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Abstract

Human cognitive abilities decline with increasing chronological age, with decreased explicit
memory performance being most strongly affected. However, some older adults show
“successful aging”, that is, relatively preserved cognitive ability in old age. One explanation for
this could be higher brain structural integrity in these individuals. Alternatively, the brain might
recruit existing resources more efficiently or employ compensatory cognitive strategies. Here,
we approached this question by testing multiple candidate variables from structural and
functional neuroimaging for their ability to predict chronological age and memory performance,
respectively. Prediction was performed using support vector machine (SVM) classification and
regression across and within two samples of young (N = 106) and older (N = 153) adults. The
candidate variables were (i) behavioral response frequencies in an episodic memory test, (ii)
recently described fMRI scores reflecting preservation of functional memory networks, (iii)
whole-brain fMRI contrasts for novelty processing and subsequent memory, (iv) resting-state
fMRI maps quantifying voxel-wise signal fluctuation and (v) gray matter volume estimated
from structural MR images. While age group could be reliably decoded from all variables,
chronological age within young and older subjects was best predicted from gray matter volume.
In contrast, memory performance was best predicted from task-based fMRI contrasts and
particularly single-value fMRI scores, whereas gray matter volume has no predictive power
with respect to memory performance in healthy adults. Our results suggest that superior
memory performance in healthy older adults is better explained by efficient recruitment of

memory networks rather than by preserved brain structure.
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1. Introduction

Episodic memory performance peaks in young adulthood and declines with increasing age.
Notably, a subpopulation of older adults show “successful aging”, with memory performance
comparable to that of younger adults (Nyberg et al., 2012; Nyberg and Pudas, 2019). An early
assessment of changes in cognitive performance can help to determine people at risk of
pathological aging, such as various forms of dementia, and allows for early medical and
behavioral interventions (Naismith et al., 2009; Cabeza et al., 2018; Whitty et al., 2020).
Machine learning-based techniques such as support vector machine (SVM) classification and
regression provide promising approaches to differentiate normal from pathological
neurocognitive aging. They have been employed to predict chronological age from structural
magnetic resonance imaging (MRI; Cole et al., 2017, 2018), to estimate brain age (Bashyam et
al., 2020; Habes et al., 2021) or to distinguish health from disease (Dyrba et al., 2021; Eitel et
al., 2021).

In contrast to the abundant literature on age prediction from structural MRI (Cole et al., 2017,
2018; Luders et al., 2016; Steffener et al., 2016; Soch, 2020), few studies have been devoted to
predicting cognitive function, particularly memory performance, from neuroimaging data. One
such study found that a combination of ApoE genotype and functional MRI was the most
effective predictor for future cognitive decline (Woodard et al., 2010). The wide range of
cognitive functioning even within narrowly defined age groups suggests that chronological age
and cognitive performance might be predicted by different modalities. Several studies evaluated
potential structural, functional, physiological and behavioral predictors of age-related cognitive
decline (Gross et al., 2011; Hou et al.,, 2020; Chen et al., 2021), but only few studies
systematically compared different predictors and their joint predictive value (e.g., Woodard et
al., 2010).

Comparing the predictive value of MRI biomarkers for chronological age versus individual
memory performance appears to be a promising endeavor, because “successful aging” may
reflect dissociable neural mechanisms: differences in the manifestation of age-related
physiological changes (“brain maintenance”) and/or differences in cognitive processing
(“cognitive reserve”; Nyberg et al., 2012). Thus, data from different modalities may
differentially predict chronological age and memory performance, respectively.

We compared SVM-based prediction of chronological age versus prediction of memory
performance from behavioral data, task-based fMRI, resting-state fMRI, and structural MRI

markers associated with increasing age. Our analyses where based on a large sample of 106
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young and 153 older subjects (Soch et al., 2021a). Episodic memory performance was measured
in the fMRI task and in various neuropsychological tests, using either incidental or intentional
memory formation.

In addition to task-based fMRI, we also included recently described single-value fMRI scores
(Soch et al., 2021b; Richter et al., 2022). These scores are derived from fMRI contrasts and
describe the amount of deviation from or similarity with prototypical activations seen in young
adults during novelty processing and successful encoding, by focusing on either typical versus
atypical activations (FADE, functional activity deviation during encoding) or activations and
deactivations (SAME, similarity of activations during memory encoding). These scores might
constitute more robust predictors than voxel-wise fMRI contrasts, as a recent meta-analysis
suggested that test-retest reliability of task-based fMRI is mediocre, and the authors
recommended whole-brain aggregate analysis rather than voxel- or ROI-based analyses to
improve reliability (Elliott et al., 2020).

As an intermediate variable between task-based fMRI and structural MRI, we included the
strength of resting-state fMRI signal fluctuations (Jia et al., 2020). Although resting-state fMRI,
like task-based fMRI, measures the BOLD signal, it is, like structural MRI, not selective with
respect to specific cognitive functions, because subjects are not performing a specific cognitive
task (Buckner et al., 2008).

