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Abstract 
Human cognitive abilities decline with increasing chronological age, with decreased explicit 

memory performance being most strongly affected. However, some older adults show 

“successful aging”, that is, relatively preserved cognitive ability in old age. One explanation for 

this could be higher brain structural integrity in these individuals. Alternatively, the brain might 

recruit existing resources more efficiently or employ compensatory cognitive strategies. Here, 

we approached this question by testing multiple candidate variables from structural and 

functional neuroimaging for their ability to predict chronological age and memory performance, 

respectively. Prediction was performed using support vector machine (SVM) classification and 

regression across and within two samples of young (N = 106) and older (N = 153) adults. The 

candidate variables were (i) behavioral response frequencies in an episodic memory test, (ii) 

recently described fMRI scores reflecting preservation of functional memory networks, (iii) 

whole-brain fMRI contrasts for novelty processing and subsequent memory, (iv) resting-state 

fMRI maps quantifying voxel-wise signal fluctuation and (v) gray matter volume estimated 

from structural MR images. While age group could be reliably decoded from all variables, 

chronological age within young and older subjects was best predicted from gray matter volume. 

In contrast, memory performance was best predicted from task-based fMRI contrasts and 

particularly single-value fMRI scores, whereas gray matter volume has no predictive power 

with respect to memory performance in healthy adults. Our results suggest that superior 

memory performance in healthy older adults is better explained by efficient recruitment of 

memory networks rather than by preserved brain structure. 
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1. Introduction 
 

Episodic memory performance peaks in young adulthood and declines with increasing age. 

Notably, a subpopulation of older adults show “successful aging”, with memory performance 

comparable to that of younger adults (Nyberg et al., 2012; Nyberg and Pudas, 2019). An early 

assessment of changes in cognitive performance can help to determine people at risk of 

pathological aging, such as various forms of dementia, and allows for early medical and 

behavioral interventions (Naismith et al., 2009; Cabeza et al., 2018; Whitty et al., 2020). 

Machine learning-based techniques such as support vector machine (SVM) classification and 

regression provide promising approaches to differentiate normal from pathological 

neurocognitive aging. They have been employed to predict chronological age from structural 

magnetic resonance imaging (MRI; Cole et al., 2017, 2018), to estimate brain age (Bashyam et 

al., 2020; Habes et al., 2021) or to distinguish health from disease (Dyrba et al., 2021; Eitel et 

al., 2021). 

In contrast to the abundant literature on age prediction from structural MRI (Cole et al., 2017, 

2018; Luders et al., 2016; Steffener et al., 2016; Soch, 2020), few studies have been devoted to 

predicting cognitive function, particularly memory performance, from neuroimaging data. One 

such study found that a combination of ApoE genotype and functional MRI was the most 

effective predictor for future cognitive decline (Woodard et al., 2010). The wide range of 

cognitive functioning even within narrowly defined age groups suggests that chronological age 

and cognitive performance might be predicted by different modalities. Several studies evaluated 

potential structural, functional, physiological and behavioral predictors of age-related cognitive 

decline (Gross et al., 2011; Hou et al., 2020; Chen et al., 2021), but only few studies 

systematically compared different predictors and their joint predictive value (e.g., Woodard et 

al., 2010). 

Comparing the predictive value of MRI biomarkers for chronological age versus individual 

memory performance appears to be a promising endeavor, because “successful aging” may 

reflect dissociable neural mechanisms: differences in the manifestation of age-related 

physiological changes (“brain maintenance”) and/or differences in cognitive processing 

(“cognitive reserve”; Nyberg et al., 2012). Thus, data from different modalities may 

differentially predict chronological age and memory performance, respectively.  

We compared SVM-based prediction of chronological age versus prediction of memory 

performance from behavioral data, task-based fMRI, resting-state fMRI, and structural MRI 

markers associated with increasing age. Our analyses where based on a large sample of 106 
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young and 153 older subjects (Soch et al., 2021a). Episodic memory performance was measured 

in the fMRI task and in various neuropsychological tests, using either incidental or intentional 

memory formation. 

In addition to task-based fMRI, we also included recently described single-value fMRI scores 

(Soch et al., 2021b; Richter et al., 2022). These scores are derived from fMRI contrasts and 

describe the amount of deviation from or similarity with prototypical activations seen in young 

adults during novelty processing and successful encoding, by focusing on either typical versus 

atypical activations (FADE, functional activity deviation during encoding) or activations and 

deactivations (SAME, similarity of activations during memory encoding). These scores might 

constitute more robust predictors than voxel-wise fMRI contrasts, as a recent meta-analysis 

suggested that test-retest reliability of task-based fMRI is mediocre, and the authors 

recommended whole-brain aggregate analysis rather than voxel- or ROI-based analyses to 

improve reliability (Elliott et al., 2020). 

As an intermediate variable between task-based fMRI and structural MRI, we included the 

strength of resting-state fMRI signal fluctuations (Jia et al., 2020). Although resting-state fMRI, 

like task-based fMRI, measures the BOLD signal, it is, like structural MRI, not selective with 

respect to specific cognitive functions, because subjects are not performing a specific cognitive 

task (Buckner et al., 2008). 

