

Urinary F plasmids reduce permissivity to coliphage infection

Cesar Montelongo Hernandez¹, Catherine Putonti^{2,3}, Alan J. Wolfe¹

3

4 ¹Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago,
5 Maywood, IL 60153 USA

6 ²Bioinformatics Program, Loyola University Chicago, Chicago, IL 60660 USA

7 ³Department of Biology, Loyola University Chicago, Chicago, IL 60660 USA

9 **Corresponding Author:** Alan J Wolfe, PhD, Department of Microbiology and Immunology, Stritch School
10 of Medicine, Loyola University Chicago, Maywood, IL 60089 USA, awolfe@luc.edu
11

11

12 **Keywords: bacteriophages, plasmids, urinary tract, microbiota, drug resistance, microbial**

13

14 Running Title: Urinary F plasmids reduce permissivity to coliphage infection

15

16 **Conflict of Interest**

17 Dr. Wolfe discloses membership on the advisory boards of Urobiome Therapeutics and Pathnostics. He
18 also discloses research support from Pathnostics. The remaining authors (Montolongo Hernandez and
19 Putonti) report no disclosures.

20 **Funding**

21 The authors gratefully acknowledge funding by NIH/NIDDK award number R01 DK10718 (AJW).

22 **Abstract (228 words)**

23 The microbial community of the urinary tract (urinary microbiota or urobiota) has been
24 associated with human health. Bacteriophages (phages) and plasmids present in the urinary tract, like in
25 other niches, may shape urinary bacteria dynamics. While urinary *E. coli*, often associated with urinary
26 tract infection (UTI), and their phages have been catalogued for the urobiome, the dynamics of their
27 interactions have yet to be explored. In this study, we characterized urinary *E. coli* F plasmids and their
28 ability to decrease permissivity to *E. coli* phage (coliphage) infection. Putative F plasmids were present in
29 47 of 67 urinary *E. coli* isolates, and most of these plasmids carry genes that encode for toxin-antitoxin
30 (TA) modules, antibiotic resistance, and/or virulence. Two urinary *E. coli* F plasmids, from urinary
31 microbiota (UMB) 0928 and 1284, were conjugated into *E. coli* K-12 strains; plasmids included genes for
32 antibiotic resistance and virulence. These plasmids, pU0928 and pU1284, decreased permissivity to
33 coliphage infection by the laboratory phage P1vir and the urinary phages Greed and Lust. Furthermore,
34 pU0928 could be maintained in *E. coli* K-12 for up to ten days in the absence of antibiotic resistance
35 selection; this included maintenance of the antibiotic resistance phenotype and decreased permissivity
36 to phage. Finally, we discuss how F plasmids present in urinary *E. coli* could play a role in coliphage
37 dynamics and maintenance of antibiotic resistance in urinary *E. coli*.

38 **Importance (135 words)**

39 The microbial community of the urinary tract (urinary microbiota or urobiota) has been associated with
40 human health. Bacteriophages (phages) and plasmids present in the urinary tract, like in other niches,
41 may shape urinary bacteria dynamics. While urinary *E. coli*, often associated with urinary tract infection,
42 and their phages have been catalogued for the urobiome, the dynamics of their interactions have yet to
43 be explored. In this study, we characterized urinary *E. coli* F plasmids and their ability to decrease
44 permissivity to *E. coli* phage (coliphage) infection. Two urinary *E. coli* F plasmids, each encoding
45 antibiotic resistance and transferred by conjugation into naïve laboratory *E. coli* K-12 strains decreased

46 permissivity to coliphage infection. We propose a model by which F plasmids present in urinary *E. coli*
47 could help to maintain antibiotic resistance of urinary *E. coli*.

48 **Background (4901 words)**

49 The urinary tract is not sterile. It contains microbiota, including bacteria, eukaryotic viruses,
50 fungi, archaea, and bacteriophages^{1,2}. The presence and proportion of specific bacteria in the urinary
51 microbiota (urobiota) are linked to asymptomatic and symptomatic urinary conditions^{1,3}. Phages are key
52 influencers of bacterial communities and, by extension, of human health^{4–6}. Urinary phages are rich and
53 diverse, both free-living and as prophages^{7,8}. As in other anatomical sites, urinary phage likely impact
54 urobiota populations by influencing population structure, genetic exchange, and bacterial metabolism^{4,9–}
55 ¹¹. In contrast, a bacterium may modulate a phage's life cycle via traits encoded by its chromosome or by
56 mobile genetic elements (MGE), such as plasmids^{12–15}.

57 Plasmids can influence phage-bacteria dynamics by transmitting traits vertically and horizontally
58 in bacterial populations^{16–18}. For example, TraT can block both foreign plasmids and phage
59 invasion^{16,19,20}. Toxin-Antitoxin (TA) systems make plasmid loss and, by extension the antitoxin, lethal to
60 the host; yet, TA modules can also antagonize phage life cycles^{17,21,22}. In contrast, phage may target
61 plasmid components, such as the conjugal apparatus plasmids use to transfer copies of themselves^{23–25}.
62 This can cause plasmid loss and result in antibiotic sensitivity, as many plasmids carry antibiotic
63 resistance determinants^{25–28}. Bacteria-plasmid-phage interactions have been primarily studied in
64 laboratory settings and are yet to be thoroughly tested in complex communities. Bacteria-plasmid-
65 phage interactions are multifaceted and could be key to understanding the dynamics and evolution of
66 environmental microbial populations, such as the urobiota^{13,29,30}. A key unanswered question is whether
67 urinary plasmids and phage interact.

68 The best studied bacterium of the urinary tract is *E. coli*, often associated with urinary tract
69 infection (UTI)^{31,32}. Malki et al. isolated seven *E. coli* phages (coliphages) from urine collected via
70 catheterization from women with urge urinary incontinence³³. Two of these coliphages, Greed and Lust,

71 could infect and lyse *E. coli* strains⁸. Phage predation of *E. coli* in the urinary tract remains understudied,
72 including the role plasmids play in urinary bacteria-phage dynamics^{8,34-37}. Previously, we described
73 plasmids present in urinary *E. coli* isolates; most were F plasmids with genes for conjugation^{38,39}. F
74 plasmids are genetically heterogenous and easily transmissible plasmids with high clinical relevance as
75 they often carry genes encoding antibiotic resistance and virulence⁴⁰⁻⁴².

76 We hypothesized that urinary *E. coli* F plasmids could influence permissivity to phage infection;
77 we tested this hypothesis by monitoring lysis by coliphages P1vir, Greed, and Lust. P1vir is a laboratory
78 phage mutated to only enter the lytic cycle; Greed and Lust are urinary phages that lyse *E. coli*, including
79 some urinary strains^{8,33,34,43}. We found F plasmids in most of our urinary *E. coli* isolates; they often
80 carried genes associated with TA modules, antibiotic resistance, and/or virulence. We then transferred 2
81 urinary F plasmids from their native hosts to laboratory *E. coli* K-12 strains; both reduced permissivity to
82 infection by P1vir, Greed, and Lust. Both also transmitted antibiotic resistance and virulence genes. One,
83 pU0928, was stable in *E. coli* K-12 for ten days without plasmid selection. We propose that F plasmids
84 protect urinary *E. coli* from phage predation, maintaining antibiotic resistance in the population⁴⁴⁻⁴⁶.

85

86 **Methods**

87 **Plasmidic assembly, genomic and gene homology scan, and annotation**

88 We used urinary *E. coli* isolates and sequence read data previously published (BioProject
89 PRJNA316969)⁴⁷. Urinary isolates were previously recovered from urine samples obtained by
90 transurethral catheterization from adult women during several IRB-approved studies at Loyola
91 University Chicago (LU203986, LU205650, LU206449, LU206469, LU207102, and LU207152) and
92 University of California San Diego (170077AW). Raw sequencing reads were assembled using
93 plasmidspades.py of SPAdes v3.12 with k values of 55,77,99,127 and the only-assembler parameter^{48,49}.

94 Plasmidic assemblies were queried against the nr/nt database via NCBI (web) BLAST to assign contigs as
95 either plasmid or chromosome^{50,51}. Only contigs exhibiting sequence similarity to plasmids were
96 examined. A homology heatmap of plasmidic assemblies was generated using sourmash v4.0 with
97 parameters scaled=1000 and k=31⁵². For comparison, this included three urinary *Klebsiella pneumoniae*
98 plasmidic assemblies, which were processed as described above.

99 We catalogued the plasmidic assemblies via PlasmidFinder v2.1 using the Enterobacteriaceae
100 database with minimum thresholds of 95% identity and 60% minimum coverage⁵³. Given their *inc* gene
101 profile, we assigned plasmids as F plasmid (IncF group) or not (Non-IncF)^{41,54}. To identify known acquired
102 antibiotic resistance genes, we scanned the urinary plasmidic assemblies with ResFinder v4.1 using the
103 “acquired antimicrobial resistance genes” option and *Escherichia coli* species database⁵⁵. To identify
104 known virulence genes, the urinary plasmidic assemblies were scanned with VirulenceFinder v2.0 using
105 the *Escherichia coli* species database, with identity threshold of 90% and minimum sequence length
106 60%⁵⁶. Urinary plasmidic assemblies were annotated using Prokka v1.14.5 and sorted by length via the
107 sortbyname.sh script from bbmap^{57,58}. Amino acid ORFs were clustered by homology using USEARCH
108 v.11.0 with -cluster-fast -id 0.8 -clusters parameters⁵⁹.

109 **Urinary plasmid conjugation and phenotype testing**

110 Native antibiotic resistance cassettes were identified via ResFinder as described above. To
111 validate predictions, urinary *E. coli* isolates were struck onto lysogeny broth (LB) plates supplemented
112 with antibiotics: Ampicillin (Amp, 100 µg/ml), Chloramphenicol (Cam, 25 µg/ml), Kanamycin (Kan, 40
113 µg/ml), Spectinomycin (Spec, 100 µg/ml), or Tetracycline (Tet, 15 µg/ml). Both urinary and laboratory *E.*
114 *coli* isolates were incubated overnight at 37°C.

115 To test urinary plasmid effects on phage infection permissiveness, conjugal plasmids from
116 urinary *E. coli* isolates were transferred to derivatives of *E. coli* K-12 strain MG1655 using as

117 described^{39,60-62}. These recipients included MG1655 transformed with multicopy plasmid pCA24n,
118 encoding chloramphenicol resistance⁶¹⁻⁶³. Other recipients were MG1655 with deletions of genes *yfiQ*
119 and/or *cobB* marked by a resistance cassette. These genes are related to protein acetylation but exert
120 no phenotype under growth conditions tested. pCA24n-*yfiQ* was purified from the ASKA collection⁶³.