We hypothesized that both chronological age and memory performance could be best predicted
from structural MRI, because age-related decrease of memory performance is typically
accompanied by structural brain alterations (Cabeza et al., 2004; de Mooij et al., 2018). Whether
any MRI modality would outperform the others’ prediction of memory performance, was

assessed exploratively.
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2. Methods

2.1. Participants

The study was approved by the Ethics Committee of the Otto von Guericke University
Magdeburg, Faculty of Medicine, and written informed consent was obtained from all
participants in accordance with the Declaration of Helsinki (World Medical Association, 2013).
Participants were recruited via flyers at the local universities (mainly young subjects),
advertisements in local newspapers (mainly older participants) and during public outreach
events of the institute (e.g., Long Night of the Sciences).

The study cohort consisted of a total of 259 neurologically and psychiatrically healthy adults,
including 106 young (47 male, 59 female, age range 18-35, mean age 24.12 + 4.00 years) and
153 older (59 male, 94 female, age range 51-80, mean age 64.04 £+ 6.74 years) participants.
According to self-report, all participants were right-handed and did not use neurological or
psychiatric medication. The Mini-International Neuropsychiatric Interview (M.LN.I.; Sheehan
et al., 1998; German version by Ackenheil et al., 1999) was used to exclude present or past
psychiatric illness, alcohol or drug dependence.

Please note that this study is based on the same participant sample as described in Soch et al.
(2021a, 2021b) and Richter et al. (2022). The analyses and results described in this study are

novel and have not been described or shown elsewhere.

2.2. Experimental paradigm

During the fMRI experiment, participants performed a visual memory encoding paradigm with
an indoor/outdoor judgment as the incidental encoding task. Compared to earlier publications
of this paradigm (Diizel et al., 2011; Barman et al., 2014; Schott et al., 2014; Assmann et al.,
2020), the trial timings had been adapted as part of the DZNE-Longitudinal Cognitive
Impairment and Dementia (DELCODE) study protocol (Diizel et al., 2018; Bainbridge et al.,
2019; see Soch et al., 2021a, for a detailed comparison of trial timings and acquisition
parameters). Subjects viewed photographs showing indoor and outdoor scenes, which were
either novel at the time of presentation (44 indoor and 44 outdoor scenes) or were repetitions
of two highly familiar “master” images (22 indoor and 22 outdoor trials), i.e. one indoor and
one outdoor scene pre-familiarized before the actual experiment (cf. Soch et al., 2021a, Fig.
1B). Thus, every subject was presented with 88 unique images and 2 master images that were
presented 22 times each. Participants were instructed to categorize images as “indoor” or

“outdoor” via button press. Each picture was presented for 2.5 s, followed by a variable delay
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between 0.70 s and 2.65 s. To optimize estimation of the condition-specific BOLD responses
despite the short delay, simulations were employed to optimize the trial order and jitter, as
described previously (Hinrichs et al., 2000; Diizel et al., 2011).

Approximately 70 minutes (70.23 + 3.77 min) after the start of the fMRI session, subjects
performed a computer-based recognition memory test outside the scanner, in which they were
presented with the 88 images that were shown once during the fMRI encoding phase (o/d) and
44 images they had not seen before (new). Participants rated each image on a five-point Likert
scale from 1 (“definitely new”) to 5 (“definitely old”). For detailed experimental procedure, see

Assmann et al. (2020) and Soch et al. (2021a).

2.3. fMRI data acquisition

Structural and functional MRI data were acquired on two Siemens 3T MR tomographs
(Siemens Verio: 58 young, 83 older; Siemens Skyra: 48 young, 70 older), following the exact
same protocol used in the DELCODE study (Jessen et al., 2018; Diizel et al., 2019; Billete et
al., in review).

A T1-weighted MPRAGE image (TR = 2.5 s, TE = 4.37 ms, flip-a = 7°; 192 slices, 256 x 256
in-plane resolution, voxel size = 1 x 1 x 1 mm) was acquired for co-registration and improved
spatial normalization. Phase and magnitude fieldmap images were acquired to improve
correction for artifacts resulting from magnetic field inhomogeneities (see below).

For functional MRI (fMRI), 206 T2*-weighted echo-planar images (EPIs; TR =2.58 s, TE =
30 ms, flip-a = 80°; 47 slices, 64 x 64 in-plane resolution, voxel size = 3.5 x 3.5 x 3.5 mm)
were acquired in interleaved-ascending slice order (1, 3, ..., 47,2, 4, ..., 46). Prior to this task-
based fMRI experiment, a resting-state fMRI run was acquired, comprising 180 EPIs with
otherwise identical acquisition parameters. The total scanning times were 531.48 s (= 9:51 min)
for the task-based fMRI run and 464.4 s (= 7:44 min) for the resting-state fMRI session. The
complete study protocol also included a T2-weighted MR image in perpendicular orientation
to the hippocampal axis (TR = 3.5 s, TE =350 ms, 64 slices, voxel size = 0.5 x 0.5 x 1.5 mm)
for optimized segmentation of the hippocampus (Dounavi et al., 2020) and additional structural

imaging not used in the analyses reported here.