We hypothesized that both chronological age and memory performance could be best predicted 

from structural MRI, because age-related decrease of memory performance is typically 

accompanied by structural brain alterations (Cabeza et al., 2004; de Mooij et al., 2018). Whether 

any MRI modality would outperform the others’ prediction of memory performance, was 

assessed exploratively. 
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2. Methods 
 

2.1. Participants 

The study was approved by the Ethics Committee of the Otto von Guericke University 

Magdeburg, Faculty of Medicine, and written informed consent was obtained from all 

participants in accordance with the Declaration of Helsinki (World Medical Association, 2013). 

Participants were recruited via flyers at the local universities (mainly young subjects), 

advertisements in local newspapers (mainly older participants) and during public outreach 

events of the institute (e.g., Long Night of the Sciences). 

The study cohort consisted of a total of 259 neurologically and psychiatrically healthy adults, 

including 106 young (47 male, 59 female, age range 18-35, mean age 24.12 ± 4.00 years) and 

153 older (59 male, 94 female, age range 51-80, mean age 64.04 ± 6.74 years) participants. 

According to self-report, all participants were right-handed and did not use neurological or 

psychiatric medication. The Mini-International Neuropsychiatric Interview (M.I.N.I.; Sheehan 

et al., 1998; German version by Ackenheil et al., 1999) was used to exclude present or past 

psychiatric illness, alcohol or drug dependence. 

Please note that this study is based on the same participant sample as described in Soch et al. 

(2021a, 2021b) and Richter et al. (2022). The analyses and results described in this study are 

novel and have not been described or shown elsewhere. 

 

2.2. Experimental paradigm 

During the fMRI experiment, participants performed a visual memory encoding paradigm with 

an indoor/outdoor judgment as the incidental encoding task. Compared to earlier publications 

of this paradigm (Düzel et al., 2011; Barman et al., 2014; Schott et al., 2014; Assmann et al., 

2020), the trial timings had been adapted as part of the DZNE-Longitudinal Cognitive 

Impairment and Dementia (DELCODE) study protocol (Düzel et al., 2018; Bainbridge et al., 

2019; see Soch et al., 2021a, for a detailed comparison of trial timings and acquisition 

parameters). Subjects viewed photographs showing indoor and outdoor scenes, which were 

either novel at the time of presentation (44 indoor and 44 outdoor scenes) or were repetitions 

of two highly familiar “master” images (22 indoor and 22 outdoor trials), i.e. one indoor and 

one outdoor scene pre-familiarized before the actual experiment (cf. Soch et al., 2021a, Fig. 

1B). Thus, every subject was presented with 88 unique images and 2 master images that were 

presented 22 times each. Participants were instructed to categorize images as “indoor” or 

“outdoor” via button press. Each picture was presented for 2.5 s, followed by a variable delay 
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between 0.70 s and 2.65 s. To optimize estimation of the condition-specific BOLD responses 

despite the short delay, simulations were employed to optimize the trial order and jitter, as 

described previously (Hinrichs et al., 2000; Düzel et al., 2011). 

Approximately 70 minutes (70.23 ± 3.77 min) after the start of the fMRI session, subjects 

performed a computer-based recognition memory test outside the scanner, in which they were 

presented with the 88 images that were shown once during the fMRI encoding phase (old) and 

44 images they had not seen before (new). Participants rated each image on a five-point Likert 

scale from 1 (“definitely new”) to 5 (“definitely old”). For detailed experimental procedure, see 

Assmann et al. (2020) and Soch et al. (2021a). 

 

2.3. fMRI data acquisition 

Structural and functional MRI data were acquired on two Siemens 3T MR tomographs 

(Siemens Verio: 58 young, 83 older; Siemens Skyra: 48 young, 70 older), following the exact 

same protocol used in the DELCODE study (Jessen et al., 2018; Düzel et al., 2019; Billete et 

al., in review). 

A T1-weighted MPRAGE image (TR = 2.5 s, TE = 4.37 ms, flip-α = 7°; 192 slices, 256 x 256 

in-plane resolution, voxel size = 1 x 1 x 1 mm) was acquired for co-registration and improved 

spatial normalization. Phase and magnitude fieldmap images were acquired to improve 

correction for artifacts resulting from magnetic field inhomogeneities (see below). 

For functional MRI (fMRI), 206 T2*-weighted echo-planar images (EPIs; TR = 2.58 s, TE = 

30 ms, flip-α = 80°; 47 slices, 64 x 64 in-plane resolution, voxel size = 3.5 x 3.5 x 3.5 mm) 

were acquired in interleaved-ascending slice order (1, 3, …, 47, 2, 4, …, 46). Prior to this task-

based fMRI experiment, a resting-state fMRI run was acquired, comprising 180 EPIs with 

otherwise identical acquisition parameters. The total scanning times were 531.48 s (≈ 9:51 min) 

for the task-based fMRI run and 464.4 s (≈ 7:44 min) for the resting-state fMRI session. The 

complete study protocol also included a T2-weighted MR image in perpendicular orientation 

to the hippocampal axis (TR = 3.5 s, TE = 350 ms, 64 slices, voxel size = 0.5 x 0.5 x 1.5 mm) 

for optimized segmentation of the hippocampus (Dounavi et al., 2020) and additional structural 

imaging not used in the analyses reported here. 

