

1 **Repurposing of mitochondria-targeted tamoxifen: Novel anti-cancer drug**
2 **exhibits potent activity against major protozoan and fungal pathogens.**

3 Dominik Arbon^{1*}, Kateřina Ženíšková^{1*}, Karolína Šubrtová¹, Jan Mach¹, Jan Štursa², Marta Machado⁴,
4 Farnaz Zahedifard¹, Tereza Leštinová⁵, Carolina Hierro-Yap⁶, Jiri Neuzil^{2,7,8}, Petr Wolf⁵, Markus Ganter³,
5 Martin Zoltner¹, Alena Zíková^{6,9#}, Lukáš Werner^{2#}, Robert Sutak^{1#}

6 ¹ Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
7 ² Institute of Biotechnology, Czech Academy of Sciences, Vestec, Prague-West, Czech Republic
8 ³ Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 344, 69120,
9 Heidelberg, Germany

10 ⁴ Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar,
11 Universidade do Porto, Portugal

12 ⁵ Faculty of Sciences, Charles University, Department of Parasitology, Prague, Czech Republic

13 ⁶ Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 37005, České Budějovice,
14 Czech Republic

15 ⁷School of Pharmacy and Medical Science, Griffith University, Parklands Avenue, Southport 4222, Qld, Australia

16 ⁸Department of Physiology, Faculty of Science, Charles University, Prague 2, Czech Republic

17 ⁹ Faculty of Science, University of South Bohemia, Branišovská 31, 37005, České Budějovice, Czech Republic

18

19 * These authors have equal contribution

20 # Corresponding authors: sutak@natur.cuni.cz, Lukas.Werner@ibt.cas.cz, azikova@paru.cas.cz

22 Abstract

23 Many of the currently available anti-parasitic and anti-fungal frontline drugs have severe limitations,
24 including adverse side effects, complex administration, and increasing occurrence of resistance. The
25 discovery and development of new therapeutic agents is a costly and lengthy process. Therefore,
26 repurposing drugs with already established clinical application offers an attractive, fast-track approach
27 for novel treatment options. In this study, we show that the anti-cancer drug MitoTam, a
28 mitochondria-targeted analog of tamoxifen, efficiently eliminates a wide range of evolutionarily
29 distinct pathogens *in vitro*, including pathogenic fungi, *Plasmodium falciparum*, and several species of
30 trypanosomatid parasites, causative agents of debilitating neglected tropical diseases. MitoTam
31 treatment was also effective *in vivo* and significantly reduced parasitemia of two medically important
32 parasites, *Leishmania mexicana* and *Trypanosoma brucei*, in their respective animal infection models.
33 Functional analysis in the bloodstream form of *T. brucei* showed that MitoTam rapidly altered
34 mitochondrial functions, particularly affecting cellular respiration, lowering ATP levels, and dissipating
35 mitochondrial membrane potential. Our data suggest that the mode of action of MitoTam involves
36 disruption of the inner mitochondrial membrane, leading to rapid organelle depolarization and cell
37 death. Altogether, MitoTam is an excellent candidate drug against several important pathogens, for
38 which there are no efficient therapies and for which drug development is not a priority.

40 Author Summary

41 MitoTam, a mitochondrially targeted analog of tamoxifen, is a promising anti-cancer candidate drug
42 acting by accumulating in and destabilizing cell mitochondria. In this study, we analyze its effect on a
43 wide range of evolutionarily distinct and medically important pathogens. These include a) pathogenic
44 fungi, *Candida albicans*, and *Cryptococcus neoformans*, ubiquitous opportunistic pathogens that cause
45 life-threatening diseases in immunocompromised or immunologically deficient individuals; b)
46 *Plasmodium falciparum*, the causative agent of human malaria; and c) several species of
47 trypanosomatid parasites such as *Trypanosoma cruzi*, responsible for deadly Chagas disease in South
48 America, *Trypanosoma brucei*, the causative agent of sleeping sickness in Africa, and *Leishmania*, the
49 etiological agent of leishmaniasis, a spectrum of diseases ranging from usually self-healing but
50 potentially disfiguring cutaneous and mucocutaneous leishmaniasis, to visceral leishmaniasis, which
51 is invariably fatal if left untreated. We show that MitoTam efficiently kills these parasites in laboratory
52 conditions and in the case of trypanosomes and leishmaniases suppress or at least slow down the
53 infection in mouse model.

55 **Introduction**

56 The ongoing search for novel treatment options to combat medically relevant parasitic protists (e.g.
57 *Plasmodium*, *Trypanosoma* and *Leishmania* spp.) is driven by the need for more efficient, less toxic,
58 and/or less expensive medications as well as by the emergence and spread of drug resistance [1–3].
59 Drug discovery and development have been facilitated in recent decades by advances in the fields of
60 genetics, molecular biology, medicinal chemistry and the introduction of high throughput target-
61 based, phenotypic and virtual screening strategies. Nevertheless, repurposing of drugs originally
62 approved for other indications presents a strategy of particular interest for the implementation of
63 novel treatments for neglected diseases [3]. As repurposed drugs are typically at least partly
64 characterized or even approved for clinical use, both the time and cost of the drug development
65 process are dramatically reduced. This is particularly appealing for drugs against neglected diseases
66 with little financial incentive for commercial '*de novo*' drug discovery approaches.

67 Phosphonium salts are lipophilic cations with the ability to readily pass across phospholipid bilayers,
68 and due to their delocalized positive charge, they accumulate at the interface of the inner
69 mitochondrial membrane (IMM) and matrix according to the mitochondrial membrane potential
70 ($\Delta\Psi_m$). The extent of accumulation of lipophilic cations at the IMM follows the Nernst equation,
71 according to which there is a tenfold increase in the concentration of lipophilic cations at the IMM-
72 matrix interface for every \sim 60 mV increase in $\Delta\Psi_m$ [4]. Phosphonium vectors have been employed for
73 efficient and selective mitochondrial delivery of various cargo molecules such as therapeutic
74 antioxidants [5,6], liposomes [7], functional probes [8,9], anti-microbial, anti-fungal and anti-parasitic
75 drugs [10–16] and anti-cancer treatments [10,17,18].

76 MitoTam, mitochondrially targeted cationic triphenylphosphonium vector (TPP $^+$) conjugated with
77 tamoxifen, is a promising anti-cancer candidate drug acting by mitochondrial destabilization [19]. It
78 was originally developed to selectively accumulate the pharmacophore tamoxifen in the mitochondria
79 proportionally to $\Delta\Psi_m$. The compound is well tolerated in the mouse model and recently underwent

80 a phase 1/1b clinical trial in human advanced-stage cancer patients with favorable outcome
81 (MitoTam-01 trial; EudraCT 2017-004441-25). Its molecule consists of three parts: i) the functional
82 pharmacophore residue, tamoxifen, a drug that has been used for decades to treat early and advanced
83 hormone-dependent breast cancer [20], ii) the TPP⁺ for mitochondrial targeting, and iii) the ten-carbon
84 linear alkyl linker tethering tamoxifen to the TPP⁺ moiety. The compound efficiently kills breast cancer
85 cells and suppresses tumors progression, including treatment-resistant carcinomas with high Her2
86 protein levels (Her2^{high}), for which the original precursor compound tamoxifen was ineffective.
87 Importantly, MitoTam exhibits low toxicity towards non-malignant cells [19]. Similar to the
88 mitochondria-mediated anti-cancer effects of tamoxifen, MitoTam modulates or alters multiple
89 mitochondrial processes including the function of the respiratory complex I (CI; NADH:ubiquinone
90 dehydrogenase) [19,21–23]. The superior efficacy of MitoTam compared to tamoxifen is due to its
91 accumulation at the interface of the mitochondrial matrix and IMM that leads to suppression of CI-
92 dependent respiration, disruption of respiratory supercomplexes, rapid dissipation of the $\Delta\Psi_m$,
93 increased production of reactive oxygen species (ROS), and ultimately cell death [19]. MitoTam is also
94 effective in the treatment of the syngenic renal cancer murine model, especially in combination with
95 immunotherapy [23]. In addition, MitoTam selectively eliminates senescent cells and is, therefore, a
96 candidate for the treatment of age-related disorders [22,24].

97 In this work, we tested the potential activity of MitoTam against a wide range of parasitic protists and
98 pathogenic fungi (Table S1). These models were selected for their medicinal and economic relevance
99 and for their suitability as cellular models for research of mitochondrial function. We chose parasites
100 from the Kinetoplastida group: *Trypanosoma brucei* as a causative agent of human and animal African
101 trypanosomiases and a highly tractable model organism; *Trypanosoma cruzi*, an intracellular parasite
102 responsible for Chagas disease; and *Leishmania spp.*, the etiological agent of a spectrum of disorders
103 ranging from self-healing cutaneous lesions to potentially fatal visceral diseases [25]. We also tested
104 the effect of MitoTam on *Plasmodium falciparum*, a parasite responsible for most malaria-related
105 deaths in humans [26]; on the pathogenic fungi *Candida albicans* and *Cryptococcus neoformans*,

106 widespread opportunistic pathogens causing life-threatening diseases in immunocompromised
107 individuals [27,28]; on the amphizoic amoebae *Naegleria fowleri* and *Acanthamoeba* spp., whose
108 infections lead to rare diseases with extremely high mortality rate [29,30]; and on *Giardia intestinalis*
109 and *Trichomonas vaginalis*, anaerobic parasites with reduced mitochondria, causative agents for
110 widespread intestinal and urogenital infections [31–33]. Here, we show that the anti-cancer drug
111 candidate MitoTam efficiently and selectively inhibits viability of a number of these pathogens *in vitro*.
112 In pilot experiments using mouse models of infection with *T. brucei* and *L. mexicana*, MitoTam reduced
113 parasite burdens and significantly prolonged survival for *T. brucei*-infected animals. Furthermore, we
114 demonstrate in *T. brucei* that the trypanocidal activity of MitoTam relies, at least partly, on rapid
115 disruption of IMM. Together, our data provide strong evidence that MitoTam is an excellent candidate
116 for further development as an anti-infective, especially for targeting several neglected diseases.

117

118 **Results**

119 **Low levels of MitoTam are lethal to a variety of pathogenic eukaryotic microorganisms.**

120 The mitochondrion is a promising drug target because of its pivotal role in cellular metabolism,
121 proliferation, and cell death signaling [34–36]. We therefore investigated the effect of MitoTam, a
122 mitochondria-targeted tamoxifen derivative, on a wide range of parasitic protists and yeasts. MitoTam
123 proved to have a significant growth inhibitory effect for the majority of these pathogens (Table 1)
124 exhibiting nanomolar potencies against *P. falciparum*, *T. b. brucei* and *Leishmania* spp. Notably, the
125 half-maximal effective concentration (EC₅₀) values are considerably lower than corresponding
126 cytotoxicity values reported for various mammalian cells (ranging from 0.65–4.5 μM) [19], indicating
127 high selectivity. All pathogens were also challenged with the parental compound tamoxifen lacking
128 the TPP⁺ vector for mitochondrial targeting, with efficacy significantly lower compared to MitoTam
129 (Table 1). This is consistent with similar comparisons reported for the anti-cancer activity of the two

130 molecules [19]. Each dose-response analysis was validated using a known, active compound against
131 individual pathogens tested, providing values consistent with published data (Table 1).

Pathogen	MitoTam		Tamoxifen		Control compound		
	EC ₅₀ [μM]	SD	EC ₅₀ [μM]	SD		EC ₅₀ [μM]	SD
<i>Trypanosoma brucei</i> BSF	0,02	±0.00	7,20	±1.47	amphotericin B	1,09	±0.09
<i>Trypanosoma brucei</i> PCF	0,16	±0.03	≥ 10		amphotericin B	0,24	±0.06
<i>T.brucei gambiense</i> BSF	0,03	±0.00	≥ 10		pentamidine	0,00	±0.00
<i>Trypanosoma cruzi</i> (epimastigotes)	1,55	±0.04	≥ 10		benznidazole	≥ 10	
<i>Leishmania mexicana</i> (amastigotes)	0,35	±0.05	7,93	±0.59	amphotericin B	0,33	±0.08
<i>Leishmania major</i> (promastigotes)	0,60	±0.10	≥ 10		amphotericin B	0,06	±0.02
<i>Plasmodium falciparum</i> (erythrocytic stage)	0,03	±0.01	6,37	±0.11	chloroquine	0,01	±0.00
<i>Candida albicans</i>	0,56	±0.07	≥ 10		amphotericin B	0,37	±0.01
<i>Cryptococcus neoformans</i>	0,61	±0.12	7,28	±1.97	amphotericin B	0,12	±0.05
<i>Naegleria fowleri</i>	≥ 10		≥ 10		amphotericin B	0,08	±0.01
<i>Acanthamoeba</i> spp.	1,95	±0.23	9,93	±0.58	amphotericin B	6,17	±0.70
<i>Giardia intestinalis</i>	≥ 10		≥ 10		benznidazole	6,22	±0.66
<i>Trichomonas vaginalis</i>	≥ 10		≥ 10		metronidazole	6,54	±0.45

132 **Table 1: MitoTam inhibits the growth of several pathogenic microorganisms *in vitro*.** Mean EC₅₀
133 values for MitoTam, tamoxifen (the functional pharmacophore of MitoTam) and specific anti-
134 microbial drugs used as positive controls for each tested organism derived from dose-response curves
135 are given in μM (n>3, ± s.d.).

136

137 The highest efficacy of MitoTam was detected for the bloodstream form (BSF) of *T. brucei*. This value
138 was approximately 30-fold greater compared to Her2^{high} cancer cells (0.02 μM vs 0.65 μM) [19].
139 Interestingly, MitoTam showed low nanomolar efficacy (0.03 μM) against the erythrocytic stage of *P.*
140 *falciparum*, which is protected inside the parasitophorous vacuole within the host erythrocyte [37],
141 suggesting that MitoTam is able to cross several membranes before reaching its target. Furthermore,
142 MitoTam was found to inhibit the growth of the *T. brucei* procyclic form (PCF), axenically grown
143 *Leishmania mexicana* amastigotes and *L. major* promastigotes, and the two pathogenic fungi *Candida*
144 *albicans* and *Cryptococcus neoformans* at sub-micromolar EC₅₀ values. *T. cruzi* epimastigotes also
145 responded to MitoTam treatment with low-micromolar EC₅₀, as did *Acanthamoeba* spp., while no

146 effect was observed on *Naegleria fowleri* proliferation. Also, *Trichomonas vaginalis* and *Giardia*
147 *intestinalis*, two anaerobic parasites that possess mitochondrion-related organelles characterized by
148 the absence of membrane-bound electron transport chain and therefore by the lack of mitochondrial
149 respiration [33], were insensitive to MitoTam treatment. Overall, MitoTam effectively eliminated a
150 range of clinically important, evolutionarily distinct pathogens including intracellular parasites.

