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Abstract 1 

The parahippocampal cingulum bundle (PHCB) connects regions known to be vulnerable to 2 

early Alzheimer’s disease (AD) pathology, such as posteromedial cortex and medial 3 

temporal lobe. While AD-related pathology has been robustly associated with alterations in 4 

PHCB microstructure, specifically lower fractional anisotropy (FA) and higher mean 5 

diffusivity (MD), emerging evidence indicates that the reverse pattern is evident in younger 6 

adults at-risk of AD. In one such study, Hodgetts et al. (2019) reported that healthy young 7 

adult carriers of the apolipoprotein-E (APOE) ε4 allele – the strongest common genetic risk 8 

factor for AD – showed higher FA and lower MD in the PHCB but not the inferior longitudinal 9 

fasciculus (ILF). These results are consistent with proposals claiming that heightened neural 10 

activity and connectivity have a significant role in posteromedial cortex vulnerability to 11 

amyloid-β and tau spread beyond the medial temporal lobe. Given the implications for 12 

understanding AD risk, here we sought to replicate Hodgetts et al.’s finding in a larger 13 

sample (N = 128; 40 APOE ε4 carriers, 88 APOE ε4 non-carriers) of young adults (age 14 

range: 19-33). Extending this work further, we also conducted exploratory analyses using a 15 

more advanced measure of microstructure: hindrance modulated orientational anisotropy 16 

(HMOA). These analyses included an investigation of hemispheric asymmetry in PHCB and 17 

ILF HMOA. Contrary to the original study, we observed no difference in PHCB 18 

microstructure between APOE ε4 carriers and non-carriers. Bayes factors (BFs) further 19 

revealed moderate-to-strong evidence in support of these null findings. APOE ε4-related 20 

differences in ILF HMOA asymmetry were evident, however, with carriers demonstrating 21 

lower leftward asymmetry. Our findings indicate that young adult APOE ε4 carriers do not 22 

show alterations in PHCB microstructure, as observed by Hodgetts et al., but may show 23 

altered asymmetry in ILF microstructure.  24 

 25 

Keywords: APOE, Alzheimer’s disease, parahippocampal cingulum bundle, inferior 26 

longitudinal fasciculus, diffusion MRI, structural connectivity  27 
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1. Introduction 28 

Alzheimer’s disease (AD) is a chronic, progressive disease and the most common cause of 29 

dementia (Scheltens et al., 2021). The hallmark pathological features of AD are the 30 

presence of extracellular amyloid-β-containing plaques and intracellular tau-containing 31 

neurofibrillary tangles (DeTure & Dickson, 2019; Trejo-Lopez et al., 2021). Although 32 

controversial (Frisoni et al., 2022; Herrup, 2015), the dominant hypothesis in the field – the 33 

amyloid cascade hypothesis – holds that the accumulation of amyloid-β peptide is the critical 34 

factor in AD pathogenesis (Selkoe & Hardy, 2016). Amyloid-β accumulation follows a 35 

relatively distinct spatiotemporal pattern in the ageing brain, beginning preferentially in 36 

posteromedial regions, including retrosplenial/posterior cingulate cortices and precuneus 37 

(Mattsson et al., 2019; Palmqvist et al., 2017; Villeneuve et al., 2015). Collectively, these 38 

regions are sometimes referred to as posteromedial cortex (Parvizi et al., 2006). The 39 

vulnerability of posteromedial cortex to AD pathology has been linked to its hub-like 40 

properties (Jagust, 2018), in particular its high-levels of baseline metabolic/neural activity 41 

and high intrinsic/extrinsic connectivity (Bero et al., 2012; Buckner et al., 2009; de Haan et 42 

al., 2012). Notably, posteromedial cortex is densely connected with several medial temporal 43 

lobe structures, such as parahippocampal cortex and hippocampus, forming a “posterior 44 

medial” or “extended navigation” network (Murray et al., 2017; Ranganath & Ritchey, 2012). 45 

This broader network is implicated in several inter-related cognitive functions that are 46 

impaired early in AD, such as episodic memory (Rajah et al., 2017), perceptual scene 47 

discrimination (Lee et al., 2006), and spatial navigation (Coughlan et al., 2018). Given this, 48 

there is a pressing need to identify biomarkers that capture the functional and/or structural 49 

integrity of this AD-vulnerable brain network. In this context, the parahippocampal cingulum 50 

bundle (PHCB) – a prominent white matter tract linking posteromedial cortex with the medial 51 

temporal lobe (Bubb et al., 2018; Heilbronner & Haber, 2014; Jitsuishi & Yamaguchi, 2021) – 52 

represents a strong candidate for understanding and characterising connectivity alterations 53 

associated with AD. 54 

 55 
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Increasing evidence indicates that PHCB connectivity is altered in AD. Using diffusion 56 

magnetic resonance imaging (dMRI), a non-invasive method that examines the random, 57 

microscopic movement of water molecules, it is possible to delineate the major white matter 58 

tracts of the brain and evaluate their microstructural properties in vivo (Assaf et al., 2019). In 59 

most AD-relevant dMRI studies, white matter microstructure is assessed via measures 60 

derived from the diffusion tensor, notably fractional anisotropy (FA) and mean diffusivity 61 

(MD; Harrison et al., 2020). Low FA and high MD are widely interpreted as representing 62 

poorer microstructural integrity and thus lower connectivity (Yeh et al., 2021), although 63 

multiple biological factors – including neuroinflammation (Kor et al., 2022) – can influence 64 

these measures (Jones, Knösche, & Turner, 2013). Studies comparing AD patients to 65 

cognitively normal older adults using dMRI have reliably observed both lower FA and higher 66 

MD in the cingulum bundle and the PHCB in particular (Acosta-Cabronero et al., 2010; 67 

Bozzali et al., 2012; Choo et al., 2010; Kantarci et al., 2017). In addition, longitudinal 68 

changes in PHCB microstructure – reduced FA, increased MD – have been reported among 69 