 

2.4. fMRI data preprocessing 

Data preprocessing was performed using Statistical Parametric Mapping (SPM12; Wellcome 

Trust Center for Neuroimaging, University College London, London, UK). EPIs were corrected 

for acquisition time delay (slice timing), head motion (realignment) and magnetic field 
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inhomogeneities (unwarping), using voxel-displacement maps (VDMs) derived from the 

fieldmaps. The MPRAGE image was spatially co-registered to the mean unwarped image and 

segmented into six tissue types, using the unified segmentation and normalization algorithm 

implemented in SPM12. The resulting forward deformation parameters were used to normalize 

unwarped EPIs into a standard stereotactic reference frame (Montreal Neurological Institute, 

MNI; voxel size = 3 x 3 x 3 mm). Normalized images were spatially smoothed using an isotropic 

Gaussian kernel of 6 mm full width at half maximum (FWHM). 

 

2.5. General linear modelling 

For first-level fMRI data analysis, which was also performed in SPM12, we used a parametric 

general linear model (GLM) of the subsequent memory effect that has recently been 

demonstrated to outperform the so far more commonly employed categorical models of fMRI 

subsequent memory effects (Soch et al., 2021a) when subsequent memory responses are 

recorded as memory confidence ratings on a parametric scale. 

This model included two onset regressors, one for novel images at the time of presentation 

(“novelty regressor”) and one for presentations of the two pre-familiarized images (“master 

regressor”). Both regressors were created as short box-car stimulus functions with an event 

duration of 2.5 s, convolved with the canonical hemodynamic response function, as 

implemented in SPM12. 

The regressor reflecting subsequent memory performance was obtained by parametrically 

modulating the novelty regressor with a function describing subsequent memory report. 

Specifically, the parametric modulator (PM) was given by 

PM = arcsin �
𝑥𝑥 − 3

2
� ∙

2
𝜋𝜋

  

where 𝑥𝑥 ∈ {1, 2, 3, 4, 5} is the subsequent memory report, such that – 1 ≤ PM ≤ +1. Compared 

to a linear-parametric model, this transformation puts a higher weight on definitely remembered 

(5) or forgotten (1) items compared to probably remembered (4) or forgotten (2) items (Soch et 

al., 2021a, Fig. 2A). 

The model also included the six rigid-body movement parameters obtained from realignment 

as covariates of no interest and a constant representing the implicit baseline. 

 

2.6. Extraction of target variables 

For each subject, age group (young vs. older), chronological age (in years) and memory 

performance (area under the curve, AUC; see Soch et al., 2021b, Appendix B) were extracted 

as dependent variables, i.e. target variables for prediction analyses (see Table 1). 
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Note that our measure of memory performance is not completely independent from some of the 

source variables, because it was obtained from the same task during which behavioral data and 

functional MRI were acquired (see Section 2.7). For this reason, we also used independent 

measures of memory performance to test the predictive performance of our candidate variables. 

These measures include (i) the number of items retrieved in a verbal learning task (verbal 

learning and memory test, VLMT; Helmstaedter et al., 2001), in a recall after 30 minutes or 1 

day; and (ii) the number of points obtained in a semantic memory test (Wechsler memory scale, 

WMS; Härting et al., 2000), in a recall after 30 minutes or 1 day (see Table 2). For detailed 

description of these neuropsychological assessments, see Richter et al. (2022). 

 

Variable Range Description 

age group 𝑥𝑥𝑖𝑖 ∈ {1,2} cohort of either young (1) or older (2) subjects 

chronological age 18 ≤ 𝑥𝑥𝑖𝑖 ≤ 80 absolute age of a subject in years 

memory performance different measures for details, see Table 2 
 

Table 1. Target variables used for prediction analyses. Details on the different measures of 
memory performance are given in Table 2. 
 

Measure Stimulus 

material 

Encoding 

type 

Recall 

delay 

Recall 

type 

Theoretical 

range 

Actual 

range 

FADE-A’ visual incidental 70 min recognition 0 – 1 0.53 – 0.98 

VLMT-30min verbal intentional 30 min free recall 0 – 15 4 – 15  

VLMT-1d verbal intentional 1 d free recall 0 – 15 2 – 15 

WMS-30min auditory intentional 30 min free recall 0 – 50 9 – 46 

WMS-1d auditory intentional 1d free recall 0 – 50 6 – 45 
 

Table 2. Measures of memory performance used as target variables. Abbreviations: FADE = 
name of the fMRI paradigm; A’ = area under the curve (AUC) when plotting the hit rate as a 
function of false alarm rate; VLMT = verbal learning and memory test; WMS = Wechsler 
memory scale. 
 

2.7. Extraction of source variables 

For each subject, the following variables were extracted as independent variables, i.e. source 

variables for prediction analyses (see Table 3): 

• behavioral response frequencies: In the surprise recognition memory test, subjects provided 

memory confidence ratings between 1 and 5 for all 88 old stimuli, (i.e. items presented 

during the encoding session) and 44 new stimuli (i.e. items not seen during the encoding 
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session; see Section 2.2). From the responses of subject 𝑖𝑖, we calculated 𝑜𝑜𝑖𝑖𝑖𝑖, the proportion 

of old items rated with confidence level 𝑗𝑗, and 𝑛𝑛𝑖𝑖𝑖𝑖, the proportion of new items rated with 

𝑗𝑗. The variables 𝑜𝑜𝑖𝑖3 and 𝑛𝑛𝑖𝑖3 were dropped to avoid collinearity of predictor variables, since 

all “old” proportions and all “new” proportions added up to 1, respectively. 