121 The lytic phages P1vir, Greed, and Lust were described previously^{33,34}. We titered them with the
122 full plate titer technique⁶⁴ and tested permissibility of *E. coli* isolates with the following phage spot
123 titration assay. Briefly, *E. coli* transconjugants and controls were struck from frozen stocks onto selective
124 plates and incubated overnight at 37°C. Single colonies were inoculated into 5 ml LB with appropriate
125 selection and aerated overnight at 37°C. From each overnight culture, 100 μ l was transferred to 5 ml of
126 LB liquid with the appropriate antibiotic and aerated at 37°C until early exponential phase (OD₆₆₀~0.4,
127 ~3x10⁸ colony forming unit (CFU)/ml). From each subculture, 200 μ l were transferred to a tube with
128 0.7% agar LB media preheated to 52°C, immediately mixed and plated onto an 1.5% agar LB plate. Plates
129 cooled for 10 minutes and spotted with 10 μ l of each phage as a 1:10 serial dilution in LB with a starting
130 concentration of 10¹⁰ particle forming unit (PFU)/ml and a final concentration of 10² PFU/ml. Phage
131 spots dried for 20 minutes and plates incubated overnight at 37°C. The following day, the lowest
132 titration that resulted in clearance was noted; an integer was given to each titration based on the
133 number of dilutions it was removed from the starting concentration (the lowest titration being one
134 dilution at 10⁹ PFU/ml and the highest being eight dilutions at 10² PFU/ml). A control plate consisted of
135 an MG1655-derivative lawn (200 μ l of ~3x10⁸ cfu/ml) spotted with P1vir, Greed, Lust (10 μ l of 10¹⁰
136 PFU/ml) plus the negative controls (10 μ l of LB; 10 μ l of temperate phage Lambda).

137 To further assess the effect of urinary plasmids on phage permissiveness of the transconjugants,
138 growth curves were performed. Transconjugants and controls were struck from frozen stocks on the
139 appropriate antibiotic plate and incubated overnight at 37°C. Single colonies inoculated 10 ml LB with
140 the appropriate antibiotic and aerated overnight at 37°C. From each overnight culture, 1 ml was

141 transferred to 25 ml of LB liquid in a 250 ml flask to obtain approximately the same cell density (OD₆₆₀
142 ~0.2); subcultures were aerated at 37°C until early exponential phase (OD₆₆₀ ~0.4). Each phage (P1vir,
143 Greed, Lust) was titrated and 0.5 ml added to the flask to achieve a multiplicity of infection (MOI) of 0.01
144 or 10.0, with a no phage control. Cultures were aerated at 37°C for 8 hours with OD₆₆₀ measured every
145 hour. Each treatment was repeated in triplicate.

146 To test antibiotic resistance after conjugation, the transconjugants (carrying pU0928, pU1284, or
147 pU1223), their urinary plasmid donor isolate, and naïve recipient were grown on antibiotic plates
148 (tetracycline, kanamycin, ampicillin, spectinomycin, chloramphenicol, LB control) as described above. To
149 test plasmid stability, urinary isolate UMB0928, MG1655 pCA24, MG1655 pCA24 pU0928 and MG1655
150 *yfiQ::cm* were aerated at 37°C in 5ml of liquid LB in the absence of antibiotic selection for plasmid
151 pU0928 for 10 days. Cultures were plated onto tetracycline (pU0928 selection marker) and LB plates in
152 triplicate daily, incubated at 37°C overnight and colonies counted. Plasmid stability was calculated as the
153 number of colonies on the tetracycline plate over the number colonies on the LB plate. A ratio of 1
154 indicates plasmid retention, while a ratio of 0 indicates plasmid loss. To assess phage permissivity after
155 incubation in the absence of selection, on day 1 and 10, the isolates were grown overnight to perform a
156 spot titration assay and struck onto antibiotic plates, as described above.

157 **Urinary plasmid extraction, sequencing, and analysis**

158 We extracted and sequenced the genomes from the transconjugants as described previously³⁸.
159 Plasmid analysis of the transconjugants was performed as described above. To assess gaps in plasmid
160 sequence coverage, raw sequencing reads were mapped to the curated plasmid assemblies via the
161 BBmap plugin in Geneious⁶⁵. The urinary plasmid sequences from the transconjugants (pU0928, pU1223,
162 and pU1284) were scanned for phage genetic content via PHAST and PHASTER using default settings^{66,67}.
163 Phage-like sequences predicted by PHAST and PHASTER were aligned to assess redundant sequences,
164 which were pruned. The phage-like sequences from pU0928, pU1223, and pU1284 were compared to

165 one another on overall sequence homology via sourmash⁵². The phage-like sequences from pU0928,
166 pU1223, and pU1284 were annotated using Prokka v1.14.5 and processed as outlined above⁵⁷. ORFs in
167 plasmids pU0928, pU1223, and pU1284 were clustered by homology using USEARCH v.11.0 with -
168 cluster-fast -id 0.8 -clusters parameters⁵⁹

169 **Data Availability.** Sequences will be made publicly available prior to publication.

170 **Results**

171 **Urinary *E. coli* plasmid sequence analysis**

172 From the 67 urinary *E. coli* genomic raw sequence reads, 57 contained putative plasmid
173 sequences (**Supplemental Table 1**). We aimed to identify urinary *E. coli* isolates likely to carry F plasmids
174 (even if the host carried other plasmids); therefore, plasmidic assemblies in each isolate were treated as
175 a singular plasmidic unit and analyzed for F plasmid content. All manually curated plasmidic assemblies
176 had homology to plasmid entries in the NCBI database (query coverage 71-100% with sequence identity
177 96-100%) (**Supplemental Table 1**). Homology of plasmidic assemblies was primarily to *E. coli* plasmid
178 entries but also to plasmids from other Enterobacteriaceae, including *Klebsiella*, *Shigella*, and
179 *Enterobacter*. Two plasmid assemblies shared homology with the plasmid in UPEC strain UTI89.

180 Plasmid assemblies were scanned for plasmid incompatibility genes (**Supplemental Table 2**).

181 Fifty-seven urinary *E. coli* isolates were predicted to carry *inc* genes organized into two groups: either
182 containing at least one *incF* gene (IncF group, n=47) or no *incF* genes (Non-IncF group, n=10)
183 (**Supplemental Table 2**). While non-*incF* genes were identified in plasmidic assemblies, the most
184 common incompatibility genes were from *incF*, which are associated with F plasmids (present in 68.7%
185 of all profiled urinary *E. coli* strains and in 82.5% of those predicted to carry plasmids). We compared the
186 overall sequence homology of the urinary plasmidic assemblies; the IncF group clustered into multiple
187 subgroups. Plasmidic assemblies of the incF group were predicted to possess a total of 2,060 unique

188 ORFs, while the Non-IncF group had a total of 895 unique ORFs. Only ~24% of all plasmid ORFs were
189 assigned a known function. The incF group had the highest count of distinct ORFs with assigned
190 function, including annotations for plasmid replication machinery, metal transport and resistance genes,
191 leukotoxin genes, multi-drug transporters, phage genes, and virulence regulators (data not shown).

192 Plasmidic assemblies were profiled for TA, antibiotic resistance, and virulence genes. Sixteen TA
193 genes were predicted via Prokka annotation in the IncF group plasmidic assemblies but none in the Non-
194 IncF group. Complete TA pairs were identified for *ccdB*, *isoAB*, *mazEF*, *parDE*, and *pemIK*; *ccdB* and
195 *pemIK* were the most frequent with some plasmidic assemblies having hits for both modules (**Figure 1a**).

196 The plasmidic assemblies were predicted to confer resistance to the following antibiotics:
197 aminoglycoside, fluoroquinolone, macrolide, streptomycin, sulfonamide, tetracycline, and trimethoprim
198 (**Figure 1b**). Some plasmidic assemblies were predicted to have no antibiotic resistance genes; in
199 contrast, four F plasmidic assemblies (from UMB0906, UMB0949, UMB3538, UMB5924) were predicted
200 to have seven antibiotic resistance genes (**Supplemental Figure 1a**). Many of the strains were able to
201 grow on one or more antibiotics (**Supplemental Figure 1b, 1c**). Thirty distinct virulence genes were
202 predicted in the plasmidic assemblies (**Figure 1c**), with *traT* (78.72%) and *senB* (53.19%) the most
203 common in the incF group. Non-IncF plasmidic assemblies had hits primarily to colicin-related virulence
204 genes (*ccl*, *celb*, *cib*, *cia*), which are signature genes of Colicin plasmids, although the plasmidic assembly
205 of the Non-IncF plasmidic assembly from UMB0731 had hits to *traT* and *senB*.

206 **Urinary plasmid transconjugant phenotype testing**

207 To obtain a visual reference for future assays, we spotted a lawn of *E. coli* K-12 (derivatives of
208 strain MG1655: MG1655 pCA24n-cm and MG1655 *ΔcobB yfiQ::cm*) with the lytic phages P1vir, Greed,
209 and Lust; for controls, we used the temperate phage Lambda and LB. P1vir, Greed, and Lust resulted in
210 cleared zones, while Lambda caused a turbid phenotype, and LB had no effect. We conjugated putative
211 F plasmids from urinary *E. coli* (UMB0928, UMB1091, UMB1223, UMB1284, UMB6721) to multiple

212 MG1655-derived strains, as described previously³⁹. We then tested the susceptibilities of urinary *E. coli*
213 and the transconjugants. The urinary plasmid donors were not permissive to the phage at any of the
214 titers tested (**Supplemental Table 3**). In contrast, the naïve recipients were susceptible at every titer
215 tested, including dilution by eight orders of magnitude to MOI $\sim 10^{-6}$ (10^2 PFU/mL, 10^8 CFU/ml). When
216 exposed to phage, phenotypes of transconjugants with either pU1091, pU1223, or pU6721 resembled
217 those of naïve parent. In contrast, transconjugants with either pU0928 or pU1284 were susceptible only
218 at the highest titers of P1vir, Greed, and Lust, but no observable clearing after 3-4 phage concentration
219 titrations (i.e., decreased permissivity to infection). Multiple MG1655 derivatives were tested as
220 recipients, with results consistent in all recipients tested. Given that pU0928 and pU1284 changed the
221 spot titration phenotype, we further tested these plasmids using pU1223 as the negative control.

222 Growth curves assessed the effect of the urinary plasmids on *E. coli* growth during phage
223 infection at MOIs of 0, 0.01, and 10.0 (**Figure 2a-c**). P1vir Infection of transconjugants with pU0928 and
224 pU1284 but not pU1223 resulted in comparable optical density to controls uninfected with phage at all
225 time points (**Figure 2a, Supplemental Figure 2a**). Greed infection at MOI 0.01 of pU0928 and pU1284
226 but not pU1223 transconjugants resulted in growth like the uninfected control (**Figure 2b, Supplemental**
227 **Figure 2b**). Increasing the MOI of Greed to 10.0 resulted in growth comparable to the recipient parents
228 without pU0928 or pU1284 infected at MOI 0.01. Lust infection of the pU0928 and pU1284
229 transconjugants gave results like P1vir at the MOI tested (**Figure 2c, Supplemental Figure 2c**). In
230 contrast, the pU1223 transconjugants had results comparable to the naïve recipients, indicating that
231 pU1223 does not change growth (**Figure 2a-c, Supplemental Figure 2a-c**).

