al., 2017a; Sarbassov et al., 2005). When stimulated by chemoattractant
peptide formyl-Met-Leu-Phe (fMLP); neutrophil-like differentiated HL60 (dHL60) cells derived
from both Rictor KO and mSin1KO lines show marked reduction in the phosphorylation of Akt to
levels that were comparable to pharmacological inhibition of the mTOR kinase (~ 75-80%
reduction from wildtype cells; S1 Fig C, D), indicating a loss of mMTORC2 kinase activity with all
of these perturbations.

To determine the importance of these mTORC2 perturbations on cell movement, we
performed a transwell chemotaxis assay (Fig 1D), which demonstrated that the perturbation of
MTORC2 complex formation (in Rictor KO) or kinase activity (in Rictor KO, mSin1KO or mTOR
kinase inhibition) all led to significant and comparable defects in bulk transwell migration (Fig
1D; 60-70% drop in migration index compared to WT). These results agree with earlier reports
of chemotaxis defects in Rictor ShRNA knockdowns and upon long term perturbation of mTOR
activity with Rapamycin (Diz-Mufioz et al., 2016; He et al., 2013; Liu et al., 2010). In addition, we
find that both acute (with drug KU) and chronic perturbation (mSinl KO) of mTOR kinase also
impair transwell migration. This is consistent with chemotaxis defects observed in genetic
knockouts of Rip3 (Sinl ortholog of mSinl) in Dictyostelium (Lee et al., 2005) but is in contrast
with an earlier study using partial knockdown of mSin1 in neutrophils, which found no discernible
defects in chemotactic movement of mSinl KD cells in a micro-needle assay (He et al., 2013).
Factors like differences in the extent of depletion and the type of migration assay conditions
used can often lead to confounding results, so we chose to assess motility defects in cleaner
single cell assays of cell migration with the genetic nulls of mMTORC2 components.

We suspected that mMTORC2-based mechanoadaptation might be particularly important

when cells are in migration environments that mechanically perturb them, including squeezing
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through a pore for transwell assays or migrating under mild confinement. To study 2D migration
under mild confinement, we made use of under-agarose (2% wi/v) overlay on cells (Bell et al.,
2018; Brunetti et al., 2022; Tsai et al., 2019) and tracked individual cells over the course of 12
min (assay schematic and cell tracks in Fig 1E) in presence of uniform chemoattractant (25 nM
fMLP). Both Rictor KO and mSinl KO cells exhibited less net displacement (Fig 1E) and moved
at significantly slower speeds (Fig 1F; median speed for Rictor KO: 3.2 um/min; mSinl KO: 6
um/min) compared to Wildtype (WT) dHL60 cells (median speed: 9 um/min). However, under
similar assay environment, only Rictor KO cells showed a significantly reduced persistence (ratio
of displacement/distance; median persistence for Rictor KO: 0.1; WT: 0.5), suggesting a role for
Rictor beyond the kinase activity of mTORC2. In contrast to the defects observed under agarose,
when Rictor KO and mSinl KO cells were assayed for classical unconfined 2D-motility (S1 Fig
C) on glass coverslips coated with fibronectin, they moved with similar speed and persistence
as WT dHL60 cells (S1 Fig D, E). These results suggest that migratory defects upon mTORC2
perturbation are sensitised in an assay where cells need to actively assess the local environment
and adapt during movement. These results also indicate that kinase activity of mMTORC2 is
specifically required to set the speed of movement, while the scaffolding roles of the complex

contribute to maintain persistence of motion (Fig 1H).

Kinase-independent roles of Rictor/mTORC2 restricts the zone of F-actin assembly to the
cell front

Persistent motility in neutrophils relies on establishing a single front of lamellipodial F-actin.
Earlier studies have shown fMLP stimulated neutrophils with reduced levels of Rictor (via ShRNA

knockdowns) show elevated steady-state levels of F-actin (Diz-Mufioz et al., 2016) with a near-
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uniform peripheral distribution of actin polymerization (Liu et al., 2010). While this is consistent
with Rictor/mTORC2 mediating negative feedback to inhibit F-actin polymerisation, the relative
contributions of MTORC2 kinase activity and kinase-independent roles in this process remains
unclear (Fig 2A). Answering these questions necessitates the larger suite of mMTORC2
perturbations that we leverage in the current work.

To assay actin assembly in our mutant backgrounds, we stimulated fibronectin-adhered
wildtype (WT), Rictor KO and mSinl KO dHL60 neutrophils with chemoattractant and stained
them with Phalloidin-Alexa647. WT cells show an initial burst (1 min, S2 Fig A, B) in actin
polymerisation that adapts over 5 minutes to basal (O min, no fMLP) levels. Consistent with our
earlier results from partial loss of Rictor (in knockdown cells), Rictor KO cells exhibit significant
increase in F-actin levels (1 min ; S2 Fig A, B). In contrast, depletion of mSin1 failed to elicit
appreciable differences in the overall levels during the initial burst and reset (mSinl KO, S2 Fig
A, B), suggesting the kinase arm of mMTORC2 may be dispensable for regulating F-actin levels.
To investigate the role of mMTORC2 on the spatial dynamics of actin regulation, we next focused
on the subcellular features of F-actin distribution in polarised cells after 5 minutes of
chemoattractant stimulation (Fig 2B), visualized via maximum-intensity projections of 3D data
stacks. Rictor KO cells showed broader range of F-actin in the front compared to WT and mSinl
KO cells (Fig 2B). We used linescan (5 um line ROI) to measure F-actin levels orthogonal to the
leading front (Fig 2C) and fitted the F-actin intensity profile to a Bi-Gaussian to estimate the
effective width of the F-actin zone (Buys and De Clerk, 1972). While WT and mSinl1KO cells
have very similar widths of F-actin zone (fitted width ~ 2 - 2.5 um), Rictor depletion led to a two-

fold expansion of the width of the actin front (fitted width 5.4 um).
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Recent lattice light sheetimaging data have shown neutrophils not only generate substrate-
bound protrusions but also build axial protrusions that extend away from the plane of substrate
(Fritz-Laylin et al., 2017; Pipathsouk et al., 2021). To investigate whether Rictor/mTORC2 plays
a role in constraining the formation and abundance of these axial protrusions, we analyzed the
extent of protrusion formation in 3D reconstructions of neutrophils. We used ChimeraX
(Pettersen et al., 2021) to 3D reconstruct and render these cells in two axial planes yz and tilted
xz (Fig 2D i, iii, Video 1). Confirming our expectation, loss of Rictor led to enhanced
accumulation of F-actin rich protrusions away from the plane of the substrate. These protrusions
were frequently present (> 50 % of all cells imaged; Fig 2E, Video 1) in Rictor KO cells, and
they were more rarely observed in WT or mSinl KO cells ( ~ 25% of all cells; Fig 2E).

The absence of discernible defects in F-actin distribution in absence of mSinl (and hence
MTORC2 kinase activity) suggest that mTORC2 relies on its Rictor-dependent kinase
independent signaling to restrict F-actin to the leading edge of cells. Next, we investigated how

MTORC2 regulates the biochemical effectors of front/back polarity in cell motility.

Kinase-independent arm of Rictor/mTORC2 inhibits Rac activity while its kinase role
stimulates myosin contractility

The migration phenotypes we observe for both kinase-dependent and kinase-independent arms
of Rictor/mTORC2 (Fig. 1) could arise from its effects on different portions of migration cascade.
A wide range of motile cells including neutrophils show a distinct front-back polarity and organise
their protrusive fronts and contractile backs using Rac and RhoA/myosin signaling, respectively
(Ku et al., 2012; Schaks et al., 2019; Xu et al., 2003). We were interested in how mTORC2

regulates these polarity and cytoskeletal programs. Cellular stretch has been shown to inhibit
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Rac activity in several contexts (Houk et al., 2012; Katsumi et al., 2002), but it is not clear which
arm of mMTORC2 activities are necessary for this inhibition in neutrophils.