• fMRI contrast images: The GLM for first-level fMRI data analysis contained one regressor 

for novel images, parametrically modulated with a non-linear transformation of memory 

confidence, and another regressor for master images (see Section 2.5). From this, we 

generated fMRI contrast maps for “novelty processing” as such, by subtracting the master 

regressor from the novelty regressor, and for “subsequent memory” effects, identical to the 

estimated regression coefficient for the parametric modulator. 

• fMRI summary statistics: We then identified regions with group-level significant positive 

and negative activations on these contrasts in young subjects. Using these voxels as masks, 

we calculated two recently described fMRI scores quantifying the deviation of older adults 

from the prototypical activation of young subjects (for detailed procedure and extracted 

scores, see Soch et al., 2021b, Sections 2.6 to 2.8). Both scores, FADE-classic (FADE = 

functional activity deviation during encoding; Düzel et al., 2011) and FADE-SAME 

(SAME = similarities of activations during memory encoding; Soch et al., 2021b), were 

computed from both contrasts, novelty processing and subsequent memory. 

• resting-state fMRI maps: We then applied the RESTplus toolbox (Jia et al., 2019) to the 

preprocessed resting-state fMRI scans of each subject and calculated the voxel-wise percent 

of amplitude fluctuation (PerAF) of signals in the frequency range from 0.01 to 0.08 Hz. 

PerAF is the average absolute deviation from the signal mean, measured in percent (Jia et 

al., 2020, eq. 1). Here, we used “mean PerAF” (mPerAF), which additionally divides PerAF 

by the global mean (Jia et al., 2020, Tab. 1) and was already employed in a previous study 

(Kizilirmak et al., in prep.). 

• structural MRI maps: Finally, the T1 image of each subject was submitted to structural MRI 

analyses (i.e. voxel-based morphometry, VBM) using the Computational Anatomy Toolbox 

(CAT12; Structural Brain Mapping Group, Department of Neurology, University Jena, 

Germany), resulting in gray matter volume (GMV) maps. These maps were additionally 

smoothed using a Gaussian kernel (isotropic FWHM = 6 mm) before entering whole-brain 

decoding analyses. 
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Variables Range Description 

behavioral 

response 

frequencies 

𝑜𝑜𝑖𝑖1, … , 𝑜𝑜𝑖𝑖5 ∈ [0,1] 

𝑛𝑛𝑖𝑖1, … ,𝑛𝑛𝑖𝑖5 ∈ [0,1] 

proportion of old items replied to with 1, …, 5 and 

proportion of new items replied to with 1, …, 5 

fMRI 

summary 

statistics 

𝑦𝑦𝑖𝑖1, … ,𝑦𝑦𝑖𝑖4 ∈ ℝ two scores (FADE-classic, FADE-SAME) computed 

from two fMRI contrasts (novelty processing, 

subsequent memory) 

fMRI 

contrast 

images 

𝑌𝑌𝑖𝑖 ∈ ℝ𝑣𝑣 voxel-wise fMRI contrasts computed in SPM, 

representing activations related to novelty processing 

(novel images – master images) or subsequent me-

mory (parametric modulator with memory response) 

resting-state 

fMRI maps 

𝑌𝑌𝑖𝑖 ∈ ℝ𝑣𝑣 voxel-wise percent of amplitude fluctuation (mPerAF) 

computed using the REST toolbox, based on fMRI 

signals measured during a resting-state session 

structural 

MRI maps 

𝑌𝑌𝑖𝑖 ∈ ℝ𝑣𝑣 voxel-wise gray matter volumes computed in CAT12, 

based on each subject’s T1 image 
 

Table 3. Source variables used for prediction analyses. Abbreviations: FADE = functional 
activity deviation during encoding, SAME = similarities of activations during memory 
encoding, ℝ = real numbers, 𝑣𝑣 = number of (in-mask) voxels. 
 

2.8. Prediction of target from source variables 

After source and target variables were extracted, several analyses were performed and each 

analysis consisted in predicting a single target variable from a feature set of source variables 

using support vector machines (SVM; see Figure 1 and Table 4). 

For decoding the age group a subject was belonging to, we used support vector classification 

(SVC) using a linear SVM with C = 1. For predicting chronological age and memory 

performance, we used support vector regression (SVR) using a linear SVM with C = 1. For 

both, SVC and SVR, subjects were split with k-fold cross-validation (CV) on subjects per group 

using k = 10 CV folds. All SVM analyses were implemented using LibSVM in MATLAB via 

in-house scripts available from GitHub1. 

 

                                                           
1 URL: https://github.com/JoramSoch/ML4ML. 
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Figure 1. Methodology of the present study. Several target variables of interest (right) are 
predicted using several sets of source variables (left), thought to be markers of cognitive decline 
in old age, using machine learning techniques (center). 
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Short Long Features Description 

old old items 4 responses to old items only 

new new items 4 responses to new items only 

both old & new 8 responses to old & new items 

FADE FADE scores 2 FADE scores for novelty and memory 

SAME SAME scores 2 SAME scores for novelty and memory 

both FADE & SAME 4 FADE & SAME scores for novelty & memory 

nov. novelty contrast 𝑣𝑣 whole-brain novelty contrast maps 

mem. memory contrast 𝑣𝑣 whole-brain memory contrast maps 

both nov. & mem. 2𝑣𝑣 whole-brain novelty & memory contrast maps 

mPerAF mPerAF maps 𝑣𝑣 whole-brain percent amplitude fluctuation maps 

GMV GMV maps 𝑣𝑣 whole-brain gray matter volume maps 

all all features 4𝑣𝑣 + 12 all unique features listed in this table 
 

Table 4. Feature sets used for prediction analyses. Short and long feature set names are used 
as x-axis labels on Figures 2-5. The number of features corresponds to the number of columns 
in the data matrix used for prediction. Abbreviations: FADE = functional activity deviation 
during encoding, SAME = similarities of activations during memory encoding, 𝑣𝑣 = number of 
(in-mask) voxels. 
 