2.4. fMRI data preprocessing
Data preprocessing was performed using Statistical Parametric Mapping (SPM12; Wellcome
Trust Center for Neuroimaging, University College London, London, UK). EPIs were corrected

for acquisition time delay (slice timing), head motion (realignment) and magnetic field
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inhomogeneities (unwarping), using voxel-displacement maps (VDMs) derived from the
fieldmaps. The MPRAGE image was spatially co-registered to the mean unwarped image and
segmented into six tissue types, using the unified segmentation and normalization algorithm
implemented in SPM12. The resulting forward deformation parameters were used to normalize
unwarped EPIs into a standard stereotactic reference frame (Montreal Neurological Institute,
MNI; voxel size = 3 x 3 x 3 mm). Normalized images were spatially smoothed using an isotropic

Gaussian kernel of 6 mm full width at half maximum (FWHM).

2.5. General linear modelling

For first-level fMRI data analysis, which was also performed in SPM12, we used a parametric
general linear model (GLM) of the subsequent memory effect that has recently been
demonstrated to outperform the so far more commonly employed categorical models of fMRI
subsequent memory effects (Soch et al., 2021a) when subsequent memory responses are
recorded as memory confidence ratings on a parametric scale.

This model included two onset regressors, one for novel images at the time of presentation
(“novelty regressor”) and one for presentations of the two pre-familiarized images (“‘master
regressor’’). Both regressors were created as short box-car stimulus functions with an event
duration of 2.5 s, convolved with the canonical hemodynamic response function, as
implemented in SPM12.

The regressor reflecting subsequent memory performance was obtained by parametrically
modulating the novelty regressor with a function describing subsequent memory report.

Specifically, the parametric modulator (PM) was given by

x—3\ 2
PM = arcsin( )
T

where x € {1, 2, 3,4, 5} is the subsequent memory report, such that -1 < PM < +1. Compared
to a linear-parametric model, this transformation puts a higher weight on definitely remembered
(5) or forgotten (1) items compared to probably remembered (4) or forgotten (2) items (Soch et
al., 2021a, Fig. 2A).

The model also included the six rigid-body movement parameters obtained from realignment

as covariates of no interest and a constant representing the implicit baseline.

2.6.  Extraction of target variables
For each subject, age group (young vs. older), chronological age (in years) and memory
performance (area under the curve, AUC; see Soch et al., 2021b, Appendix B) were extracted

as dependent variables, i.e. target variables for prediction analyses (see Table 1).
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Note that our measure of memory performance is not completely independent from some of the
source variables, because it was obtained from the same task during which behavioral data and
functional MRI were acquired (see Section 2.7). For this reason, we also used independent
measures of memory performance to test the predictive performance of our candidate variables.
These measures include (i) the number of items retrieved in a verbal learning task (verbal
learning and memory test, VLMT; Helmstaedter et al., 2001), in a recall after 30 minutes or 1
day; and (i1) the number of points obtained in a semantic memory test (Wechsler memory scale,
WMS; Hérting et al., 2000), in a recall after 30 minutes or 1 day (see Table 2). For detailed

description of these neuropsychological assessments, see Richter et al. (2022).

Variable Range Description

age group x; € {1,2} cohort of either young (1) or older (2) subjects
chronological age 18 <x; <80 absolute age of a subject in years

memory performance | different measures | for details, see Table 2

Table 1. Target variables used for prediction analyses. Details on the different measures of
memory performance are given in Table 2.

Measure Stimulus | Encoding Recall Recall |Theoretical| Actual
material type delay type range range
FADE-A’ visual incidental 70 min | recognition 0-1 0.53-0.98
VLMT-30min | verbal intentional | 30 min free recall 0-15 4-15
VLMT-1d verbal intentional 1d free recall 0-15 2-15
WMS-30min | auditory | intentional | 30 min free recall 0-50 9-46
WMS-1d auditory | intentional 1d free recall 0-50 6—45

Table 2. Measures of memory performance used as target variables. Abbreviations: FADE =
name of the fMRI paradigm; A’ = area under the curve (AUC) when plotting the hit rate as a
function of false alarm rate; VLMT = verbal learning and memory test; WMS = Wechsler
memory scale.

2.7.  Extraction of source variables

For each subject, the following variables were extracted as independent variables, i.e. source

variables for prediction analyses (see Table 3):

e behavioral response frequencies: In the surprise recognition memory test, subjects provided
memory confidence ratings between 1 and 5 for all 88 old stimuli, (i.e. items presented

during the encoding session) and 44 new stimuli (i.e. items not seen during the encoding
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session; see Section 2.2). From the responses of subject i, we calculated o;;, the proportion
of old items rated with confidence level j, and n;;, the proportion of new items rated with

j. The variables 0,3 and n;3 were dropped to avoid collinearity of predictor variables, since
all “old” proportions and all “new” proportions added up to 1, respectively.