Here, we verified whether kinase activity of mTORC2 is dispensable restricting Rac
activation and actin polymerization (Fig 3A left side). To investigate mTORC2 regulation of Rac,
we leveraged a biochemical assay of Rac activity following the phosphorylation profile of Rac
effector p21 kinase (Pak) upon chemoattractant stimulation (Graziano et al., 2019; Weiner et al.,
2006). Since chemoattractant (fMLP) addition is sufficient to trigger downstream signaling and
polarisation of cells in suspension, we carried out these biochemical assays in suspension. In
WT dHL60 neutrophil-like cells (Fig 3B, C), fMLP addition led to a burst of Pak-phosphorylation
(Rac activity) that peaks around 1min followed by gradual adaptation over the course of 5
minutes. In comparison, Rictor KO cells exhibit significantly elevated levels (~ 2 fold above WT;
1-2 min; Fig 3C) of Rac activity upon fMLP addition. However, perturbation of mTORC2 kinase
activity (in mSinl KO cells) did not result in appreciable alteration in the temporal profile of Rac
activity. The marked differences in Rac activity observed upon depletion of Rictor or mSinl
suggests that kinase-independent roles of Rictor/mTORC2 are responsible for limiting leading
edge signals.

Next, we investigated whether perturbation of mMTORC2 activity also affects polarity
signaling at the trailing edge of the cell. Active RhoA and its associated RhoA-Kinase (ROCK)
localize and phosphorylate myosin regulatory light chain (pMLC) to power contractile retraction
of the back (Hind et al., 2016; Tsai et al., 2019; Wong et al., 2006). Biochemical studies in
neutrophils have shown that mMTORC2 kinase effector PKC regulates RhoA and myosin activity
in neutrophils (Liu et al., 2014, 2010). In fission yeast, TORC2 kinase activity also stimulates

myosin activation (Baker et al., 2019) indicating a conserved role for TORC2 kinase effectors in

10
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regulating contractility. If kinase roles of mMTORC2 stimulate myosin contractility, we expect both
Rictor KO and mSinl KO cells to show reduced pMLC levels (Schematic in Fig 3A). If the
Rho/myosin inhibition is secondary to an increase in the antagonistic Rac activation, we would
expect larger effects for Rictor KO cells. (Fig 3A right side). We used immunofluorescence (IF)
against phospho-MLC to probe myosin contractility in dHL60 neutrophils plated on glass and
stimulated with chemoattractant (25 nM fMLP). Wildtype neutrophils (S3 Fig A) gradually elevate
their pMLC levels (and hence contractility) over the course of 5 minutes as they polarise (Fig
3D, S3 Fig B). While Rictor KO and mSinl KO cells have comparable levels of basal pMLC (0
min) as wildtype; both cell types fail to raise their pMLC levels (~ 50-60 % reduction) over the
course of polarisation (Fig 3D, S3 Fig A, B). We found the contractility loss upon mTORC2
perturbation were comparable with direct inhibition of RhoA/ROCK activity. Wildtype cells treated
with ROCK inhibitor Y27632 and stimulated with fMLP (5 minutes) show significant loss (~80%
drop) of pMLC levels and emergence of a long stalk (S3 Fig C) as cells fail to retract. In
comparison, pMLC levels remain unchanged between untreated and Y27632 treated Rictor KO
cells (~60 % less than WT ; S3 Fig D).

Our results show that the kinase-independent roles of Rictor/mTORC2 inhibit Rac activity
in the front, while the kinase roles of mMTORC2 stimulate contractility at the back allowing the two
divergent downstream arms of mTORC2 to execute opposing effects on the front and back
polarity programs. We next explore the consequence of this regulatory circuit for front-back

polarity coordination during motility.

Rictor/mTORC2 spatially and temporally coordinates the front and back polarity program

during movement

11
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Migrating neutrophils rely on front-back coordination to persistently move, turn, and reorient
during migration. This front-back coordination depends on multiple currencies including cell
membrane tension (Houk et al., 2012; Sens and Plastino, 2015), actin flows (Liu et al., 2015;
Maiuri et al., 2015), myosin contractility (Tsai et al., 2019), as well as biochemical signaling
crosstalk (Devreotes et al., 2017; Ku et al., 2012; Xu et al., 2003) between the front and back
polarity programs. Our results (Fig 3) suggest a scenario in which neutrophils appear to leverage
the two arms of mMTORC2 downstream signaling to coordinate front and back polarity signaling.
We asked whether this logic contributes to the spatial organisation and temporal coordination of
polarity during movement (Fig 4).

To investigate the role of mMTORC2 in front/back coordination, we revisited the agarose
overlay conditions (Bell et al., 2018; Brunetti et al., 2022) which sensitized Rictor-dependent
migratory phenotypes (Fig 1E-G). To map the distribution and coordination of polarity in
migrating cells, we co-expressed localization biosensors for both active Rac (from Pak;
Srinivasan et al., 2003) and active RhoA (from Anilin; Piekny and Glotzer, 2008) in wildtype and
Rictor KO cells and imaged them at high spatial and temporal resolution (frame interval of 3
second) in presence of uniform chemoattractant 25 nM fMLP (Fig 4A, B montage, Video 2).
First, we assessed the spatial features of front and back regulation in these cells. Active Rac
forms a gradient in front half of a polarised wildtype cell, while active RhoA is tightly focused at
the rear (Fig 4A, WT). A linescan in the direction of cell movement (front-back axis) reveals the
mutually exclusive distribution of biosensor and a strong anti-correlation (Pearson’s R = 0.49 for
WT; Fig 4C). While Rictor KO cells also polarise, they do so with an elongated stalk at the cell
back (Fig 4B, Rictor KO), where the bulk of active RhoA is concentrated. As expected, wildtype

cells showed strong mutual antagonism of Rac and RhoA, with RhoA activity completely
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excluded from the Rac-positive zones in the cell front (Fig 4C). In contrast, Rictor KO cells
showed local hotspots of RhoA biosensor localisation in the cell front (Fig 4D). This impaired
spatial sorting of front and back polarity signal can be detected by poor anti-correlation between
both biosensors (Pearson’s R = -0.22 for Rictor KO; Fig 4D). Front-back correlation (Fig 4E)
guantified from several cells (WT = 23 cells; Rictor KO = 33 cells) show a significant difference
between the two cell types and overall shift in the distribution to poorer front/back separation for
Rictor KO (Median for WT= - 0.55; Rictor KO = 0.1). These defects originate specifically from
differences in biosensor distribution across the front-back axis, as lateral linescan perpendicular
to direction of movement (S4 Fig A, B) do not show any preferential bias and resulted in similar
overall distribution of Pearson correlation across the lateral plane for both wildtype and Rictor
null cells (S4 Fig C).

Next, we probed the temporal coordination of front-back polarity during movement under
agarose. Recently, we and others have used a polarity metric based on the centroid of biosensor
intensity with respect to the geometric centroid of the cells to monitor Rac polarity (Graziano et
al., 2019; Olguin-Olguin et al., 2021). We revised this analysis approach to compute the centroid
of biosensor intensities for both the Rac and RhoA biosensor (polarity vectors for WT and Rictor
KO in Fig 4A, B). The distance between the zones of Rac and RhoA activation (inter-centroid
distance) provides a measure of separation between front and back signals during migration
(length between arrowheads of polarity vectors for WT and Rictor KO in Fig 4A, B). Cells
proficient in coordinating front-back polarity during persistent movement exhibit smaller
fluctuations in inter-centroid distance. Rictor KO cells show enhanced amplitude of fluctuations
for front/back separation (Fig 4F). We quantified the strength of these fluctuations as coefficient

of variation (CV), a commonly used metric to quantify fluctuations in cell polarity (Lai et al., 2018;
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Onwubiko et al., 2019). Loss of Rictor leads to a significant increase in CV (Fig 4G; Median CV
for WT: 0.2, Median CV for Rictor KO : 0.5), indicating that Rictor/mTORC2 plays a critical role
in coordination between the polarity signals at front and back.

Our experiments probe how different branches downstream of mMTORC2 activation (kinase
dependent vs independent) relate to regulation of front-back polarity programs and their
spatiotemporal coordination during movement. We next investigated whether biochemical

signals and physical forces synergize to active mTORC2 in the first place.

Mechanical stretch synergizes with PIP3 generation to activate mTORC2

TORC2 is an ancient program that has been shown to be regulated by both biochemical and
mechanical inputs in several contexts ranging from yeasts to Dictyostelium to immune cells.
While mechanical stretch is one important regulator of the activation of the complex in
Dictyostelium (Artemenko et al., 2016) mounting evidence suggest biochemical inputs from
Ras(and Rap) are required for full activation of the complex (Khanna et al., 2016; Senoo et al.,
2019; Smith et al., 2020) .