AD patients but not cognitively normal older adults (Mayo et al., 2017). Indeed, it has 70 

recently been suggested that PHCB FA constitutes a highly effective biomarker for 71 

differentiating between typical ageing and AD (Dalboni da Rocha et al., 2020).  72 

 73 

Studies of amnestic mild cognitive impairment (aMCI), a transitional stage between typical 74 

ageing and AD (Albert et al., 2011), further highlight that PHCB alterations precede the 75 

onset of AD dementia. In one region-of-interest (ROI) meta-analysis, for example, Yu et al. 76 

(2017) identified robust alterations in PHCB microstructure (lower FA, higher MD) among 77 

individuals with aMCI. This is congruent with the notion that cingulum bundle alterations 78 

predict cognitive decline in aMCI and may even predict conversion to AD (Gozdas et al., 79 

2020). Studies combining positron emission tomography and dMRI have also allowed PHCB 80 

changes to be linked directly to AD pathology. For example, amyloid-β burden has been 81 

associated with longitudinal changes in white matter microstructure that are consistent with 82 

patterns observed in aMCI and AD (Rieckmann et al., 2016; Song et al., 2018; Vipin et al., 83 
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2019). In particular, high levels of cortical amyloid-β burden at baseline have been 84 

associated with accelerated decline in PHCB FA and a trend-level increase in PHCB MD 85 

(Rieckmann et al., 2016). In keeping with this tract-specific finding, one recent cross-86 

sectional study reported that lower FA and higher MD in the PHCB was associated with 87 

greater cortical amyloid-β and entorhinal tau burden, especially in those with high levels of 88 

pre-existing pathology (Pichet Binnette et al., 2021). It thus appears that PHCB 89 

microstructure is detrimentally impacted over the course of AD, including stages prior to the 90 

onset of dementia symptoms.  91 

 92 

Emerging research indicates, however, that asymptomatic individuals exhibit alterations in 93 

white matter microstructure that run counter to the characteristic AD pattern. Illustrating this 94 

point, several studies have observed higher FA and lower MD in early-stage amyloid-β 95 

pathology, a pattern that is reversed as pathology further accrues (Collij et al., 2021; Dong et 96 

al., 2020; Wolf et al., 2015). These findings point to a biphasic pattern of microstructure over 97 

the disease course, with a period of high FA/low MD preceding the pattern commonly 98 

observed in patients with aMCI and AD.  While increased FA in the context of early AD 99 

pathology could reflect neuroinflammation (Benitez et al., 2021; Dong et al., 2020), there is 100 

evidence that heightened activity and connectivity – including structural connectivity – may 101 

actually precede AD pathology, predisposing individuals to later amyloid-β deposition (Bero 102 

et al., 2012; Buckner et al., 2009; de Haan et al., 2012). Support for this proposal can be 103 

found in studies of young adults carriers of the apolipoprotein-E (APOE) ε4 allele. The APOE 104 

ε4 allele is the strongest common genetic risk factor for AD (Belloy et al., 2019), and is also 105 

associated with a younger age of onset and faster rate of posteromedial amyloid-β 106 

accumulation (Burnham et al., 2020; Mishra et al., 2018). In line with the notion that this 107 

amyloid-β accumulation is related to earlier connectivity changes, a study applying graph 108 

theoretical analysis to dMRI data observed that age was negatively associated with local 109 

interconnectivity in posteromedial regions, but only among APOE ε4 carriers (Brown et al., 110 

2011). Higher levels of local interconnectivity in younger adults drove this finding, such that 111 
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there was a putative APOE ε4-related increase in connectivity early in life that was 112 

subsequently followed by a sharper decline later in the lifespan (Brown et al., 2011; see also 113 

Ma et al., 2017). Relatedly, Felsky and Voineskos (2013) further reported higher cingulum 114 

bundle FA in younger APOE ε4 carriers compared to younger non-carriers, but lower 115 

cingulum bundle FA in older APOE ε4 carriers compared to older non-carriers. Given that 116 

young adults are unlikely to possess significant amyloid-β burden (Jansen et al., 2015), 117 

these findings suggest that early-life structural alterations may precede pathology.  118 

  119 

Consistent with this, Hodgetts et al. (2019) observed higher FA and lower MD among APOE 120 

ε4 carriers relative to non-carriers in the PHCB but not the inferior longitudinal fasciculus 121 

(ILF), a tract that connects the occipital lobe to the ventro-anterior temporal lobe (Herbet et 122 

al., 2018). Hodgetts et al. also found that PHCB microstructure was correlated with 123 

posteromedial cortex activity during perceptual scene discrimination, a task that has 124 

previously been shown to elicit heightened activity in young APOE ε4 carriers (Shine et al., 125 

2015) and is sensitive to AD (Lee et al., 2006). Based on the proposal that heightened 126 

neural activity and connectivity can have a significant role in hub-like vulnerability to amyloid-127 

β (Bero et al., 2012; Buckner et al., 2009; de Haan et al., 2012), it is plausible that such 128 

early-life PHCB alterations may explain why APOE ε4 is associated with earlier and faster 129 

posteromedial amyloid-β accumulation (Burnham et al., 2020; Mishra et al., 2018). 130 

Moreover, as the spread of tau has been linked to heightened functional connectivity 131 

between posteromedial cortex and the medial temporal lobe (Ziontz et al., 2021) – 132 

presumably mediated by the PHCB (Jacobs et al., 2018) – it is possible that early-life 133 

increases in structural connectivity are also related to elevated tau in APOE ε4 carriers 134 

(Therriault et al., 2020).  135 

 136 

In view of the potential implications for understanding the role of APOE ε4 in AD risk, we 137 

sought to replicate Hodgetts et al.’s (2019) finding that healthy young adult APOE ε4 carriers 138 

demonstrate higher FA and lower MD than non-carriers in the PHCB but not the ILF. We 139 
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analysed data from an independent data set of young adults, with a total sample over four 140 

times larger than the original study. This replication attempt thus constitutes an important 141 

test of the notion that increased PHCB connectivity, as indexed by higher FA and lower MD, 142 

is evident in young adult APOE ε4 carriers, potentially increasing vulnerability to both 143 

amyloid-β accumulation and tau spread.  144 

 145 

We also report additional exploratory analyses that seek to extend this work by incorporating 146 

a more advanced measure of microstructure: hindrance modulated orientational anisotropy 147 