2.9. Distributional transformation 

When predicting chronological age and memory performance, distributional transformation 

(DT) was applied to preserve the observed distribution of the target variable (Soch, 2020). DT 

is a post-processing operation that maps predicted values to the variable’s distribution in the 

training data and can improve prediction precision. 

For example, memory measured as AUC always falls into the range between 0 and 1, but a 

trained SVM may also return values smaller than 0 or larger than 1. Then, DT brings predicted 

values into the natural range of the target variable while keeping the ranks of all predicted values 

identical before and after transformation (Soch, 2020). The same holds when predicting age 

which was always between 18 and 80 years in our study. For subgroup analyses, only the age 

range of the respective group (young vs. older) was applied. 

 

2.10. Performance assessment 

The prediction precision was assessed using balanced accuracy (ranging between 0 and 1) when 

decoding age group, i.e. by averaging the decoding accuracies for young and older subjects 

(Brodersen et al., 2010); and using correlation coefficients (ranging between –1 and +1) when 
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predicting chronological age and memory performance, i.e. as the sample correlation 

coefficient between actual and predicted values of those variables. For each precision measure, 

a 90% confidence interval was established.2 

When predicting chronological age and memory performance, we additionally calculated 

absolute errors (AE) between predicted and actual target values and submitted them to 

Wilcoxon signed-rank tests to check for significant reduction of the mean absolute error (MAE) 

from one feature set to another. This non-parametric test was chosen due to the presumably 

non-normal distribution of absolute errors. For each target variable, AEs of the feature set with 

the highest correlation coefficient were compared against AEs of each other feature set to test 

whether performances of the feature sets were significantly different from that of the most 

predictive feature set (see e.g. Figure 3). 

 
  

                                                           
2 Confidence intervals were generated using the MATLAB functions binofit for accuracies (assuming that the 
numbers of correct predictions are binomially distributed with unknown success probability) and corrcoef for 
correlations (assuming that actual and predicted continuous variables are linearly related). 
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3. Results 
 

3.1. Chronological age is best predicted from structural MRI maps 

The age group a subject belonged to (young vs. older subjects) could be predicted from all 

feature sets with above-chance decoding accuracy (see Supplementary Figure S1). The highest 

accuracy was obtained with GMV maps (balanced accuracy, BA = 96.01 %; confidence 

interval, CI = [0.931, 0.976]) and the lowest accuracy was obtained with response frequencies 

to old items (BA = 59.68 %, CI = [0.542, 0.646]). 

When predicting chronological age (in years) across all subjects, we found significant 

correlations for all feature sets (see Figure 2A; old items: r = 0.40; GMV maps: r = 0.95). 

However, this was mainly attributable to the inherent correlation between chronological age 

and age group (see Section 2.1), such that decoding age group is already a good predictor for 

chronological age. Therefore, we performed the same analyses separately within young subjects 

(18-35 years) and within older subjects (60-80 years). 

In young subjects, chronological age could only be reconstructed from whole-brain GMV maps 

(see Figure 2B; r = 0.24, CI = [0.085, 0.388]; all other |r| < 0.20). In older subjects, chronological 

age could be predicted from GMV and resting-state fMRI maps (see Figure 2C; GMV maps: r 

= 0.63, CI = [0.540, 0.703]; mPerAF maps: r = 0.40, CI = [0.279, 0.504]) and, with lower 

accuracy, from task-based fMRI contrasts (novelty & memory: r = 0.30, CI = [0.179, 0.421]) 

and fMRI summary statistics (FADE & SAME: r = 0.17, CI = [0.033, 0.293]), but not from 

behavioral response frequencies (old & new: r = 0.01, CI = [-0.120, 0.147]). 
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Figure 2. Prediction of chronological age from different feature sets. Bar plots show correlation 
coefficients for predicting chronological age (in years) (A) across all subjects, (B) in young 
subjects only or (C) in older subjects only from behavioral data (red), fMRI scores (magenta), 
task-based fMRI contrasts (blue), resting-state fMRI maps (cyan) and structural MRI (green), 
or all features (yellow). Error bars denote 90% confidence intervals; x-axis labels are explained 
in Table 4. The feature set with the highest predictive correlation is denoted with an “o”; other 
feature sets are labeled with asterisks to indicate significantly different mean absolute error (* 
p < 0.05, ** p < 0.01, *** p < 0.001, otherwise not significant). 
 

3.2. Dependent memory performance is best predicted from task-based fMRI  

Similar to chronological age, memory performance (AUC) across all subjects could be 

predicted from all feature sets3 (see Figure 3A; GMV maps: r = 0.13; SAME scores: r = 0.48). 

However, as memory performance is also strongly influenced by age group, with young 

subjects performing significantly better than older subjects (young: μ1 = 0.82; older: μ2 = 0.77; 

effect size: d' = 0.72; two-sample t-test: t = 5.67, p < 0.001), we again analyzed this target 

variable separately within young and older subjects, respectively. 