232 Transconjugants exhibited growth on antibiotic plates like that of the respective donor parent
233 (**Supplemental Table 4**). The stability of pU0928 was tested by incubation for multiple days in LB
234 without the antibiotic that selects for the plasmid (i.e., tetracycline). After 10 days, growth on LB plates
235 was comparable to growth on LB + tetracycline plates (**Figure 2d**). Overnight cultures from days one and

236 ten were used to grow the bacteria on antibiotic plates and do a phage spot titration assay. Growth on
237 antibiotic plates and phage permissivity profiles did not differ between day one and day 10 (**Table 1**).

238 **Analysis of urinary plasmids in *E. coli* K-12 transconjugant**

239 Of the urinary plasmids tested thus far, pU0928 and pU1284 reduced permissivity to phage
240 infection; in contrast, pU1223 was one of the plasmids that did not change the infection phenotype
241 relative to naïve recipients. We sequenced the transconjugants and explored sequences of the plasmids
242 pU0928, pU1223, and pU1284; each was predicted to be ~100k bp (approximately the size of a typical F
243 plasmid), each had F plasmid *inc* genes, and each had sequence similarity (>45% query coverage and
244 >99% percent identity) to F plasmid entries in the NCBI database (**Table 2**). Plasmids pU0928, pU1223,
245 and pU1284 were predicted to have multiple antibiotic resistance genes, including tetracycline, which
246 had been used as a selection marker (**Table 2**). No large gaps were observed in the plasmid sequence
247 after mapping reads to the predicted plasmid sequence. Known gene functions were assigned to 39.05%
248 of ORFs in pU0928, 40.82% of ORFs in pU1284, and 42.18% of ORFs in pU1223. The names of distinct
249 ORFs were processed as a list for each plasmid. The plasmid sequences had ORFs annotated with
250 plasmid replication, conjugation, maintenance machinery, and virulence functions.

251 The anti-phage F plasmids pU0928 and pU1284 were reviewed for genes that may antagonize
252 phage infection and thus explain the change in phage infection phenotype (**Table 3**). Plasmid pU0928 is
253 predicted to carry the immunity (*imm*) gene characterized in phage T4 and involved in phage
254 superinfection exclusion^{68,69}. pU1284 is predicted to possess the gene *traT* reported to block phage
255 adsorption, although the phage-permissive plasmid pU1223 also had this gene^{16,19,20}. All three plasmids
256 carry the TA modules *pemIK* and *ccdAB*. However, we identified three predicted ORFs in phage-
257 nonpermissive plasmids pU0928 and pU1284 but not in the phage-permissive plasmid pU1223
258 sequence. We predicted these ORFs encode a phage integrase, a dihydrofolate reductase enzyme, and
259 an EAL cyclic di-GMP phosphodiesterase domain-containing protein. These ORFs were highly conserved

260 (>99% identity) between pU0928 and pU1284. The phage integrase ORF was highly conserved in 18 of
261 the urinary *E. coli* plasmidic assemblies, including the UMB0928 and UMB1284 ancestral strains
262 (**Supplemental Table 5**). All plasmid assemblies with this phage integrase were in the IncF group (38.3%
263 of IncF plasmidic assemblies); the majority had low permissivity to phage infection, and presence of the
264 phage integrase often co-occurred with the predicted dihydrofolate reductase or EAL cyclic di-GMP
265 phosphodiesterase domain-containing protein.

266 Given that phage integrases are associated with prophage, the plasmids pU0928, pU1223, and
267 pU1284 were scanned for other phage-like sequences (**Supplemental Table 6**). There were four distinct
268 putative phage-like sequences present in pU0928, three in pU1223, and one in pU1284 (**Supplemental**
269 **Figure 3**). The phage-like sequence regions pU0928_phaster_1, pU1223_phaster_1, pU1223_phast_3,
270 and pU1284_phast_1 had a score of >90, indicating high likelihood of being an intact phage. The anti-
271 phage pU0928 and phage-permissive pU1223 shared a predicted phage sequence (pU0928_phaster_1
272 and pU1223_phaster_1). The anti-phage pU0928 and pU1223 did not share phage-like sequences. Four
273 ORFs were shared between pU0928_phast_1 and pU1284_phast_1, including two transposases,
274 dihydrofolate reductase, and a phage integrase. The dihydrofolate reductase and phage integrase ORFs
275 were the same identified as shared by the plasmids pU0928 and pU1284. The urinary plasmids
276 previously predicted to contain this phage integrase were scanned for phage content via PHASTER.
277 Except for UMB3641, all urinary plasmids were predicted to contain at least one phage-like sequence,
278 with varying degrees of completeness, including those predicted to contain an intact phage (>90 score)
279 (**Supplemental Table 7**).

280

281 **Discussion**

282 Plasmids and phages are MGEs that impose distinct selective pressure on bacteria^{11,30,44,46}. We

283 understand more of the complexity of plasmid and phage dynamics, but less of the role that plasmids
284 may play in phage predation of *E. coli*, such as strains present in the urobiota^{13,29,46}. *E. coli* is the urinary
285 bacterial species most associated with UTI; its management can be difficult due to virulence factors and
286 antibiotic resistance, often encoded by plasmids^{31,41,70,71}. F plasmids are easily transmissible, persistent,
287 and often carry antibiotic resistance and virulence traits^{19,42,72}. Despite *E. coli* being the most studied of
288 bacterial species, only ~25% of plasmid ORFs in urinary F plasmids were annotated with a known
289 function^{38,72-74}. In characterizing urinary *E. coli* plasmids, we took special attention in profiling genes
290 involved in plasmid retention (i.e., TAs), antibiotic resistance, and virulence⁴¹.

291 IncF group plasmidic assemblies were predicted to have multiple antibiotic resistance genes and
292 grew on multiple types of antibiotics (**Figure 1b, Supplemental Figure 1a-c**). In a previous study, we
293 catalogued conjugation systems in urinary *E. coli* isolates, and we used this information to transfer F
294 plasmids from urinary strains (UMB0928, UMB1223, and UMB1284) to *E. coli* K-12 strain MG1655
295 derivatives (**Supplemental Table 4**)³⁹. Rather than modify the urinary plasmids, native antibiotic
296 resistance on urinary plasmids was exploited as a selection marker during experiments. For pU0928, its
297 multiple antibiotic resistances were stably maintained in MG1655 derivatives for ten days even in the
298 absence of selection (i.e., passaged on LB), potentially explained by the TA modules *pemIK* and *ccdBAB*
299 (**Figure 2d**)^{22,75,76}. TA modules, the most common being *mazEF* and *pemIK*, were present in urinary F
300 plasmids (**Figure 1a**). Virulence genes were also present in the IncF group in a higher proportion and
301 diversity relative to the Non-IncF group (**Figure 1c**). After conjugation of urinary plasmids into an
302 MG1655 derivative, multiple virulence genes were now detected in the transconjugants. Taken
303 together, these data show that urinary F plasmids not only code for antibiotic resistance and virulence
304 genes, but also that these genes can be transferred to a naïve strain and stably maintained potentially
305 due TA modules, a relevant factor for *E. coli* populations in the urinary tract^{22,77}. Following profiling
306 urinary F plasmids, the key unanswered question was how these interact with phage.

307 We showed evidence that two urinary F plasmids, pU0928 and pU1284, could decrease their
308 host's permissivity to phage infection (**Figure 2a-c, Supplemental Table 3, Supplemental Figure 2**) but
309 not provide immunity, as a high titer of phage (e.g., 10^{10} PFU/ml of P1vir, MOI 10^2 PFU/ml) could still
310 result in lysis, but not at lower titers. In contrast, the urinary *E. coli* used as plasmid donors were not
311 lysed even at the highest concentration of phage tested. This plasmid-borne protective effect was
312 observable not just in overnight transconjugant cultures but present even after passaging
313 transconjugants for ten days in the absence of plasmid selection (**Table 1**). These results included testing
314 with the lytic urinary phage Greed and Lust. While not thoroughly studied, phage titers in natural
315 environments have been estimated to be in 10^7 PFU/ml in soil samples and range from 10^2 - 10^5 PFU/ml
316 in marine samples⁷⁸⁻⁸⁰. Therefore, we can infer that in low biomass environments, such as the urinary
317 tract, these anti-phage plasmids could provide an edge to *E. coli* under phage predation⁸. Phage
318 predation could be a selective force for phage-protective plasmids in urinary bacteria^{13,14,45}. This
319 scenario is akin to antibiotic utilization in the presence of bacteria carrying resistance plasmids: bacteria
320 with plasmid-borne antibiotic resistance will survive, propagate, and thus increase the frequency of the
321 plasmid^{26,44,81}.

322 That stated, the mechanism by which the F plasmids protect urinary *E. coli* from phage
323 predation remains unknown. Given our results, we know that traits expressed by the urinary plasmid did
324 not confer immunity (i.e., zero permissivity to infection), but rather provides protection below a given
325 MOI. Rather than plasmids granting infection immunity, akin to a phage receptor mutation, our data
326 supports a stoichiometric relationship between the plasmid's mechanism and infecting phage particles
327 (**Figure 2a-c, Supplemental Table 3, Supplemental Figure 2**). In their study of bacteria-plasmid-phage
328 interactions, Harrison et al. posit that conditions that limit extinction may stabilize phage-bacteria co-
329 existence⁴⁶. In this scenario, a mechanism that reduces permissivity to infection may be more stable in
330 the long term than one that attempts infection immunity²⁹. In terms of mechanism, we must highlight

331 that phage permissivity was relatively comparable whether transconjugants were infected with P1vir,
332 Greed, or Lust. P1vir is a temperate *Myoviridae* phage (genus: Punavirus) modified to only undergo the
333 lytic life cycle; its structure consists of an icosahedral head connected to a tail with six tail fibers^{34,82,83}.
334 Greed and Lust are from the *Siphoviridae* family (genus: Seuratvirus) and related to the phages Seurat
335 and CAjan, but still genetically distinct from each other; both phages were noted on transmission
336 electron microscopy to have a head connected with a tail, with tail fibers predicted in their
337 genome^{33,34,84}. We hypothesize that the mechanism that decreases infection permissivity does not target
338 a factor exclusive to a single phage, but potentially a conserved mechanism in the three phages, perhaps
339 related to adsorption or the lytic pathway^{14,85,86}.

340 To better understand pU0928 and pU1284, we extracted the genetic content in the
341 transconjugants and analyzed the plasmid sequence (in addition to permissive pU1223). The three
342 urinary plasmids were dissimilar in overall sequence, outside of being F plasmids, and only ~25% of ORFs
343 were assigned a function by Prokka. In terms of known anti-phage genes, all three plasmids had the TA
344 modules *pemIK* and *ccdB*, although only pU0928 had the superinfection exclusion gene *imm*, and only
345 pU1223 and pU1284 had the phage adsorption blocking gene *traT* (Table 3)^{16,19,22,68,69}. Given that
346 pU0928 and pU1284 had similar protective phenotypes during phage infection, we hypothesize they
347 could share similar ORFs linked to this mechanism. Three ORFs were present in pU0928 and pU1284 but
348 absent from the permissive pU1223: a phage integrase, the enzyme dihydrofolate reductase, and an EAL
349 cyclic di-GMP phosphodiesterase domain-containing protein. The former two genes can be linked to
350 phage biology⁸⁷⁻⁹⁰.