151

152 **MitoTam efficiently eliminates *L. major* and *L. infantum* intracellular amastigotes.**

153 The high efficacy of MitoTam against *L. mexicana* axenic amastigotes (EC_{50} $0.35 \pm 0.05 \mu\text{M}$) prompted
154 us to investigate the ability of MitoTam to eliminate the intracellular form of the parasite in a
155 macrophage infection model. Murine macrophage cells (J774A.1) were infected with *L. major* or *L.*
156 *infantum* promastigotes and exposed to different concentrations of MitoTam (0-25 μM). After
157 controlled lysis of the infected macrophages, the released parasites were quantified using a resazurin-
158 based viability assay [38]. In this intramacrophage assay, treatment with MitoTam eliminated
159 intracellular amastigotes of *L. major* and *L. infantum* with EC_{50} values of $175 \pm 51 \text{ nM}$ and $293 \pm 29 \text{ nM}$,
160 respectively (Fig. S1). This result is highly encouraging since the parasites reside in a parasitophorous
161 vacuole, a phagolysosome-like structure with low pH and three membranes that make it difficult to
162 effectively target the intracellular *Leishmania* amastigotes *in vivo* [38].

163

164 **MitoTam treatment alleviates parasitemia leading to prolonged survival of mice infected with *T.***
165 ***brucei* and to reduced frequency and lesion size caused by *L. mexicana* infection.**

166 Activity for a compound series detected in the intramacrophage assay usually translates into activity
167 in an animal infection model [39,40], apart from potential issues with pharmacokinetics. Hence, we
168 next tested the ability of MitoTam, which is well tolerated in BALB/c mice [19], a mouse infection
169 model of both *L. mexicana* and *T. brucei*. MitoTam dosing regimen was based on the published data
170 [19,22].

171 For the *T. brucei* infection model, survival analysis revealed that MitoTam intravenous (IV)
172 administration at doses of 3 mg/kg body weight (bw) on days 3 and 5 post-infection without further
173 treatment delayed the death of *T. brucei* infected animals, which succumb to the infection by eight
174 days (Fig. 1A).

175 In a second experiment, we followed *T. brucei* parasitemia levels in infected animals (Fig. 1B).
176 Automated analysis of blood smears revealed the presence of *T. brucei* parasites in samples from mice
177 untreated and treated on days 2 and 4 post-infection, showing that MitoTam-treated animals
178 exhibited a significantly lower parasite load (Fig. 1B). This explains the longer survival of treated
179 animals compared to the untreated controls (Fig. S2).

180 The effect of MitoTam administration (3 mg/kg bw, intraperitoneally (IP)) in the *L. mexicana* infection
181 model was assessed by monitoring frequency and size of dermal lesions. As shown in Fig. 1C, lesions
182 occurred less frequently in MitoTam-treated BALB/c mice than in the untreated controls during the
183 12-week course of the experiment (50% vs. 90% of mice at weeks 8-12 post-infection). In a separate
184 experiment, MitoTam at two doses reduced the size of lesions caused by *L. mexicana* in the weeks
185 following infection (Fig. 1D).

186 Collectively, these data demonstrate that MitoTam is highly effective against *T. brucei* and *L. mexicana*
187 parasites *in vivo*. Notably, we did not observe any notable adverse effects of MitoTam on the treated
188 animals.

189

190 **MitoTam treatment causes alteration of *T. brucei* mitochondrial proteome and leads to
191 upregulation of multidrug efflux pumps in *C. albicans*.**

192 The potent anti-parasitic properties *in vitro* and the promising *in vivo* experiments prompted us to
193 explore the MitoTam mode of action. First, we performed comparative whole-cell proteomic analysis
194 of control and MitoTam-treated cells for two parasitic model organisms, *C. albicans* and *T. brucei*. In

195 order to restrict indirect, secondary impact resulting from cell death, we chose short exposure times:
196 yeast cells were treated with 4.4 μ M MitoTam ($\square 7x EC_{50}$) for 12 h, while *T. brucei* BSF cells were
197 incubated with 100 nM MitoTam (5x EC_{50}) for 14 h. Proteomic data were processed by label-free
198 quantification in MaxQuant [41] and statistically analyzed in Perseus [42,43]. In *C. albicans*, out of
199 1,950 detected protein groups, the abundance of only 1.69% of the quantified proteins was
200 significantly altered (Table S2) (Fig. 2A), with two homologs of multidrug efflux pumps being among
201 the most upregulated genes (≥ 26 times).

202 In contrast, analysis of the *T. brucei* proteome revealed substantial changes after treatment with
203 MitoTam, with 26.3% of all identified proteins (2,063) significantly altered (Table S3) (Fig. 2B). Data
204 analyses did not reveal any specific single pathway or protein as a direct target of MitoTam. Since
205 MitoTam specifically affects mitochondrial functions in various cells [19,22,23], we analyzed
206 enrichment of mitochondrial proteins using a *T. brucei* mitoproteome database [44]. While
207 mitochondrial proteins accounted for 14.3% of all detected proteins, we observed an almost 2-fold
208 enrichment (27.6%) in the significantly altered subset of proteins, with 20.8% and 32.1% in the
209 increased and decreased cohort, respectively. These results indicate that MitoTam treatment induces
210 preferentially a decrease in the levels of various mitochondrial proteins. To validate these results, we
211 analyzed *T. brucei* whole cell lysates from cultures harvested at 4 different time points of MitoTam
212 exposure (8, 12, 16, and 24 h) by immunoblotting with antibodies against 8 mitochondrial marker
213 proteins and cytosolic pyruvate kinase as a control (Fig. 2C). Consistent with the *T. brucei* proteomics
214 analysis, we detected significant abundance decrease for seven mitochondrial proteins after 8 h of
215 MitoTam treatment.

216

217 **MitoTam treatment leads to disruption of the mitochondrial inner membrane and rapid loss of $\Delta\Psi_m$**
218 **in the bloodstream form of *T. brucei*.**

219 MitoTam was reported to directly impact mitochondrial function in renal and breast cancer cells,
220 tumors, and senescent cells [19,22,23]. In line with this, our proteomic analysis indicated that
221 MitoTam treatment perturbs the mitochondrial proteome in *T. brucei*. *T. brucei* BSF cells lack
222 cytochrome-mediated mitochondrial electron transport chain, respiration exclusively via an alternative
223 pathway consisting of mitochondrial glycerol-3-phosphate dehydrogenase and trypanosome
224 alternative oxidase (AOX), and sustaining the $\Delta\Psi_m$ by reversed activity of F_0F_1 -ATP synthase [45–47].
225 Importantly, the cancer molecular target of MitoTam, respiratory CI [19] was shown to be dispensable
226 for BSF cells [48], yet our data show that the drug efficiently eliminates these parasites.

227 To gain deeper insight into the anti-parasitic mode of action of MitoTam, we investigated its effect on
228 mitochondria in this model protist. When comparing the growth of untreated cells with cells treated
229 with two different concentrations of MitoTam, we found that growth of *T. brucei* cells was significantly
230 inhibited after 24 h (40 nM, 2x EC₅₀) or 12 h (100 nM, 5x EC₅₀) (Fig. 3A). To establish a timeline for
231 further experiments, we performed a live/dead cell assay using the cell-impermeant dye Sytox. This
232 result shows that despite the reduced growth rate, 82.4 % and 71% cells were still viable upon 40 nM
233 and 100 nM MitoTam treatment, respectively, after exposure to the drug for 16 h. At 24 hours of
234 treatment, the viability was further decreased to 67.3% and 63.6% at 40 and 100 nM MitoTam,
235 respectively (Fig. 3B)). This was accompanied by increased level of cellular ROS of cells treated with
236 100 nM MitoTam for 16 h (Fig. 4A).

237 To examine whether MitoTam affects mitochondrial activity, we analyzed changes in several cellular
238 attributes associated with mitochondrial function. *T. brucei* BSF cultures were treated for 16 and/or
239 24 h with 40 nM or 100 nM of MitoTam. We found that incubation with 100 nM MitoTam significantly
240 reduced glycerol-3-phosphate-dependent respiration, increased cellular ADP/ATP ratio (by 2.6-fold),
241 and decreased mitochondrial and cytosolic ATP as well as total cellular ATP levels (Fig. 4B-E). Next, we

242 assessed $\Delta\Psi_m$ in live cells using the cell-permeable red fluorescent dye TMRE and using the Safranin
243 O assay in digitonin-permeabilized cells. The results of both assays demonstrate that treatment with
244 100 nM MitoTam rendered the cell incapable of maintaining $\Delta\Psi_m$ (Fig. 4F,G). Moreover, using
245 mitochondrial superoxide indicator (MitoSOX), we detected a significant decrease of mitochondrial
246 ROS levels upon MitoTam treatment, suggesting that the mode of action of MitoTam in trypanosomes
247 differs from its effect in cancer cells (Fig. 4J). Experiments with cultures treated with MitoTam at 40
248 nM showed a similar but less pronounced overall effect on *T. brucei* mitochondrial activity (Fig. S3).

249 In agreement with these results, fluorescent microscopy evaluation revealed that treatment with 1
250 μ M MitoTam for 1 h led to an \square 8-fold decrease of the signal intensity of MitoTracker Red CMX-ROS,
251 a mitochondrial probe used to stain live cells that relies on $\Delta\Psi_m$ (Fig. 4H).

252 Furthermore, $\Delta\Psi_m$ was assessed in digitonin-permeabilized wild-type BSF cells by Safranine O dye
253 upon addition of ATP. We found that $\Delta\Psi_m$ was quickly dissipated with 1 μ M MitoTam, a phenotype
254 identical to the effect of addition of oligomycin, an inhibitor of ATP synthase (Fig. 4I). Moreover, using
255 mitochondrial superoxide indicator (MitoSOX), we detected a significant decrease of mitochondrial
256 ROS levels upon MitoTam treatment, suggesting that the mode of action of MitoTam in trypanosomes
257 differs from its effect in cancer cells (Fig. 4J).

258 While the observed changes in the evaluated attributes are consistent with inhibition of FoF1-ATP
259 synthase that generates $\Delta\Psi_m$ in BSF *T. brucei* cells [46], we also tested if the rapid drop in $\Delta\Psi_m$ is
260 caused by non-specific disruption of the IMM. To this end, we assessed the integrity of isolated
261 mitochondria using the mitochondrial marker threonine dehydrogenase (TDH), whose activity is
262 detectable only if the added substrate threonine can freely pass through 'compromised' mitochondrial
263 membrane. As shown in Fig. 4K, treatment with MitoTam at 7.4 μ M decreased mitochondrial
264 membrane integrity by 50%. This relatively high value (369 times higher than EC₅₀) determined in this
265 *in vitro* experiment can be explained by a need to form much larger membrane pores for threonine
266 (molecular weight 119.12 g/mol) to enter mitochondria when compared to the formation of much

267 smaller or temporal pores allowing the passage of H^+ . In addition, in this experiment, the BSF form
268 mitochondria is not energized due to the lack of substrates and therefore this could have prevented
269 accumulation of MitoTam from in the organelle. Taken together, these data indicate that MitoTam
270 rapidly disrupts the integrity of the IMM, which leads to the $\Delta\Psi_m$ collapse and cell death.

271

272 **Discussion**

273 In cancer cells, MitoTam was shown to inhibit Cl-dependent respiration, which leads to a rapid
274 decrease of $\Delta\Psi_m$, increased ROS production, and disruption of respiratory supercomplexes. These
275 effects ultimately trigger cell death. The phenotype is even more pronounced in cancer cells, which
276 exhibit high levels of the Her2 protein in mitochondria and elevated Cl-dependent respiration.
277 Consistently, mammalian cells deficient in Cl are more resistant to MitoTam [19]. In metabolically
278 active senescent cells, MitoTam treatment led to increased levels of ROS, reduced $\Delta\Psi_m$, impaired
279 mitochondrial morphology, and metabolic switching to glycolysis for cellular ATP generation [22].
280 Interestingly, the mitochondrial phenotype was alleviated and cell survival prolonged in MitoTam-
281 treated senescent cells overexpressing adenine nucleotide translocase-2 (ANT2), which imports ATP
282 into mitochondria [22]. Furthermore, restriction of glycolytic pathways, either by limiting substrate
283 levels or by adding glycolytic inhibitors competing with glucose sensitized control cells to MitoTam
284 [22]. In contrast to cancer cells, ROS scavengers failed to rescue MitoTam-treated senescent cells from
285 death. Moreover, treatment with established Cl inhibitors (rotenone and piericidin A) alone did not
286 selectively eliminate senescent cells, while they are sensitive to MitoTam treatment [22]. Therefore,
287 the senolytic effect of MitoTam appears to involve additional mechanisms to Cl inhibition. Taken
288 together, the effect of MitoTam on cancer and senescent cells seems to be complex and includes
289 targeting of Cl, mitochondrial membrane depolarization, loss of ATP, increased levels of ROS, and
290 possibly interplay between ATP/ADP exchange mechanism and ATP synthase [19,22].

291 In this study, we showed that MitoTam inhibits the growth of a variety of parasitic protists and fungi.
292 Different sensitivity to the compound may reflect different metabolic adaptations that the pathogens
293 have developed to thrive in their host organism. High potencies were determined for *T. brucei* BSF
294 and for the erythrocytic stage of *P. falciparum*, the relevant life cycle stages persisting in the
295 mammalian host of both these medically important parasites. Notably, canonical CI is missing in *P.*
296 *falciparum* [49] and is dispensable in BSF *T. brucei* [48,50] suggesting that MitoTam has additional
297 molecular targets besides CI with its NADH dehydrogenase. The EC₅₀ value of MitoTam was one or two
298 orders of magnitude higher (but still in the micromolar range) for other tested organisms such as
299 *Leishmania*, *Acanthamoeba* spp. and the widespread pathogenic yeasts *C. albicans* and *C. neoformans*.
300 MitoTam was the least active against anaerobic protists *Trichomonas vaginalis* and *Giardia intestinalis*,
301 likely due to the absence of conventional energized mitochondria in these organisms [33]. The low
302 activity observed against free-living parasitic amoebae *Naegleria fowleri* requires further research.
303 Following the encouraging results from *in vitro* testing, we demonstrated that MitoTam significantly
304 decreases parasitemia levels, as well as frequency and size of lesions in animals infected with *T. brucei*
305 and *L. mexicana*, respectively. In agreement with published data [19,22] [23], repeated injection of
306 MitoTam had no apparent adverse effect on BALB/c mice used in our studies.
307 To investigate the mode of action of MitoTam in unicellular pathogens, we performed comparative
308 proteomic analysis using two distinct model organisms, *T. brucei* (BSF) and *C. albicans*. Only minor
309 changes were detected in the *C. albicans* proteome upon MitoTam treatment, the most upregulated
310 proteins being two homologues of multidrug efflux pumps, possibly explaining the 28 times higher
311 EC₅₀ value when compared to BSF *T. brucei* cells. The corresponding analysis in *T. brucei* cells revealed
312 substantial proteome changes upon 12 h MitoTam treatment. Whilst the complexity of the observed
313 alterations failed to pinpoint the exact molecular target(s) of MitoTam, there was a significant impact
314 on the mitochondrion.