(HMOA; Dell’Acqua et al., 2013). HMOA is regarded as a tract-specific measure of 148 

microstructure and is argued to be more sensitive to alterations in anisotropy than either FA 149 

or MD (Dell’Acqua et al., 2013). As such, we investigated whether APOE ε4 is associated 150 

with differences in PHCB and ILF HMOA, complementing the primary (replication) analyses. 151 

In addition, we also assessed whether APOE ε4 is associated with asymmetry in PHCB and 152 

ILF HMOA. Recent evidence suggests that AD is characterised by a loss of typical or 153 

“healthy” leftward structural and functional asymmetry in the brain (Banks et al., 2018; Roe 154 

et al., 2021; Tyrer et al., 2020), perhaps as a result of hemispheric differences in 155 

susceptibility to AD pathology (Lubben et al., 2021; Weise et al., 2018). Given the proposal 156 

that early-life APOE ε4-related alterations in neural activity and connectivity increase 157 

vulnerability to AD pathology, notably amyloid-β accumulation but perhaps also tau spread, it 158 

is plausible that this allele may be associated with changes in the asymmetry of key white 159 

matter tracts. To our knowledge, no study to date has yet investigated this possibility, 160 

especially in healthy young adults. 161 

 162 

2. Method 163 

2.1. Participants 164 

Participant data were acquired from a repository at the Cardiff University Brain Research 165 

Imaging Centre. Portions of this data have been published elsewhere (Foley et al., 2017; 166 

Koelewijn et al., 2019). Participants were healthy adults, who were screened via interview or 167 
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questionnaire for the presence of neuropsychiatric disorders. All were right-handed, had 168 

normal or corrected-to-normal vision, and provided informed consent for their data to be 169 

used in imaging genetics analyses. All procedures were originally reviewed and approved by 170 

the Cardiff University School of Psychology Research Ethics Committee. For the current 171 

study, participants were only included if they completed the requisite MRI scans, had APOE 172 

genotype information available, and were aged 35 years or under (N = 148). After additional 173 

exclusions were applied – described below (see also Supplementary Figure 1) – the final 174 

sample comprised 128 participants (86 females, 42 males) aged between 19 and 33 years 175 

(M = 23.8, SD = 3.6).  176 

 177 

Consistent with Hodgetts et al. (2019), the final sample was split into carrier and non-carrier 178 

groups based on the presence/absence of the APOE ε4 allele (Table 1). Participants 179 

carrying both risk-enhancing (ε4) and risk-reducing (ε2) APOE alleles were included as part 180 

of the carrier group, as the ε2ε4 genotype is associated with higher levels of AD pathology 181 

and risk (Goldberg et al., 2020; Jansen et al., 2015; Reiman et al., 2020). Although APOE is 182 

often directly genotyped, as in Hodgetts et al.’s study, here it was inferred from imputed 183 

(1000G phase 1, version 3) genome-wide genetic data (for more detail, see Foley et al., 184 

2017). Previous research has demonstrated that it is possible to accurately infer APOE 185 

genotypes using this method (Lupton et al., 2018; Oldmeadow et al., 2014; Radmanesh et 186 

al., 2014). Overall, the current sample included 40 APOE ε4 carriers (4 ε2/ε4, 33 ε3/ε4, 3 187 

ε4/ε4) and 88 APOE ε4 non-carriers (4 ε2/ε2, 14 ε2/ε3, 70 ε3/ε3). An effect size sensitivity 188 

analysis calculated using the pwr package (version 1.2-2; Champely, 2018) in R (version 189 

3.6.0; R Core Team, 2019) using RStudio (version 1.3.1093; RStudio Team, 2020) revealed 190 

that the smallest effect size detectable at 80% power was Cohen’s ds = 0.575 (1-β = .80, 191 

Bonferroni-corrected α = .016, directional hypothesis). By comparison, even without 192 

correcting the α level for multiple comparisons, the smallest effect size detectable at 80% 193 

power in Hodgetts et al.’s study was Cohen’s ds = 0.931 (1-β = .80, α = .05, directional 194 
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hypothesis). Basic sample characteristics in this study and in Hodgetts et al.’s study are 195 

compared in Supplementary Table 1. 196 

 197 

 198 

Table 1 

Basic Sample Characteristics Separated by APOE ε4 Carrier Status. 

 APOE ε4+ 

(n = 40) 

APOE ε4- 

(n = 88) 

 

Statistics 

Age (years; M ± SD) 23.9 ±3.3 23.7 ±3.7 t(84.84) = 0.226, p = .822, Cohen’s ds 

= 0.042, BF10 = 0.206 

Sex (Males/Females; n)a 12/28 30/58 X2(1, N = 128) = 0.209, p = .648, φ = 

0.04, BF10 = 0.241 

Note. Frequentist null hypothesis significance tests (two-sided Welch’s t-test for age, chi-
square test for sex) revealed no significant difference between APOE ε4 carriers and non-
carriers in terms of age or sex. Effect sizes were also small, while complementary BF 
analyses provided moderate evidence in support of the null hypothesis of no difference. 
Abbreviations: APOE ε4+ = APOE ε4 carrier, APOE ε4- = APOE ε4 non-carrier, M = mean, n 
= number of participants, SD = standard deviation. 
aAlthough sex was self-reported, it was checked against chromosomal sex as part of genetic 
quality control procedures (Foley et al., 2017). 
 199 

 200 

2.2. MRI scan parameters 201 

Scanning was conducted on a GE SIGNA HDx 3T MRI system (General Electric Healthcare, 202 