351 Certain phages, such as Lambda, utilize phage integrases to integrate their genome into the host
352 genome^{35,91}. A phage integrase is a signature for prophage, though by itself does not indicate
353 viability^{88,92,93}. Dihydrofolate reductase reduces dihydrofolic acid to tetrahydrofolic acid, involved in the
354 amino and nucleic acid synthesis⁸⁹. In phage, this enzyme plays a role in DNA synthesis, but has also

355 been linked to proper packaging of the capsid; the enzyme must be finely regulated to achieve proper
356 competition of the phage life cycle^{89,90}. This enzyme can be crucial such that some phages code their
357 own dihydrofolate reductase, which replaces the host enzyme during the infection process⁹⁰.
358 Potentially, the dihydrofolate reductase in the plasmid could compete or otherwise interfere with the
359 propagation of invading phage. The role of the EAL cyclic di-GMP phosphodiesterase domain-containing
360 protein is more nebulous, but could be important to signaling⁹⁴. Despite the overall low homology of
361 ~14% between the plasmids pU0928 and pU1284, the three shared ORFs were highly conserved at the
362 amino acid level (the phage integrase was 99% identical, while the other two sequences were identical).

363 Given that phage integrases are associated with prophage, we scanned pU0928, pU1284 and
364 pU1223 for phage sequences. Both pU0928 and pU1284 had predicted phage sequences, including
365 some with high degree of sequence similarity to known phages (**Supplemental Table 6**). The low
366 homology of the phage-like sequences in pU0928 (pU0928_phast_4) and pU1284 (pU1284_phast_1)
367 indicates these sequences are distinct (**Supplemental Figure 3**), but these sequences do share some
368 ORFs, including the phage integrase and dihydrofolate reductase described for the overall plasmid
369 sequence. The anti-phage phenotype in pU0928 and pU1284 could be explained by the presence of
370 distinct prophages that nonetheless share a protective mechanism⁹⁵. It must be noted that only
371 pU1284_phast_1 had a score >90 predicting it to be an intact phage, while pU0928_phast_4 had a score
372 of 40, which is well below the confidence threshold. Alternatively, the lower score could indicate that
373 plasmids have acquired phage-like genes or that these are remnants of past phage integrations, and
374 thus not include a viable phage^{96,97}. There are reports of prophage integrating into plasmids, and
375 prophage superinfection immunity and exclusion have been documented, but to our knowledge there
376 are no reports of F plasmids protecting *E. coli* from phage infection^{68,95,98}. Future studies should focus on
377 identifying genes responsible for the anti-phage mechanism in F plasmids. Fortunately, this may be a

378 realistic endeavor given that pU0928 and pU1284 are now in the genetically tractable *E. coli* K-12
379 MG1655⁹⁹.

380

381 **Phage and urinary *E. coli* plasmid interactions in the urinary tract**

382 Extrapolating from our results and what we know of other niches, we can estimate that F
383 plasmids are widespread in urinary *E. coli*^{42,100,101}. We propose a scenario that parallels how antibiotic
384 use can select for bacteria hosting plasmids with antibiotic resistance genes^{45,102,103}. Phage predation in
385 the urinary tract may drive the transmission and persistence of anti-phage plasmids and, by extension,
386 the genes linked in the plasmid, such as antibiotic resistance and virulence genes. When a urinary *E. coli*
387 is exposed to coliphage, it can defend itself with anti-phage genes in its chromosome, plasmids, or
388 prophage¹⁰⁴. Chromosomal genes may have limits on the content that can be mutated, while prophage
389 may require lytic activation for rapid propagation in the host population^{46,85,105}. However, an advantage
390 of plasmids is that they are pliable, non-essential MGEs that can be transmitted vertically and
391 horizontally without fatally disrupting the host^{106,107}.

392 A major clinical issue is the increasing frequency of antibiotic resistance and virulence in
393 bacteria, both traits that can be associated with plasmids^{41,73,108}. Potentially, phage could drive retention
394 and spread of clinically relevant plasmids. In this study, we presented evidence that specific urinary F
395 plasmids can reduce permissivity to coliphage infection. These plasmids are conjugable, stable, and
396 confer antibiotic resistances to the host. Virulence and antibiotic resistances are commonly associated
397 with F plasmids, and predation by phage could be a very relevant selection factor in maintenance and
398 transmission of these traits. Future studies should focus on identifying the genetic determinants in
399 plasmids that affect phage infection. Further tests should determine to what extent urinary plasmids
400 containing phage-protective factors can impact urinary *E. coli*, plasmid, and phage population dynamics.

401 **References**

402 1. Brubaker L, Wolfe AJ. The new world of the urinary microbiota in women. *Am J Obstet Gynecol.*
403 2015;213(5):644-649. doi:10.1016/j.ajog.2015.05.032

404 2. Wolfe AJ, Brubaker L. "Sterile Urine" and the Presence of Bacteria. *Eur Urol.*
405 2015;68(2):173-174. doi:10.1016/j.eururo.2015.02.041

406 3. Price TK, Wolff B, Halverson T, et al. Temporal Dynamics of the Adult Female Lower Urinary Tract
407 Microbiota Downloaded from. Published online 2020. doi:10.1128/mBio

408 4. Manrique P, Dills M, Young M, Manrique P, Dills M, Young MJ. The Human Gut Phage Community
409 and Its Implications for Health and Disease. *Viruses.* 2017;9(6):141. doi:10.3390/v9060141

410 5. Lugli GA, Milani C, Turroni F, et al. Prophages of the genus *Bifidobacterium* as modulating agents
411 of the infant gut microbiota. *Environ Microbiol.* 2016;18(7):2196-2213. doi:10.1111/1462-
412 2920.13154

413 6. Manrique P, Bolduc B, Walk ST, van der Oost J, de Vos WM, Young MJ. Healthy human gut
414 phageome. *Proc Natl Acad Sci.* 2016;113(37):10400-10405. doi:10.1073/pnas.1601060113

415 7. Miller-Ensminger T, Garretto A, Brenner J, et al. Bacteriophages of the Urinary Microbiome. *J
416 Bacteriol.* 2018;200(7). doi:10.1128/JB.00738-17

417 8. Garretto A, Miller-Ensminger T, Wolfe AJ, Putonti C. Bacteriophages of the lower urinary tract.
418 *Nat Rev Urol.* Published online May 9, 2019:1. doi:10.1038/s41585-019-0192-4

419 9. Hendrix RW, Smith MC, Burns RN, Ford ME, Hatfull GF. Evolutionary relationships among diverse
420 bacteriophages and prophages: all the world's a phage. *Proc Natl Acad Sci U S A.*
421 1999;96(5):2192-2197. doi:10.1073/PNAS.96.5.2192

422 10. Navarro F, Muniesa M. Phages in the Human Body. *Front Microbiol.* 2017;8:566.

423 doi:10.3389/fmicb.2017.00566

424 11. Paul JH. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in

425 the seas? *ISME J.* 2008;2(6):579-589. doi:10.1038/ismej.2008.35

426 12. Koskella B, Meaden S. Understanding Bacteriophage Specificity in Natural Microbial

427 Communities. *Viruses.* 2013;5(3):806-823. doi:10.3390/v5030806

428 13. Buckling A, Rainey PB. Antagonistic coevolution between a bacterium and a bacteriophage.

429 *Proceedings Biol Sci.* 2002;269(1494):931-936. doi:10.1098/RSPB.2001.1945

430 14. Howard-Varona C, Hargreaves KR, Solonenko NE, et al. Multiple mechanisms drive phage

431 infection efficiency in nearly identical hosts. *ISME J.* 2018;12(6):1605-1618. doi:10.1038/s41396-

432 018-0099-8

433 15. Klaenhammer TR. Genetic Characterization of Multiple Mechanisms of Phage Defense from a

434 Prototype Phage-Insensitive Strain, *Lactococcus lactis* ME2. *J Dairy Sci.* 1989;72(12):3429-3443.

435 doi:10.3168/jds.S0022-0302(89)79505-9

436 16. Riede I, Eschbach M-L. *Evidence That TraT Interacts with OmpA of Escherichia Coli TraTprotein*

437 *OmpA Protein Protein Interaction.* Vol 205.; 1986. Accessed June 17, 2019.

438 <https://febs.onlinelibrary.wiley.com/doi/pdf/10.1016/0014-5793%2886%2980905-X>

439 17. Fineran PC, Blower TR, Foulds IJ, Humphreys DP, Lilley KS, Salmon GPC. The phage abortive

440 infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. *Proc Natl Acad Sci U S A.*

441 2009;106(3):894-899. doi:10.1073/pnas.0808832106

442 18. Picton DM, Luyten YA, Morgan RD, et al. The phage defence island of a multidrug resistant

443 plasmid uses both BREX and type IV restriction for complementary protection from viruses.

444 Nucleic Acids Res. 2021;49(19):11257-11273. doi:10.1093/NAR/GKAB906

445 19. Achtman M, Kennedy N, Skurray R. Cell-cell interactions in conjugating *Escherichia coli*: Role of
446 *traT* protein in surface exclusion. *Proc Natl Acad Sci U S A*. 1977;74(11):5104-5108.
447 doi:10.1073/pnas.74.11.5104

448 20. Sukupolvi1 S, David O'connor2 C. *TraT Lipoprotein, a Plasmid-Specified Mediator of Interactions*
449 *between Gram-Negative Bacteria and Their Environment.*; 1990. Accessed June 17, 2019.
450 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC372785/pdf/microrev00039-0011.pdf>

451 21. Song S, Wood TK. Post-segregational Killing and Phage Inhibition Are Not Mediated by Cell Death
452 Through Toxin/Antitoxin Systems. *Front Microbiol*. 2018;9:814. doi:10.3389/fmicb.2018.00814

453 22. Wu AY, Kamruzzaman M, Iredell JR. Specialised functions of two common plasmid mediated
454 toxin-Antitoxin systems, *ccdB* and *pemK*, in Enterobacteriaceae. *PLoS One*. 2020;15(6 June).
455 doi:10.1371/journal.pone.0230652

456 23. Jalasvuori M, Friman VP, Nieminen A, Bamford JKH, Buckling A. Bacteriophage selection against a
457 plasmid-encoded sex apparatus leads to the loss of antibiotic-resistance plasmids. *Biol Lett*.
458 2011;7(6):902. doi:10.1098/RSBL.2011.0384

459 24. Wan Z, Goddard NL. Competition between conjugation and M13 Phage infection in *Escherichia*
460 *coli* in the Absence of selection pressure: A kinetic study. *G3 Genes, Genomes, Genet*.
461 2012;2(10):1137-1144. doi:10.1534/g3.112.003418

462 25. Colom J, Batista D, Baig A, et al. Sex pilus specific bacteriophage to drive bacterial population
463 towards antibiotic sensitivity. *Sci Rep*. 2019;9(1). doi:10.1038/S41598-019-48483-9

464 26. Jalasvuori M, Friman VP, Nieminen A, Bamford JKH, Buckling A. Bacteriophage selection against a
465 plasmid-encoded sex apparatus leads to the loss of antibioticresistance plasmids. *Biol Lett*.