To investigate whether mechanical stretch suffices to activate the mTORC2 complex, we
exposed neutrophils to hypotonic media (50% decrease in ionic strength) and assayed the
activation of mTORC2 via Akt phosphorylation. Surprisingly, hypotonic exposure (purely
mechanical input) alone failed to activate mTORC2, but hypotonic exposure synergized with
chemoattractant addition (combination of biochemical and mechanical inputs) to activate
MTORC2 (Fig 5A). Hypotonic buffer (50% water) failed to stimulate mMTORC2 kinase activity at
both 1 and 3 minutes after osmotic challenge (Fig 5B, C). However, a combination of osmotic

challenge and chemoattractant, significantly amplifies (~ 2 fold) the peak pAkt response at 3
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minutes compared to the levels obtained by chemoattractant alone (Fig 5C). These results
suggest that mechanical stretch synergizes with other biochemical inputs from chemoattractant
to amplify mTORC2 signaling activity.

Chemoattractant fMLP activates a wide range of downstream signaling pathways (Gpy,
PI3K, Ras; Xu et al., 2003). Which of these programs are necessary to synergize with
mechanical inputs to stimulate mTORC2? Here we focused on the PI3K node that is responsible
for P1-3,4,5-P3 (PIP3) generation at the front of the cells. PIP3-Rac positive feedback is central
for instructing actin polymerisation in the front and raising cellular tension (Graziano et al., 2017;
Wang et al., 2002; Weiner et al., 2002). Moreover, PIP3 is also responsible for recruitment of
MTORC2 phospho-substrate Akt (Ebner et al., 2017b, 2017a). In neutrophils, PI3Kyis the
dominant regulator of fMLP-dependent PIPs production (Hannigan et al., 2002; Hirsch et al.,
2000; Sasaki et al., 2000; Stephens et al., 1994). To test if PI3Ky activity is a necessary for
stretch-dependent amplification of mMTORC2 activity we used PIK90 (Van Keymeulen et al.,
2006), a specific inhibitor of PI3Ky (Fig 5D). dHL60 cells pre-treated with PIK90 and
subsequently stimulated with fMLP alone or in combination with hypotonic media (50 % ionic
strength) show background (basal) levels of pAkt in immunoblots compared to untreated cells
(Fig 5E, F). These results show that PI3Ky induced PIP3 synthesis is necessary for neutrophils
to activate and amplify mTORC2 kinase activity upon osmotic stretch.

We next tested whether PIP3 suffices to replace chemoattractant in mechanics-synergized
MTORC2 activation. For this purpose, we used an optogenetic module (opto-PI13K) which can
synthesize PIP3z in response to light stimulation (Graziano et al., 2017) (Fig 5G). Optogenetic
stimulation of PIPs sufficed as the co-input with mechanical stretch in mTORC2 activation (Fig

5H, I). Our results indicate that mTORC2 is jointly activated by PIPs and mechanical stretch.
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DISCUSSION
For persistent motility, neutrophils must coordinate the activation of their leading and trailing
cytoskeletal networks (Houk et al., 2012; Tsai et al., 2019). The mTORC2 complex is a critical
regulator of this coordination. Following protrusion-induced membrane stretch, mTORC2/Rictor
activation inhibits actin polymerization to enable a dominant front to emerge (Diz-Mufioz et al.,
2016) and regulates myosin contractility at the trailing edge (Liu et al., 2010). Here we use a
combination of genetic nulls and pharmacological tools to investigate the kinase dependent and
independent links from mMTORC2 to these cytoskeletal programs. mMTORC?2 is indispensable for
movement when neutrophil-like dHL60 cells are mildly confined (~ 5 um) under agarose to mimic
the confined spaces these cells explore in vivo (Fig 1). The kinase-independent roles of
Rictor/mTORC2 are central to regulating the leading edge polarity program (Rac activity, F-actin
distribution; Fig 2 & 3). Consistent with earlier studies (Baker et al., 2019; Liu et al., 2014, 2010),
we find that mTORC2 kinase activity is essential for sustained myosin contractility at the trailing
edge (Fig 3). Using dual biosensor imaging of front and back polarity program, we show that
MTORC?2 is necessary for these two arms to work in unison for spatial and temporal coordination
of polarity during movement (Fig 4). Finally, we probe the requirements for mTORC2 activation.
Membrane stretch does not suffice for mTORC2 activation unless the biochemical input PIP3 is
also present (Fig 5). In summary, our results highlight the logic of stretch-activated
Rictor/mTORC2 signaling in coordinating front-back polarity during neutrophil movement
(working model in Fig 6).

TORC?2 is an ancient regulator of plasma membrane (PM) tension homeostasis across
evolution (Eltschinger and Loewith, 2016; Riggi et al., 2020). In yeasts, an increase in PM tension

triggers TORC2-based homeostatic responses to increase the surface area of the plasma
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membrane (Berchtold et al., 2012; Riggi et al., 2019, 2018; Roelants et al., 2017). In
Dictyostelium, the TORC2 signaling program is activated by shear stress and regulates polarity,
chemotaxis and electrotaxis (Gao et al., 2015; Kamimura et al., 2008; Lee et al., 2005).
Membrane-tension based regulation of actin polymerization appears to be a conserved
mechanism to reinforce polarity and cortical architecture (Sens and Plastino, 2015). In
neutrophils, disruption of mechanosensory mTORC?2 leads to elevated levels of membrane
tension arising from increased actin polymerisation (Diz-Mufioz et al., 2016). Among other
immune cells, loss of Rictor in B-cells also led to drastic increase in cortical F-actin levels upon
B-cell receptor (BCR) stimulation (Huang et al., 2017). Similar mechanisms could also restrict
actin polymerisation at the tip of the leading edge of oligodendrocytes as they wrap around the
axonal shaft during myelin sheath formation (Bercury and Macklin, 2015; Nawaz et al., 2015),
as mMTORC2 signaling has been shown to regulate the differentiation, shape, and actin
cytoskeleton organisation of these cells (Bercury et al., 2014; Dahl et al., 2022).

How does mTORC2 interface with cell polarity? While the kinase-independent roles of
Rictor/mTORC?2 inhibits the front (Rac); its kinase activity stimulates the back (RhoA). Using two
distinct aspects of mMTORC2 potentially enables independent regulation of the spatially polarised
front and back program. Further, the use of a shared signalling node of mTORC2 activation may
help facilitate coordination between the two polarity programs (Fig 6). This mTORC2-based
mechanism of signaling based coordination between the two programs is likely to operate in
conjunction with the recently reported fast mechanical coupling of protrusion and retraction
dynamics observed in neutrophils (Tsai et al., 2019) and in other cells undergoing ameboid

migration (Liu et al., 2015; Maiuri et al., 2015).
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How are downstream arms of Rictor/mTORC2 linked to regulation of front/back polarity signals?
We show that the kinase independent arm of Rictor/mTORC2 inhibits Rac activation and actin
polymerization at the leading edge (Figs 2, 3) consistent with some (Diz-Mufoz et al., 2016; Liu
et al., 2010) but not all (He et al., 2013) previous studies, possibly owing to differences between
knockdowns in previous work and complete knockouts in the present work. There are a number
of potential mechanistic links from Rictor/mTORC2 to Rac activation. mTORC2 has been shown
to directly interact with Racl (Saci et al., 2011) and regulate Rac GEFs P-Rex1 and Tiaml
(Herndndez-Negrete et al., 2007; Morrison Joly et al., 2017). Some of the kinase independent
roles of mMTORC2 could also arise from the scaffolding roles of Rictor independent of mTORC2
(Gkountakos et al., 2018; Smith et al., 2020). For instance, Rictor participates in mTOR
independent scaffolding complex with the unconventional Myolc in adipocytes to regulate
membrane ruffing (Hagan et al., 2008), whose hematopoietic isoform Myolg is a key regulator
of cellular surface topology and membrane tension in other immune cells like T-cell and B-cell
(Gérard et al., 2014; L6pez-Ortega et al., 2016). The kinase activity of mTORC2 is essential for
spatial distribution of active RhoA, sustaining myosin contractility and tail retraction (Figs 3, 4).
This conserved role of MTORC2 kinase activity has also been reported in both fission yeast and
neutrophil (Baker et al., 2019; Liu et al., 2010). While earlier studies in neutrophils had linked
MTORC2 dependent phosphorylation of PKCBII to cAMP based regulation of RhoA activity (Liu
et al., 2014, 2010), we further show kinase roles of mMTORC2 broadly attenuates myosin
contractility (via reduced pMLC) and impairs front-back coordination. Future work will identify
molecular players participating downstream of mMTORC2 to regulate front-back polarity signals.