Milwaukee, WI) with an eight-channel receive-only head coil. Whole-brain high angular 203 

resolution diffusion imaging data (Tuch et al., 2002) were acquired using a diffusion-204 

weighted single-shot echo-planar imaging sequence (TE = 89ms; voxel dimensions = 2.4 x 205 

2.4 x 2.4mm; FOV = 230mm x 230mm; acquisition matrix = 96 x 96; 60 slices aligned AC/PC 206 

with 2.4mm thickness and no gap). Gradients were applied along 30 isotropic directions 207 

(Jones et al., 1999) with b = 1200 s/mm2. Three non-diffusion-weighted images were 208 

acquired with b = 0 s/mm2. Acquisitions were cardiac-gated using a peripheral pulse 209 

oximeter. T1-weighted anatomical images were acquired using a three-dimensional fast 210 

spoiled gradient-echo sequence (TR/TE = 7.8/3s; voxel dimensions = 1mm isotropic; FOV 211 
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ranging from 256 x 256 x 168mm to 256 x 256 x 180mm; acquisition matrix ranging from 256 212 

x 256 x 168 to 256 x 256 x 180; flip angle = 20°). These sequences were similar to those 213 

used by Hodgetts et al. (2019), with only subtle differences between the two studies 214 

(outlined in Supplementary Table 2).  215 

 216 

2.3. dMRI 217 

2.3.1. Pre-processing 218 

The dMRI data were corrected for motion- and eddy current-induced distortions in 219 

ExploreDTI (version 4.8.6; Leemans et al., 2009), with an appropriate reorientation of the b-220 

matrix (Leemans & Jones, 2009). Images were registered to down-sampled T1-weighted 221 

images (1.5mm isotropic resolution) to correct for susceptibility deformations (Irfanoglu et al., 222 

2012). Data were visually checked as part of quality assurance procedures, leading to the 223 

removal of two participants from the analysis due to poor quality data. Consistent with 224 

Hodgetts et al. (2019), the two-compartment free-water elimination procedure was 225 

implemented using in-house MATLAB code (version R2015a; MathWorks, Inc., 2015) to 226 

correct for voxel-wise partial volume artefacts (Pasternak et al., 2009). This procedure has 227 

been shown to improve tract delineation, as well as the sensitivity and specificity of 228 

measures traditionally derived from the diffusion tensor (Pasternak et al., 2009). Free-water 229 

corrected FA and MD maps were then used in further analyses. FA represents the degree to 230 

which diffusion is constrained in a particular direction, ranging from 0 (isotropic diffusion) to 1 231 

(anisotropic diffusion). By contrast, MD (10-3mm2s-1) represents the average diffusivity rate. 232 

 233 

2.3.2. Tractography 234 

The RESDORE algorithm was used to identify outliers in the diffusion data (Parker, 2014), 235 

and then tractography was conducted in ExploreDTI using the modified damped Richardson 236 

Lucy spherical deconvolution algorithm (Dell’Acqua et al., 2010). Spherical deconvolution 237 

approaches enable multiple peaks to be extracted in the white matter fibre orientation 238 

density function (fODF) within a given voxel. This allows complex fibre arrangements, such 239 
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as crossing/kissing fibres, to be modelled more accurately (Dell’Acqua & Tournier, 2019). 240 

The current study and the original study by Hodgetts et al. (2019) both used spherical 241 

deconvolution approaches, although the latter used the constrained spherical deconvolution 242 

algorithm (Jeurissen et al., 2011). While this might lead to subtle differences between the 243 

two studies, the modified damped Richardson Lucy deconvolution algorithm was selected 244 

here because it is considered less sensitive to miscalibration (Parker et al., 2013). To 245 

minimise any further discrepancies between the studies, tracts were reconstructed using the 246 

same parameters used by Hodgetts et al. (fODF amplitude threshold = 0.1; step size = 247 

0.5mm; angle threshold = 60°). 248 

 249 

In-house semi-automated tractography software (Parker et al., 2012) was used to generate 250 

three-dimensional reconstructions of the PHCB and ILF in both hemispheres. The software 251 

was trained on manual reconstructions generated by author R.L. using a waypoint ROI 252 

approach in ExploreDTI, where “SEED”, “AND”, and “NOT” ROIs were used to isolate tract-253 

specific streamlines (Figure 1). ROIs were placed in the same regions as described by 254 

Hodgetts et al. (2019). Placement was therefore guided by established protocols for the 255 

PHCB (Jones, Christiansen et al., 2013) and the ILF (Wakana et al., 2007), respectively. All 256 

reconstructions generated by the semi-automated software were visually inspected by 257 

authors R.L. and C.J.H. and, where required, manually edited post hoc to remove 258 

erroneous, anatomically implausible fibres. Participants for whom the PHCB and ILF could 259 

not be reconstructed in both hemispheres were removed from analysis (n = 18). Thereafter, 260 

measures of microstructure were obtained and averaged across tracts. Although the semi-261 

automated approach used here differs to that used by Hodgetts et al., larger studies have 262 

shown this to be useful (Foley et al., 2017; Metzler-Baddeley et al., 2019). Furthermore, 263 

during visual inspection, author C.J.H. confirmed that tract reconstruction produced 264 

qualitatively similar outputs to those obtained in the original, to-be-replicated study. 265 

 266 

 267 
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Figure 1 268 

Manual Reconstructions of the PHCB and ILF 269 

 270 

 271 

 272 

 273 

 274 

 275 

 276 

 277 

 278 

 279 

 280 

 281 

Note. “SEED”, “AND”, and “NOT” ROIs used to manually reconstruct the PHCB are 282 
highlighted (upper panel). Example tract reconstructions are shown for both the PHCB and 283 
ILF (lower panel). The resulting tracts were used to train the semi-automated tractography 284 
software (Parker et al., 2012) and produce tracts for the entire sample. Abbreviations: ILF = 285 
inferior longitudinal fasciculus, PHCB = parahippocampal cingulum, ROI = region of interest. 286 
 287 

 288 

2.3.3. Tract-based spatial statistics (TBSS) 289 

Complementary voxel-wise statistical analysis of the FA and MD data was conducted using 290 