315 To get insight into the complex mode of action that is linked to the function of Cl in cancer cells [19],
316 we decided to examine the effect of MitoTam on mitochondrial parameters in BSF *T. brucei*, where
317 the respiratory complex is dispensable [48]. Consistent with studies on cancer and senescent cells
318 [19,22] [23], we found that cells incubated with MitoTam exhibit increased levels of cellular ROS and
319 resulted in rapid dissipation of $\Delta\Psi_m$, which leads to cell death. In contrast, mitochondrial superoxide
320 levels in *T. brucei* cells were decreased upon treatment with MitoTam, indicating that the oxidative
321 burst caused by inhibition of Cl-dependent respiration is not responsible for *T. brucei* growth
322 inhibition. Furthermore, *T. brucei* BSF cells incubated with MitoTam exhibited reduced glycerol-3-
323 phosphate-stimulated oxygen consumption, decreased ATP levels, and increased ADP/ATP ratio,
324 suggesting that the biochemical effect of MitoTam could either be due to inhibition of F_0F_1 -ATP
325 synthase that generates $\Delta\Psi_m$ in these cells [45,46] or, simply, due to disruption of the mitochondrial
326 membrane integrity, resulting in $\Delta\Psi_m$ collapse.

327 Our analysis shows that MitoTam at micromolar concentrations significantly increase the membrane
328 permeability of isolated mitochondria, which could be the cause of the altered mitochondrial
329 phenotype. This effect could be due to a direct interaction of the lipophilic MitoTam molecule with
330 the membrane, causing unregulated proton leak, or perhaps due to alteration in membrane fluidity.
331 Disruption of the membrane would indeed rapidly dissipate $\Delta\Psi_m$ in live cells. Alternatively, the effect
332 of MitoTam on membranes may be due to affecting enzymes involved in phospholipid synthesis.
333 Intriguingly, studies on *T. cruzi*, *Leishmania spp.* and *P. falciparum* indicate that tamoxifen, the
334 functional pharmacophore of MitoTam, has an inhibitory effect on phospholipid metabolic pathways
335 [51–53]. Additional experiments are needed to reveal the multifactorial MitoTam mode of action.
336 Nevertheless, our study shows that MitoTam represents a promising candidate to be repurposed as
337 an effective anti-parasitic and anti-fungal compound with high selectivity.

338

339 **Material and Methods:**

340 **Pathogen culture**

341 Culture conditions for all organisms used in this study are summarized in Supplementary Table 4

342

343 **Drug sensitivity assays**

344 The cytotoxicity effect of MitoTam was tested in a variety of organisms. Briefly, cells were seeded in

345 96-well plates at concentrations summarized in Table 4 and grown under standard conditions for 24-

346 120 h, as indicated. The drug was serially diluted in a medium using a two-fold dilution across a plate,

347 resulting in a total volume of 200 μ l per well. Each experiment included untreated control cells, as well

348 as a positive control treated with a known growth inhibitory compound for each respective pathogen.

349 The results were statistically analyzed, and dose-response curves plotted using Prism 6.01 (GraphPad

350 Software) and expressed as the half-maximal effective concentration (EC_{50}).

351 The growth of *C. albicans* and *C. neoformans* cultures was determined from OD_{600} values measured on

352 the I-Mark microplate reader (BioRad). *Plasmodium falciparum* dose-response curves were generated

353 using SYBR Green I, as described previously [54]. In brief, triplicate two-fold compound dilution series

354 were set up in 100 μ l parasite cultures (~0.2% parasitemia in 2% hematocrit). After two cycles (96 h),

355 parasites were lysed with 20 μ l of 6 \times SYBR green I lysis buffer (0.16% saponin; 20 mM Tris-HCl, 5 mM

356 EDTA, 1.6% Triton X-100, pH 7.4), supplemented with 1:1000 SYBR green I (from 10000 \times stock, Thermo

357 Fisher). Fluorescence intensity was measured with an Infinite M200 Pro Multimode Microplate Reader

358 (Tecan). *Trypanosoma cruzi* epimastigote cell growth was assessed by CellTiter-Glo 2.0 cell viability

359 assay in a 96-well plate according to the manufacturer's protocol. As indicated, the dose-response

360 curves of *T. brucei* and other pathogens were plotted from cell counts performed on the Guava

361 EasyCyte 8HT flow cytometer (Luminex). The instrument setting and gate selection were adjusted

362 using untreated control for each organism. For *G. intestinalis*, *A. castellanii*, and *N. fowleri*, that tend

363 to adhere to the walls of the cultivation vessel, were placed on ice for 20 min and subsequently

364 paraformaldehyde was added to a final concentration of 2% before counting the cells on the flow
365 cytometer.

366

367 ***Trypanosoma brucei* growth analysis**

368 *T. brucei* bloodstream cells were seeded at a concentration of 2×10^5 and 8×10^5 cells/ml of 5 ml HMI-9
369 medium in aerobic culture flasks. Biological triplicates were analyzed including untreated control
370 cultures and cultures treated with final concentrations of 40 nM and 100 nM MitoTam, respectively.
371 Cells were grown under standard growth conditions (37°C, 5% CO₂). At each time point (8, 12, 16, 24,
372 and 48 h), 20 µl were sampled, diluted 10x in fresh HMI-9 and the culture concentration was assessed
373 using Guava EasyCyte 8HT flow cytometer (Luminex). The count parameters and gates were set
374 according to previously measured cultures. In parallel, cells were checked under the microscope at
375 each time point to confirm that live, moving cells were present in each culture.

376

377 ***Trypanosoma brucei* dead cell staining**

378 *T. brucei* BSF cells were seeded at a concentration of 2×10^5 cells/ml in 5 ml HMI-9 medium in aerobic
379 cultivation flasks. Biological triplicates were set up, including an untreated control group and groups
380 treated with final concentrations of 40 nM and 100 nM MitoTam. The cells were grown under regular
381 growth conditions. At each time point (8, 12, 16, and 24 h), 20 µl were sampled from each flask was
382 sampled, 10x diluted in fresh HMI-9 to a final volume of 200 µl and 2 µl of SYTOX Green Dead Cell Stain
383 (Invitrogen) was added to each sample. Cells were incubated at standard growth conditions for 30
384 min, after which live cell counts were analyzed using Guava EasyCyte 8HT flow cytometer (Luminex).
385 The count parameters and gates were set according to previously measured cultures.

386

387 **Measurement of ROS production in *T. brucei***

388 Intracellular and intramitochondrial ROS production was monitored using published protocols [55].
389 Intracellular ROS levels were evaluated using three biological replicates of approximately 1×10^6
390 untreated cells and cells treated with 100 nM MitoTam for 12 h. The samples were collected,
391 incubated with 10 μ M of 2',7'-dichlorofluoresceine diacetate (DCFH-DA, Sigma-Aldrich) for 30 minutes
392 and washed with PBS-G (1x PBS with 6 mM glucose). Using a 488 nm excitation laser and a 530/30 nm
393 detector, 10,000 events were immediately counted on the BD FACSCanto II instrument.
394 Mitochondrial ROS production was assessed using the MitoSOX indicator (Thermo Fisher Scientific) in
395 untreated cells and cells treated with 40 nM or 100 nM MitoTam. An equal number of cells (1×10^6) for
396 each treatment was collected, washed in PBS-G, resuspended in HMI-9 medium with 5 μ M MitoSOX
397 and stained for 30 min at 37°C, 5% CO₂. After staining, cells were spun down, resuspended in PBS, and
398 immediately analyzed by flow cytometry (BD FACS Canto II Instrument, 488 nm excitation laser and
399 585/15 nm emission). For each sample, 10 000 events were collected. All values were plotted and
400 statistically analyzed using Prism (8.0) (GraphPad Software).

401

402 **Comparative label-free proteomics**

403 For *T. brucei* bloodstream forms, a final concentration of 100 nM MitoTam was added to
404 approximately 3×10^7 cells in the exponential growth phase and cultures incubated for 14 h. Cell
405 viability was checked microscopically before harvesting and washing three times in PBS (1200g, 10
406 min, 4°C). An untreated control group was prepared in parallel. Both groups were prepared in three
407 biological replicates. The pellets were subjected to reductive alkylation and tryptic digest using routine
408 procedures. Peptides were then analysed by liquid chromatography-tandem mass spectrometry on an
409 ultimate3000 nano rapid separation LC system (Dionex) coupled to an Orbitrap Fusion mass
410 spectrometer (Thermo-Fisher Scientific). Data were analysed as described in [43,56] using label-free
411 quantification in MaxQuant [41] searching the TriTrypDB *T. brucei* strain TREU927 protein database
412 version 54 [57].

413 For *C. albicans*, approximately 1x10⁴ cells were inoculated in RPMI media, as described in [58] and left
414 to grow for 24 h at 35°C without agitation. MitoTam was added to the final concentration of 4.4 µM
415 and cultures incubated for 12 h. Cells were then checked under a microscope, harvested, washed
416 three times with PBS (1 200g, 10 min, 4°C). Pellets were then lysed using FastPrep 24 5G homogenizer
417 (MP Biomedicals) according to the manufacturer's instructions. Lysates were used for the label-free
418 proteomic analysis and compared with the untreated control group prepared in parallel. Both groups
419 were prepared in three biological replicates. Analysis was performed based on the *C. albicans* protein
420 database downloaded from Uniprot on 12.11.2019 [59]. The threshold settings for comparative
421 proteomic analyses and data processing were chosen as described in [43] for both organisms. Briefly,
422 thresholds were set to Q-value = 0, unique peptides detected >2 and the protein had to be identified
423 at least twice in one of the conditions. For proteins found under only one condition, the average log2
424 converted intensity of 23 was selected as a minimum threshold. Significantly changed proteins were
425 considered only if the fold change was >2.0.

426 In the proteomic results of *C. albicans*, localization was predicted based on Uniprot [59]. For *T. brucei*
427 proteomic analysis, manual annotation and localization prediction were based on *T. brucei* 927
428 database or *T. brucei* bloodstream form mitoproteome database obtained from [44]. Volcano plots
429 were drawn in Perseus 1.6.15.0 [42]. At first, proteins only identified by site, reverse, potential
430 contaminants, and proteins detected in less than two experiments within at least one group were
431 excluded. The imputation was performed using a normal distribution with width 0.3 and downshift of
432 1.8, separately for each column. The parameters of the volcano plot were set up as following:
433 statistical t-test for both sides, 250 randomizations, false discovery rate of 0.05 and S₀ of 0.1.

434

435 **Mitochondrial membrane potential measurements**

436 The mitochondrial membrane potential ($\Delta\Psi_m$) of BSF *T. brucei* cells was estimated using the red
437 fluorescent stain MitoTracker Red CMXRos (Invitrogen). MitoTam was added to 5 ml *T. brucei* culture

438 in an exponential growth phase at a final concentration of 1 μ M and cells were incubated for one hour
439 under standard conditions. Subsequently, MitoTracker Red CMXRos was added to a final
440 concentration of 100 nM and samples were incubated for another 10 min. Cultures were spun
441 (1,300 g, 10 min, RT), resuspended in 5 ml of growth medium with 1 μ M MitoTam and left for an
442 additional 20 min under standard growth conditions. An untreated control was prepared in parallel.
443 Treated and untreated cells were washed and transferred to 300 μ l PBS, spread on microscopy slides,
444 and left to settle. The slides were fixed by immersion in ice-cold methanol for 10 min, once the excess
445 methanol had evaporated, the slides were mounted using Vectashield with DAPI (Vector laboratories),
446 covered with cover slides, and sealed using nail varnish. The slides were imaged on a Leica TCS SP8
447 WLL SMD-FLIM microscope, using LAS X 3.5.6 imaging software. All images were captured using the
448 exact same microscope setting. Quantification and comparison of signals were performed in NIS-
449 Elements 5.30 (Nikon). Briefly, 10-20 z-stacks were captured using LAS X automatic settings. A single
450 stack with the highest overall intensity was chosen from the batch, and using the Artificial Intelligence
451 module, areas of signal corresponding to individual cells were mapped and the average intensity was
452 determined from the selected area. Furthermore, cell DNA visualized by DAPI was also quantified in
453 the same manner and compared across all images as a reference value. The signal intensity of
454 MitoTracker Red CMXRos was then compared in treated and untreated control, while the intensity of
455 the DAPI signal was used to confirm the reproducibility of the reading.

456 Estimation of $\Delta\Psi_m$ in live cells was performed as described previously [55]. Briefly, an equal number
457 of cells (1×10^6) for each treatment was spun (1,400 g, 10 min, RT), the pellets were resuspended in
458 HMI-9 medium with 60 nM TMRE (Thermo Fisher Scientific T669) and stained for 30 min at 37°C, 5%
459 CO₂. After staining, cells were spun down (1,400 g, 10 min, RT) and resuspended in 2 ml of PBS and
460 immediately analyzed by flow cytometry (BD FACS Canto II Instrument). For each sample, 10,000
461 events were collected. As a control for mitochondrial membrane depolarization, cells were treated
462 with 20 μ M protonophore FCCP (carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone, Sigma).

463 Data were evaluated using BD FACS Diva software (BD Company) and further analyzed using Prism
464 (8.0) (GraphPad Software).

465 Estimation of the $\Delta\Psi_m$ was also performed using the fluorescent probe Safranine O (Sigma) according
466 to [55]. From each treatment, 2×10^7 cells were collected, spun down (1,400 g, 10 min, RT), and
467 resuspended in ANT buffer (8 mM KCl, 110 mM potassium gluconate, 10 mM NaCl, 10 mM HEPES, 10
468 mM K_2HPO_4 , 0.015 mM EGTA, 0.5 mg/ml fatty acid-free BSA, 10 mM mannitol, 1.5 mM $MgCl_2$) with 5
469 μ M Safranine O. Intact live cells were permeabilized by the addition of 4 μ M digitonin (Calbiochem).
470 The fluorescence of all samples was measured at RT and constant stirring and recorded on a Hitachi
471 F-7100 spectrofluorometer (Hitachi High Technologies) at a 5 Hz acquisition rate, using 495 and 585
472 nm excitation and emission wavelengths, respectively. As indicated, the reaction was started by
473 adding 1 mM ATP (PanReac AppliChem), F_0F_1 -ATP synthase substrate, and stopped by the addition of
474 10 μ g/ml oligomycin (Sigma), F_0F_1 -ATP synthase inhibitor. The protonophore SF6847 (Enzo Life
475 Sciences) was added at a final concentration of 250 nM as control for maximal depolarization.
476 Fluorescence data were analyzed using Prism (8.0) (GraphPad Software).