e fMRI contrast images: The GLM for first-level fMRI data analysis contained one regressor
for novel images, parametrically modulated with a non-linear transformation of memory
confidence, and another regressor for master images (see Section 2.5). From this, we
generated fMRI contrast maps for “novelty processing” as such, by subtracting the master
regressor from the novelty regressor, and for “subsequent memory” effects, identical to the
estimated regression coefficient for the parametric modulator.

o fMRI summary statistics: We then identified regions with group-level significant positive
and negative activations on these contrasts in young subjects. Using these voxels as masks,
we calculated two recently described fMRI scores quantifying the deviation of older adults
from the prototypical activation of young subjects (for detailed procedure and extracted
scores, see Soch et al., 2021b, Sections 2.6 to 2.8). Both scores, FADE-classic (FADE =
functional activity deviation during encoding; Diizel et al., 2011) and FADE-SAME
(SAME = similarities of activations during memory encoding; Soch et al., 2021b), were
computed from both contrasts, novelty processing and subsequent memory.

e resting-state fMRI maps: We then applied the RESTplus toolbox (Jia et al., 2019) to the
preprocessed resting-state fMRI scans of each subject and calculated the voxel-wise percent
of amplitude fluctuation (PerAF) of signals in the frequency range from 0.01 to 0.08 Hz.
PerAF is the average absolute deviation from the signal mean, measured in percent (Jia et
al., 2020, eq. 1). Here, we used “mean PerAF” (mPerAF), which additionally divides PerAF
by the global mean (Jia et al., 2020, Tab. 1) and was already employed in a previous study
(Kizilirmak et al., in prep.).

o structural MRI maps: Finally, the T1 image of each subject was submitted to structural MRI
analyses (i.e. voxel-based morphometry, VBM) using the Computational Anatomy Toolbox
(CATI12; Structural Brain Mapping Group, Department of Neurology, University Jena,
Germany), resulting in gray matter volume (GMV) maps. These maps were additionally
smoothed using a Gaussian kernel (isotropic FWHM = 6 mm) before entering whole-brain

decoding analyses.
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Variables Range Description

behavioral 0i1, -, 0i5 € [0,1] | proportion of old items replied to with 1, ..., 5 and
response Ny, ..., N5 € [0,1] | proportion of new items replied to with 1, ..., 5
frequencies

fMRI Vi1, - YVia € R | two scores (FADE-classic, FADE-SAME) computed
summary from two fMRI contrasts (novelty processing,
statistics subsequent memory)

fMRI Y; eRY voxel-wise fMRI contrasts computed in SPM,
contrast representing activations related to novelty processing
images (novel images — master images) or subsequent me-

mory (parametric modulator with memory response)

resting-state Y, eRY voxel-wise percent of amplitude fluctuation (mPerAF)
fMRI maps computed using the REST toolbox, based on fMRI

signals measured during a resting-state session
structural Y; eRY voxel-wise gray matter volumes computed in CAT12,
MRI maps based on each subject’s T1 image

Table 3. Source variables used for prediction analyses. Abbreviations: FADE = functional
activity deviation during encoding, SAME = similarities of activations during memory
encoding, R = real numbers, v = number of (in-mask) voxels.

2.8. Prediction of target from source variables

After source and target variables were extracted, several analyses were performed and each
analysis consisted in predicting a single target variable from a feature set of source variables
using support vector machines (SVM; see Figure 1 and Table 4).

For decoding the age group a subject was belonging to, we used support vector classification
(SVC) using a linear SVM with C = 1. For predicting chronological age and memory
performance, we used support vector regression (SVR) using a linear SVM with C = 1. For
both, SVC and SVR, subjects were split with k-fold cross-validation (CV) on subjects per group
using k = 10 CV folds. All SVM analyses were implemented using LibSVM in MATLAB via

in-house scripts available from GitHub'.

'URL: https://github.com/JoramSoch/ML4ML.
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Figure 1. Methodology of the present study. Several target variables of interest (right) are
predicted using several sets of source variables (left), thought to be markers of cognitive decline
in old age, using machine learning techniques (center).
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Short Long Features | Description

old old items 4 responses to old items only

new new items 4 responses to new items only

both old & new 8 responses to old & new items

FADE FADE scores 2 FADE scores for novelty and memory

SAME SAME scores 2 SAME scores for novelty and memory

both FADE & SAME 4 FADE & SAME scores for novelty & memory
nov. novelty contrast v whole-brain novelty contrast maps

mem. memory contrast v whole-brain memory contrast maps

both nov. & mem. 2v whole-brain novelty & memory contrast maps
mPerAF | mPerAF maps v whole-brain percent amplitude fluctuation maps
GMV GMYV maps v whole-brain gray matter volume maps

all all features 4v + 12 | all unique features listed in this table

Table 4. Feature sets used for prediction analyses. Short and long feature set names are used
as x-axis labels on Figures 2-5. The number of features corresponds to the number of columns
in the data matrix used for prediction. Abbreviations: FADE = functional activity deviation
during encoding, SAME = similarities of activations during memory encoding, v = number of
(in-mask) voxels.