In both age groups, memory performance predicted by GMV maps was not correlated to actual 

memory performance (young: r = 0.11; older: r = 0.11). Instead, memory performance was best 

predicted by the fMRI memory contrast in young subjects (see Figure 3B; r = 0.19, CI = [0.032, 

0.342]) and the SAME scores in older subjects (see Figure 3C; r = 0.53, CI = [0.421, 0.616]). 

Note that the predictive accuracy when predicting from just four single-value fMRI scores 

                                                           
3 Note that we are here not using behavioral data as source variables, because the target variable of memory 
performance is a mathematical function of the behavioral response frequencies. For this reason, prediction from 
response frequencies to all items would reach ceiling performance and is not shown. 
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(FADE & SAME: r = 0.48, CI = [0.368, 0.575]) was better than using two whole-brain task-

based fMRI contrasts (novelty & memory: r = 0.35, CI = [0.227, 0.461]). 

 

 
Figure 3. Reconstruction of memory performance from different feature sets. Bar plots show 
correlation coefficients for predicting memory performance (area under the curve) (A) across 
all subjects, (B) in young subjects only or (C) in older subjects only from fMRI scores 
(magenta), task-based fMRI contrasts (blue), resting-state fMRI maps (cyan) and structural 
MRI (green), or all features (yellow). Note that memory performance can be directly derived 
from behavioral data which is why the corresponding prediction analyses were not performed. 
The layout follows that of Figure 2. 
 

3.3. Independent memory performance is best predicted from single-value fMRI scores 

When predicting independent measures of memory performance (see Section 2.6 and Table 2), 

we restrict the results report to the older subjects, because those measures could not be reliably 

predicted at all in young subjects (see Supplementary Figure S2), probably due to the lower 

variation in their close-to-ceiling memory performance. 

Generally, the prediction of memory performance in independent tests was less accurate than 

that of behavioral memory performance in the fMRI task itself (cf. Figure 4 vs. 3C). Besides 

this, outcomes from all memory tests are best predicted by the SAME scores (see Figure 

4A/B/D; VLMT 30 min: r = 0.25, CI = [0.124, 0.375]; VLMT 1d: r = 0.23, CI = [0.099, 0.356]; 

WMS 1d: r = 0.33, CI = [0.198, 0.442]) or FADE scores (see Figure 4C; WMS 30 min: r = 0.36, 

CI = [0.234, 0.471]). 
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Moreover, there appears to be a dissociation by type of memory test: Whereas performance in 

the verbal-semantic VLMT could be predicted from behavioral responses to old items, but not 

task-based fMRI contrast maps, the reverse pattern was seen for performance in the auditory-

episodic WMS (see Figure 4, red and blue bars; see Supplementary Discussion for potential 

explanations). Notably, the two SAME scores and all four fMRI-based scores were the only 

feature sets that allowed for above-chance prediction of all four independent measures of 

memory performance (see Figure 4, magenta bars). 

 

 
Figure 4. Reconstruction of independent memory performance in older subjects. Bar plots show 
correlation coefficients for predicting, in older subjects only, independent measures of memory 
performance, namely (A) VLMT items after 30 minutes, (B) VLMT items after 1 day, (C) 
WMS points after 30 minutes and (D) WMS points after 1 day, from behavioral data (red), 
fMRI scores (magenta), task-based fMRI contrasts (blue), resting-state fMRI maps (cyan) and 
structural MRI (green), or all features (yellow). The layout follows that of Figure 3C. 
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3.4. Effects of age and memory are specific to structural vs. functional MRI 

To follow up on the findings of predictive analyses, especially the differences in predicting 

participants’ age vs. memory (cf. Figure 2C vs. 3C), we explicitly compared functional and 

structural MRI data in older subjects using sub-group analyses. To this end, we partitioned all 

older subjects into four groups based on (i) chronological age, separating into “young” and 

“old” older subjects; and (ii) memory performance, separating higher from lower memory 

performance subjects (see Supplementary Figure S3). Then, the voxel-wise data of the quarter 

with the lowest values and the quarter with the highest values were submitted to second-level 

two-sample t-tests in SPM. This analysis was performed for both fMRI contrasts, mPerAF maps 

and GMV maps. Thresholded statistical parametric maps were FWE-cluster-corrected (cluster-

defining threshold, CDT: p < 0.001, k = 0), resulting in a minimum cluster size for each analysis 

(novelty: k = 42; memory: k = 27; mPerAF: k = 23; GMV: k = 33 (separating by age) and k = 

42 (separating by memory); see Figure 5). 

Taken together, we observed a double dissociation of structural MRI versus task-based fMRI 

and age versus memory, in the sense that (i) when partitioning subjects by chronological age, 

there were significant effects on structural MRI (see Figure 5A); and (ii) when partitioning 

subjects by memory performance, there were significant effects on task-based fMRI (see Figure 

5B); at the same time, there were no age-related differences with respect to task-based fMRI 

and no memory-related differences with respect to structural MRI. Resting-state fMRI maps 

showed differences between younger and older subjects, but not between those with high vs. 

low memory performance (see Figure 5, 3rd row), suggesting that their informational content 

is closer to structural MRI than to task-based fMRI. 
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Figure 5. Differential effects of age and memory in structural and functional MRI. Significant 
differences (A) between “young” and “old” older subjects and (B) between older subjects with 
higher vs. lower memory performance, with respect to fMRI activity during novelty processing 
(1st row), subsequent memory (2nd row), fMRI amplitudes during rest (3rd row) and voxel-
wise gray matter volume (4th row). Thresholded SPMs are FWE-corrected for cluster size 
(CDT: p < 0.001, k = 0). Colored voxels indicate significantly higher values for either young 
subjects and those with higher memory performance (red) or old subjects and those with lower 
memory performance (blue). 
 