477

478 **High-resolution respirometry**

479 The effect of MitoTam on respiration was analyzed by Oroboras Oxygraph-2K (Oroboras Instruments
480 Corp., Innsbruck, Austria) as described [55]. Bloodstream form *T. brucei* cells were incubated with 40
481 nM or 100 nM MitoTam for 16 h and 24 h, as indicated. For each treated sample and control, 2×10^7
482 cells were spun down (1,400 g, 10 min, RT) and pellets were washed in Mir05 medium (0.5 mM EGTA,
483 3 mM $MgCl_2$, 60 mM lactobionic acid, 20 mM taurine, 10 mM KH_2PO_4 , 20 mM HEPES, 110 mM sucrose,
484 1 mg/ml fatty acid-free BSA, pH 7.1). Before the measurement started, the pellets were resuspended
485 in 0.5 ml of Mir05 medium preheated to 37°C and transferred to the respiration chamber. Respiration
486 was monitored at 37°C and with constant stirring. The experiment started with the addition of 10 mM
487 glycerol-3-phosphate (Sigma), the mitochondrial glycerol-3-phosphate dehydrogenase substrate, and

488 respiration was inhibited by the addition of 250 μ M SHAM (Salicylhydroxamic acid), the inhibitor of
489 the trypanosomal alternative oxidase. The acquired data were analyzed using Prism (8.0) (GraphPad
490 Software).

491

492 **Western blot analysis**

493 *T. brucei* BSF cells were incubated with 100 nM MitoTam and harvested at different time points after
494 addition as indicated (0h, 8h, 12h, 16h and 24h). Cells were spun down (1,400 g, 10 min, RT), pellets
495 were washed in PBS (pH 7.4) and resuspended in 3xSDS-Page sample buffer (150 mM Tris pH 6.8, 300
496 mM 1,4-dithiothreitol, 6% (w/v) SDS, 30% (w/v) glycerol, 0.02% (w/v) bromophenol blue). The whole-
497 cell lysates were denatured at 97°C for 8 min and stored at -80°C. For Western blot analysis, a volume
498 of sample equal to 2.5×10^6 cells per well was loaded onto 12% gel, separated by SDS-Page, blotted
499 onto a nitrocellulose membrane (Amersham Protram 0,2 μ m PC GE Healthcare Life Sciences) and
500 probed with a monoclonal (mAb) or polyclonal antibody (pAb). Incubation with primary antibodies
501 was followed by a secondary antibody, either HRP-conjugated goat anti-rabbit or an anti-mouse
502 antibody (1:5,000, BioRad). Antibodies were detected using the enhanced chemiluminescence system
503 (Immobilon Forte Western HRP substrate, Merck) on the Amersham Imager 600 (GE Health Care Life
504 Sciences). The PageRuler™ Plus prestained protein ladder (Thermo Fisher Scientific 26619) was used
505 to determine the size of the detected bands. Primary antibodies were: mAb anti-AOX (1:1,000), pAb
506 anti-AAC (1:1,000), anti-VDAC (1:1,000), pAb anti-PYK (pyruvate kinase) 1:1,000 and antibodies against
507 F_oF₁-ATP synthase subunits β (1:2,000), p18 (1:1,000), Tb1 (1:1,000), Tb2 (1:1,000), and OSCP (1:1,000)
508 [55,60].

509

510 **Measurement of the ATP/ADP ratio and total cellular ATP levels**

511 Changes in the ATP/ADP ratio and total cellular ATP were determined in BSF *T. brucei* cells using the
512 D-luciferin-luciferase bioluminescent enzymatic reaction (assay kit Sigma MAK135) according to
513 manufacturer's instructions. Briefly, from each sample 1×10^6 cells were harvested and washed once
514 with PBS supplemented with 6 mM glucose (PBS-G). Pellets were resuspended in PBS-G and the
515 mixture transferred into a microtiter plate (96-well white flat-bottom). The bioluminescence signal
516 was recorded in an Orion II microplate luminometer (Titertek Berthold) and analyzed using Prism (8.0)
517 (GraphPad Software).

518

519 ***In situ* measurement of ATP levels**

520 Cytosolic and mitochondrial ATP was measured using BSF *T. brucei* cell lines expressing firefly
521 luciferase with or without N-terminal mitochondrial localization signal (MLS) following published
522 protocols [61]. Briefly, MitoTam treated cells, as well as untreated control, were spun (1×10^7 cells)
523 (1,400 g, 10 min, RT) and washed in PBS-G. The pellets were resuspended in HEPES-LUC+Glu buffer
524 (10 mM D-glucose, 20 mM HEPES, 116 mM NaCl, 5.6 mM KCl, 8 mM MgSO₄, 1.8 mM CaCl₂, pH 7.4)
525 and transferred to a 96-well microtiter plate. ATP-dependent luciferase bioluminescence was
526 recorded on a plate reader (Tecan Infinite M100). The light emission was started with the addition of a
527 D-luciferin solution (50 μ M; Sigma), collected for 5 min, and statistically analyzed using Prism (8.0)
528 (GraphPad Software).

529

530 **Determination of the mitochondrial membrane integrity**

531 *T. brucei* bloodstream mitochondria were isolated by digitonin fractionation, according to [62]. Briefly,
532 approximately 1×10^8 cells were harvested (1400 g, 10 min, RT) and transferred to Hank's balanced salt
533 solution (Sigma Aldrich). The protein concentrations of the samples were determined by the BCA assay
534 kit (Sigma-Aldrich, USA). Digitonin (Calbiochem) was added to a protein:mass ratio of 1:0.15, lysate

535 was incubated for 4 min and then spun. The pellet was washed and used as a mitochondria-enriched
536 fraction, while the supernatant was used as a cytosolic fraction. Activities of two marker enzymes
537 were used to assess the purity of fractions and intactness of mitochondrial membranes. The enzyme
538 activities of cytosolic pyruvate kinase (PYK) and mitochondrial threonine dehydrogenase (TDH) were
539 assayed spectrophotometrically at 340 nM by monitoring NADH concentration changes during the
540 reaction. The activity of PYK was measured according to [63] in 0.1M TEA buffer (ThermoFisher
541 Scientific) (final pH 7.6), 5 mM MgSO₄ and 50 mM KCl, with the addition of 2.8 mM
542 phosphoenolpyruvate, 2 mM ADP, 0.3 mM NADH and lactate dehydrogenase. The activity of TDH was
543 measured in 0.2M Tris-HCl buffer with 0.25 M KCl (final pH 8.6), with the addition of 120 mM threonine
544 and 2.5 mM NAD⁺. Different concentrations of MitoTam were added to the reaction and TDH activity
545 was monitored as a marker for disruption of the mitochondrial membranes. Treatment with nonionic
546 detergent Triton-X100 was used to completely disrupt mitochondrial membranes and thus release
547 maximum TDH activity. Data were statistically analyzed and plotted with Prism (8.0) (GraphPad
548 Software).

549

550 **Survival analysis in a mouse model**

551 To evaluate the trypanosomiasis effect of MitoTam on the mortality in mice, a group of 14 BALB/c
552 mice was infected IP with approximately 2x10⁵ BSF *T. brucei* cells strain STIB920 and the group of 14
553 mice was infected with 5x10⁵ BSF cells of *T. brucei brucei* 427 strain, both in 100 µl sterile PBS. Mice
554 were monitored every 12 hours. Based on previous experience with the progression of the disease,
555 half of the infected mice from each group were IV injected with MitoTam (3 mg/kg bw) on days 3 and
556 5 after infection. The survival of the mice was visually monitored for up to 13 days after infection, the
557 day of death was recorded for each animal.

558

559 ***T. brucei* mouse infection model**

560 To assess the effect of MitoTam on the morbidity of trypanosomiasis in mice, sixteen BALB/c mice
561 were infected with 2×10^5 BSF *T. brucei* cells (strain STIB920) in 100 μ l of sterile PBS. On day 2 and 4
562 post infection, eight mice were injected with MitoTam at a final concentration of (3 mg/kg bw).
563 Mice were monitored daily, and blood samples were collected from a tail prick from each animal.
564 Blood drops were smeared on microscopy slides and stained using Wright-Giemsa stain modification,
565 Diff-Quick (Medion Diagnostics) according to the manufacturer's protocol. From each slide three
566 images of random places, where red blood cells were not overlaying, were taken using an inverted
567 widefield microscope Eclipse Ti2 (Nikon) using the CFI Plan Apochromat Lambda 20x objective (Nikon)
568 with NIS-Elements AR 5.20 (Nikon). The images were then processed using the Artificial Intelligence
569 module on NIS-Elements 5.30 (Nikon), manually trained to detect and quantify the number of red
570 blood cells and trypanosomes. The ratio of trypanosomes to red blood cells was calculated and used
571 to plot the data and calculate the statistical difference (student t-test) between the treated and
572 untreated groups in a given days. Data were plotted with Prism (8.0) (GraphPad Software). Animal
573 handling was approved by the Czech Ministry of Agriculture (53659/2019-MZE-18134).

574

575 ***L. mexicana* mouse subcutaneous leishmaniasis model**

576 The culture conditions of the *L. mexicana* promastigotes were as indicated in Supplementary Table 4,
577 their concentration was determined by hemocytometer. Before infection experiments, promastigotes
578 were harvested, washed three times and resuspended in PBS. Twenty BALB/c mice (ten weeks old)
579 were anesthetized IP with a mixture of ketamine (150 mg/kg) and xylazine (15 mg/kg) and infected
580 intradermally in the ear pinnae by injection of 10^7 promastigotes. For a group of ten animals, MitoTam
581 was administered IP at 1, 2, 3, 5, 6 and 7 weeks after infection at a dose of (3 mg/kg body weight),

582 other ten animals served as nontreated controls. The presence of lesions was monitored for 12
583 consecutive weeks.

584

585 **Rescue assay for *Leishmania spp.* amastigotes**

586 Initially, murine macrophage cells (J774) were seeded in RPMI supplemented with 10% FCS and 50
587 µg/ml phorbol 12-myristate 13-acetate and left to differentiate for 24 h. Then, after washing the cells
588 once with warm (37°C) serum-free RPMI, stationary phage promastigotes of *L. infantum* or *L. major*
589 were added in a 10:1 ratio (2.5x10⁶ cell/ml). After 24 h of incubation, cells were washed five times
590 with serum-free RPMI and exposed to increasing concentration of MitoTam (or amphotericin B, as
591 positive control) in RPMI (2% FCS). After two days, macrophages were lysed with 20 µl of 0.05% SDS
592 in RPMI for 30 s and released *Leishmania* cells were incubated with M199 10% FCS for another three
593 days. Finally, the viability of transformed live cells was determined by the resazurin viability assay.

594

595 **References:**

596 1. Lee SM, Kim MS, Hayat F, Shin D. Recent advances in the discovery of novel antiprotozoal
597 agents. *Molecules*. 2019;24. doi:10.3390/molecules24213886

598 2. Monzote L, Siddiq A. Drug Development to Protozoan Diseases. *Open Med Chem J*. 2011;5: 1–
599 3. doi:10.2174/1874104501105010001

600 3. Andrews KT, Fisher G, Skinner-Adams TS. Drug repurposing and human parasitic protozoan
601 diseases. *Int J Parasitol Drugs Drug Resist*. 2014;4: 95–111. doi:10.1016/j.ijpddr.2014.02.002

602 4. Murphy MP, Smith RAJ. Targeting Antioxidants to Mitochondria by Conjugation to Lipophilic
603 Cations. *Annu Rev Pharmacol Toxicol*. 2007;47: 629–656.
604 doi:10.1146/annurev.pharmtox.47.120505.105110

605 5. Teixeira J, Soares P, Benfeito S, Gaspar A, Garrido J, Murphy MP, et al. Rational discovery and

606 development of a mitochondria-targeted antioxidant based on cinnamic acid scaffold. *Free*
607 *Radic Res.* 2012;46. doi:10.3109/10715762.2012.662593

608 6. Kelso GF, Porteous CM, Coulter C V., Hughes G, Porteous WK, Ledgerwood EC, et al. Selective
609 targeting of a redox-active ubiquinone to mitochondria within cells: Antioxidant and
610 antiapoptotic properties. *J Biol Chem.* 2001;276: 4588–4596. doi:10.1074/jbc.M009093200

611 7. Benein P, Almutteri MA, Mehanna AS, D'Souza GGM. Synthesis of triphenylphosphonium
612 phospholipid conjugates for the preparation of mitochondriotropic liposomes. *Methods Mol*
613 *Biol.* 2015;1265: 51–57. doi:10.1007/978-1-4939-2288-8_4

614 8. Du F, Min Y, Zeng F, Yu C, Wu S. A targeted and FRET-based ratiometric fluorescent nanoprobe
615 for imaging mitochondrial hydrogen peroxide in living cells. *Small.* 2014;10: 964–972.
616 doi:10.1002/smll.201302036

617 9. Cairns AG, McQuaker SJ, Murphy MP, Hartley RC. Targeting mitochondria with small molecules:
618 The preparation of MitoB and MitoP as exomarkers of mitochondrial hydrogen peroxide.
619 *Methods Mol Biol.* 2015;1265: 25–50. doi:10.1007/978-1-4939-2288-8_3

620 10. Terekhova N V., Tatarinov DA, Shaihutdinova ZM, Pashirova TN, Lyubina AP, Voloshina AD, et
621 al. Design and synthesis of amphiphilic 2-hydroxybenzylphosphonium salts with antimicrobial
622 and antitumor dual action. *Bioorg Med Chem Lett.* 2020;30: 127234.
623 doi:10.1016/j.bmcl.2020.127234

624 11. Kinnamon KE, Steck EA, Rane DS. A New Chemical Series Active against African Trypanosomes:
625 *Benzyltriphenylphosphonium Salts.* *J Med Chem.* 1979;22: 452–455.
626 doi:10.1021/jm00190a019

627 12. Fueyo González FJ, Ebiloma GU, Izquierdo García C, Bruggeman V, Sánchez Villamañán JM,
628 Donachie A, et al. Conjugates of 2,4-Dihydroxybenzoate and Salicylhydroxamate and
629 Lipocations Display Potent Antiparasite Effects by Efficiently Targeting the *Trypanosoma brucei*
630 and *Trypanosoma congolense* Mitochondrion. *J Med Chem.* 2017;60: 1509–1522.
631 doi:10.1021/acs.jmedchem.6b01740

632 13. Alkhaldi AAM, Martinek J, Panicucci B, Dardonville C, Zíková A, de Koning HP. Trypanocidal
633 action of bisphosphonium salts through a mitochondrial target in bloodstream form
634 Trypanosoma brucei. *Int J Parasitol Drugs Drug Resist.* 2016;6: 23–34.
635 doi:10.1016/j.ijpddr.2015.12.002

636 14. Long TE, Lu X, Galizzi M, Docampo R, Gut J, Rosenthal PJ. Phosphonium lipocations as
637 antiparasitic agents. *Bioorganic Med Chem Lett.* 2012;22: 2976–2979.
638 doi:10.1016/j.bmcl.2012.02.045