466 2011;7(6):902-905. doi:10.1098/rsbl.2011.0384

467 27. Ojala V, Laitalainen J, Jalasvuori M. Fight evolution with evolution: Plasmid-dependent phages
468 with a wide host range prevent the spread of antibiotic resistance. *Evol Appl.* 2013;6(6):925-932.
469 doi:10.1111/eva.12076

470 28. Spankie TJ, Haywood AL, Dottorini T, Barrow PA, Hirst JD. Interaction of the maturation protein of
471 the bacteriophage MS2 and the sex pilus of the Escherichia coli F plasmid. *J Mol Graph Model.*
472 2020;101. doi:10.1016/J.JMGM.2020.107723

473 29. Harrison E, Truman J, Wright R, Spiers AJ, Paterson S, Brockhurst MA. Plasmid carriage can limit
474 bacteria-phage coevolution. *Biol Lett.* 2015;11(8). doi:10.1098/RSBL.2015.0361

475 30. Harrison E, Jamie Wood A, Dytham C, et al. Bacteriophages limit the existence conditions for
476 conjugative plasmids. *MBio.* 2015;6(3). doi:10.1128/mBio.00586-15

477 31. Larsen P, Dynesen P, Nielsen KL, Frimodt-Møller N. Faecal Escherichia coli from patients with E.
478 coli urinary tract infection and healthy controls who have never had a urinary tract infection. *J
479 Med Microbiol.* 2014;63(4):582-589. doi:10.1099/jmm.0.068783-0

480 32. Ronald A. The etiology of urinary tract infection: Traditional and emerging pathogens. *Am J Med.*
481 2002;113(1 SUPPL. 1):14-19. doi:10.1016/S0002-9343(02)01055-0

482 33. Malki K, Sible E, Cooper A, et al. Seven Bacteriophages Isolated from the Female Urinary
483 Microbiota. *Genome Announc.* 2016;4(6). doi:10.1128/genomeA.01003-16

484 34. Thomason LC, Costantino N, Court DL. *E. coli* Genome Manipulation by P1 Transduction. In:
485 *Current Protocols in Molecular Biology.* Vol Chapter 1. John Wiley & Sons, Inc.; 2007:1.17.1-
486 1.17.8. doi:10.1002/0471142727.mb0117s79

487 35. Casjens SR, Hendrix RW. Bacteriophage lambda: Early pioneer and still relevant. *Virology*.
488 2015;479-480:310-330. doi:10.1016/j.virol.2015.02.010

489 36. Møller-Olsen C, Ho SFS, Shukla RD, Feher T, Sagona AP. Engineered K1F bacteriophages kill
490 intracellular *Escherichia coli* K1 in human epithelial cells. *Sci Rep*. 2018;8(1):1-18.
491 doi:10.1038/s41598-018-35859-6

492 37. Garretto A, Thomas-White K, Wolfe AJ, Putonti C. Detecting viral genomes in the female urinary
493 microbiome. *J Gen Virol*. 2018;99(8):1141-1146. doi:10.1099/jgv.0.001097

494 38. Montelongo Hernandez C, Putonti C, Wolfe AJ. Characterizing Plasmids in Bacteria Species
495 Relevant to Urinary Health. *Microbiol Spectr*. 2021;9(3). doi:10.1128/SPECTRUM.00942-
496 21/SUPPL_FILE/SPECTRUM00942-21_SUPP_1_SEQ5.PDF

497 39. Montelongo Hernandez C, Putonti C, Wolfe AJ. Profiling the plasmid conjugation potential of
498 urinary *E. coli*. *bioRxiv*. Published online 2022:2022.03.02.482680.
499 doi:10.1101/2022.03.02.482680

500 40. Lawley TD, Klimke WA, Gubbins MJ, Frost LS. F factor conjugation is a true type IV secretion
501 system. *FEMS Microbiol Lett*. 2003;224(1):1-15. doi:10.1016/S0378-1097(03)00430-0

502 41. Stephens C, Arismendi T, Wright M, et al. F Plasmids Are the Major Carriers of Antibiotic
503 Resistance Genes in Human-Associated Commensal *Escherichia coli*. *mSphere*. 2020;5(4).
504 doi:10.1128/mSphere.00709-20

505 42. Koraimann G. Spread and Persistence of Virulence and Antibiotic Resistance Genes: A Ride on the
506 F Plasmid Conjugation Module. *EcoSal Plus*. 2018;8(1). doi:10.1128/ecosalplus.esp-0003-2018

507 43. Goodson M, Rowbury RJ. *Altered Phage P1 Attachment to Strains of Escherichia Coli Carrying the*
508 *Piasmid ColV,I-K94*. Vol 68.; 1987.

509 44. Arredondo-Alonso S, Top J, McNally A, et al. Plasmids shaped the recent emergence of the major
510 nosocomial pathogen *Enterococcus faecium*. *MBio*. 2020;11(1). doi:10.1128/mBio.03284-19

511 45. Stevenson C, Hall JPJ, Brockhurst MA, Harrison E. Plasmid stability is enhanced by higher-
512 frequency pulses of positive selection. *Proc R Soc B Biol Sci*. 2018;285(1870).
513 doi:10.1098/RSPB.2017.2497

514 46. Harrison E, Hall JPJ, Paterson S, Spiers AJ, Brockhurst MA. Conflicting selection alters the
515 trajectory of molecular evolution in a tripartite bacteria–plasmid–phage interaction. *Mol Ecol*.
516 2017;26(10):2757. doi:10.1111/MEC.14080

517 47. Andrea Garretto, Taylor Miller-Ensminger, Adriana Ene, Zubia Merchant, Aashaka Shah, Athina
518 Gerodias, Anthony Biancofiori, Stacey Canchola, Stephanie Canchola, Emanuel Castillo, Tasnim
519 Chowdhury, Nikita Gandhi, Sarah Hamilton, Kyla Hatton, Syed Hyder, Kot AJW and CP. Genomic
520 Survey of *E. coli* from the Bladders of Women with and without Lower Urinary Tract Symptoms.
521 *Front Microbiol Sect Infect Dis*. Published online 2020.

522 48. Antipov D, Hartwick N, Shen M, Raiko M, Lapidus A, Pevzner PA. plasmidSPAdes: assembling
523 plasmids from whole genome sequencing data. *Bioinformatics*. 2016;32(22):btw493.
524 doi:10.1093/bioinformatics/btw493

525 49. Bankevich A, Nurk S, Antipov D, et al. SPAdes: A new genome assembly algorithm and its
526 applications to single-cell sequencing. *J Comput Biol*. 2012;19(5):455-477.
527 doi:10.1089/cmb.2012.0021

528 50. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. *J Mol Biol*.
529 1990;215(3):403-410. doi:10.1016/S0022-2836(05)80360-2

530 51. Camacho C, Coulouris G, Avagyan V, et al. BLAST+: Architecture and applications. *BMC*

531 *Bioinformatics*. 2009;10. doi:10.1186/1471-2105-10-421

532 52. Titus Brown C, Irber L. sourmash: a library for MinHash sketching of DNA. *J Open Source Softw.*
533 2016;1(5):27. doi:10.21105/joss.00027

534 53. Carattoli A, Zankari E, Garcíá-Fernández A, et al. In Silico detection and typing of plasmids using
535 plasmidfinder and plasmid multilocus sequence typing. *Antimicrob Agents Chemother*.
536 2014;58(7):3895-3903. doi:10.1128/AAC.02412-14

537 54. Riley MA, Gordon DM. *A Survey of Col Plasmids in Natural Isolates of Escherichia Coli and an*
538 *Investigation into the Stability of Col-Plasmid Lineages*. Vol 138.; 1992.

539 55. Bortolaia V, Kaas RS, Ruppe E, et al. ResFinder 4.0 for predictions of phenotypes from genotypes.
540 *J Antimicrob Chemother*. 2020;75(12):3491-3500. doi:10.1093/jac/dkaa345

541 56. Joensen KG, Scheutz F, Lund O, et al. Real-time whole-genome sequencing for routine typing,
542 surveillance, and outbreak detection of verotoxigenic Escherichia coli. *J Clin Microbiol*.
543 2014;52(5):1501-1510. doi:10.1128/JCM.03617-13

544 57. Seemann T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics*. 2014;30(14):2068-
545 2069. doi:10.1093/bioinformatics/btu153

546 58. B B. BBMap 38.90. Accessed March 9, 2021. sourceforge.net/projects/bbmap/

547 59. Edgar RC. Search and clustering orders of magnitude faster than BLAST. *Bioinformatics*. Volume
548 26(Issue 19):Pages 2460–2461. <https://doi.org/10.1093/bioinformatics/btq461>

549 60. Barrick J. General conjugation protocol. Published 2020. Accessed March 9, 2021.
550 <https://barricklab.org/twiki/bin/view/Lab/ProtocolsConjugation>

551 61. Blattner FR, Plunkett G, Bloch CA, et al. The complete genome sequence of Escherichia coli K-12.

552 *Science*. 1997;277(5331):1453-1462. doi:10.1126/SCIENCE.277.5331.1453

553 62. Jensen KF. The *Escherichia coli* K-12 “wild types” W3110 and MG1655 have an rph frameshift
554 mutation that leads to pyrimidine starvation due to low *pyrE* expression levels. *J Bacteriol*.
555 1993;175(11):3401-3407. doi:10.1128/JB.175.11.3401-3407.1993

556 63. Kitagawa M, Ara T, Arifuzzaman M, et al. Complete set of ORF clones of *Escherichia coli* ASKA
557 library (A complete set of *E. coli* K-12 ORF archive): unique resources for biological research. *DNA*
558 *Res*. 2005;12(5):291-299. doi:10.1093/dnares/dsi012

559 64. Barrick J. Determining phage titer. Published 202AD.
560 <https://barricklab.org/twiki/bin/view/Lab/ProtocolsPhageTiters>

561 65. Geneious. Geneious 2021.0.3. Published 2021. <https://www.geneious.com>

562 66. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. PHAST: A Fast Phage Search Tool. *Nucleic Acids*
563 *Res*. 2011;39(SUPPL. 2):W347-W352. doi:10.1093/nar/gkr485

564 67. Arndt D, Grant JR, Marcu A, et al. PHASTER: a better, faster version of the PHAST phage search
565 tool. *Nucleic Acids Res*. 2016;44(W1):W16-W21. doi:10.1093/nar/gkw387

566 68. Cornett JB. Spackle and Immunity Functions of Bacteriophage T4. *J Virol*. 1974;13(2):312-321.
567 doi:10.1128/jvi.13.2.312-321.1974

568 69. Lu MJ, Henning U. The immunity (imm) gene of *Escherichia coli* bacteriophage T4. *J Virol*.
569 1989;63(8):3472-3478. doi:10.1128/jvi.63.8.3472-3478.1989

570 70. Mao BH, Chang YF, Scaria J, et al. Identification of *Escherichia coli* genes associated with urinary
571 tract infections. *J Clin Microbiol*. 2012;50(2):449-456. doi:10.1128/JCM.00640-11

572 71. Cusumano CK, Hung CS, Chen SL, Hultgren SJ. Virulence plasmid harbored by uropathogenic

573 Escherichia coli functions in acute stages of pathogenesis. *Infect Immun.* 2010;78(4):1457-1467.

574 doi:10.1128/IAI.01260-09

575 72. Christie PJ. The Mosaic Type IV Secretion Systems. *EcoSal Plus.* 2016;7(1).