TBSS (Smith et al., 2006). Each participant’s free-water corrected FA and MD maps were 291 

first aligned in standard MNI space using nonlinear registration (Andersson et al., 2007a, 292 

2007b). Next, the mean FA images were created and subsequently thinned (threshold = 0.2) 293 

to generate the mean FA skeleton, which represents the centre of all tracts common to the 294 

group. Each participant’s aligned FA and MD data were then projected onto the skeleton and 295 

the resulting data carried forward for voxel-wise cross-subject analysis. These analyses 296 

were performed using randomise (Winkler et al., 2014), a permutation-based inference tool. 297 
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For both FA and MD, a general linear model contrasting APOE ε4 carriers and non-carriers 298 

(FA: carrier > non-carrier; MD: carrier < non-carrier) was applied (n permutations = 1000). 299 

Mirroring Hodgetts et al.’s (2019) example, analyses were first restricted to the PHCB using 300 

an ROI mask [labelled “cingulum (hippo-campus)”] from the John Hopkins University ICBM-301 

DTI-81 white-matter tractography atlas. An exploratory whole-brain analysis was then 302 

conducted. Statistically significant clusters were extracted from both analyses using 303 

threshold-free cluster enhancement with a corrected α level of 0.05 (Smith and Nichols, 304 

2009).  305 

 306 

2.4. Statistical analyses 307 

Except for TBSS, all statistical analyses were conducted using R in RStudio. In addition to  308 

common frequentist null hypothesis significance tests, Bayes factors (BFs) were calculated. 309 

BFs quantify the degree to which the observed data favours predictions made by two 310 

models, in this case the null hypothesis and the alternative hypothesis. Consequently, BF 311 

analyses can provide evidence in support of the null (Dienes, 2014). In accordance with the 312 

evidence categories outlined by Lee and Wagenmakers (2013), a BF+0 (BF10 for two-sided 313 

tests) greater than 3 was considered to represent at least moderate evidence for the 314 

alternative hypothesis, whereas a BF+0 less than .33 was considered to represent at least 315 

moderate evidence for the null hypothesis. 316 

 317 

2.4.1. Primary (replication) analyses 318 

To test whether APOE ε4 carriers showed higher FA and lower MD in the PHCB but not the 319 

ILF, one-sided Welch’s t-tests were conducted. As in Hodgetts et al. (2019), all tests were 320 

repeated, once with male participants removed and once with ε2 carriers removed. These 321 

additional tests – performed independently of each other – were originally conducted based 322 

on evidence that APOE ε4 may have a stronger effect on AD biomarkers in females than 323 

males (Riedel et al., 2016), whereas APOE ε2 may have a protective effect on AD 324 

biomarkers (Suri et al., 2013). To ensure that the probability of falsely rejecting the null – the 325 
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Type I error rate – was not inflated, a Bonferroni correction was applied to the α level (.05 / 3 326 

= .016). Two BFs were also calculated: a default JZS BF and a replication BF. The default 327 

JZS BF, which uses a default prior distribution and was computed using the BayesFactor 328 

package (version 0.9.12-4.2; Morey & Rouder, 2018), examines whether an effect is present 329 

or absent in the data collected in the replication study regardless of the original effect. Here, 330 

one-sided (directional) default JZS BFs were calculated. The replication BF, by contrast, 331 

uses the posterior distribution of the original study as the prior distribution in the replication 332 

study, examining whether the original effect is present or absent in the data collected in the 333 

replication study. This BF was computed using previously published R code (Verhagen & 334 

Wagenmakers, 2014). 335 

 336 

2.4.2. Secondary (extension) analyses 337 

2.4.2.1. HMOA index 338 

It remains to be seen whether APOE ε4-related differences in PHCB microstructure are 339 

better captured by measures other than FA and MD, which are sensitive to various aspects 340 

of white matter microstructure without being specific to any one (Jones, Knösche, & Turner, 341 

2013). One such measure is HMOA, which is defined as the absolute amplitude of each 342 

fODF lobe (Dell’Acqua et al., 2013). This is normalised using a reference amplitude in order 343 

to create an index bound between zero and one. A value of zero reflects the absence of a 344 

fibre, whereas a value of one reflects the highest fODF signal that can realistically be 345 

detected in biological tissue (Dell’Acqua et al., 2013).  346 

 347 

Given the lack of a directional hypothesis relating to HMOA, two-sided Welch’s t-tests and 348 

two-sided default JZS BFs were used to identify any differences between APOE ε4 carriers 349 

and non-carriers. In keeping with the primary (replication) analyses described above, these 350 

tests were repeated with males removed and then with ε2 carriers removed. These 351 

analytical steps were performed independently. A Bonferroni correction was applied to the 352 

nominal α level (.05 / 3 = .016). 353 
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2.4.2.2. Hemispheric asymmetry 354 

Despite reports linking AD with a loss of leftward structural and functional asymmetry (Banks 355 

et al., 2018; Roe et al., 2021; Tyrer et al., 2020), which may be related to differences in 356 

hemispheric susceptibility to pathology (Lubben et al., 2021; Weise et al., 2018), no study to 357 

our knowledge has yet investigated whether the APOE ε4 allele is associated with 358 

asymmetry in PHCB or ILF microstructure. Moreover, considering the proposed interaction 359 

between APOE ε4 and sex in the context of AD risk (Riedel et al., 2016), there is also an 360 

interesting question as to whether sex moderates any potential APOE ε4-related association 361 

with hemispheric asymmetry. We therefore examined whether HMOA – a more tract-specific 362 

measure – was lateralised to the left or right hemisphere, and whether this was impacted by 363 

APOE ε4, sex, or their interaction. 364 

 365 

As with the analyses described previously, the ILF was included as a comparison tract. 366 