2.9. Distributional transformation

When predicting chronological age and memory performance, distributional transformation
(DT) was applied to preserve the observed distribution of the target variable (Soch, 2020). DT
is a post-processing operation that maps predicted values to the variable’s distribution in the
training data and can improve prediction precision.

For example, memory measured as AUC always falls into the range between 0 and 1, but a
trained SVM may also return values smaller than O or larger than 1. Then, DT brings predicted
values into the natural range of the target variable while keeping the ranks of all predicted values
identical before and after transformation (Soch, 2020). The same holds when predicting age
which was always between 18 and 80 years in our study. For subgroup analyses, only the age

range of the respective group (young vs. older) was applied.

2.10. Performance assessment
The prediction precision was assessed using balanced accuracy (ranging between 0 and 1) when
decoding age group, i.e. by averaging the decoding accuracies for young and older subjects

(Brodersen et al., 2010); and using correlation coefficients (ranging between —1 and +1) when
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predicting chronological age and memory performance, i.e. as the sample correlation
coefficient between actual and predicted values of those variables. For each precision measure,
a 90% confidence interval was established.?

When predicting chronological age and memory performance, we additionally calculated
absolute errors (AE) between predicted and actual target values and submitted them to
Wilcoxon signed-rank tests to check for significant reduction of the mean absolute error (MAE)
from one feature set to another. This non-parametric test was chosen due to the presumably
non-normal distribution of absolute errors. For each target variable, AEs of the feature set with
the highest correlation coefficient were compared against AEs of each other feature set to test
whether performances of the feature sets were significantly different from that of the most

predictive feature set (see e.g. Figure 3).

2 Confidence intervals were generated using the MATLAB functions binofit for accuracies (assuming that the
numbers of correct predictions are binomially distributed with unknown success probability) and corrcoef for
correlations (assuming that actual and predicted continuous variables are linearly related).
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3. Results

3.1. Chronological age is best predicted from structural MRI maps

The age group a subject belonged to (young vs. older subjects) could be predicted from all
feature sets with above-chance decoding accuracy (see Supplementary Figure S1). The highest
accuracy was obtained with GMV maps (balanced accuracy, BA = 96.01 %; confidence
interval, CI =[0.931, 0.976]) and the lowest accuracy was obtained with response frequencies
to old items (BA = 59.68 %, CI =[0.542, 0.646]).

When predicting chronological age (in years) across all subjects, we found significant
correlations for all feature sets (see Figure 2A; old items: r = 0.40; GMV maps: r = 0.95).
However, this was mainly attributable to the inherent correlation between chronological age
and age group (see Section 2.1), such that decoding age group is already a good predictor for
chronological age. Therefore, we performed the same analyses separately within young subjects
(18-35 years) and within older subjects (60-80 years).

In young subjects, chronological age could only be reconstructed from whole-brain GMV maps
(see Figure 2B; r=0.24, CI1=[0.085, 0.388]; all other [r| <0.20). In older subjects, chronological
age could be predicted from GMYV and resting-state fMRI maps (see Figure 2C; GMV maps: r
= 0.63, CI = [0.540, 0.703]; mPerAF maps: r = 0.40, CI = [0.279, 0.504]) and, with lower
accuracy, from task-based fMRI contrasts (novelty & memory: r = 0.30, CI = [0.179, 0.421])
and fMRI summary statistics (FADE & SAME: r = 0.17, CI = [0.033, 0.293]), but not from
behavioral response frequencies (old & new: r=0.01, CI =[-0.120, 0.147]).
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Figure 2. Prediction of chronological age from different feature sets. Bar plots show correlation
coefficients for predicting chronological age (in years) (A) across all subjects, (B) in young
subjects only or (C) in older subjects only from behavioral data (red), fMRI scores (magenta),
task-based fMRI contrasts (blue), resting-state fMRI maps (cyan) and structural MRI (green),
or all features (yellow). Error bars denote 90% confidence intervals; x-axis labels are explained

[TPRIR

in Table 4. The feature set with the highest predictive correlation is denoted with an “o0”; other
feature sets are labeled with asterisks to indicate significantly different mean absolute error (*
p <0.05, ** p <0.01, *** p <0.001, otherwise not significant).

3.2. Dependent memory performance is best predicted from task-based fMRI

Similar to chronological age, memory performance (AUC) across all subjects could be
predicted from all feature sets® (see Figure 3A; GMV maps: r = 0.13; SAME scores: r = 0.48).
However, as memory performance is also strongly influenced by age group, with young
subjects performing significantly better than older subjects (young: pi = 0.82; older: p, =0.77,
effect size: d' = 0.72; two-sample t-test: t = 5.67, p < 0.001), we again analyzed this target
variable separately within young and older subjects, respectively.

In both age groups, memory performance predicted by GMV maps was not correlated to actual
memory performance (young: r=0.11; older: r=0.11). Instead, memory performance was best
predicted by the fMRI memory contrast in young subjects (see Figure 3B; r=0.19, C1=[0.032,
0.342]) and the SAME scores in older subjects (see Figure 3C; r = 0.53, CI =[0.421, 0.616]).