576 doi:10.1128/ecosalplus.esp-0020-2015

577 73. Yang QE, Sun J, Li L, et al. IncF plasmid diversity in multi-drug resistant Escherichia coli strains
578 from animals in China. *Front Microbiol.* 2015;6(SEP). doi:10.3389/fmicb.2015.00964

579 74. Zagaglia C, Casalino M, Colonna B, Conti C, Calconi A, Nicoletti M. Virulence plasmids of
580 enteroinvasive Escherichia coli and Shigella flexneri integrate into a specific site on the host
581 chromosome: Integration greatly reduces expression of plasmid-carried virulence genes. *Infect*
582 *Immun.* 1991;59(3):792-799. doi:10.1128/iai.59.3.792-799.1991

583 75. Engelberg-Kulka H, Reches M, Narasimhan S, et al. rexB of bacteriophage lambda is an anti-cell
584 death gene. *Proc Natl Acad Sci U S A.* 1998;95(26):15481-15486. doi:10.1073/pnas.95.26.15481

585 76. Zienkiewicz M, Kern-Zdanowicz I, Gołębiewski M, et al. Mosaic structure of p1658/97, a 125-
586 kilobase plasmid harboring an active amplicon with the extended-spectrum β -lactamase gene
587 blaSHV-5. *Antimicrob Agents Chemother.* 2007;51(4):1164-1171. doi:10.1128/AAC.00772-06

588 77. Gerdes K. Toxin-Antitoxin Modules May Regulate Synthesis of Macromolecules during Nutritional
589 Stress. *J Bacteriol.* 2000;182(3):561-572. doi:10.1128/JB.182.3.561-572.2000

590 78. Ashelford KE, Day MJ, Fry JC. Elevated Abundance of Bacteriophage Infecting Bacteria in Soil.
591 *Appl Environ Microbiol.* 2003;69(1):285. doi:10.1128/AEM.69.1.285-289.2003

592 79. Moebus K. Preliminary observations on the concentration of marine bacteriophages in the water
593 around Helgoland. *Helgoländer Meeresuntersuchungen.* 1991;45(4):411-422.
594 doi:10.1007/BF02367176/METRICS

595 80. Suttle CA, Chan AM. Dynamics and Distribution of Cyanophages and Their Effect on Marine
596 Synechococcus spp. *Appl Environ Microbiol.* 1994;60(9):3167-3174. doi:10.1128/AEM.60.9.3167-
597 3174.1994

598 81. Tepekule B, Wiesch PA Zur, Kouyos RD, Bonhoeffer S. Quantifying the impact of treatment
599 history on plasmid-mediated resistance evolution in human gut microbiota. *Proc Natl Acad Sci U*
600 *S A.* 2019;116(46):23106-23116. doi:10.1073/pnas.1912188116

601 82. Lehnher H, Meyer J. ENTEROBACTERIA PHAGE P1 (MYOVIRIDAE). *Encycl Virol.* Published online
602 1999:455-461. doi:10.1006/RWVI.1999.0201

603 83. Łobocka MB, Rose DJ, Plunkett G, et al. Genome of Bacteriophage P1. *J Bacteriol.*
604 2004;186(21):7032. doi:10.1128/JB.186.21.7032-7068.2004

605 84. Ikeda H, Tomizawa J ichi. Transducing fragments in generalized transduction by phage P1: I.
606 Molecular origin of the fragments. *J Mol Biol.* 1965;14(1):85-109. doi:10.1016/S0022-
607 2836(65)80232-7

608 85. Young R. Bacteriophage lysis: Mechanism and regulation. *Microbiol Rev.* 1992;56(3):430-481.

609 86. Payet JP, Suttle CA. To kill or not to kill: The balance between lytic and lysogenic viral infection is
610 driven by trophic status. *Limnol Oceanogr.* 2013;58(2):465-474. doi:10.4319/lo.2013.58.2.0465

611 87. Piazolla D, Calì S, Spoldi E, et al. Expression of phage P4 integrase is regulated negatively by both
612 Int and Vis. *J Gen Virol.* 2006;87(8):2423-2431. doi:10.1099/vir.0.81875-0

613 88. Fogg PCM, Colloms S, Rosser S, Stark M, Smith MCM. New applications for phage integrases. *J*
614 *Mol Biol.* 2014;426(15):2703-2716. doi:10.1016/j.jmb.2014.05.014

615 89. Mosher RA, Mathews CK. Bacteriophage T4-coded dihydrofolate reductase: synthesis, turnover,

616 and location of the virion protein. *J Virol.* 1979;31(1):94-103. doi:10.1128/jvi.31.1.94-103.1979

617 90. Mosher RA, DiRenzo AB, Mathews CK. Bacteriophage T4 Virion Dihydrofolate Reductase:
618 Approaches to Quantitation and Assessment of Function. *J Virol.* 1977;23(3):645-658.
619 doi:10.1128/jvi.23.3.645-658.1977

620 91. Gottesman ME, Weisberg RA. Little Lambda, Who Made Thee? *Microbiol Mol Biol Rev.*
621 2004;68(4):796-813. doi:10.1128/MMBR.68.4.796-813.2004

622 92. Barnhart BJ, Cox SH, Jett JH. Prophage induction and inactivation by UV light. *J Virol.*
623 1976;18(3):950. doi:10.1128/jvi.18.3.950-955.1976

624 93. Petranović M, Petranović D, Salaj-Šmic E, Trgovčević Ž. Prophage inactivation in recB-proficient
625 Escherichia coli K12 (lambda) lysogens after ultraviolet irradiation. *Mol Gen Genet.*
626 1984;196(1):167-169. doi:10.1007/BF00334110

627 94. Schmidt AJ, Ryjenkov DA, Gomelsky M. The ubiquitous protein domain EAL is a cyclic diguanylate-
628 specific phosphodiesterase: Enzymatically active and inactive EAL domains. *J Bacteriol.*
629 2005;187(14):4774-4781. doi:10.1128/JB.187.14.4774-4781.2005

630 95. KIM SY, KO KS. Effects of prophage regions in a plasmid carrying a carbapenemase gene on
631 survival against antibiotic stress. *Int J Antimicrob Agents.* 2019;53(1):89-94.
632 doi:10.1016/j.ijantimicag.2018.09.002

633 96. Pfeifer E, Moura de Sousa JA, Touchon M, Rocha EPC. Bacteria have numerous phage-plasmid
634 families with conserved phage and variable plasmid gene repertoires. *bioRxiv.* Published online
635 November 9, 2020:2020.11.09.375378. doi:10.1101/2020.11.09.375378

636 97. Venturini C, Zingali T, Wyrtsch ER, et al. Diversity of P1 phage-like elements in multidrug resistant
637 Escherichia coli. *Sci Reports* 2019 91. 2019;9(1):1-10. doi:10.1038/s41598-019-54895-4

638 98. Kliem M, Dreiseikelmann B. The superimmunity gene sim of bacteriophage P1 causes
639 superinfection exclusion. *Virology*. 1989;171(2):350-355. doi:10.1016/0042-6822(89)90602-8

640 99. Schjørring S, Struve C, Krogfelt KA. Transfer of antimicrobial resistance plasmids from Klebsiella
641 pneumoniae to Escherichia coli in the mouse intestine. *J Antimicrob Chemother*.
642 2008;62(5):1086-1093. doi:10.1093/jac/dkn323

643 100. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. Identification of plasmids by PCR-
644 based replicon typing. *J Microbiol Methods*. 2005;63(3):219-228.
645 doi:10.1016/j.mimet.2005.03.018

646 101. Virolle C, Goldlust K, Djermoun S, Bigot S, Lesterlin C. Plasmid transfer by conjugation in gram-
647 negative bacteria: From the cellular to the community level. *Genes (Basel)*. 2020;11(11):1-33.
648 doi:10.3390/genes11111239

649 102. Steinig EJ, Duchene S, Robinson DA, et al. Evolution and global transmission of a multidrug-
650 resistant, community-associated methicillin-resistant staphylococcus aureus lineage from the
651 Indian subcontinent. *MBio*. 2019;10(6). doi:10.1128/mBio.01105-19

652 103. Hughes C, Bauer E, Roberts AP. Spread of R-plasmids among Escherichia coli causing urinary tract
653 infections. *Antimicrob Agents Chemother*. 1981;20(4):496-502. doi:10.1128/aac.20.4.496

654 104. Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. *Nat Rev Microbiol*.
655 2010;8(5):317-327. doi:10.1038/nrmicro2315

656 105. Hobbs Z, Abedon ST. Diversity of phage infection types and associated terminology: the problem
657 with 'Lytic or lysogenic.' Millard A, ed. *FEMS Microbiol Lett*. 2016;363(7):fnw047.
658 doi:10.1093/femsle/fnw047

659 106. Schaufler K, Wieler LH, Semmler T, Ewers C, Guenther S. ESBL-plasmids carrying toxin-antitoxin

660 systems can be “cured” of wild-type *Escherichia coli* using a heat technique. *Gut Pathog.*

661 2013;5(1):34. doi:10.1186/1757-4749-5-34

662 107. Smillie C, Garcillan-Barcia MP, Francia M V., Rocha EPC, de la Cruz F. Mobility of Plasmids.

663 *Microbiol Mol Biol Rev.* 2010;74(3):434-452. doi:10.1128/mmbr.00020-10

664 108. Bergstrom CT, Lipsitch M, Levin BR. Natural selection, infectious transfer and the existence

665 conditions for bacterial plasmids. *Genetics.* 2000;155(4):1505-1519.