Lateralisation indices (LIs) were calculated for HMOA in both the PHCB and ILF [LI = (right - 367 

left) / (right + left)]. For any given participant, a negative LI score indicates that HMOA was 368 

higher in the left hemisphere, whereas a positive LI score indicates that HMOA was higher in 369 

the right hemisphere (Zhao et al., 2016). These LIHMOA scores were subsequently analysed 370 

using robust multiple linear regression, which was carried out via the lmrob function from the 371 

robustbase package (version 0.93-7; Maechler et al., 2021). The fitted models were as 372 

follows: 373 

 374 

LIHMOA ~ APOE ε4 carrier status x sex + age       (1) 375 

 376 

LIs were entered as dependent variables. APOE ε4 carrier status and sex were treated as 377 

categorical variables and coded using deviation coding. Age – included as a covariate of “no 378 

interest” – was centred and scaled. The interaction between APOE ε4 carrier status and sex 379 

was included in the model. Results were deemed statistically significant if the observed p 380 

value was smaller than the nominal α level of 0.05.  381 
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2.5. Data and code availability 382 

R code used to analyse and visualise data in the current study is made publicly available via 383 

the Open Science Framework (https://osf.io/f6jp3/). Due to the sensitive nature of the data, 384 

the original ethics do not allow for the public archiving of study data (for more information, 385 

see Koelewijn et al., 2019). Access to pseudo-anonymised data may be granted, however, 386 

after the signing and approval of suitable data-transfer agreements. Readers seeking access 387 

through this mechanism should contact Professor Krish D. Singh at the Cardiff University 388 

Brain Research Imaging Centre (singhkd@cardiff.ac.uk).  389 

 390 

3. Results 391 

3.1. Primary (replication) analyses 392 

3.1.1. Effect of APOE ε4 on PHCB FA and MD 393 

FA values for the PHCB – separated by APOE ε4 carrier status – are shown in Figure 2A. 394 

Contrary to our initial hypothesis, PHCB FA was not significantly higher for APOE ε4 carriers 395 

than non-carriers (t(87.559) = -0.606, p = .727, Cohen’s ds = -0.112). Supporting this, BF 396 

analysis produced moderate evidence in favour of the null (default JZS BF+0 = 0.138, 397 

replication BF10 = 0.141). Removing males from the analysis did not alter the results in any 398 

meaningful way (t(57.685) = 0.045, p = .482, Cohen’s ds = 0.01, default JZS BF+0 = 0.246, 399 

replication BF10 = 0.168), nor did removing ε2 carriers (t(84.459) = -0.923, p = .821, Cohen’s 400 

ds = -0.183, default JZS BF+0 = 0.125, replication BF10 = 0.271).  401 

 402 

MD values for the PHCB – separated by APOE ε4 carrier status – are shown in Figure 2B. 403 

Again, contrary to prior expectations, PHCB MD was not significantly lower for APOE ε4 404 

carriers than non-carriers (t(83.625) = 1.429, p = .922, Cohen’s ds = 0.267). Here, BF 405 

analysis revealed strong evidence in favour of the null (default JZS BF+0 = 0.092, replication 406 

BF10 = 0.057). As with FA, the results for MD did not change substantively after removing 407 

males (t(59.729) = 1.515, p = .933, Cohen’s ds = 0.341, default JZS BF+0 = 0.106, replication 408 
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BF10 = 0.054) or after removing ε2 carriers (t(79.581) = 1.328, p = .906, Cohen’s ds = 0.267, 409 

default JZS BF+0 = 0.103, replication BF10 = 0.1).  410 

 411 

 412 

Figure 2 413 

Differences in PHCB FA and MD Between APOE ε4 Carriers and Non-Carriers 414 

 415 

 416 

 417 

 418 

 419 

 420 

 421 

 422 

 423 

 424 

Note. Differences in (A) PHCB FA and (B) MD (10-3mm2s-1) between APOE ε4 carriers and 425 
non-carriers are shown. Individual data points, each representing a single participant, are 426 
shown alongside boxplots and density plots (“raincloud plots”; Allen et al., 2021). A small 427 
amount of jitter has been added to each data point for clarity. To facilitate interpretation, the 428 
mean value (black circle) and median value (a black line) for each group are both shown. 429 
Abbreviations: FA = fractional anisotropy, MD = mean diffusivity. 430 
 431 

 432 

3.1.2. Effect of APOE ε4 on ILF FA and MD 433 

The same analysis was conducted on ILF FA and MD. Analysis revealed that ILF FA was 434 

not significantly higher for APOE ε4 carriers than non-carriers (t(86.143) = -0.864, p = .805, 435 

Cohen’s ds = -0.16). BF analysis provided moderate-to-strong evidence favouring the 436 

absence of an effect (default JZS BF+0 = 0.12), as well as anecdotal-to-moderate evidence 437 

favouring the absence of the effect reported by Hodgetts et al. (replication BF10 = 0.309). 438 
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This slight discrepancy between BFs is likely because the original to-be-replicated effect was 439 

also small and did not reach the threshold for statistical significance, meaning that the 440 

informed prior used was already more “sceptical” than the default prior. Results remained 441 

largely unchanged when males were removed (t(49.129) = -0.069, p = .527, Cohen’s ds = -442 

0.016, default JZS BF+0 = 0.226, replication BF10 = 0.308) and when ε2 carriers were 443 

removed (t(79.5) = -0.893, p = .813, Cohen’s ds = -0.179, default JZS BF+0 = 0.126). 444 

 445 

ILF MD was not significantly lower for APOE ε4 carriers than non-carriers (t(81.941) = 0.54, 446 

p = .705, Cohen’s ds = 0.101). BFs again provided evidence in support of the null (default 447 

JZS BF+0 = 0.142, replication BF10 = 0.446). Removing males had no notable impact on the 448 

results (t(55.856) = 0.818, p = .792, Cohen’s ds = 0.187, default JZS BF+0 = 0.144, 449 

replication BF10 = 0.613) nor did removing APOE ε2 carriers (t(75.242) = 0.713, p = .761, 450 