Note that the predictive accuracy when predicting from just four single-value fMRI scores

3 Note that we are here not using behavioral data as source variables, because the target variable of memory
performance is a mathematical function of the behavioral response frequencies. For this reason, prediction from
response frequencies to all items would reach ceiling performance and is not shown.
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(FADE & SAME: r = 0.48, CI = [0.368, 0.575]) was better than using two whole-brain task-
based fMRI contrasts (novelty & memory: r = 0.35, CI1 =[0.227, 0.461]).

A target variable: memory performance - all subjects (N = 259)
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Figure 3. Reconstruction of memory performance from different feature sets. Bar plots show
correlation coefficients for predicting memory performance (area under the curve) (A) across
all subjects, (B) in young subjects only or (C) in older subjects only from fMRI scores
(magenta), task-based fMRI contrasts (blue), resting-state fMRI maps (cyan) and structural
MRI (green), or all features (yellow). Note that memory performance can be directly derived
from behavioral data which is why the corresponding prediction analyses were not performed.
The layout follows that of Figure 2.

3.3. Independent memory performance is best predicted from single-value fMRI scores
When predicting independent measures of memory performance (see Section 2.6 and Table 2),
we restrict the results report to the older subjects, because those measures could not be reliably
predicted at all in young subjects (see Supplementary Figure S2), probably due to the lower
variation in their close-to-ceiling memory performance.

Generally, the prediction of memory performance in independent tests was less accurate than
that of behavioral memory performance in the fMRI task itself (cf. Figure 4 vs. 3C). Besides
this, outcomes from all memory tests are best predicted by the SAME scores (see Figure
4A/B/D; VLMT 30 min: r=0.25, CI=[0.124, 0.375]; VLMT 1d: r=0.23, CI=[0.099, 0.356];
WMS 1d: r=0.33, CI=[0.198, 0.442]) or FADE scores (see Figure 4C; WMS 30 min: r = 0.36,
CI=1[0.234, 0.471]).
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Moreover, there appears to be a dissociation by type of memory test: Whereas performance in
the verbal-semantic VLMT could be predicted from behavioral responses to old items, but not
task-based fMRI contrast maps, the reverse pattern was seen for performance in the auditory-
episodic WMS (see Figure 4, red and blue bars; see Supplementary Discussion for potential
explanations). Notably, the two SAME scores and all four fMRI-based scores were the only
feature sets that allowed for above-chance prediction of all four independent measures of

memory performance (see Figure 4, magenta bars).
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Figure 4. Reconstruction of independent memory performance in older subjects. Bar plots show
correlation coefficients for predicting, in older subjects only, independent measures of memory
performance, namely (A) VLMT items after 30 minutes, (B) VLMT items after 1 day, (C)
WMS points after 30 minutes and (D) WMS points after 1 day, from behavioral data (red),
fMRI scores (magenta), task-based fMRI contrasts (blue), resting-state fMRI maps (cyan) and
structural MRI (green), or all features (yellow). The layout follows that of Figure 3C.
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3.4. Effects of age and memory are specific to structural vs. functional MRI

To follow up on the findings of predictive analyses, especially the differences in predicting
participants’ age vs. memory (cf. Figure 2C vs. 3C), we explicitly compared functional and
structural MRI data in older subjects using sub-group analyses. To this end, we partitioned all
older subjects into four groups based on (i) chronological age, separating into “young” and
“old” older subjects; and (ii) memory performance, separating higher from lower memory
performance subjects (see Supplementary Figure S3). Then, the voxel-wise data of the quarter
with the lowest values and the quarter with the highest values were submitted to second-level
two-sample t-tests in SPM. This analysis was performed for both fMRI contrasts, mPerAF maps
and GMV maps. Thresholded statistical parametric maps were FWE-cluster-corrected (cluster-
defining threshold, CDT: p <0.001, k = 0), resulting in a minimum cluster size for each analysis
(novelty: k = 42; memory: k =27; mPerAF: k = 23; GMV: k = 33 (separating by age) and k =
42 (separating by memory); see Figure 5).

Taken together, we observed a double dissociation of structural MRI versus task-based fMRI
and age versus memory, in the sense that (i) when partitioning subjects by chronological age,
there were significant effects on structural MRI (see Figure 5A); and (ii) when partitioning
subjects by memory performance, there were significant effects on task-based fMRI (see Figure
5B); at the same time, there were no age-related differences with respect to task-based fMRI
and no memory-related differences with respect to structural MRI. Resting-state fMRI maps
showed differences between younger and older subjects, but not between those with high vs.
low memory performance (see Figure 5, 3rd row), suggesting that their informational content

is closer to structural MRI than to task-based fMRI.
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Figure 5. Differential effects of age and memory in structural and functional MRI. Significant
differences (A) between “young” and “old” older subjects and (B) between older subjects with
higher vs. lower memory performance, with respect to fMRI activity during novelty processing
(1st row), subsequent memory (2nd row), fMRI amplitudes during rest (3rd row) and voxel-
wise gray matter volume (4th row). Thresholded SPMs are FWE-corrected for cluster size
(CDT: p < 0.001, k = 0). Colored voxels indicate significantly higher values for either young
subjects and those with higher memory performance (red) or old subjects and those with lower
memory performance (blue).
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3.5. Single-value fMRI scores have moderate predictive utility

To assess the predictive utility of fMRI summary statistics, we used FADE and SAME scores
computed from novelty and memory contrasts (i.e. four features, cf. Table 4) and evaluated the
precision by which these scores predict memory performance in two ways.