639 15. Manzano JI, Cueto-Díaz EJ, Olías-Molero AI, Perea A, Herraiz T, Torrado JJ, et al. Discovery and
640 Pharmacological Studies of 4-Hydroxyphenyl-Derived Phosphonium Salts Active in a Mouse
641 Model of Visceral Leishmaniasis. *J Med Chem.* 2019;62: 10664–10675.
642 doi:10.1021/acs.jmedchem.9b00998

643 16. Taladriz A, Healy A, Flores Pérez EJ, Herrero García V, Ríos Martínez C, Alkhaldi AAM, et al.
644 Synthesis and structure-activity analysis of new phosphonium salts with potent activity against
645 African trypanosomes. *J Med Chem.* 2012;55: 2606–2622. doi:10.1021/jm2014259

646 17. Jara JA, Castro-Castillo V, Saavedra-Olavarría J, Peredo L, Pavanni M, Jaña F, et al.
647 Antiproliferative and uncoupling effects of delocalized, lipophilic, cationic gallic acid derivatives
648 on cancer cell lines. Validation in vivo in singenic mice. *J Med Chem.* 2014;57: 2440–2454.
649 doi:10.1021/jm500174v

650 18. Dong L, Gopalan V, Holland O, Neuzil J. Mitocans Revisited: Mitochondrial Targeting as Efficient
651 Anti-Cancer Therapy. *Int J Mol Sci.* 2020;21: 7941. doi:10.3390/ijms21217941

652 19. Rohlenova K, Sachaphibulkij K, Stursa J, Bezawork-Geleta A, Blecha J, Endaya B, et al. Selective
653 Disruption of Respiratory Supercomplexes as a New Strategy to Suppress Her2 high Breast
654 Cancer. *Antioxid Redox Signal.* 2017;26: 84–103. doi:10.1089/ars.2016.6677

655 20. Jordan VC. Tamoxifen: a most unlikely pioneering medicine. *Nat Rev Drug Discov.* 2003;2: 205–
656 213. doi:10.1038/nrd1031

657 21. Unten Y, Murai M, Koshitaka T, Kitao K, Shirai O, Masuya T, et al. Comprehensive understanding

658 of multiple actions of anticancer drug tamoxifen in isolated mitochondria. *Biochim Biophys*
659 *Acta - Bioenerg.* 2022;1863: 148520. doi:10.1016/j.bbabi.2021.148520

660 22. Hubackova S, Davidova E, Rohlenova K, Stursa J, Werner L, Andera L, et al. Selective elimination
661 of senescent cells by mitochondrial targeting is regulated by ANT2. *Cell Death Differ.* 2019;26:
662 276–290. doi:10.1038/s41418-018-0118-3

663 23. Hubackova S, Zobalova R, Dubisova M, Smigova J, Dvorakova S, Korinkova K, et al. Simultaneous
664 targeting of mitochondrial metabolism and immune checkpoints as a new strategy for renal
665 cancer therapy. *Clin Transl Med.* Forthcoming 2022.

666 24. Vacurova E, Trnovska J, Svoboda P, Skop V, Endaya B, Novosadova V, et al. Targeting
667 mitochondria as a novel approach to treatment of metabolic diseases. *Nat Commun.*
668 Forthcoming 2022.

669 25. Stuart K, Brun R, Croft S, Fairlamb A, Gürtler RE, McKerrow J, et al. Kinetoplastids: related
670 protozoan pathogens, different diseases. *J Clin Invest.* 2008;118: 1301–1310.
671 doi:10.1172/JCI33945

672 26. WHO. *Malaria.* 2021.

673 27. Dadar M, Tiwari R, Karthik K, Chakraborty S, Shahali Y, Dhama K. *Candida albicans - Biology,*
674 *molecular characterization, pathogenicity, and advances in diagnosis and control – An update.*
675 *Microbial Pathogenesis.* Academic Press; 2018. pp. 128–138.
676 doi:10.1016/j.micpath.2018.02.028

677 28. Maziarz EK, Perfect JR. *Cryptococcosis.* *Infectious Disease Clinics of North America.* 2016. pp.
678 179–206. doi:10.1016/j.idc.2015.10.006

679 29. Grace E, Asbill S, Virga K. *Naegleria fowleri: Pathogenesis, diagnosis, and treatment options.*
680 *Antimicrobial Agents and Chemotherapy.* American Society for Microbiology; 2015. pp. 6677–
681 6681. doi:10.1128/AAC.01293-15

682 30. Kot K, Łanocha-Arendarczyk NA, Kosik-Bogacka DI. *Amoebas from the genus Acanthamoeba*
683 *and their pathogenic properties.* *Ann Parasitol.* 2018;64: 299–308. doi:10.17420/ap6404.164

684 31. Ryan U, Hijjawi N, Feng Y, Xiao L. Giardia: an under-reported foodborne parasite. *Int J Parasitol.*
685 2019;49: 1–11. doi:10.1016/j.ijpara.2018.07.003

686 32. Van Gerwen OT, Muzny CA. Recent advances in the understanding and management of of
687 Trichomonas vaginalis infection. *F1000Research.* 2019;8: 1–10.
688 doi:10.12688/f1000research.20411.1

689 33. Tachezy J. Hydrogenosomes and mitosomes mitochondria of anaerobic eukaryotes.
690 *Microbiology monographs* 9. 2008.

691 34. Field MC, Horn D, Fairlamb AH, Ferguson MAJ, Gray DW, Read KD, et al. Anti-trypanosomatid
692 drug discovery: An ongoing challenge and a continuing need. *Nature Reviews Microbiology.*
693 Nature Publishing Group; 2017. pp. 217–231. doi:10.1038/nrmicro.2016.193

694 35. Kita K, Nihei C, Tomitsuka E. Parasite Mitochondria as Drug Target: Diversity and Dynamic
695 Changes During the Life Cycle. *Curr Med Chem.* 2005;10: 2535–2548.
696 doi:10.2174/0929867033456549

697 36. Shingu-Vazquez M, Traven A. Mitochondria and fungal pathogenesis: Drug tolerance,
698 virulence, and potential for antifungal therapy. *Eukaryot Cell.* 2011;10: 1376–1383.
699 doi:10.1128/EC.05184-11

700 37. Goldberg DE, Zimmerberg J. Hardly Vacuous: The Parasitophorous Vacuolar Membrane of
701 Malaria Parasites. *Trends Parasitol.* 2020;36: 138–146. doi:10.1016/j.pt.2019.11.006

702 38. De Rycker M, Hallyburton I, Thomas J, Campbell L, Wyllie S, Joshi D, et al. Comparison of a high-
703 throughput high-content intracellular Leishmania donovani assay with an axenic amastigote
704 assay. *Antimicrob Agents Chemother.* 2013;57. doi:10.1128/AAC.02398-12

705 39. Don R, Ioset JR. Screening strategies to identify new chemical diversity for drug development
706 to treat kinetoplastid infections. *Parasitology.* 2014;141: 140–146.
707 doi:10.1017/S003118201300142X

708 40. Wyllie S, Brand S, Thomas M, De Rycker M, Chung C wa, Pena I, et al. Preclinical candidate for
709 the treatment of visceral leishmaniasis that acts through proteasome inhibition. *Proc Natl Acad*

710 Sci U S A. 2019;116: 9318–9323.

711 doi:10.1073/PNAS.1820175116/SUPPL_FILE/PNAS.1820175116.SAPP.PDF

712 41. Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range
713 mass accuracies and proteome-wide protein quantification. *Nat Biotechnol.* 2008;26.

714 doi:10.1038/nbt.1511

715 42. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The Perseus computational
716 platform for comprehensive analysis of (prote)omics data. *Nat Methods.* 2016;13: 731–740.

717 doi:10.1038/nmeth.3901

718 43. Arbon D, Ženíšková K, Mach J, Grechnikova M, Malych R, Talacko P, et al. Adaptive iron
719 utilization compensates for the lack of an inducible uptake system in *Naegleria fowleri* and
720 represents a potential target for therapeutic intervention. Singer SM, editor. *PLoS Negl Trop*
721 Dis.

2020;14: e0007759. doi:10.1371/journal.pntd.0007759

722 44. Zíková A, Verner Z, Nenarokova A, Michels PAM, Lukeš J. A paradigm shift: The mitoproteomes
723 of procyclic and bloodstream *Trypanosoma brucei* are comparably complex. *PLoS Pathogens.*
724 2017. p. e1006679. doi:10.1371/journal.ppat.1006679

725 45. Smith TK, Bringaud F, Nolan DP, Figueiredo LM. Metabolic reprogramming during the
726 *Trypanosoma brucei* life cycle. *F1000Research.* 2017. doi:10.12688/f1000research.10342.1

727 46. Schnaufer A, Clark-Walker GD, Steinberg AG, Stuart K. The F1-ATP synthase complex in
728 bloodstream stage trypanosomes has an unusual and essential function. *EMBO J.* 2005;24:
729 4029–4040. doi:10.1038/sj.emboj.7600862

730 47. Nolan DP, Voorheis HP. The mitochondrion in bloodstream forms of *Trypanosoma brucei* is
731 energized by the electrogenic pumping of protons catalysed by the F1FO-ATPase. *Eur J*
732 *Biochem.* 1992;209: 207–216. doi:10.1111/j.1432-1033.1992.TB17278.X

733 48. Surve S, Heestand M, Panicucci B, Schnaufer A, Parsons M. Enigmatic presence of
734 mitochondrial complex I in *Trypanosoma brucei* bloodstream forms. *Eukaryot Cell.* 2011;44:
735 183–193. doi:10.1128/EC.05282-11

736 49. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, et al. Genome sequence of the
737 human malaria parasite *Plasmodium falciparum*. *Nature*. 2002;419. doi:10.1038/nature01097

738 50. Verner Z, Čermáková P, Škodová I, Kriegová E, Horváth A, Lukeš J. Complex i (NADH:ubiquinone
739 oxidoreductase) is active in but non-essential for procyclic *Trypanosoma brucei*. *Mol Biochem
740 Parasitol*. 2011;175: 196–200. doi:10.1016/j.molbiopara.2010.11.003

741 51. Trinconi CT, Miguel DC, Silber AM, Brown C, Mina JGM, Denny PW, et al. Tamoxifen inhibits the
742 biosynthesis of inositolphosphorylceramide in *Leishmania*. *Int J Parasitol Drugs Drug Resist*.
743 2018;8: 475–487. doi:10.1016/j.ijpddr.2018.10.007

744 52. Piñero TA, Landoni M, Duschak VG, Katzin AM, Couto AS. Effect of tamoxifen on the
745 sphingolipid biosynthetic pathway in the different intraerythrocytic stages of the apicomplexa
746 *Plasmodium falciparum*. *Biochem Biophys Res Commun*. 2018;497.
747 doi:10.1016/j.bbrc.2018.02.183

748 53. Landoni M, Piñero T, Soprano LL, Garcia-Bournissen F, Fichera L, Esteva MI, et al. Tamoxifen
749 acts on *Trypanosoma cruzi* sphingolipid pathway triggering an apoptotic death process.
750 *Biochem Biophys Res Commun*. 2019;516: 934–940. doi:10.1016/j.bbrc.2019.06.149

751 54. Johnson JD, Dennull RA, Gerena L, Lopez-Sanchez M, Roncal NE, Waters NC. Assessment and
752 continued validation of the malaria SYBR Green I-based fluorescence assay for use in malaria
753 drug screening. *Antimicrob Agents Chemother*. 2007;51: 1926–1933. doi:10.1128/AAC.01607-
754 06

755 55. Hierro-Yap C, Šubrtová K, Gahura O, Panicucci B, Dewar C, Chinopoulos C, et al. Bioenergetic
756 consequences of FoF1-ATP synthase/ATPase deficiency in two life cycle stages of *Trypanosoma
757 brucei*. *J Biol Chem*. 2021; 100357. doi:10.1016/j.jbc.2021.100357

758 56. Mach J, Bílá J, Ženíšková K, Arbon D, Malych R, Glavanaková M, et al. Iron economy in
759 *Naegleria gruberi* reflects its metabolic flexibility. *Int J Parasitol*. 2018;48: 719–727.
760 doi:10.1016/j.ijpara.2018.03.005

761 57. Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, et al. TriTrypDB: A

762 functional genomic resource for the Trypanosomatidae. *Nucleic Acids Res.* 2009;38: 457–462.

763 doi:10.1093/nar/gkp851

764 58. Clinical and Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution

765 Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard - CLSI document

766 M38-A2. Clinical and Laboratory Standards Institute (CLSI). 2008. p. 52.

767 59. Bateman A, Martin MJ, Orchard S, Magrane M, Agivetova R, Ahmad S, et al. UniProt: The

768 universal protein knowledgebase in 2021. *Nucleic Acids Res.* 2021;49.

769 doi:10.1093/nar/gkaa1100

770 60. Šubrtová K, Panicucci B, Zíková A. ATPaseTb2, a Unique Membrane-bound FoF1-ATPase

771 Component, Is Essential in Bloodstream and Dyskinetoplastic Trypanosomes. *PLoS Pathog.*

772 2015;11. doi:10.1371/journal.ppat.1004660

773 61. Gnipová A, Šubrtová K, Panicucci B, Horváth A, Lukeš J, Zíková A. The ADP/ATP carrier and its

774 relationship to oxidative phosphorylation in ancestral protist *trypanosoma brucei*. *Eukaryot*

775 *Cell.* 2015;14: 297–310. doi:10.1128/EC.00238-14

776 62. Šmíd O, Horáková E, Vilímová V, Hrdý I, Cammack R, Horváth A, et al. Knock-downs of iron-

777 sulfur cluster assembly proteins IscS and IscU down-regulate the active mitochondrion of

778 procyclic *Trypanosoma brucei*. *J Biol Chem.* 2006;281: 28679–86.

779 doi:10.1074/jbc.M513781200

780 63. Opperdoes FR, Markoš A, Steiger RF. Localization of malate dehydrogenase, adenylate kinase

781 and glycolytic enzymes in glycosomes and the threonine pathway in the mitochondrion of

782 cultured procyclic trypomastigotes of *Trypanosoma brucei*. *Mol Biochem Parasitol.* 1981;4:

783 291–309. doi:10.1016/0166-6851(81)90062-1

785 **Acknowledgment:**

786 The project was supported by the Czech Science Foundation (20-28072S) to RS and 20-14409S to AZ, CePaViP
787 provided by The European Regional Development Fund and Ministry of Education, Youth and Sports of the Czech
788 Republic (reg. no. CZ.02.1.01/0.0/0.0/16_019/0000759) to RS, PV, MZ and AZ, Grant Agency of Charles University
789 (406722) to DA and Fundação para a Ciência e Tecnologia (FCT, Portugal)—PD/BD/128002/2016 for providing
790 funds to MM. We thank to Karel Harant and Pavel Talacko from the Laboratory of Mass Spectrometry, Biocev,
791 Charles University, Faculty of Science, where proteomic and mass spectrometric analysis had been done.