  

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 27, 2022. ; https://doi.org/10.1101/2022.03.24.485603doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.24.485603
http://creativecommons.org/licenses/by-nd/4.0/


20 
 
 

 

3.5. Single-value fMRI scores have moderate predictive utility 

To assess the predictive utility of fMRI summary statistics, we used FADE and SAME scores 

computed from novelty and memory contrasts (i.e. four features, cf. Table 4) and evaluated the 

precision by which these scores predict memory performance in two ways. 

First, we compared predicted with actual values when reconstructing area under the curve 

(AUC) in the fMRI memory paradigm from FADE and SAME scores (cf. Figure 3B/C). In 

older subjects, there was a correlation of 0.47 (p < 0.001) and AUC could be predicted with a 

mean absolute error (MAE) of 0.06 (see Figure 6B). For comparison, the same correlation was 

0.17 (p = 0.082) with an MAE of 0.08 in young subjects (see Figure 6A). 

Second, we tested how well sub-groups of the older subjects formed for the previous analysis 

(see Section 3.4 and cf. Figure 5A/B) could be classified from fMRI scores. When classifying 

older subjects with lower vs. higher memory performance based on FADE and SAME scores 

(N = 76), the decoding accuracy was 72.37 % (sensitivity: 76.32 %; specificity: 68.42 %). For 

comparison, the decoding accuracy was 84.93 % (sensitivity: 81.08 %; specificity: 88.89 %) 

when classifying “old” vs. “young” older subjects based on GMV maps (N = 73). 

 

 
Figure 6. Prediction of memory performance from single-value fMRI scores. Scatter plots of 
actual vs. predicted memory performance when reconstructing memory performance from 
FADE and SAME scores (see Figure 3, magenta bars) in (A) young subjects and (B) older 
subjects. Abbreviations: r = correlation coefficient, MAE = mean absolute error, *** p < 0.001. 
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4. Discussion 
 

In the present study, we have comparatively evaluated the ability of structural and functional 

(resting-state and task-based) MRI data as well as behavioral measures to predict chronological 

age versus memory performance in young and older healthy adults (see Figure 1). While all 

modalities could predict age group, within-group prediction of age and memory performance 

revealed distinct patterns. Among young and older subjects, chronological age was best 

predicted by structural MRI and also resting-state fMRI (see Figure 2B and 2C), whereas 

memory performance was best predicted by functional MRI contrasts (novelty and subsequent 

memory effects) and especially single-value fMRI-based scores (see Figure 3C and 4) in older 

participants only. 

 

4.1. Prediction of chronological age from structural MRI  

All of the candidate predictors employed in the present study have previously been shown to 

exhibit age-related differences: (i) behavioral memory responses are different between age 

groups, with older adults producing more false positives which reduces memory performance 

(cf. Soch et al., 2021a, Tab. S2; also see Duarte et al., 2010); (ii) memory-related fMRI 

responses differ between age groups, with older adults showing reduced parahippocampal 

activations and reduced default mode network (DMN) deactivations during novelty processing 

and subsequent memory (cf. Soch et al., 2021b, Fig. 2; also see Maillet and Rajah, 2014; Billette 

et al., in review); (iii) resting-state fMRI patterns exhibit global age-related differences (Foo et 

al., 2021; Xing, 2021), and (iv) quantitative structural MRI approaches like VBM yield robust 

and well-replicated age-related differences, with older adults showing reduced hippocampal 

volumes (cf. Kizilirmak et al., in prep., Fig. 3A; also see Veldsman et al., 2020) as well as 

reduced cortical and subcortical GMV, particularly in structures of the human memory network 

like the medial temporal lobe (Schiltz et al., 2006; Minkova et al., 2017). 

In line with the aforementioned observations, all variables could discriminate between age 

groups, but within the group of older adults, a distinct pattern emerged regarding the prediction 

of chronological age and memory performance, respectively. Chronological age was best 

predicted from voxel-wise GMV, reflecting the well-replicated observation that both cortical 

and subcortical GM show age-related volume loss (Minkova et al., 2017; Soch, 2020; Veldsman 

et al., 2020), which is, longitudinally, already observable within a year’s time (Fjell et al., 2009, 

2013; Bagarinao et al., 2022). Predictive correlation of whole-brain GMV and chronological 

age within the group of older adults was, however, only moderate, most likely reflecting the 
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considerable inter-individual variability in age-related structural brain changes. This 

phenomenon has in fact been conceptualized within the brain-age framework, a widely 

researched approach to employ differences between predicted brain age and chronological age 

as a biomarker for brain health in aging (see, e.g., Cole and Franke, 2017; Bashyam et al., 2020). 

Including other predictors in the model did not improve age prediction among older adults 

(Figure 2C), suggesting that the biological information actually predicting chronological rather 

than brain age might be limited. 

In a recent competition to predict chronological age from structural neuroimaging (Fisch et al., 

2020), the winning performance, a mean absolute error of 2.90 years, was achieved using 

lightweight 3D convolutional neural networks (Gong et al., 2020). Moreover, it was shown that 

distributional transformation can improve the MAE by about half a year, utilizing the 

distribution of the target values in the training data (Soch, 2020), an approach that was also 

used in the present study (see Section 2.9). 