First, we compared predicted with actual values when reconstructing area under the curve
(AUC) in the fMRI memory paradigm from FADE and SAME scores (cf. Figure 3B/C). In
older subjects, there was a correlation of 0.47 (p < 0.001) and AUC could be predicted with a
mean absolute error (MAE) of 0.06 (see Figure 6B). For comparison, the same correlation was
0.17 (p = 0.082) with an MAE of 0.08 in young subjects (see Figure 6A).

Second, we tested how well sub-groups of the older subjects formed for the previous analysis
(see Section 3.4 and cf. Figure 5SA/B) could be classified from fMRI scores. When classifying
older subjects with lower vs. higher memory performance based on FADE and SAME scores
(N = 76), the decoding accuracy was 72.37 % (sensitivity: 76.32 %; specificity: 68.42 %). For
comparison, the decoding accuracy was 84.93 % (sensitivity: 81.08 %; specificity: 88.89 %)
when classifying “old” vs. “young” older subjects based on GMV maps (N = 73).
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Figure 6. Prediction of memory performance from single-value fMRI scores. Scatter plots of
actual vs. predicted memory performance when reconstructing memory performance from
FADE and SAME scores (see Figure 3, magenta bars) in (A) young subjects and (B) older
subjects. Abbreviations: r = correlation coefficient, MAE = mean absolute error, *** p <0.001.
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4. Discussion

In the present study, we have comparatively evaluated the ability of structural and functional
(resting-state and task-based) MRI data as well as behavioral measures to predict chronological
age versus memory performance in young and older healthy adults (see Figure 1). While all
modalities could predict age group, within-group prediction of age and memory performance
revealed distinct patterns. Among young and older subjects, chronological age was best
predicted by structural MRI and also resting-state fMRI (see Figure 2B and 2C), whereas
memory performance was best predicted by functional MRI contrasts (novelty and subsequent
memory effects) and especially single-value fMRI-based scores (see Figure 3C and 4) in older

participants only.

4.1. Prediction of chronological age from structural MRI

All of the candidate predictors employed in the present study have previously been shown to
exhibit age-related differences: (i) behavioral memory responses are different between age
groups, with older adults producing more false positives which reduces memory performance
(cf. Soch et al., 2021a, Tab. S2; also see Duarte et al., 2010); (ii) memory-related fMRI
responses differ between age groups, with older adults showing reduced parahippocampal
activations and reduced default mode network (DMN) deactivations during novelty processing
and subsequent memory (cf. Soch et al., 2021b, Fig. 2; also see Maillet and Rajah, 2014; Billette
et al., in review); (iii) resting-state fMRI patterns exhibit global age-related differences (Foo et
al., 2021; Xing, 2021), and (iv) quantitative structural MRI approaches like VBM yield robust
and well-replicated age-related differences, with older adults showing reduced hippocampal
volumes (cf. Kizilirmak et al., in prep., Fig. 3A; also see Veldsman et al., 2020) as well as
reduced cortical and subcortical GMV, particularly in structures of the human memory network
like the medial temporal lobe (Schiltz et al., 2006; Minkova et al., 2017).

In line with the aforementioned observations, all variables could discriminate between age
groups, but within the group of older adults, a distinct pattern emerged regarding the prediction
of chronological age and memory performance, respectively. Chronological age was best
predicted from voxel-wise GMV, reflecting the well-replicated observation that both cortical
and subcortical GM show age-related volume loss (Minkova et al., 2017; Soch, 2020; Veldsman
et al., 2020), which is, longitudinally, already observable within a year’s time (Fjell et al., 2009,
2013; Bagarinao et al., 2022). Predictive correlation of whole-brain GMV and chronological

age within the group of older adults was, however, only moderate, most likely reflecting the
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considerable inter-individual variability in age-related structural brain changes. This
phenomenon has in fact been conceptualized within the brain-age framework, a widely
researched approach to employ differences between predicted brain age and chronological age
as a biomarker for brain health in aging (see, e.g., Cole and Franke, 2017; Bashyam et al., 2020).
Including other predictors in the model did not improve age prediction among older adults
(Figure 2C), suggesting that the biological information actually predicting chronological rather
than brain age might be limited.

In a recent competition to predict chronological age from structural neuroimaging (Fisch et al.,
2020), the winning performance, a mean absolute error of 2.90 years, was achieved using
lightweight 3D convolutional neural networks (Gong et al., 2020). Moreover, it was shown that
distributional transformation can improve the MAE by about half a year, utilizing the
distribution of the target values in the training data (Soch, 2020), an approach that was also

used in the present study (see Section 2.9).