792

793 **Figure legends:**

794 **Figure 1: MitoTam is effective against *T. brucei* and *L. mexicana* parasites in mouse infection models.**

795 **A)** Survival rate of BALB/c mice infected with *T. brucei* was monitored daily for 13 days. Half of the
796 infected mice were injected IV with MitoTam (+MitoTam) on days 3 and 5 (dashed lines) post-infection
797 (3 mg/kg bw). The number of surviving mice from MitoTam treated group (red line) as well as from
798 untreated control group (-MitoTam) (blue line) is plotted against the time (in days).

799 **B)** Parasitemia in BALB/c mice infected with *T. brucei* was evaluated microscopically from blood
800 smears. On day 2 and 4 post-infection (dashed lines), eight mice were IV injected with MitoTam (3
801 mg/kg) (+MitoTam). The ratio of *T. brucei* cells to red blood cells (RBC) was calculated daily and used
802 to quantify the parasitemia levels of each animal from the MitoTam treated group (red line) and the
803 respective untreated control group (-MitoTam) (blue line). Statistically significant differences between
804 the two groups are indicated with an asterisk (unpaired t-test, * p < 0.05).

805 **C)** Formation of dermal lesions in twenty BALB/c mice was followed for 12 weeks after infection with
806 *L. mexicana*. As indicated (dashed lines), half of the infected animals were injected IP with MitoTam
807 (+MitoTam) at 1, 2, 3, 5, 6 and 7 weeks post-infection. The appearance of lesions was monitored

808 (+MitoTam, red) and compared to the number of lesions of animals from the untreated control group
809 (-MitoTam, blue).

810 **D)** Size of dermal lesions was recorded in ten BALB/c mice infected with *L. mexicana*. Five of the
811 infected animals were treated with MitoTam (+MitoTam) at weeks 2 and 4 post-infection as indicated
812 (dashed lines). Throughout the course of the infection, the lesion areas of each animal were measured
813 weekly. The values were averaged for the MitoTam treated group (+MitoTam, in red) and untreated
814 control group (-MitoTam, in blue). Mean values and error bars representing the standard deviations
815 are shown, statistically significant differences are indicated with an asterisk (paired t-test, *p < 0.05).

816

817 **Figure 2: Global proteome changes upon MitoTam exposure.**

818 Shown are volcano plots of the *t*-test difference from label-free quantification from triplicate
819 experiments, plotted against the respective $-\log_{10}$ -transformed *p* values. Untreated control cells were
820 compared to cells treated with MitoTam for *C. albicans* (A) or BSF *T. brucei* (B). **A)** Highlighted points
821 are *C. albicans* significantly upregulated efflux pumps (red dots): P78595 - Multidrug resistance protein
822 CDR2; Q5ANA3 - Pleiotropic ABC efflux transporter of multiple drugs CDR1. **B)** *T. brucei* mitochondrial
823 proteins are in red. **C)** Western blot analyses of whole-cell lysates harvested from BSF *T. brucei* cells
824 treated with 100 nM MitoTam for 0-24 hours as indicated. Equal amounts of total protein were loaded
825 in each lane. A Coomassie stained gel was used as a control for equal loading. The immunoblots were
826 probed with antibodies against cytosolic pyruvate kinase (PYK) and adenine
827 phosphoribosyltransferase (APRT) and mitochondrial heat shock protein 70 (HSP70), proteins
828 associated with the outer mitochondrial membrane (VDAC), inner mitochondrial membrane (AOX,
829 AAC), and subunits of the F_0F_1 -ATP synthase (β , p18, OSCP, Tb1, Tb2). The relevant masses of the
830 protein molecular weight are indicated.

831

832 **Figure 3: MitoTam affects *T. brucei* viability and alters the mitochondrial function of bloodstream *T.***

833 ***brucei* cells.**

834 **A)** Growth curve of BSF *T. brucei* cultures was evaluated in unstained cells by flow cytometry.

835 Untreated control BSF cells (0 nM MT, blue) were compared with cells incubated with 40 nM MitoTam

836 (40 nM MT, orange) and 100 nM MitoTam (100 nM MT, red). Statistically significant differences are

837 indicated with an asterisk (paired t-test, *p < 0.05, **p < 0.01, ***p < 0.001) (mean ± s.d., n=3).

838 **B)** Staining with the cell impermeant nucleic acid dye Sytox was used to distinguish viable (Sytox

839 negative) and dead (Sytox positive) BSF *T. brucei* cells. Concentrations of Sytox negative, live cells are

840 plotted. Untreated control cultures (0 nM MT, blue) were compared with cultures incubated in the

841 presence of 40nM MitoTam (40 nM MT, orange) and 100 nM MitoTam (100 nM MT, red) (paired t-

842 test, *p < 0.05, **p < 0.01, ***p < 0.001) (mean ± s.d., n=3).

843

844 **Figure 4: Overall effect of MitoTam on the *T. brucei* cell.**

845 **A)** Production of intracellular ROS in BSF *T. brucei* was quantified by flow cytometry using DCFH-DA

846 detection reagent in untreated control cells (-MT, blue) and cells treated with 100 nM MitoTam for 16

847 hours (+MT 16 h, red) (mean ± s.d., n = 3, **p < 0.01).

848 **B)** The O₂ flux per cell using high-resolution respirometry after addition of glycerol-3-phosphate was

849 determined in BSF *T. brucei* untreated control cells (-MT, blue) and BSF cells treated with 100nM

850 MitoTam for 16 hours (+MT 16 h, red) and 24 hours (+MT 24 h, red) (mean ± s.d., n = 3, **p < 0.01).

851 **C)** Relative ADP/ATP ratio analyzed using a bioluminescence assay kit in BSF *T. brucei* untreated control

852 cells (-MT, blue) and BSF cells treated with 100 nM MitoTam for 16 hours (+MT 16 h, red) and 24 hours

853 (+MT 24 h, red) (mean ± s.d., n = 3, ***p < 0.001, ****p < 0.0001).

854 **D)** Cytosolic and mitochondrial ATP levels were assessed in transgenic BSF *T. brucei* cell lines

855 expressing firefly luciferase. Untreated control cells (-MT, blue) were compared with cells treated with

856 100 nM MitoTam for 16 hours (+MT 16 h, red) and 24 hours (+MT 24 h, red). Data were normalized to
857 the values of the untreated control cells and expressed as a percentage (mean \pm s.d., $n = 4$).

858 **E)** Total cellular ATP levels in BSF *T. brucei* were determined using a bioluminescence assay kit. Data
859 from cultures treated with MitoTam for 16 hours (+MT 16 h, red) and 24 hours (+MT 24 h, red) were
860 normalized to the respective values of the untreated control cells (-MT, blue) and expressed in
861 percentage (mean \pm s.d., $n = 4$), ****p <0.0001).

862 **F)** Flow cytometry of TMRE stained cells was used to determine $\Delta\Psi_m$ of BSF *T. brucei*. Data from
863 cultures treated with 100 nM MitoTam for 16 hours (16 h +MT, red) and 24 hours (+MT 24 h, red)
864 were normalized to the respective values of the untreated control cells (-MT, blue) and expressed in
865 percentage. Uncoupler FCCP was added as a control for $\Delta\Psi_m$ depolarization (mean \pm s.d., $n = 6$,
866 ****p<0.0001).

867 **G)** *In situ* $\Delta\Psi_m$ was measured in digitonin-permeabilized BSF *T. brucei* cells stained with Safranin O dye.
868 Where indicated, the F_0F_1 -ATP synthase substrate – ATP, the F_0F_1 -ATP synthase inhibitor - oligomycin
869 (Olgm) and the protonophore SF6847 were added. Representative trace from the measurement of
870 untreated control cells (-MT, blue) in comparison with cells treated with 100nM MitoTam for 16 hours
871 (+MT 16 h, orange) and 24 hours (+MT 24 h, red) is shown.

872 **H)** Automated microscopic analysis of BSF *T. brucei* cells stained with Mitotracker Red CMX-ROS was
873 used to determine $\Delta\Psi_m$ in control untreated cells (0 μ M MT) and in cells treated with 1 μ M of MitoTam
874 for one hour (1 μ M MT). Staining with DAPI was used as an internal control for the analysis. Mean
875 signal intensities of Mitotracker Red CMX-ROS and DAPI are depicted on the y-axis (mean \pm s.d.,
876 ****p<0.0001).

877 **I)** *In situ* $\Delta\Psi_m$ was measured in digitonin-permeabilized BSF *T. brucei* cells stained with Safranin O dye.
878 Where indicated, the F_0F_1 -ATP synthase substrate – ATP, the F_0F_1 -ATP synthase inhibitor - oligomycin
879 (Olgm, green line) and MitoTam (1 μ M, red line) were added.

880 **J)** Red mitochondrial superoxide indicator MitoSOX was used to detect intramitochondrial ROS
881 production in untreated BSF *T. brucei* control cells (-MT, blue) and BSF cells treated with 100 nM
882 MitoTam for 16 hours (+MT 16 h, red) and 24 hours. Data were normalized to the values of the
883 untreated control cells and expressed as a percentage (+MT 24 h, red) (mean \pm s.d., $n = 6$, ****p
884 <0.0001).

885 **K)** Integrity of the inner BSF *T. brucei* mitochondrial membrane was assessed in isolated mitochondria
886 incubated with increasing concentration of MitoTam. The mitochondrial enzyme threonine
887 dehydrogenase (TDH) was used as a marker for permeability of the membrane, as the TDH activity is
888 detectable only if a substrate passes freely through compromised mitochondrial membrane (mean \pm
889 s.d., $n = 3$).

890

891 **Supplementary data:**

892 **Table S1: Table of screened pathogens summarizing their impact on global health.**

893

894 **Table S2: *C. albicans* proteomic analysis after 12 h of MitoTam exposure.**

895 Proteome comparison of *C. albicans* cultivated in the presence of 4.4 μ M MitoTam for 12 h and
896 untreated culture. The table is organized in four sheets: All detected proteins, Downregulated in
897 MitoTam, Upregulated in MitoTam and Raw data. The first three sheets are showing fold-abundance
898 change only for clarity. Upregulated and downregulated proteins were filtered by >2-fold change.
899 Proteins were identified and, where applicable, subcellular localization was annotated based on
900 Uniprot [59].

901

902 **Table S3: *T. brucei* proteomic analysis after 14h of MitoTam exposure.**

903 Proteome comparison of *T. brucei* cultivated in the presence of 100 nM MitoTam for 14 h and
904 untreated culture. Table is organized in four sheets: All detected proteins, Downregulated in MitoTam,
905 Upregulated in MitoTam and Raw data. The first three sheets are simplified to demonstrate fold-
906 abundance change only for clarity. Upregulated and downregulated proteins were filtered by >2-fold
907 change. Where applicable, manual annotation and localization prediction was based on the *T. brucei*
908 927 mitochondrial proteome [44].

909

910 **Table S4: Summary of culture conditions and viability assays for all organisms used in this study.**

911

912 **Figure S1: *Leishmania* sensitivity towards MitoTam evaluated by the intramacrophage assay.**

913 Murine macrophage cell culture J774A.1 was infected with amastigotes of *L. major* (pink line) or *L.*
914 *infantum* (brown line) and incubated with increasing concentration of MitoTam as indicated on the x-
915 axis. Uninfected macrophages (green line) were included as a control.

916

917 **Figure S2: Survival analysis of BALB/c mice infected with *T. brucei*.**

918 Survival of infected mice was monitored daily for 8 days. As depicted (dashed lines) half of the infected
919 mice were injected with MitoTam (+MitoTam) on days 2 and 4 post-infection (3 mg/kg body weight).
920 Number of surviving mice from MitoTam treated group (red line) as well as from the untreated control
921 group (-MitoTam) (blue line) are depicted.

922

923 **Figure S3: MitoTam alters the mitochondrial function of bloodstream *T. brucei*.**

924 Cells were incubated with 40 nM of MitoTam for 16 and 24 hours and their mitochondrial parameters
925 were assayed as for 100 nM MitoTam.

926 **A)** The O_2 flux per cell using high-resolution respirometry after addition of glycerol-3-phosphate was
927 determined in BSF *T. brucei* untreated control cells (-MT, blue) and BSF cells treated with 40 nM
928 MitoTam for 16 hours (+MT 16 h, red) and 24 hours (+MT 24 h, red) (mean \pm s.d., $n = 3$, ** $p < 0.01$,
929 *** $p < 0.001$).

930 **B)** Relative ADP/ATP ratio analyzed using a bioluminescence assay kit in BSF *T. brucei* untreated control
931 cells (-MT, blue) and BSF cells treated with 40 nM MitoTam for 16 hours (+MT 16 h, red) and 24 hours
932 (+MT 24 h, red) (mean \pm s.d., $n = 3$).

933 **C)** Cytosolic and mitochondrial ATP levels were assessed in transgenic BSF *T. brucei* cell lines expressing
934 firefly luciferase. Results of untreated control cells (-MT, blue) were compared with results of cultures
935 treated with 40 nM MitoTam for 16 hours (+MT 16 h, red) and 24 hours (+MT 24 h, red). Data were
936 normalized to the respective values of the untreated control cells and expressed as a percentage
937 (mean \pm s.d., $n = 4$).

938 **D)** Total cellular ATP levels in BSF *T. brucei* were determined using a bioluminescence assay kit. Data
939 from cultures treated with MitoTam for 16 hours (+MT 16 h, red) and 24 hours (+MT 24 h, red) were
940 normalized to the values of the untreated control cells (-MT, blue) and expressed in percentage (mean
941 \pm s.d., $n = 4$).

942 **E)** Flow cytometry of TMRE stained cells was used to determine $\Delta\Psi_m$ of BSF *T. brucei*. Data from
943 cultures treated with 40 nM MitoTam for 16 hours (16 h +MT, red) and 24 hours (+MT 24 h, red) were
944 normalized to the values of the untreated control cells (-MT, blue) and expressed in percentage.
945 Uncoupler FCCP was added as a control for $\Delta\Psi_m$ depolarization (mean \pm s.d., $n = 6$, **** $P < 0.0001$).

946 **F)** *In situ* $\Delta\Psi_m$ was measured in digitonin-permeabilized BSF *T. brucei* cells stained with Safranin O dye.
947 Where indicated, the F_0F_1 -ATP synthase substrate – ATP, the F_0F_1 -ATP synthase inhibitor - oligomycin
948 (Olgm) and the protonophore SF6847 were added. Representative traces from measurement of

949 untreated control cells (-MT, blue) in comparison with cells treated with 40 nM MitoTam for 16 hours

950 (+MT 16 h, orange) and 24 hours (+MT 24 h, red) are shown.