MTORC2 activation integrates several upstream inputs like chemoattractant, growth

factors, Ras, and mechanical forces (Charest et al., 2010; Diz-Mufioz et al., 2016; Khanna et al.,
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2016; Kovalski et al., 2019; Smith et al., 2020). In Dictyostelium, TORC2 activation relies on
inputs from other leading edge components Ras and Rap GTPase (Kamimura et al., 2008;
Khanna et al., 2016; Senoo et al., 2019). We find that osmotic stretch alone fails to activate the
kinase activity of mTORC2 but can significantly amplify the chemoattractant-stimulated kinase
activity of the complex. PI3K activity is necessary and sufficient to amplify the kinase activity of
MTORC2 upon osmotic stretch (Fig. 5). Our results suggest that a combination of biochemical
inputs and mechanical stretch can combine to trigger mTORC2 activity to inhibit actin assembly
in protrusions (which contain the biochemical co-input PIP3). An attractive hypothesis is that the
kinase activity of mMTORC2 could have a different spatial range to independently regulate
myosin-based contractions in regions not constrained by PIP3, though future imaging-based
activity probes will be necessary to address the spatial logic of mMTORC2 activation during cell

polarity and movement.
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MATERIALS & METHODS

Cell Lines and Culture

Cell culture was performed as described previously (Graziano et al., 2019). HL-60 cells were
cultured in RPMI-1640 with 25 mM HEPES and L-glutamine (Corning) with 10% (v/v) heat-
inactivated FBS (Gibco) and 1X penicillin/streptomycin (Gibco) and maintained at 0.2—1.0 million
cells/ml. HL-60 cells were differentiated with 1.5% DMSO (Sigma-Aldrich) at a starting density
of 0.2 million/ml in growth media for 5 days to obtain neutrophil-like dHL-60 cells. All experiments
were performed with dHL60s unless otherwise stated. HEK-293T cells (to generate lentivirus for
transducing HL-60s) were cultured in DMEM (Gibco) with 10% (v/v) heat-inactivated FBS. All
cells were cultured in a 37°C/5% CO:2 incubator and routinely monitored for mycoplasma

contamination.

Plasmids

Plasmids were constructed using standard molecular biology protocols. DNA segments were
PCR-amplified and cloned into a pHR lentiviral backbone and driven by promoter from spleen
focus-forming virus (SFFV) via standard Gibson assembly between the Mlul and Notl restriction
sites. A construct for Rac biosensor PakPBD-mCherry was generated from PakPBD-mCitrine
(Graziano et al., 2019) by switching the DNA encoding the fluorescent tag. The RhoA biosensor
uses the AnillinAHPH domain (Piekny and Glotzer, 2008) and was obtained from Addgene
(plasmid # 68026). The EGFP-AnilinAHPH was sub-cloned into pHR lentiviral backbone using
similar sites and strategy as mentioned above. We modified our previously reported Opto-PI3K
module from red-light sensitive Phy/PIF (Graziano et al.,, 2017) to blue-light sensitive iLID

(Guntas et al., 2015). The Opto-PI3K module consists of two constructs which need to be co-
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expressed for exogenous PIPs generation - Construct A: iLiD-BFP-CAAX membrane anchor;
Construct B: iISH2-EGFP-SspB scaffold for PI3-Kinase recruitment. Both constructs were
assembled by Golden Gate-based cloning from a library of individual components from an
extendable Mammalian Toolkit (Fonseca et al., 2019) into the pHR vector backbone with EFla
promoter (for Construct A) or SFFV promoter (for Construct B). Guide RNAs (gRNAs) with
homology to exon 2 of RICTOR (5 GTCCCGCTGGATCTGACCCG 3) and exon 2 of
MAPKAP1/mSin1 (5 AGTCAGTCGATATTACCTCA 3’) were selected using the CRISPR design
tool in Benchling (https://benchling.com/) and cloned into the LentiGuide-Puro vector (Addgene
plasmid #52963) as previously described (Sanjana et al., 2014). The pHR vector used to express
human codon—optimized Streptococcus pyrogenes Cas9-tagBFP was as previously described

(Graziano et al., 2017).

Lentiviral transduction of HL-60 cells

HEK-293Ts were plated in 6-well plates (Corning) and grown to 70—80% confluency. Cells were
transfected with 1.5 pg of the pHR plasmid along with two plasmids containing the lentiviral
packaging proteins (0.167 pg of pMD2.G and 1.3 pg of p8.91) with TransIT-293 (Mirus Bio).
After 2—-3 d of transfection, lentivirus-containing supernatant was collected, filtered with a 0.45-
um filter (EMD Millipore), and concentrated 40-fold with Lenti-X Concentrator (Takara). The
concentrated lentivirus was used immediately or stored at —80°C. HL-60 cells were transduced
by overnight incubation of 0.3 million cells with 4 pug/ml polybrene and ~130 pl of concentrated
virus. Cells expressing desired transgenes were isolated by culturing in growth media
supplemented with puromycin (1 ug/mL) or using fluorescence-activated cell sorting (FACS) as

appropriate (FACS Aria3, BD Biosciences).
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Generation of knockout cell lines using CRISPR/Cas9

RICTOR and MAPKAP1(mSinl) HL-60 KO cell lines were generated and validated as previously
described (Graziano et al., 2019, 2017). Wildtype HL-60 cells were transduced with a puromycin-
selectable vector containing the gRNA sequence targeting the gene of interest. Following
puromycin selection, cells were transduced with a S. pyrogenes Cas9 sequence fused to BFP.
Cells expressing high levels of Cas9-BFP were isolated with FACS, after which a heterogeneous
population was obtained and assessed by sequencing of the genomic DNA flanking the Cas9
cut site. Cells were then diluted into 96-well plates at a density of approximately one cell per well
in 50% (vol/vol) filtered conditioned media from a healthy culture, 40% (vol/vol) fresh HL-60
media, and 10% (vol/vol) additional heat-inactivated FBS. Clonal cell lines were expanded and
validated by genomic DNA sequencing to infer the indel distribution and immunoblots to assay
loss of protein expression. Clonal lines for Rictor KO and mSinl KO were further assayed to

check the residual mMTORC2 kinase activity using phospho-Akt immunoblots.

Cellular treatments and perturbations

Neutrophil-like dHL60 cells were activated with chemoattractant formyl-Met-Leu-Phe (fMLP;
Sigma) at effective final concentration of either 25 nM (for imaging based assays) or 100 nM
(for cellular biochemistry). Acute increase in membrane tension and stretching was done by
adding equal volume of hypotonic buffer (H20 + 1 mM MgCl2 + 1.2 mM CaCl2) as described
earlier (Graziano et al., 2019; Houk et al., 2012). mTOR kinase activity was inhibited by treating

cells with 10 uM KU-0063794 (Selleckchem) for 30-45 mins in plain RPMI-1640. PI3Kinase

activity was inhibited by incubating cells with 1 uM PIK-90 for 30-45 mins in plain RPMI as
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described earlier (Van Keymeulen et al., 2006). ROCK inhibition was done by treating cells with

20 uM Y-27632 for 20 min in plain RPMI prior to the imaging assay (Graziano et al., 2019).