Cohen’s ds = 0.145, default JZS BF+0 = 0.137). 451 

 452 

3.1.2. TBSS 453 

Consistent with the tractography analysis, PHCB-restricted TBSS analysis revealed no 454 

significant differences between APOE ε4 carriers and non-carriers. This was true of both FA 455 

(contrast: carriers > non-carriers) and MD (contrast: carriers < non-carriers). Adopting an 456 

uncorrected α level of p = .005, as has been done previously (Hodgetts et al., 2019; Postans 457 

et al., 2014), did not alter this outcome. Exploratory whole-brain TBSS analysis provided 458 

complementary evidence, with no differences evident between APOE ε4 carriers and non-459 

carriers. 460 

 461 

3.2. Secondary (extension) analyses 462 

3.2.1. Effect of APOE ε4 on PHCB and ILF HMOA 463 

Analysis revealed no significant difference between APOE ε4 carriers and non-carriers in 464 

terms of PHCB HMOA (t(90.357) = -0.399, p = .691, Cohen’s ds = -0.073). BF analysis also 465 

provided moderate evidence in favour of the null (default JZS BF10 = 0.215). These results 466 
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were largely unaffected by the removal of males (t(58.33) = 0.445, p = .658, Cohen’s ds = 467 

0.10, default JZS BF10 = 0.258) or the removal of ε2 carriers (t(85.926) = -0.844, p = .401, 468 

Cohen’s ds = -0.167, default JZS BF10 = 0.283).  469 

 470 

For completeness, the same analysis was conducted for ILF HMOA. Results revealed that 471 

APOE ε4 carriers and non-carriers did not differ significantly in terms of ILF HMOA 472 

(t(94.682) = -0.762, p = .448, Cohen’s ds = -0.139). BF analysis provided complementary 473 

evidence, largely favouring the null (default JZS BF10 = 0.251). This remained the case when 474 

males were removed (t(48.941) = 0.394, p = .696, Cohen’s ds = 0.092, default JZS BF10 = 475 

0.256) and when individuals possessing the ε2 allele were removed (t(84.914) = -0.819, p = 476 

.415, Cohen’s ds = -0.162, default JZS BF10 = 0.279). 477 

 478 

3.2.2. Hemispheric asymmetry in PHCB and ILF HMOA 479 

In terms of hemispheric asymmetry, analysis revealed that HMOA was higher in the right (M 480 

= .234, SD = .015) than the left (M = .224, SD = .018) PHCB (t(127) = -6.631, p < .001, 481 

Cohen’s dz = -0.586, default JZS BF10 > 100). Nevertheless, for PHCB LIHMOA, there was no 482 

significant association with APOE ε4 (b < -.001, p = .911), sex (b = -.002, p = .743), or their 483 

interaction (b = -.008, p = .558). Consequently, we observed no evidence indicating that 484 

APOE ε4, sex, or their interactions influenced hemispheric asymmetry in PHCB 485 

microstructure.  486 

 487 

The same analysis was conducted on ILF microstructure. HMOA was higher in the left (M = 488 

.302, SD = .027) than the right (M = .293, SD = .029) hemisphere (t(127) = 3.778, p < .001, 489 

Cohen’s dz = 0.334, default JZS BF10 = 74.09). Examining whether this hemispheric 490 

asymmetry was influenced by APOE ε4, sex, or their interaction, LIs were again calculated 491 

and analysed. In the case of ILF LIHMOA, there was a significant association with APOE ε4 (b 492 

= 0.027, p = .005) but not with sex (b = 0.014, p = .156) or their interaction (b = 0.007, p = 493 
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.674). Figure 3 highlights the group-level differences in ILF LIHMOA. As shown, this was driven 494 

by reduced leftward asymmetry in this tract among APOE ε4 carriers than non-carriers. 495 

 496 

 497 

Figure 3 498 

Difference in ILF LIHMOA Between APOE ε4 Carriers and Non-Carriers 499 

 500 

 501 

 502 

 503 

 504 

 505 

 506 

 507 

 508 

 509 

 510 
 511 
 512 
Note. Differences in ILF LIHMOA between APOE ε4 carriers and non-carriers are shown. 513 
Negative values indicate that HMOA was higher in the left hemisphere, whereas positive 514 
values indicate that HMOA was higher in the right hemisphere. Zero – highlighted by a 515 
dashed line – indicates no asymmetry. Individual data points, each representing a single 516 
participant, are shown alongside boxplots and density plots (“raincloud plots”; Allen et al., 517 
2021). A small amount of jitter has been added to each data point for clarity. To facilitate 518 
interpretation, the mean value (black circle) and median value (a black line) for each group 519 
are both shown. Abbreviations: HMOA = hindrance modulate orientation anisotropy, LI = 520 
lateralisation index. 521 
 522 

 523 

4. Discussion 524 

In this study, we aimed to replicate Hodgetts et al.’s (2019) findings that healthy young 525 

APOE ε4 carriers show higher FA and lower MD than non-carriers in the PHCB but not the 526 
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ILF. Such a pattern would be in line with suggestions that individuals with pre-existing 527 

“hyper-connectivity” between posteromedial cortex and the medial temporal lobe may be 528 

more vulnerable to amyloid-β accumulation (Buckner et al., 2009; Bero et al., 2012; de Haan 529 

et al., 2012) and/or tau spread (Jacobs et al., 2018; Ziontz et al., 2021). Extending this work, 530 

we also conducted analyses on HMOA, a measure that is proposed to be more sensitive to 531 

alterations in tract microstructure than FA or MD  (Dell’Acqua et al., 2013). This included an 532 

investigation into hemispheric asymmetry in PHCB and ILF HMOA, as prior reports indicate 533 

that AD impacts brain asymmetry (Banks et al., 2018; Roe et al., 2021; Tyrer et al., 2020). 534 

 535 

In contrast to the original study, we did not observe higher FA or lower MD in the PHCB of 536 

young APOE ε4 carriers compared to non-carriers. Rather, we found: no statistically 537 

significant effects in the expected direction (all ps ≥ .482); relatively small effect sizes 538 