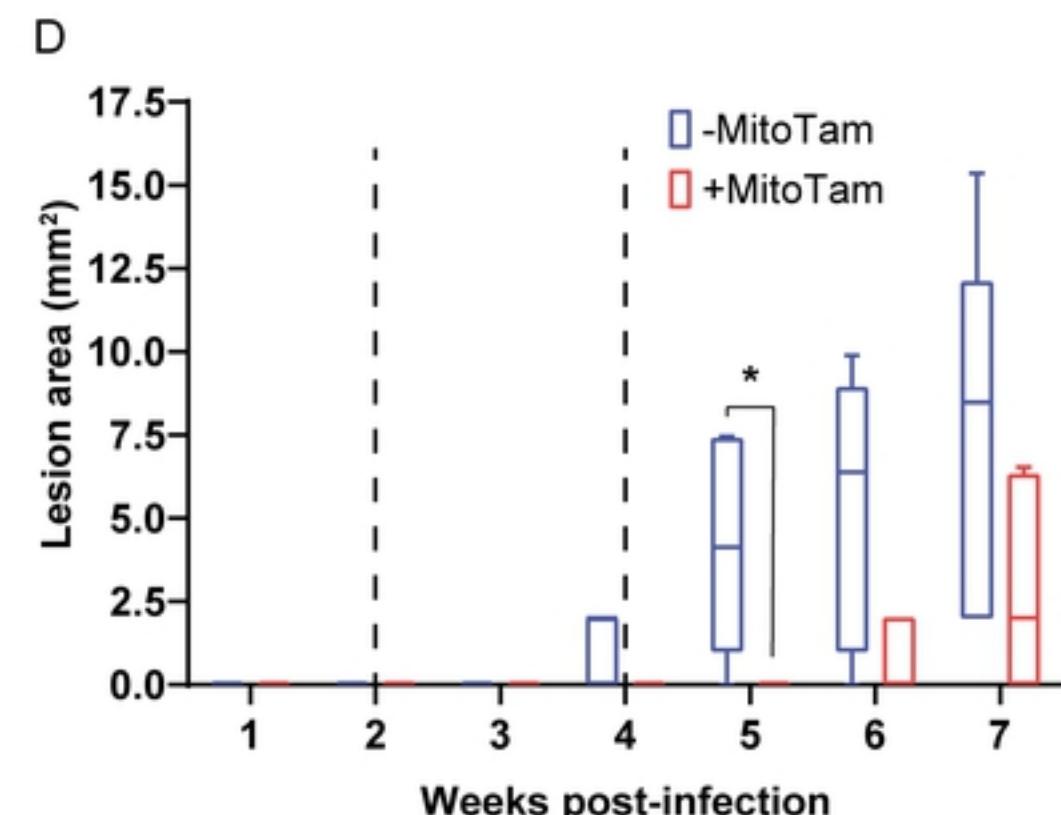
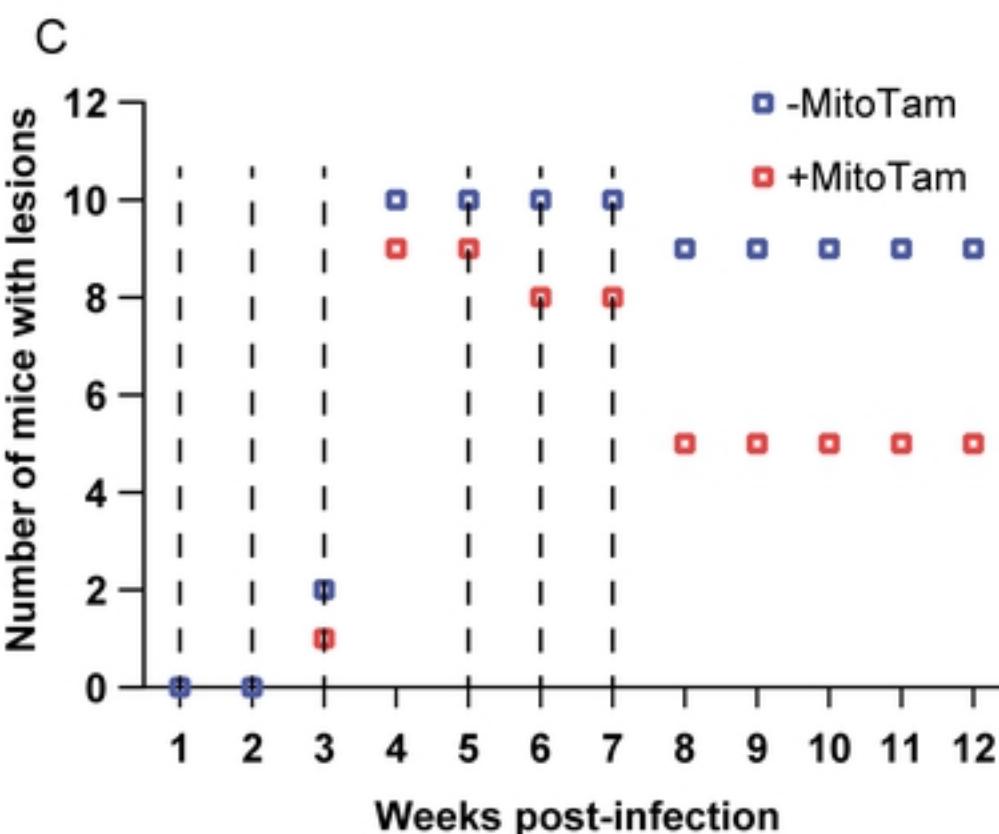
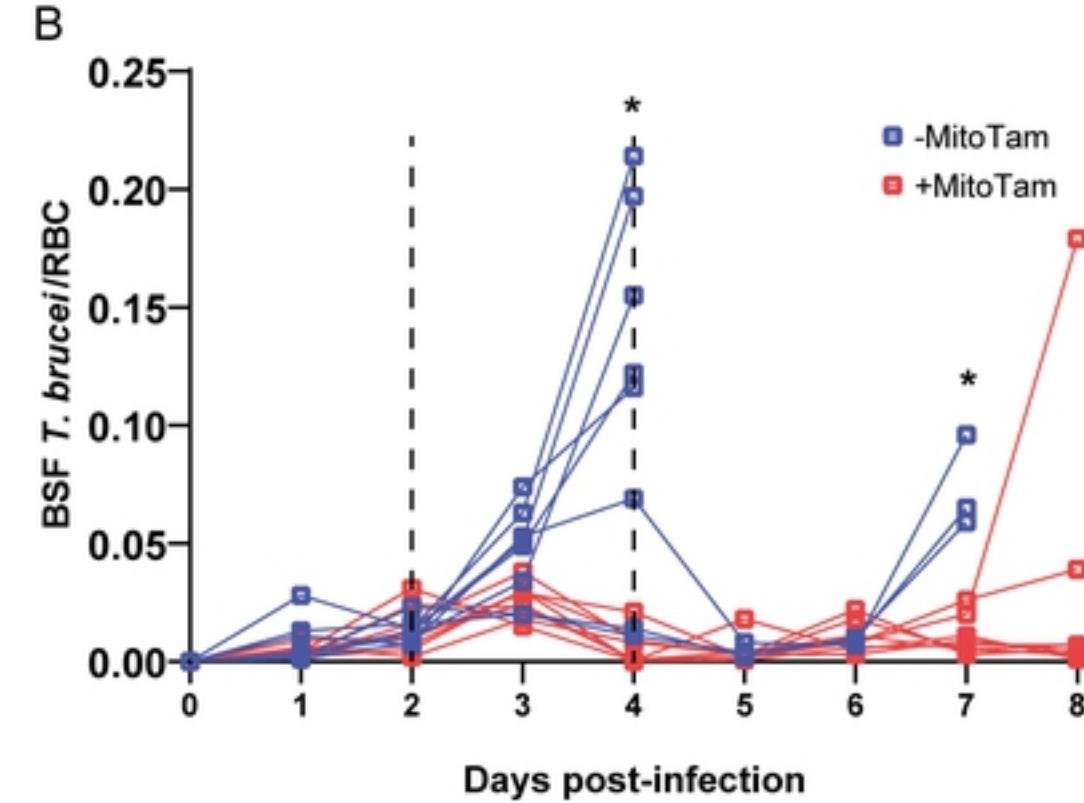
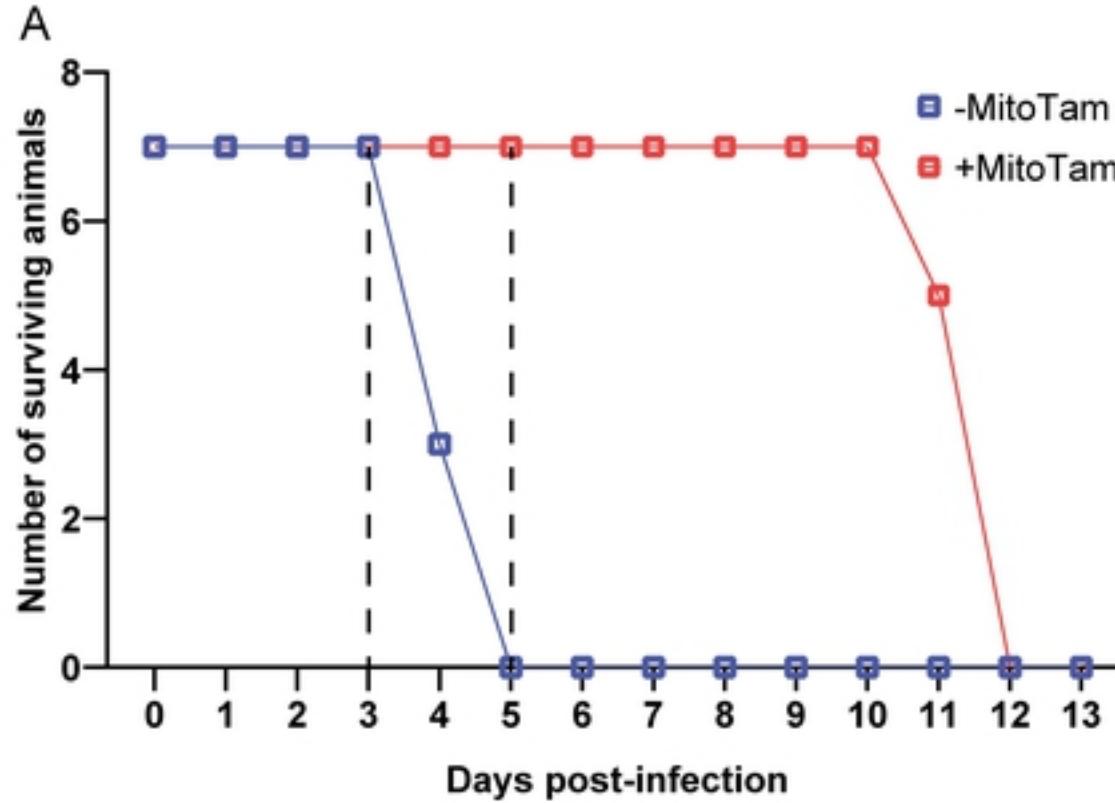
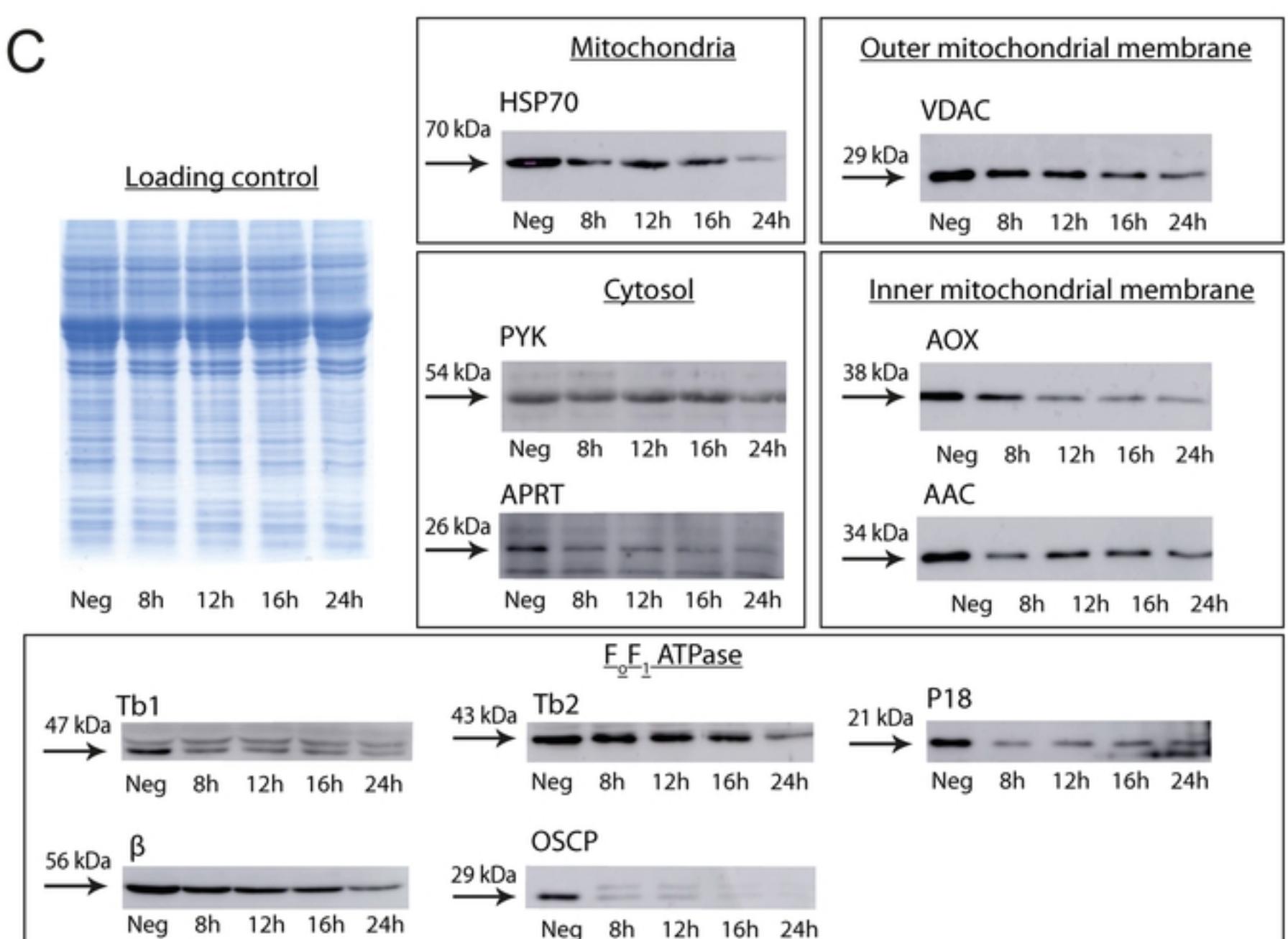
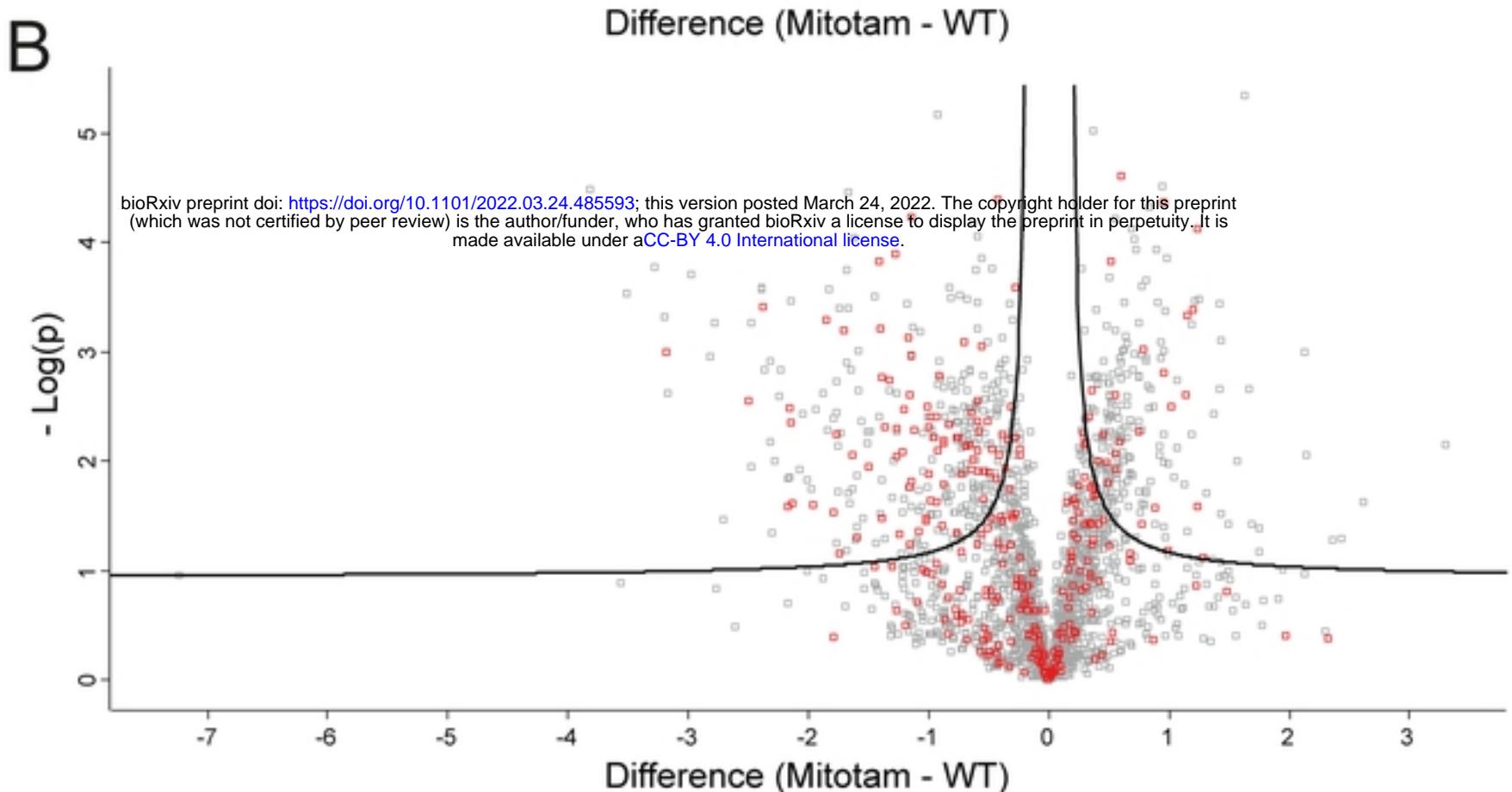