4.2. Functional MRI as predictor of cognitive performance in old age

Unlike chronological age, memory performance could not be reliably predicted from GMV.
This is compatible with the fact that in previous studies, we found no correlations between
hippocampal volume and our task-based fMRI summary statistics for both hemispheres, using
two scores, computed from two contrasts (Soch et al., 2021b, Fig. 4). It is also supported by
another study, in which a combination of ApoE genotype and task-based fMRI was identified
as the best predictor of cognitive decline in healthy older adults (Woodard et al., 2010). In line
with those findings, we here observed that memory performance could be predicted from single-
value fMRI scores (see Figure 4), especially when extracting both FADE and SAME scores,
from both novelty and memory contrasts (Soch et al., 2021b).

It should be noted that the cognitive task underlying our fMRI data set (incidental encoding of
visual scenes) in fact targeted declarative long-term memory. In so far, the high predictive value
of functional measures derived from activity during such a task (i.e., f/MRI novelty and memory
contrast maps, FADE and SAME scores) for other measures of declarative memory appears to
be a natural outcome, as it is more specifically targeting the to-be-predicted variable than GMV
or mPerAF. The same is true for the study of Woodard and colleagues, in which participants
encoded names (famous vs. unfamiliar names) and the independent measures of cognitive
decline comprised different types of neuropsychological memory assessments. On the other
hand, we could recently show that, while the scores derived from the novelty contrast were

rather specifically associated with tests of explicit memory, the scores computed from the
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memory contrast were also associated with measures of global cognition (Richter et al., 2022).
More generally, our findings are in line with the notion that cognitive reserve may to a certain

degree be independent from structural age-related changes of the brain (Nyberg et al., 2012).

4.3. Informational content of resting-state maps

It is also noteworthy that resting-state fMRI behaved more similar to structural MRI than task-
based fMRI, with balanced accuracy for mPerAF maps being close to that of GMV maps (see
Figure S1) and mPerAF similarly predicting chronological age (see Figure 2C), but not
capturing memory performance in older subjects (see Figure 3C). This suggests that at least
voxel-wise mPerAF maps derived from resting-state fMRI provide information that is closer to
the brain-anatomical information of structural MRI maps than to the neural-processing
information of task-based fMRI contrasts.

This is compatible with the line of thought discussed above: While task-based fMRI measures
provide informational value for cognitive performance measures, especially when the fMRI
task falls into the same cognitive domain as the to-be-predicted performance indicator, resting-

state fMRI measures appear to reflect brain integrity more generally (e.g. Mevel et al., 2011).

4.4. Successful aging, brain structural integrity, and memory performance

Overall, our results suggest that successful aging, that is, relatively preserved memory in
healthy older adults, may not be primarily attributable to lower gray matter loss, but rather to
better preserved functional brain networks, as evident in a higher similarity of memory-related
brain activity with that of young adults (see Figure 5). This might be different in pathological
aging when brain anatomy is affected to a larger extent, but is compatible with earlier studies
suggesting that in healthy older adults, functional neurocognitive resources may be more
important for cognitive performance than structural measures of brain integrity (Scarmeas et
al., 2003; Stern, 2009, 2012; Cabeza et al., 2018).

The observation that structural MRI had no predictive power for memory performance in our
study may at first seem surprising, given that there are very large differences with respect to
GMYV between young and older adults (Farokhian et al., 2017) who typically also differ with
respect to memory performance (Soch et al., 2021a; Soch et al., in prep.; Richter et al.,
submitted). One potential explanation for this finding may be that, in our study, the sample
investigated consisted of neurologically and psychiatrically healthy older adults without signs
of cognitive impairment. This suggests that brain atrophy (i.e., structural volume loss) may to

some extent occur invariably with increasing age, but does not necessarily affect cognitive
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performance as long as (i) the degree is still within the bounds of normal aging and (ii) it is not
accompanied by functional processing changes (reflected in fMRI scores), potentially due to
compensatory mechanisms (Kizilirmak et al., 2021). This is in line with previous studies that
reported a decoupling between gray and white matter measures and memory performance in
older age (de Mooij et al., 2018), underscoring that cognitive maintenance or reserve is — at
least to a degree — independent of neural maintenance. A large meta-analysis also highlights the
lack of a strong dependency between structural and cognitive decline (Oschwald et al., 2019),
suggesting that the healthy aging brain possesses a considerable potential to compensate for

inevitable age-related structural decline (Stern, 2009; Nyberg et al., 2012; Cabeza et al., 2018).

4.5. Conclusion

We have shown a systematic difference in predictive ability between structural MRI markers
(and resting-state fMRI) on the one hand versus functional MRI markers (especially fMRI
summary statistics) on the other hand. Whereas the former are most strongly related to
chronological age reflecting the mere progression of time, the latter allow to better predict
cognitive performance in episodic memory. In a sense, this double dissociation supports the
concept of cognitive reserve as a phenomenon that may to some degree be independent from
structural brain aging. Further research has to elucidate the sources of preserved memory

performance in older adults with structural degradation, but functional maintenance.
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