Cellular Biochemistry

MTORC2 activity (phospho-Akt) and Rac Activity (phospho-Pak) assay

These assays were performed as described earlier (Graziano et al., 2017). Cells (dHL-60; 5
days after differentiation) were serum starved to reduce basal signals by incubation in plain RPMI
for 30-45 min at 37°C/5% CO:2 at a density of ~ 1.5 million cells/ml. All time courses were
performed at room temperature of 24°C. For chemoattractant-based time courses (e.g., Fig 3B,
5B) cells were activated at final effective fMLP concentration of 100 nM, and samples were
collected at indicated time points by mixing 0.5 ml of cells with 0.5 ml ice-cold stop solution (20%
TCA, 40 mM NaF, and 20 mM B-glycerophosphate). Samples were incubated in TCA at 4°C for
at least 1h, after which proteins were pelleted, washed once with 0.75 ml ice-cold 0.5% TCA,
and solubilized in 2x Laemmli sample buffer (Bio-Rad Laboratories). For pAkt assays (S1 Fig C
and Fig 5E) cells were assayed in absence (basal level) or 3 minutes after 100 nM fMLP addition,
as pAkt signals peaked at 3 min in our assays. Optogenetic stimulation of Opto-PI3K dHL-60
cells (Fig 5H) was done with the following modifications to the protocol above. Serum starved
cells were placed in wells of a clear-plastic 24 well plate (Corning) and placed about 1 cm above
a blue (450 nm) LED array. A ND4 filter (Sioti) was inserted between the cells and the LED light
source to attenuate the illumination to ImW. Cells were illuminated for 3 min following which the
LED was switched off and chilled TCA was added to prepare samples as described above.
Samples were then analysed by immunoblots. Quantification of these assays were done by

calculating the ratio of band intensities of phospho-Pak (or Akt) to the total-Pak (or Akt). These
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values were then normalised to the peak values obtained for wildtype control in the time-series
(generally at 1 min for pPAK and 3 min for pAkt).

Immunoblot assay

Western blotting was done as previously described (Graziano et al., 2017). Briefly, protein
content from at least 0.75-1 million HL60 cells was extracted by chilled TCA precipitation and
resuspended in 2x Laemmli sample buffer. Protein samples were separated via SDS-PAGE,
followed by transfer onto nitrocellulose membranes. Membranes were blocked for at least 1 hr
in a 1:1 solution of TBS (20 mM Tris, 500 mM NaCl, pH 7.4) and Odyssey Blocking Buffer
(LI-COR) followed by overnight incubation at 4 °C with primary antibodies diluted 1:1000 in a
solution of 1:1 TBST (TBS + 0.2% w/v Tween 20) and Odyssey Blocking Buffer. Membranes
were then washed 3x with TBST and incubated for 45 min at room temperature with secondary
antibodies diluted 1:10,000 in 1:1 solution of Odyssey Blocking Buffer and TBST. Membranes
were then washed 3x with TBST, 1x with TBS and imaged using an Odyssey Fc (LI-COR).
Analysis was performed using Image Studio (LI-COR) and Excel. The following primary
antibodies were used for the study; phospho-PAK1 (Serl199/204)/PAK2 (Ser192/197) (Cell
Signaling #2605), PAK2 (3B5) (Cell Signaling #4825), phospho-Akt (Ser473; D9E) XP (Cell
Signaling #4060), Akt (pan; 40D4; Cell Signaling #2920S), Rictor (Bethyl #A300-458A), mSinl
(Bethyl # A300-910A), and GAPDH Loading Control Antibody GA1R (ThermoFisher). Secondary
antibodies IRDye 680RD Goat anti-Mouse (LI-COR) and IRDye 800CW Goat anti-Rabbit (LI-
COR) were used.

Transwell Assays

These assays were performed as previously described (Diz-Mufioz et al., 2016). Briefly 0.3

million dHL-60 cells were stained with 5ul/ml DIiD (Life Technologies) and plated on the upper
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chamber of the 24-well format HTS FluoBlokTM Multiwell Insert System (3 ym pore size; BD
Falcon) in RPMI without phenol red (Life Technologies) with 2% FBS. Cells were allowed to
migrate towards the bottom well containing 20 nM fMLP for 1.5 hr at 37°C. The migrated cells
were measured by fluorescence from the bottom of the insert using FlexStation 3 Microplate
Reader (Molecular Devices). Migration index was calculated by dividing the amount of signal in
the sample well by the signal in a well in which 0.3 million cells were plated in the bottom well.
The dataset was normalised by the peak value obtained for wildtype cells (usually observed at
60 min).

Imaging Assays and Data Analysis

Microscopy hardware

We used a spinning-disk confocal microscope for all imaging data presented here. The setup
comprised of a Nikon Eclipse Ti inverted microscope with following objectives (Plan Apo
10x/0.45 NA, 20x/0.75NA, 60x/1.40 NA, 100x/1.4 NA; Nikon), Yokogawa CSU-X1 spinning-disk
confocal, Prime 95B cMOS camera (Photometrics), 4-line laser launch (405, 488, 561 and 640
nm laser lines; Vortran) and environmental control (37°C/5% COz2; Okolab).

Preparation of dHL-60s for microscopy

Imaging based assays with dHL-60 cells were performed using 96-well #1.5 glass-bottom plates
(Brooks Life Sciences). The wells were coated with a 100 pL solution of 10 pg/mL porcine
fibronectin (prepared from whole blood) and 11 mg/mL bovine serum albumin (BSA, endotoxin-
free, fatty acid free; A8806, Sigma) dissolved in Dulbecco’s Phosphate Buffered Saline (DPBS;
14190-144, Gibco) and incubated for 30 min at room temperature. Fibronectin solution was then
aspirated, and each well was washed twice with DPBS. dHL-60 cells in growth media were

pelleted at 300xg for 5 min, resuspended in 100 pL imaging media (RPMI1640 with 0.5% FBS
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and 1 nM fMLP), plated in each well and incubated (37°C/5% CO2) for 10 minutes for cells to
adhere.

F-actin staining

Cells were prepared and plated in 96-well glass bottom plate as described above and stimulated
with 50 nM fMLP. At desired timepoints (usually 1min and 5 min), an equal volume of 2x fixation
buffer (280 mM KCI, 2 mM MgCI2, 4 mM EGTA, 40 mM HEPES, 0.4% bovine serum albumin
(BSA), 640 mM sucrose, 7.4% formaldehyde (w/v), pH 7.5) was added to each well and
incubated for 15 mins at room temperature (RT). The fixation buffer was then removed from
each well and cells are washed once with intracellular buffer (140 mM KCI, 1 mM MgCI2, 2 mM
EGTA, 20 mM HEPES, 0.2% BSA, pH 7.5). Following fixation, cells were treated with staining
buffer (intracellular buffer + 5 ul/ml Alexa647-Phalloidin (Invitrogen) + 0.2% Triton X-100) for 30
mins in dark at room temperature. Cells were finally washed gently to remove excess staining
buffer and 200 ul of intracellular buffer mixed with nuclear dye NucBlue (Thermofisher) was
added to each well.

Immunofluorescence

Cells were prepared, plated, and fixed as above following which cells were incubated with
permeabilization buffer (intracellular buffer and 0.2% Triton X-100) for 20 mins at RT. Cells were
then blocked (3% BSA and 1% normal goat serum in permeabilization buffer) for at least 1h at
RT. Cells were washed and then incubated with primary antibody diluted in blocking solution for
at least 2h at RT or overnight at 4°C. Cells were washed and then incubated with secondary
antibody for 45 min-1h at RT. Finally, cells were washed 2x with permeabilization buffer and 1x
with intracellular buffer before adding fresh intracellular buffer mixed with NucBlue to each well

for imaging. Phospho-Myosin Light Chain (Ser19) primary antibody (rabbit; Cell Signaling #3671)
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was used at 1:200 dilution with secondary antibody Goat anti-Rabbit IgG Alexa 488 (Invitrogen
#A-11034) at 1:1000 dilution.

Image analysis for fixed preparations

All image analysis to measure the levels and distribution of F-actin and pMLC was performed
with Fiji-ImageJ. Briefly, raw images comprising z-stacks of several fields of cells obtained from
the Nikon spinning disk confocal (ND2 format) were imported into Fiji. Before quantification, the
image were background and flat field corrected using the background and flat-field fluorescence
values estimated individually for all the different emission channels. Using the z-project tool in
Fiji the corrected z-stacks were converted into maximum intensity projection for visualisation and
sum-intensity projections for quantification of fluorescence. Intensity thresholds were estimated
from the pixel intensity histogram and uniformly applied to sum-intensity projections to identify
cell bodies and ‘measure stack’ function was used to measure intensity value for the whole field.
Several fields (~ 20) with 10-15 cells each were pooled from multiple independent experiments
to quantify the fluorescence levels of F-actin and pMLC reported here and data was represented
as box-plot to show the entire distribution of measured values. To quantify the width of the F-
actin rich zone at cellular fronts, a 5 um line ROI (10 pixel wide; 2 um) was drawn from the front
of the cell to obtain the intensity v/s length profile for each cell. Several cells (~20-30 for each
condition) were measured and their respective profiles were averaged across the whole dataset.
The averaged intensity profile was fitted to a Bi-gaussian distribution of skewed peak to account
for the overall width of the F-actin rich zone. To visualize the 3D distribution of axial z-protrusions
of cells, ROIs of individual cell z-stacks were imported into the 3D visualisation software UCSF-
ChimeraX and intensity thresholded to highlight the F-actin structures and the cell nuclei.