Fig. 1

Fig. 2

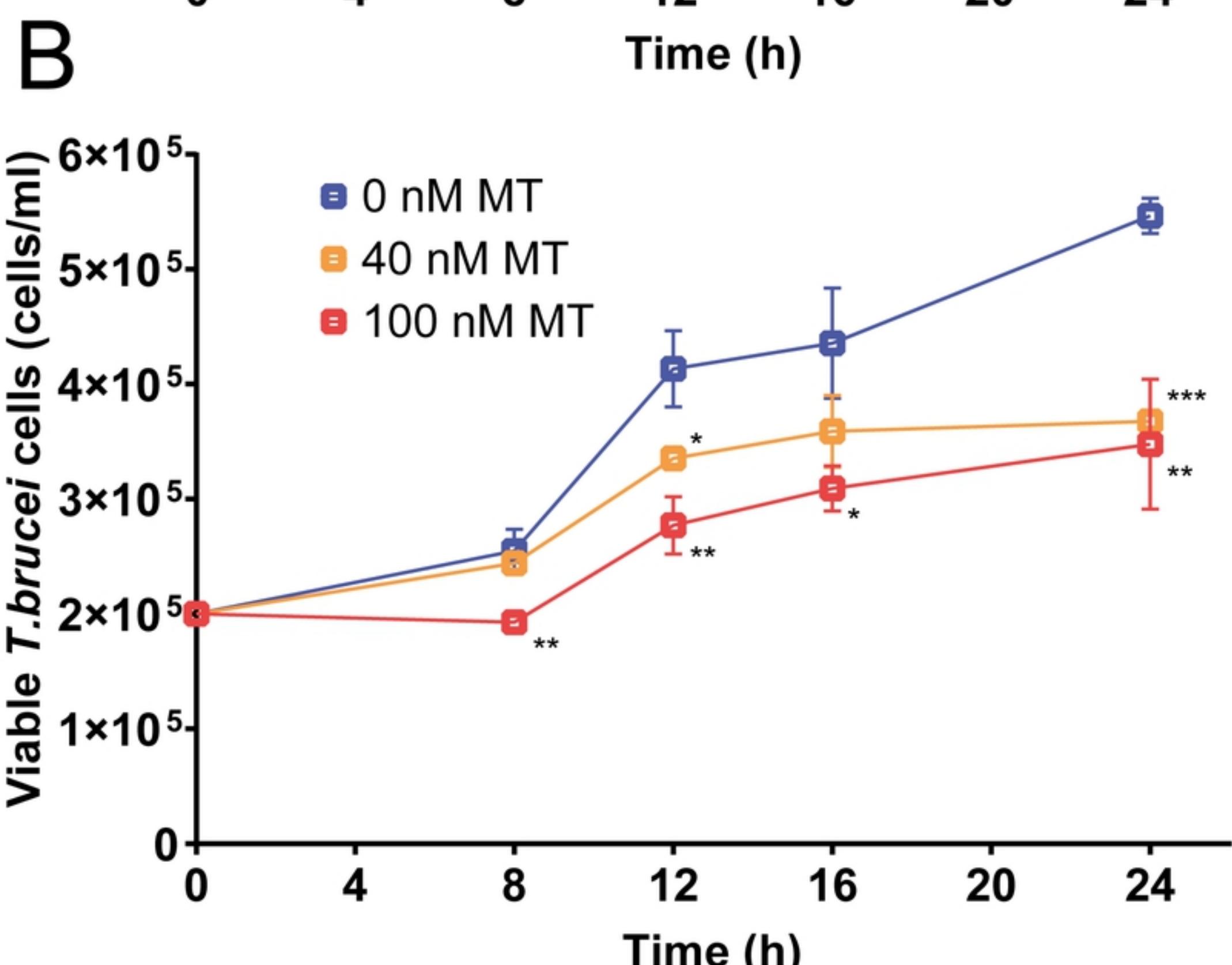
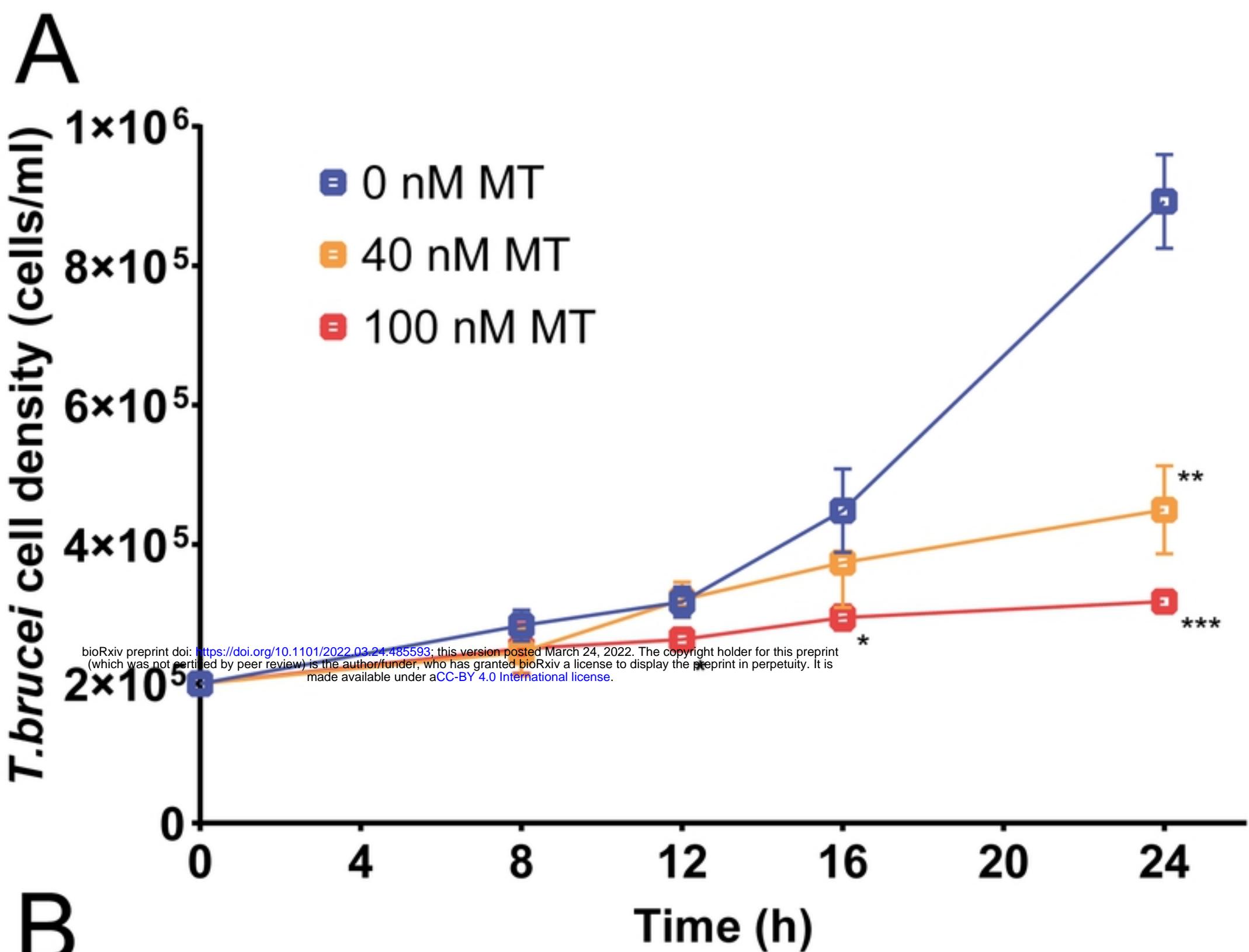
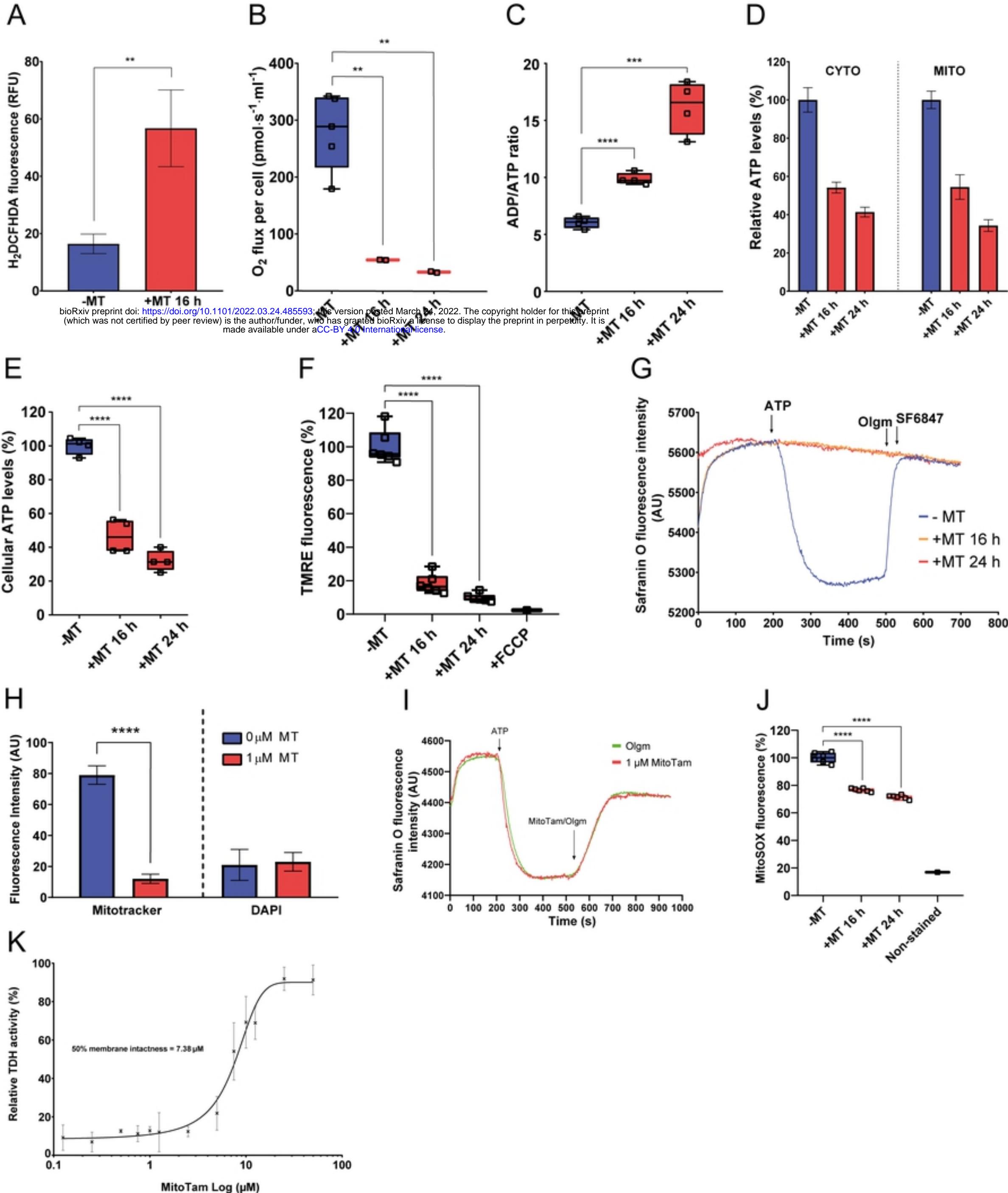




Fig. 3