666 doi:10.1093/genetics/155.4.1505

667

668 **Table 1. Phage spot titration and antibiotic plate growth phenotype (overnight compared to incubation for 10-days)^{a,b}**

	K-12 MG1655	K-12 MG1655	UMB0928	UMB0928	K-12 MG1655 <i>yfiQ::cm, ΔcobB</i>	K-12 MG1655 <i>yfiQ::cm, ΔcobB</i>	K-12 MG1655 pCA245n-cm	K-12 MG1655 pCA245n-cm
Plasmid	None	None	pU0928	pU0928	pU0928	pU0928	pU0928	pU0928
Days passage	One	Ten	One	Ten	One	Ten	One	Ten
P1vir spot titration	8	8	No spot	No spot	3	3	3	3
Greed spot titration	8	8	No spot	No spot	3	3	3	3
Lust spot titration	8	8	No spot	No spot	3	3	3	3
LB	+	+	+	+	+	+	+	+
Ampicillin			+	+	+	+	+	+
Chloramphenicol					+	+	+	+
Kanamycin								
Spectinomycin								
Tetracycline			+	+	+	+	+	+

669 ^a Number denotes titration of phage (starting 10^9 PFU/ml which is titration 1) at which a lysis was observed on *E. coli* lawn ($\sim 10^8$ CFU/ml). A

670 lower number indicates lysis observed only at lower titrations (i.e., higher phage PFU/ml)

671 ^b “+” denotes growth in antibiotic media plate. pU0928 has a native tetracycline resistance cassette

672 **Table 2. Overview of urinary plasmids conjugated into *E. coli* K-12**

Host	Urinary plasmid	Phenotype during phage infection	Bases	ORF	Plasmid replicon	Virulence genes	Antibiotic resistance predicted
K-12	pU0928	Less permissive	100293	107	IncFIB, Col156, IncQ1, IncI1-I	<i>cia, senB</i>	Streptomycin, sulfamethoxazole, trimethoprim, tetracycline
K-12	pU1284	Less permissive	130107	173	IncFIA, IncFII, IncX4	<i>traT</i>	Ciprofloxacin, spectinomycin, trimethoprim, sulfamethoxazole, macrolide, tetracycline,
K-12	pU1223	Permissive	148520	151	IncFIA, IncFIB, IncFII, Col156		Streptomycin, tetracycline, sulfamethoxazole, macrolide, ampicillin/amoxicillin/ceftriaxone/piperacillin

673

674

675 **Table 3. Coding regions in urinary plasmids with functions linked to phage infection^a**

Predicted coding region	Predicted gene function	Uniprot entry	pU0928	pU1284	pU1223
CcdA	Toxin of ccdAB module	P62552	+	+	+
CcdB	Antitoxin of ccdAB module	P62554	+	+	+
Dihydrofolate reductase	Phage DNA synthesis and protein assembly	P27422	+	+	
Imm	Phage superinfection exclusion	Q03708	+		
PemI	Antitoxin of pemIK module	P13975	+	+	+
PemK	Toxin of pemIK module	P13976	+	+	+
Phage integrase	Integrates phage genetic material into host genome	P62590	+	+	
TraT	Blocks phage adsorption	B1VCB1	+	+	+

676 ^a“+” denotes presence of amino acid sequence cover query and identity of over 90%.

677

678 **FIGURE LEGENDS**

679 **Figure 1. Proportion of plasmid addiction, antibiotic resistance, and virulence genes in urinary**
680 ***E. coli* plasmidic assemblies (IncF=47, Non-IncF=11 plasmidic assemblies).**

681 Percentages denote plasmidic assembly Inc group with gene over that Inc group's plasmidic assembly
682 total. (a) Urinary *E. coli* F plasmid assemblies have a variety of TA genes which are associated with
683 plasmid retention. *ccdB* and *pemK* are the most common modules. TA genes were not found in Non-
684 IncF plasmidic assemblies. (b) Types of antibiotic resistances predicted in plasmid types in urinary *E. coli*.
685 IncF group plasmidic assemblies have a higher proportion of antibiotic resistance genes compared to
686 non-IncF group. (c) Percentage of isolates from each plasmid group predicted to have a given virulence
687 gene. IncF group plasmidic assemblies had the largest variety and proportion of virulence gene hits. The
688 most common virulence genes were *traT* (blocks invading plasmids) and *senB* (F plasmid-linked
689 enterotoxin).

690

691 **Figure 2. Growth of *E. coli* K-12 infected with phage and stability of urinary plasmids.**

692 Transconjugants *E. coli* K-12 (MG1655 pCA24n-cm) with pU0928, pU1284, or pU1223 infected with
693 phage (0.01, 10.0) (a) P1vir, (b) Greed, and (c) Lust. Growth of naïve K-12 decreases with MOI of 0.01
694 and 10.0. pU0928 and pU1284 decreased permissivity to phage infection but pU1223 did not. Similar
695 results observed when a different K-12 strain (MG1655 *ΔcobB yfiQ::Cm*) was used, see Supplemental
696 Figures 4a-c. (d) Urinary isolate UMB0928 and *E. coli* K-12 variants were grown in the absence of
697 antibiotic selection for plasmid pU0928 for 10 days. Cultures were plated onto tetracycline (pU0928
698 selection marker) and LB plates daily. A plasmid stability ratio (CFU in tetracycline divided by CFU in LB)
699 of 1 indicates plasmid retention, while a ratio close to 0 indicates loss of plasmid. The negative control
700 MG1655 pCA24n-cm without pU0928 did not grow on tetracycline plates.

701

702 **Supplemental Information**

703 **Supplemental Table 1. Urinary *E. coli* plasmidic assembly overview**

704 **Supplemental Table 2. Plasmid incompatibility genes in urinary *E. coli* plasmidic assemblies**

705 **Supplemental Table 3. Phage spot titration results for *E. coli***

706 **Supplemental Table 4. Antibiotic plate growth for *E. coli* K-12 transconjugants**

707 **Supplemental Table 5. Presence of ORFs shared by pU0928 and pU1284 in other urinary *E.***

708 ***coli* plasmids**

709 **Supplemental Table 6. Phage-like sequences predicted in plasmids pU0928, pU1223, and**

710 **pU1284**

711 **Supplemental Table 7. Predicted phage sequences in urinary *E. coli* plasmids that have the**
712 **phage-integrase ORF present in pU0928 and pU1284**

713

714 **Supplemental Figure 1. Antibiotic resistance predicted in urinary *E. coli* plasmidic assemblies**

715 **Supplemental Figure 2. Growth of K-12 infected with phage and stability of urinary plasmids**

716 **Supplemental Figure 3. Comparison of phage sequences predicted in pU0928, pU1223, and**

717 **pU1284**

Table 1. Phage spot titration and antibiotic plate growth phenotype (overnight compared to 10-day passage)

	K-12 MG1655	K-12 MG1655	UMB0928	UMB0928	K-12 MG1655 <i>yfiQ::cm, ΔcobB</i>	K-12 MG1655 <i>yfiQ::cm, ΔcobB</i>	K-12 MG1655 pCA245n-cm	K-12 MG1655 pCA245n-cm
Plasmid	None	None	pU0928	pU0928	pU0928	pU0928	pU0928	pU0928
Days passage	One	Ten	One	Ten	One	Ten	One	Ten
P1vir spot titration	8	8	No spot	No spot	3	3	3	3
Greed spot titration	8	8	No spot	No spot	3	3	3	3
Lust spot titration	8	8	No spot	No spot	3	3	3	3

Note: *yfiQ* and *cobB* mutations do not affect phenotype in growth conditions utilized. Number denotes titration of phage (starting 10^9 PFU/ml which is titration 1) at which a lysis was observed on *E. coli* lawn ($\sim 10^8$ CFU/ml). A lower number indicates lysis observed only at lower titrations (i.e., higher phage PFU/ml)

Spectinomycin								
Tetracycline			+	+	+	+	+	+

Note: "+" denotes growth in antibiotic media plate. pU0928 has a native tetracycline resistance cassette.

Table 2. Overview of urinary plasmids conjugated into *E. coli* K-12

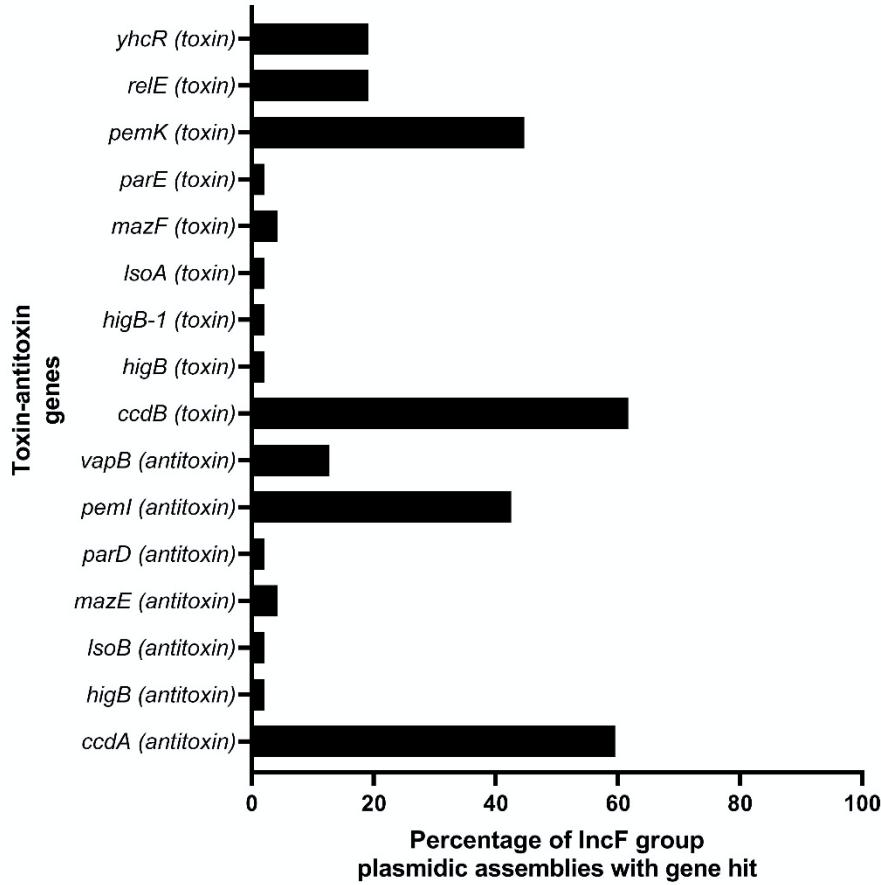
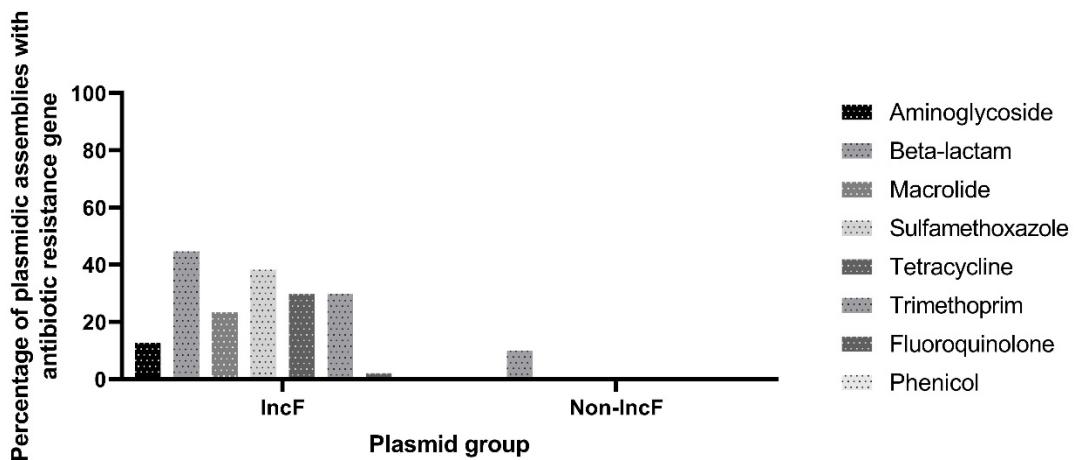
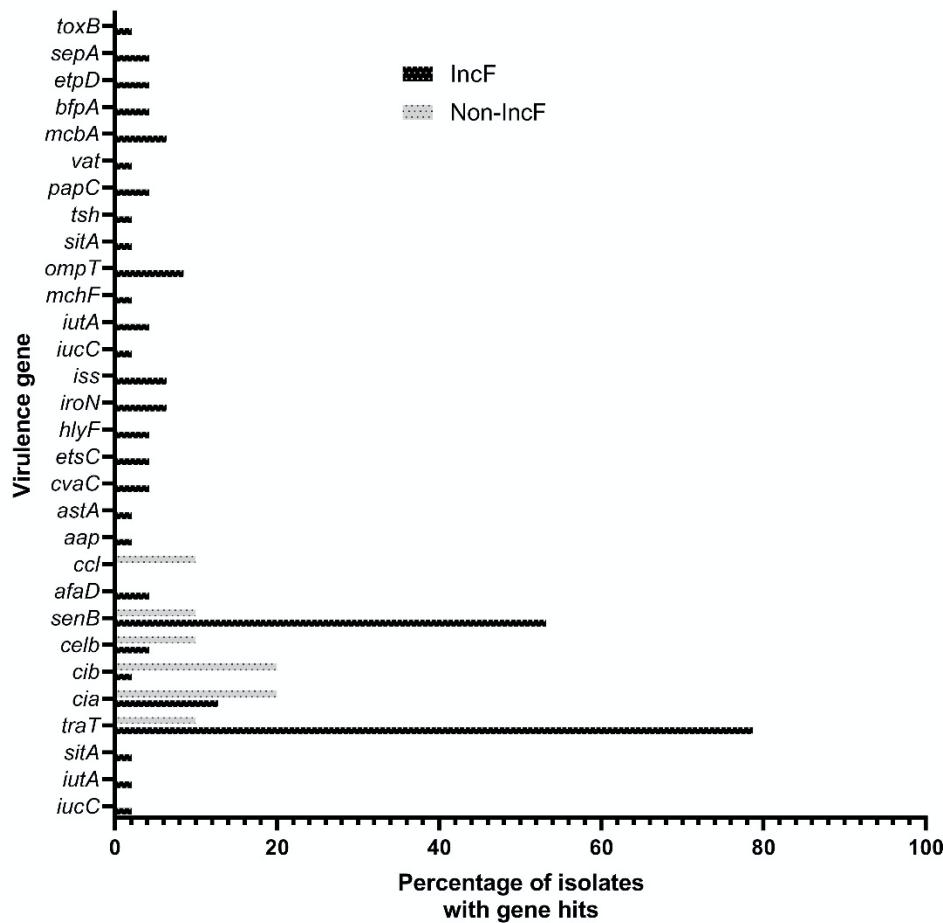