Fraction of cells with axial protrusions was calculated by visual inspection and counting of all
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cells with 3D-projections and the total number of cell nuclei in the entire field of F-actin stained
cells.

Under-agarose preparation of HL-60s for imaging

Cells were prepared using standard under-agarose preparation techniques as described
previously (Bell et al., 2018; Brunetti et al., 2022). Briefly, a solution of 2% w/v low melt agarose
(GoldBio) dissolved in RPMI1640 was prepared by heating the solution gently in a microwave.
The solution was placed in a water bath at 37°C to cool down before adding to cells. In the
meantime, dHL-60 cells were spun down at 300 x g for 3 mins and resuspended in plating media
(RPMI + 2% FBS) at a concentration of 1 million/ml. 5 ul of cells were placed in the centre of a
circular well ( 96 well plate; Greiner Bio-one) and allowed to settle for 5 min at RT. Agarose
solution (195 ul) was then slowly dispensed into the well directly on the top of the cells. This
allowed even deposition of agarose which congeals over 10-20 min at RT, following which the
wells were monitored quickly under a standard tissue culture brightfield microscope and moved
to the microscope to equilibrate at 37C for another 20 mins prior to imaging.

Cell Motility Assays

Single cell motility assays were performed with cells plated in an under-agarose preparation (to
mimic in-vivo like confined environment) or on fibronectin coated glass (standard unconfined 2D
motility). For both types of motility assays, 0.1 million cells were labelled using 1uM CellTracker
Green or Orange (Thermo Fisher) in plain RPMI for 10 min at 37C. Labelled cells were spun
down from labelling mix and washed once with plain RPMI and resuspended in imaging media
(RPMI1640 + 0.5% FBS + NucBlue nuclear marker) and were either plated on fibronectin coated
glass (as described above) or processed for under-agarose preparation and plates were moved

to the microscope preheated to 37C for imaging. Cells were stimulated with uniform fMLP
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concentration of 25nM. To allow tracking of several cell nuclei, imaging was done using a low
magnification objective (10x or 20x) to capture a larger field of view and imaged once every
30sec for over 20-30 min.Tracking of cell nuclei was performed using the Fiji plug-in TrackMate
(Tinevez et al., 2017). Cell nuclei tracks were filtered for desired property (duration of at least
10 min, high quality, not undergoing collisions) to obtain the coordinates of movement. Track
features (like speed, persistence, displacement) were computed with inbuilt tools of Trackmate.

Biosensor imaging

To measure the extent of temporal coordination of front-back polarity, cells expressing both the
Rac (PakPBD-mCherry) and RhoA (EGFP-Anilin-AHPH) biosensors were prepared and plated
under agarose (2% w/v in RPMI1640) and stimulated with uniform chemoattractant (25 nM
fMLP). Cells were imaged on spinning disk confocal at high spatial resolution (60X or 100X
objective) with fast sequential acquisition (exposure time 100 ms) for 3 minutes at frame interval
of 3 sec using a similar strategy as previously described (Tsai et al., 2019). The raw images
were background and flat-field corrected, and full images were manually cropped to a ROI with
a single cell.

Analysis for spatial distribution of polarity

Spatial profiles of biosensor intensity were obtained from a line ROI (10 pixel wide; 1.5 um)
starting at the leading edge and extending to the uropod to record the intensity v/s length traces
for both Rac and RhoA biosensor. Pearson’s correlation coefficient between the two traces were
computed for several such individual cells (at least 20-30, pooled from independent experiments)
and plotted as box-plots. This metric provided an intuitive method to assess the front-back
correlation (or lack of it in wildtype cells) of spatial distribution of polarity signals. To assess the

lateral correlation, another line ROl was drawn near the centre of the same cell perpendicular to
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the front-back axis. Intensity profiles for both biosensors were recorded, and correlation
coefficients were calculated.

Analysis for temporal coordination of polarity

Cells which touch or collide with a neighboring cell were ignored from this analysis as they
presented challenges to segmentation and further analysis. Single cells were then segmented
by smoothing and intensity-based thresholding for each of the two emission channels for the
biosensor intensities for every frame of the image sequence. The resulting binary images were
then combined by taking the union of the two segmentations. Further analysis was done for
sequence of frames where the segmented edge of the cell does not touch the boundary of the
cropped image ROI. Using the consensus binary image described above, the weighted centroid
of biosensor fluorescence intensity was calculated for each channel across frames. The
distances between the coordinates of these centroids were calculated at each frame and the
coefficient of variation (CV) of this series was calculated for each cell. CV provides a normalized
metric for fluctuations in the inter-centroid distance over the course of the timeseries and can be
readily compared for cells of varying sizes or across different genetic background (say, wildtype
or Rictor KO cells). The full analysis code is available on GitHub

(https://github.com/orgs/weinerlab/repositories).
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Figure 1. Rictor/mTORC2 is a mechanoresponsive regulator of neutrophil motility.

(A) mTORC2 connects membrane stretch to regulation of front (magenta) and back (green) polarity
programs, but how mTORC2 is activated (purely mechanical or requires biochemical co-inputs) and what
aspect of mMTORC2 activation (kinase-dependent vs independent roles) regulates these polarity signals
is not understood. (B) To dissect the roles of kinase-dependent and kinase-independent roles of
MTORC2, we generated individual CRISPR-Cas9 knockout lines of key components of the complex:
Rictor (which scaffolds and aids structural integrity of the complex) or mSinl (which primarily aids kinase
activity). Additionally, mTOR Kinase inhibitors (here KU) would phenocopy mSinl KO defects.

(C) Representative immunoblots of wildtype (WT) HL-60 cells and gene-edited Rictor KO (top) and mSinl
KO (bottom) clonal HL-60 line to validate the loss of Rictor or mSinl protein expression. GAPDH was
used as a loading control. (D) Perturbation of mMTORC2 activities in Rictor KO (n=3; red), mSin1KO(n=3;
blue) and via mTOR Kinase inhibitor (KU; n=3; green) all led to defective transwell migration towards
chemoattractant 20nM fMLP in comparison to WT cells (n=6; black). Mean + SEM is plotted, n indicates
independent replicates. (E) Schematic shows neutrophil-like dHL60 cell moving under an agarose (2%)
overlay with uniform chemoattractant (25 nM fMLP). Randomly-chosen representative tracks (15 each)
of wildtype (WT), Rictor KO, or mSinlKO cells over a 12 min observation window; axes show x-y
displacement in um. Rictor KO cells migrate poorly and have markedly shorter displacements. (F, G) Box
plots (with kernel smooth distribution curve) show mean speed (F) and persistence (G; ratio of
displacement/distance) averaged over individual tracks. Both Rictor KO and mSinl KO cells shows a
significant reduction (p < 0.01; one-way ANOVA with Tukey-means comparison) in migration speed
compared to Wildtype. However, only Rictor KO show a significant decrease in the persistence (p < 0.01;
one-way ANOVA with Tukey-means comparison). N = 294 (WT), 138 (RictorKO) and 165 (mSin1KO)
tracks from individual cells pooled across 3 independent experiments. For box plots, median is indicated
by the line, inter-quartile range (IQR) sets the box width and error bars indicate 10-90™ percentile. (H)
Schematic highlights the phenotypes observed for mSin1KO and Rictor KO cells. Kinase-dependent
roles of MTORC2 appear to regulate speed whereas kinase-independent role regulates both persistence

and speed.
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Figure 2. Kinase-independent arm of Rictor/mTORC2 restricts the zone of f-actin assembly to the
front of the cells.

(A) Schematic shows how we are probing the kinase-dependent vs independent roles of mTORC?2 in
regulating f-actin levels and spatial organisation.