 

4.2. Functional MRI as predictor of cognitive performance in old age 

Unlike chronological age, memory performance could not be reliably predicted from GMV. 

This is compatible with the fact that in previous studies, we found no correlations between 

hippocampal volume and our task-based fMRI summary statistics for both hemispheres, using 

two scores, computed from two contrasts (Soch et al., 2021b, Fig. 4). It is also supported by 

another study, in which a combination of ApoE genotype and task-based fMRI was identified 

as the best predictor of cognitive decline in healthy older adults (Woodard et al., 2010). In line 

with those findings, we here observed that memory performance could be predicted from single-

value fMRI scores (see Figure 4), especially when extracting both FADE and SAME scores, 

from both novelty and memory contrasts (Soch et al., 2021b). 

It should be noted that the cognitive task underlying our fMRI data set (incidental encoding of 

visual scenes) in fact targeted declarative long-term memory. In so far, the high predictive value 

of functional measures derived from activity during such a task (i.e., fMRI novelty and memory 

contrast maps, FADE and SAME scores) for other measures of declarative memory appears to 

be a natural outcome, as it is more specifically targeting the to-be-predicted variable than GMV 

or mPerAF. The same is true for the study of Woodard and colleagues, in which participants 

encoded names (famous vs. unfamiliar names) and the independent measures of cognitive 

decline comprised different types of neuropsychological memory assessments. On the other 

hand, we could recently show that, while the scores derived from the novelty contrast were 

rather specifically associated with tests of explicit memory, the scores computed from the 
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memory contrast were also associated with measures of global cognition (Richter et al., 2022). 

More generally, our findings are in line with the notion that cognitive reserve may to a certain 

degree be independent from structural age-related changes of the brain (Nyberg et al., 2012). 

 

4.3. Informational content of resting-state maps 

It is also noteworthy that resting-state fMRI behaved more similar to structural MRI than task-

based fMRI, with balanced accuracy for mPerAF maps being close to that of GMV maps (see 

Figure S1) and mPerAF similarly predicting chronological age (see Figure 2C), but not 

capturing memory performance in older subjects (see Figure 3C). This suggests that at least 

voxel-wise mPerAF maps derived from resting-state fMRI provide information that is closer to 

the brain-anatomical information of structural MRI maps than to the neural-processing 

information of task-based fMRI contrasts. 

This is compatible with the line of thought discussed above: While task-based fMRI measures 

provide informational value for cognitive performance measures, especially when the fMRI 

task falls into the same cognitive domain as the to-be-predicted performance indicator, resting-

state fMRI measures appear to reflect brain integrity more generally (e.g. Mevel et al., 2011). 

 

4.4. Successful aging, brain structural integrity, and memory performance 

Overall, our results suggest that successful aging, that is, relatively preserved memory in 

healthy older adults, may not be primarily attributable to lower gray matter loss, but rather to 

better preserved functional brain networks, as evident in a higher similarity of memory-related 

brain activity with that of young adults (see Figure 5). This might be different in pathological 

aging when brain anatomy is affected to a larger extent, but is compatible with earlier studies 

suggesting that in healthy older adults, functional neurocognitive resources may be more 

important for cognitive performance than structural measures of brain integrity (Scarmeas et 

al., 2003; Stern, 2009, 2012; Cabeza et al., 2018). 

The observation that structural MRI had no predictive power for memory performance in our 

study may at first seem surprising, given that there are very large differences with respect to 

GMV between young and older adults (Farokhian et al., 2017) who typically also differ with 

respect to memory performance (Soch et al., 2021a; Soch et al., in prep.; Richter et al., 

submitted). One potential explanation for this finding may be that, in our study, the sample 

investigated consisted of neurologically and psychiatrically healthy older adults without signs 

of cognitive impairment. This suggests that brain atrophy (i.e., structural volume loss) may to 

some extent occur invariably with increasing age, but does not necessarily affect cognitive 
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performance as long as (i) the degree is still within the bounds of normal aging and (ii) it is not 

accompanied by functional processing changes (reflected in fMRI scores), potentially due to 

compensatory mechanisms (Kizilirmak et al., 2021). This is in line with previous studies that 

reported a decoupling between gray and white matter measures and memory performance in 

older age (de Mooij et al., 2018), underscoring that cognitive maintenance or reserve is – at 

least to a degree – independent of neural maintenance. A large meta-analysis also highlights the 

lack of a strong dependency between structural and cognitive decline (Oschwald et al., 2019), 

suggesting that the healthy aging brain possesses a considerable potential to compensate for 

inevitable age-related structural decline (Stern, 2009; Nyberg et al., 2012; Cabeza et al., 2018). 

 

4.5. Conclusion 

We have shown a systematic difference in predictive ability between structural MRI markers 

(and resting-state fMRI) on the one hand versus functional MRI markers (especially fMRI 

summary statistics) on the other hand. Whereas the former are most strongly related to 

chronological age reflecting the mere progression of time, the latter allow to better predict 

cognitive performance in episodic memory. In a sense, this double dissociation supports the 

concept of cognitive reserve as a phenomenon that may to some degree be independent from 

structural brain aging. Further research has to elucidate the sources of preserved memory 

performance in older adults with structural degradation, but functional maintenance.  
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