Host	Urinary plasmid	Phenotype during phage infection	Bases	ORF	Plasmid replicon	Virulence genes	Antibiotic resistance predicted
K-12	pU0928	Less permissive	100293	107	IncFIB, Col156, IncQ1, IncI1-I	<i>cia, senB</i>	Streptomycin, sulfamethoxazole, trimethoprim, tetracycline
K-12	pU1284	Less permissive	130107	173	IncFIA, IncFII, IncX4	<i>traT</i>	Ciprofloxacin, spectinomycin, trimethoprim, sulfamethoxazole, macrolide, tetracycline,
K-12	pU1223	Permissive	148520	151	IncFIA, IncFIB, IncFII, Col156		Streptomycin, tetracycline, sulfamethoxazole, macrolide, ampicillin/amoxicillin/ceftriaxone/piperacillin

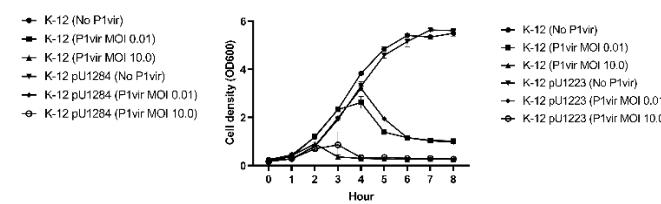
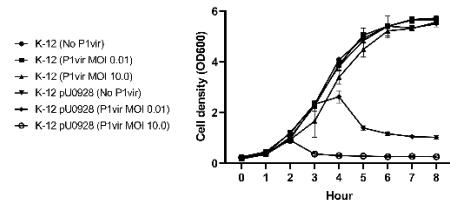
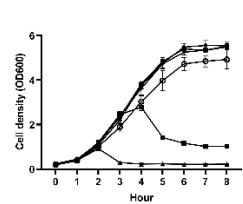
Table 3. Coding regions in urinary plasmids with functions linked to phage infection


			pU0928	pU1284	pU1223
Predicted coding region	Predicted gene function	Uniprot entry	K-12 less permissive to phage with plasmid	K-12 less permissive to phage with plasmid	K-12 permissive to phage just like WT
CcdA	Toxin of ccdAB module	P62552	+	+	+
CcdB	Antitoxin of ccdAB module	P62554	+	+	+
Dihydrofolate reductase	Phage DNA synthesis and protein assembly	P27422	+	+	
Imm	Phage superinfection exclusion	Q03708	+		
PemI	Antitoxin of pemIK module	P13975	+	+	+
PemK	Toxin of pemIK module	P13976	+	+	+
Phage integrase	Integrates phage genetic material into host genome	P62590	+	+	
TraT	Blocks phage adsorption	B1VCB1	+	+	+

Note: “+” denotes presence of amino acid sequence cover query and identity of over 90%.


(a)

(b)

(c)

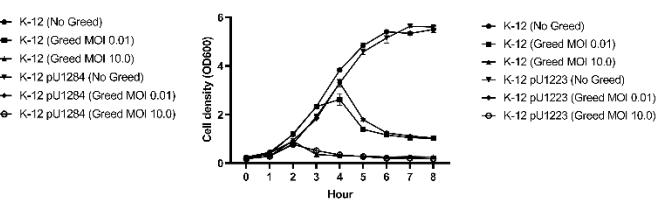
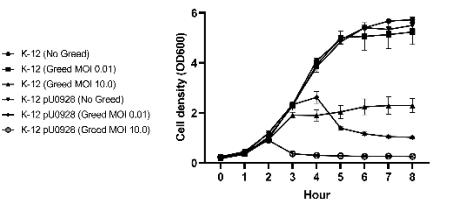
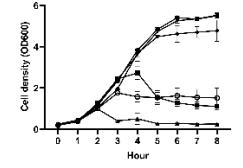
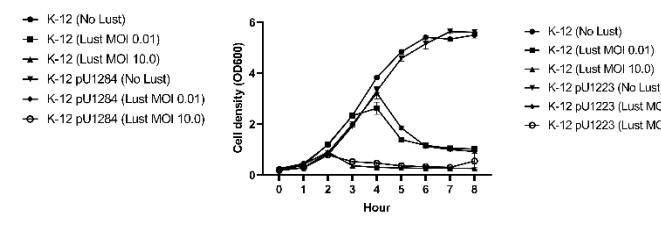
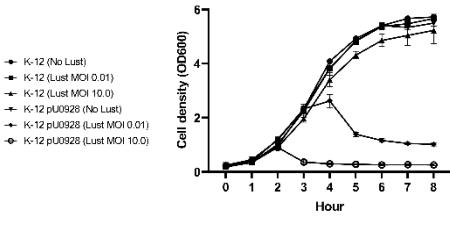
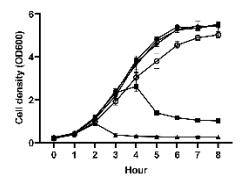
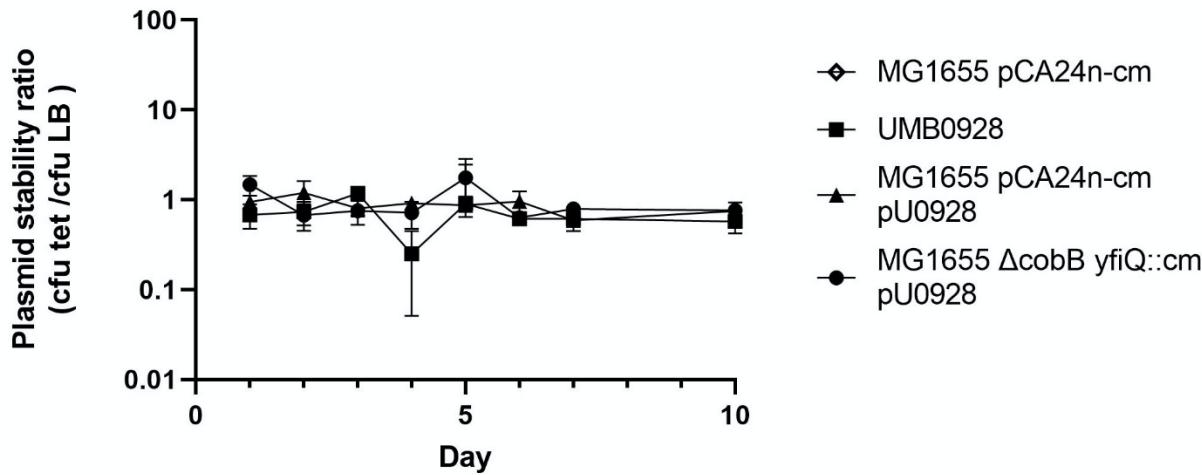




Figure 1. Proportion of plasmid addiction, antibiotic resistance, and virulence genes in urinary *E. coli* plasmidic assemblies (IncF=47, Non-IncF=11 plasmidic assemblies). Percentages denote plasmidic assembly Inc group with gene over that Inc group's plasmidic assembly total. (a) Urinary *E. coli* F plasmid assemblies have a variety of TA genes which are associated with plasmid retention. *ccdB* and *pemIK* are the most common modules. TA genes were not found in Non-IncF plasmidic assemblies. (b) Types of antibiotic resistances predicted in plasmid types in urinary *E. coli*. IncF group plasmidic assemblies have a higher proportion of antibiotic resistance genes compared to non-IncF group. (c) Percentage of isolates from each plasmid group predicted to have a given virulence gene. IncF group plasmidic assemblies had the largest variety and proportion of virulence gene hits. The most common virulence genes were *traT* (blocks invading plasmids) and *senB* (F plasmid-linked enterotoxin).




(a)


(b)

(c)

(d)

Figure 2. Growth of *E. coli* K-12 infected with phage and stability of urinary plasmids. Transconjugants *E. coli* K-12 (MG1655 pCA24n-cm) with pU0928, pU1284, or pU1223 infected with phage (0.01, 10.0) (a) P1vir, (b) Greed, and (c) Lust. Growth of naïve K-12 decreases with MOI of 0.01 and 10.0. pU0928 and pU1284 decreased permissivity to phage infection but pU1223 did not. Similar results observed when a different K-12 strain (MG1655 Δ cobB yfiQ::Cm) was used, see Supplemental Figures 4a-c. (d) Urinary isolate UMB0928 and *E. coli* K-12 variants were grown in the absence of antibiotic selection for plasmid pU0928 for 10 days. Cultures were plated onto tetracycline (pU0928 selection marker) and LB plates daily. A plasmid stability ratio (CFU in tetracycline divided by CFU in LB) of 1 indicates plasmid retention, while a ratio close to 0 indicates loss of plasmid. The negative control MG1655 pCA24n-cm without pU0928 did not grow on tetracycline plate.