(B) Maximum intensity projections of Alexa647-phalloidin stained F-actin obtained from confocal z-stacks
(10 um deep) for wildtype (WT), Rictor KO, or mSin1KO dHL60 cells, 5min after stimulation with 25nM
fMLP. Fire-LUT shows the intensity scaling; scale bar 10 um. (C) F-actin intensity (normalised to
individual peak) line-scans (Mean + SEM) obtained (dashed lines on B) from wildtype (n=35), Rictor KO
(n=48), or mSin1KO (n=26) dHL60 cells obtained from two independent experiments. Rictor KO (red)
have a wider lateral zone of leading edge F-actin in comparison to wildtype (WT; black) and mSin1KO
(blue); quantified by Bi-gaussian fitting of the intensity profile. (D) Representative wildtype (WT), Rictor
KO and mSin1KO dHL60 cells shown as either maximum intensity projection (in xy-plane; D I; scale bar
10 pum); or a ChimeraX 3D-reconstruction in yz-plane (D ii) and a tilted xz-plane (D iii) to highlight the
axial features of F-actin distribution. Rictor KO cell shows protrusions out of the plane of the substrate
that are rarely present in either Wildtype (WT) or mSin1KO cells. (E) Box-plots quantify fraction of cells
with axial protrusions obtained from ChimeraX 3D-reconstructions views of each cell type (~10 fields; at
least 100 cells analysed for each condition) across two independent experiments. RictorKO cells have
significantly (p < 0.01, one-way ANOVA with Tukey’s mean comparison test) higher fraction of cells with
axial protrusions. For box plots, median is indicated by the line, inter-quartile range sets the box width
and error bars indicate 10-90™ percentile. (F) Defects observed in f-actin distribution for only RictorKO
dHL60 cells but not mSin1KO cells suggests kinase independent arm of Rictor/mTORC?2 is required for

negative feedback on f-actin assembly, distribution, and organisation.
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Figure 3. Kinase-independent arm of Rictor/mTORC2 inhibits Rac activity while its kinase role
stimulates myosin contractility.

(A) Schematic shows how we probe the kinase-dependent vs independent roles of mMTORC?2 in regulating
front (Rac/f-actin) and back polarity (RhoA/myosin) programs. (B) Rac activity was quantified for
chemoattractant (25nM fMLP) stimulated dHL60 cells (wildtype, RictorKO and mSin1KO) using
antibodies targeting phospho-PAK (pPAK), a downstream readout of Rac activation. Antibodies against

total PAK were used as a loading control and calculate the ratio of pPAK/PAK, the readout for Rac Activity
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we use here. (C) Rac-activity (assayed by pPAK/PAK) of wildtype(WT), RictorKO, or mSinKO cells upon
stimulation with 25nM fMLP; each plot shows Mean + SEM from three-independent experiments, with 1-
min timepoint of wildtype (WT) being used to normalise all conditions for each independent trial. * p<0.05
by unpaired t-test between Rictor KO and WT at 1 min timepoint. (D) Phospho-myosin light chain (pMLC)
immunostaining (labelled with Alexa488 secondary antibody) of wildtype(WT), Rictor KO and mSin1KO
cells, 5 mins after stimulation with 25nM fMLP. Images show maximum intensity projections obtained
from 10 um deep confocal z-stacks; scale bar 10 um. Dashed outlines indicate the cell boundary, and all
conditions were equally intensity scaled as shown by associated Fire LUT.

(E) Box-plots show the guantification of total pMLC intensity levels from confocal z-stacks as shown
above (~ 15 fields and at least 150 cells; pooled from 2 independent experiments) across each condition
for the three cell types. Both mutant cell types have significantly diminished pMLC levels compared to
wildtype cells ( p < 0.001, one-way ANOVA with Tukey’s mean comparison test), suggesting that the
kinase activity of Rictor/mTORC2 stimulates myosin contractility. For box plots, median is indicated by
the line, inter-quartile range sets the box width, and error bars indicate 10-90" percentile.
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Figure 4. Rictor/mTORC2 is required for maintaining the spatial and temporal coordination of the
front and back polarity programs.

(A) Wildtype (WT) and Rictor KO (B) cells co-expressing Rac biosensor (Pak-PBD-mCherry) and RhoA
biosensor (EGFP-Anillin-AHPH) were plated under 2% agarose overlay and imaged every 3 seconds
using a confocal spinning disk microscope. Montage of images acquired over 90 sec show the distribution
of front (Rac*, magenta) and back (Rho*, green) polarity signals (Image, left) and the corresponding front
(magenta arrow) and back (green arrow) polarity vectors. The cell centroid for each frame is indicated by
the open circle and it’s displacement from the grid indicates overall cell movement; scale bar is 10 um.
(C, D) Anti-correlation between the intensity profile of polarity signals across the front-back axis provides
a measure of spatial segregation of the front-back signals. Representative intensity profiles of Rac* and
RhoA* obtained from line-scan (dashed line in time 0 sec in A, B) of wildtype (WT, C) and Rictor KO (D),
with computed Pearson’s correlation coefficient for each set of intensity traces (Pearson’s correlation
coefficient = - 0.49 for WT; -0.22 for RictorKO). More strongly negative Pearson’s correlation coefficient
indicates better separation between front and back signals.

(E) Box-plots of front-back correlation values for wildtype (WT, n=23 cells) and Rictor KO cells (n= 33
cells) pooled from 4 independent experiments. Rictor KO cells have significantly higher correlation
coefficient (p<0.0001; Mann-Whitney’s test) compared to wildtype suggesting impaired spatial sorting of
front-back polarity programs. (F) To measure the extent of temporal coordination between polarity
signals, we analyzed the fluctuations in the weighted inter-centroid distance between the front and back
polarity biosensor intensities (indicated by the distance between the arrowheads of polarity vector in
images A, B). Wildtype cells have polarity vectors uniformly aligned to the front-back axis and maintain a
stable inter-centroid distance (blue), while RictorKO cells show stronger fluctuations in inter-centroid
distance (red). Representative plot of fluctuations in inter-centroid distance for both cell types of WT and
Rictor KO. We use coefficient of variation (CV) as a metric to quantify the magnitude of the fluctuations.
(G) Box-plots of distribution of CV obtained for wildtype(n =19 cells) and RictorKO (n =30 cells) across
four independent experiments. Rictor KO cells exhibit significantly higher fluctuations in ICD(p=0.0006;
Mann-Whitney’s test), suggesting impaired temporal coordination of front and back polarity programs in
these cells. For box plots, median is indicated by the line, inter-quartile range sets the box width, and

error bars indicate 10-90™ percentile.
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Figure 5. Mechanical stretch synergizes with PIP3 generation to activate mTORC2.

(A) Probing whether mTORC2 activation can be mediated by mechanical stretch alone (here simulated
by hypo-osmotic shock) or whether it requires additional biochemical inputs downstream of
chemoattractant stimulation. (B) To probe the logic of mMTORC2 activation, dHL-60 cells were subjected
to either just hypotonic media (50% osmolarity reduction), stimulated with 20nM fMLP (fMLP only), or
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subjected to both inputs (hypotonic + 20nM fMLP). mTORC2 activity was assayed using phospho-
Akt/pan-Akt immunoblots, and representative immunoblot panels are shown. (C) mTORC2 activity was
quantified and normalised using fMLP (3 min) data for each experiment. Hypotonic shock (grey bars)
alone doesn’t stimulate mTORC2 activity and chemoattractant addition is needed to trigger activation of
signaling (red bar). In the presence of fMLP, hypotonic shock (blue bar) amplifies the signaling output of
MTORC?2 (p = 0.007, unpaired t-test. Each bar reflects Mean + SEM from three independent experiments.
(D) Testing whether PIPs is necessary to stimulate mTORC2 activity with the PI3Ky inhibitor PIK-90.

(E) Representative immunoblots of pAkt and Akt to measure mTORC2 activation. Control (top) or PIK-
90 (1 uM; bottom) treated dHL60 cells were assayed for mTORC2 activity in absence (basal activity; -/-
condition; left lane) or in presence of fMLP alone (+/-; middle lane) or a combination of fMLP and
hypotonic shock (+/+; right lane). In presence of PIK-90, mMTORC2 activity is severely attenuated (with
background levels of pAkt detected). (F) mMTORC2 activity quantified across the three conditions and
normalised using the fMLP (Control) data for each experiment. Each bar reflects the mean + SEM
obtained from three independent experiments. Inhibition of PI3K activity shows PIP3 is a necessary co-
input for activation (fMLP) and amplification of mMTORC2 activity upon stretching (fMLP + hypotonic).

(G) Testing whether PIPs; (via optogenetic stimulation) is sufficient to activate mTORC2 and can
collaborate with mechanical stretch for mTORC2 activation. (H) Representative immunoblots of pAkt
and AKT for dHL60 cells stimulated with either chemoattractant (20 nM fMLP for 3 min; top panel) or light
at 475 nm (Imw for 3 min) to stimulate Opto-PI3K (bottom panel). For both inputs, pAkt/AKT was
assayed for basal (left lane; -/-), just stimulus (middle lane; +/-) or when paired with hypotonic media
(right lane; +/+). (I) mTORC2 activity (assayed by pAkt/AKT ratio) quantified across the three different
conditions (H) for both stimulus (fMLP or light) and normalised using the stimulus only condition (just
fMLP or light) for each experiment. Activation of mTORC2 and amplification of signaling activity upon
hypotonic shock (p =0.001 for fMLP; p =0.03 for Light; both by unpaired t-test) show similar behavior (p
= 0.93, ns, unpaired t-test) when either fMLP or opto-PI3K was used as stimulus. Each bar reflects mean

+ SEM for 3 independent experiments.
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Figure 6. Working model for the molecular logic of mMTORC2 based regulation of front and back
cytoskeletal programs

(A) Membrane stretches and biochemical signals from PIP3 synergize to activate kinase and kinase
independent roles of mMTORC2. Non-catalytic kinase independent roles of Rictor/mTORC2 allow stretch-
dependent inhibition of front polarity signals (Rac) and restrict F-actin protrusion to the leading edge. The
kinase roles of mTORC2 stimulate myosin contractility (pMLC) at the back. This bifurcation of the
downstream mTORC2 activities enables independent regulation of the spatially polarised front (magenta)
and back (green) programs and coordination between them. (B) The regulatory circuit for mTORC2
based front-back coordination (A) is essential for persistent movement in confined environments where
cells experience mechanical stretch (like under agarose). In absence of mMTORC2 activities (as in Rictor
KO) cells exhibit elevated Rac activity (Stronger Front) and lowered contractility (Weaker Back);
consequently front-back coordination is lost resulting in impaired speed and persistence of motility in

confined environment.
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S1 Fig. Gene-editing of knockout lines and functional validation of mMTORC2 kinase activity and
cell behavior in unconfined 2D motility assays

(A,B) Sequence validation to infer CRISPR indel edits in the clonal Rictor KO (A) and mSin1l KO (B) lines
assayed here. The green bar above both sequences shows the gRNA target sequence. Both lines have
deletions that lead to a frame shift, nonsense, and termination following Exon 2.

(C, D) mTORC2 kinase activity assayed by immunoblots of phospho Akt and total Akt levels before
(basal,-) and 3 min after chemoattractant (fMLP, +) addition. Representative western blots and
guantification (D) shows significant loss of mMTORC2 kinase activity for Rictor KO, mSin1lKO and mTOR
drug KU (assayed by pAkt immunoblots). Plots (D) show pAkt/totalAkt ratio (mean + SEM from three
independent trials) normalised with values obtained for the wildtype for each trial.

(E) Schematic shows a neutrophil-like dHL60 cell undergoing unconfined motility on glass coated with
fibronectin in presence of uniform chemoattractant fMLP. Randomly chosen representative tracks (15
each) of wildtype (WT), Rictor KO, or mSin1KO cells over a 12 min observation window; axes show x-y
displacement in um.

(F, G) Box plots (with kernel smooth distribution curve) show mean speed (D) and persistence (E; ratio
of displacement/distance) averaged over individual tracks. Both Rictor KO and mSinl KO cells shows
normal persistence and speed in unconfined 2D migration (p < 0.01; one-way ANOVA with Tukey-means
comparison). N = 203 (WT), 338 (RictorKO) and 392 (mSin1KO) tracks from individual cells pooled
across 2 independent experiments. For box plots, median is indicated by the line, inter-quartile range
sets the box width and error bars indicate 10-90" percentile.
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S2 Fig. F-actin distribution and levels in wildtype, Rictor KO, and mSin1KO dHL60 cells upon
chemoattractant stimulation

(A) Maximum-intensity projections of Alexa647-phalloidin stained F-actin obtained from z-stacks (10 um
deep) acquired on confocal spinning disk microscope for wildtype (WT), Rictor KO, or mSin1lKO dHL60
cells, before and 1min or 5min after stimulation with 25nM fMLP (5 min images are duplicated from Fig
2B). (B) Normalised total F-actin levels (Mean + SEM) from these experiments were quantified from
confocal z-stacks (~ 20 fields, at least 200-250 cells; pooled from 3 independent experiments) across
each condition for the three genotypes. Mean F-actin intensity value at 1 min was used to normalise all

conditions for each independent trial; scale bar is 10 um.
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1212
1213  S3Fig. Kinase activity of mMTORC2 stimulates myosin contractility.

1214  (A) Maximum intensity projections of pMLC immunostaining obtained from confocal z-stacks (9 um deep)
1215  of wildtype (WT), Rictor KO, or mSin1KO dHL60 cells, before and 1 min or 5 min after stimulation with
1216 25 nM fMLP (5 min images are duplicated from Fig 3D). All images are equally intensity scaled indicated
1217  Fire LUT; scale bar is 10 um. (B) Normalised pMLC levels (Mean + SEM) from these experiments were
1218 quantified from confocal z-stacks (~ 15 fields, at least 150 cells; pooled from 2 independent experiments)
1219 across each condition for the three cell types. Mean pMLC intensity value at 5 min after stimulation was
1220 used to normalise all conditions for each independent trial. (C) pMLC immunostaining of wildtype or
1221  RictorKO cells either untreated or upon addition of 20 uM ROCK inhibitor Y27632 and stimulated with

1222  25nM fMLP for 5 mins. Images show maximum intensity projections of z-stacks obtained from confocal
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1223  z-stacks (9 um deep) of cells; scale bar is 10 um. (D) Box-plots of normalised pMLC level quantified from
1224  confocal z-stacks (~20 fields, at least 250 cells; pooled from 3 independent experiments) across each
1225 condition. Y27 treatment leads to significant loss of pMLC levels in Wildtype cells comparable to levels
1226 seen in Rictor KO cells. Statistical significance was estimated at p<0.001 by one-way ANOVA with
1227  Tukey’s mean comparison test. Mean pMLC intensity value for WT (untreated) was used to normalise all
1228 conditions for each independent trial. For box plots, median is indicated by the line, inter-quartile range
1229  sets the box width, and error bars indicate 10-90" percentile.
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S4 Fig. Polarity defects upon loss of Rictor/mTORC2 do not affect overall biosensor distrubution.
A measure of correlation between the intensity profile of polarity signals across an axis orthogonal (or
lateral) to the front-back axis provides an internal control of whether the overall biosensor distribution is
skewed between wildtype and Rictor KO cells. We expect the front/back signals to exclude each other
across front-back axis (as in Fig. 4) but not along the lateral axis. (A, B) Lateral intensity profile of same
representative wildtype cell (as Fig 4A, WT panel) and Rictor KO cell (as Fig 4A,Rictor KO panel)
expressing Rho* (green) and Rac* (magenta), with computed Pearson’s Correlation Coefficient (R) for
each (R=0.25 for WT; 0.44 for RictorKO); scale bar 10 um. (C) Box-plots of lateral correlation for wildtype
(WT, n=23 cells) and Rictor KO cells (n= 33 cells) pooled from 4 independent experiments. Wildtype and

Rictor KO cells show similar distribution of correlation coefficient (p = 0.45; Mann-Whitney’s test),
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suggesting that overall distribution of the biosensors is not impaired in the lateral axis. For box plots,
median is indicated by the line, inter-quartile range sets the box width, and error bars indicate 10-90"
percentile.

Supplementary Videos

Video 1. Movie shows the ChimeraX 3D-reconstruction of representative example of Wildtype (left),
Rictor KO (centre) and mSinl KO (right) cell in the tilted xz-plane orientation to highlight the axial features

of f-actin distribution; yellow-gold and blue represent F-actin and nucleus respectively.

Video 2. Movie of Wildtype (WT, Top) and Rictor KO (botton) cells co-expressing Rac biosensor (Pak-
PBD-mCherry) and RhoA biosensor (EGFP-Anillin-AHPH) migrating under 2% agarose overlay. Movie
shows the distribution of front (Rac*, magenta) and back (Rho*, green) polarity signals (Image, left) and
the corresponding front (magenta arrow) and back (green arrow) polarity vectors. The cell centroid for
each frame is indicated by the open circle and it's displacement from the grid indicates overall cell

movement.
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