(Cohen’s ds range from -0.183 to 0.341); and BFs providing evidence in favour of the null 539 

(default JZS BF+0 range from .092 to .246, replication BF10 range from .054 to .273). 540 

Crucially, these BFs represent moderate-to-strong evidence in support of the null hypothesis 541 

(Lee & Wagenmakers, 2013). As such, we not only failed to replicate the effect reported by 542 

Hodgetts et al. (2019), but also found evidence against the presence of such an effect. 543 

There are several plausible explanations for this, although they are not necessarily mutually 544 

exclusive. 545 

 546 

First, it could be the case that Hodgetts et al.’s (2019) findings were false positives (see also 547 

Dell’Acqua et al., 2015). Hodgetts et al.’s study included just 15 participants in the APOE ε4 548 

carrier and non-carrier groups and, as such, was likely underpowered to detect an effect of 549 

the magnitude one might expect from this common genetic variant, especially in early 550 

adulthood (Henson et al., 2020). Given that low statistical power reduces the probability that 551 

an observed effect represents a true effect (Button et al., 2013), it is possible that the effects 552 

reported by Hodgetts et al. were false positives, although it is unclear how this relates the 553 

their observation that PHCB microstructure correlated with posteromedial cortex activity 554 
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during perceptual scene discrimination (see also Shine et al., 2015). The BF analyses 555 

conducted here provide complementary support for this assertion, demonstrating that the 556 

observed data favour the null. Taken at face value, this interpretation casts doubt on the 557 

notion that increased connectivity between posteromedial cortex and the medial temporal 558 

lobe – mediated by individual differences in PHCB microstructure – represents a pre-existing 559 

APOE ε4-related trait enhancing vulnerability to amyloid-β accumulation and/or tau spread. 560 

 561 

Alternatively, it could be the case that Hodgetts et al. (2019) observed a true effect, but its 562 

magnitude was exaggerated. Effect size inflation is most likely to occur in studies with small 563 

sample sizes, a phenomenon referred to as the “winner’s curse” (Button et al., 2013). If true, 564 

the analysis reported in this replication attempt might itself be underpowered to detect the 565 

effect of APOE ε4 on PHCB FA and MD, thereby constituting a Type II error or false 566 

negative. Such an explanation would help to reconcile the observed findings with prior 567 

results indicating that APOE ε4 does have an impact on posteromedial connectivity early in 568 

life (Brown et al., 2011; Felsky & Voineskos, 2013; Hodgetts et al., 2019). While this cannot 569 

currently be ruled out, it should be noted that an effect size sensitivity analysis revealed that 570 

the smallest effect size detectable at 80% power in the current study was Cohen’s ds = 0.57. 571 

In addition, the BF analyses conducted here indicated that the observed data provided 572 

moderate-to-strong evidence in favour of the null, as opposed to simply providing 573 

inconclusive evidence. This shows that, even with the current sample size, our findings have 574 

relatively high evidential value (Dienes, 2014). 575 

 576 

Another potential explanation is that the APOE ε4 carriers and non-carriers included in the 577 

two studies differed in other AD-relevant factors. It is well established that while APOE ε4 578 

carriers are at increased risk of developing AD relative to non-carriers, not all go on to 579 

develop the disease (Liu et al., 2013). In fact, only ~50% of individuals with AD possess one 580 

or more copies of the APOE ε4 allele (Karch et al., 2014), highlighting the importance of 581 

other factors – genetic and environmental – in disease risk/protection (Jagust & Mormino, 582 
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2011; Silva et al., 2019). Following this line of reasoning, it is possible that – due to sampling 583 

variation – the APOE ε4 carrier and non-carrier groups included in the two studies differed in 584 

their overall AD risk profiles, with potential implications for white matter microstructure. This 585 

would at least partly explain why we failed to replicate the effect originally reported by 586 

Hodgetts et al. (2019). Nevertheless, it is important to recognise that this remains an open 587 

question, and large-scale dMRI studies are required to test this possibility. 588 

 589 

Regarding the asymmetry of PHCB microstructure, we found that HMOA was higher in the 590 

right hemisphere. This is consistent with some previous reports using diffusion tensor 591 

metrics (Metzler-Baddeley et al., 2012; Powell et al., 2012), although certainly not all (Lebel 592 

et al., 2012; Thiebaut de Schotten et al., 2011). Prior research has suggested that while left-593 

hemispheric networks exhibit increased nodal efficiency in brains areas supporting 594 

language, right-hemispheric networks exhibit increased nodal efficiency in brain areas 595 

related to episodic memory (Caeyenberghs & Leemans, 2014). This potentially highlights a 596 

functional role for the observed rightward asymmetry in PHCB microstructure. However, we 597 

did not observe an effect of APOE ε4 or sex on the degree of PHCB asymmetry.  598 

 599 

A different pattern emerged in the analysis of ILF microstructure, with HMOA characterised 600 

by leftward asymmetry. As with the PHCB, this finding is consistent with a number of studies 601 

examining asymmetry in ILF volume and diffusion tensor-derived measures of 602 

microstructure (Banfi et al., 2019; Panesar et al., 2018; Thiebaut de Schotten et al., 2011). 603 

We also observed that the degree of asymmetry in this tract was associated with APOE ε4 604 

carrier status, such that asymmetry was lower in carriers relative to non-carriers, mirroring to 605 

some extent the loss of leftward asymmetry in AD (Banks et al., 2018; Roe et al., 2021; 606 

Tyrer et al., 2020). The ILF connects occipital and ventro-anterior temporal lobe (Herbet et 607 

al., 2018), underpinning a network involved in representing item information, including 608 

semantic and perceptual information (Murray et al., 2017; Ranganath & Ritchey, 2012). 609 

Recent research suggests that complex item discrimination is impaired in AD risk (Fidalgo et 610 
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al., 2016; Mason et al., 2017), which has in turn been linked to the structure and function of 611 

components within this network (Berron et al., 2018; Olsen et al., 2017; Reagh et al., 2016). 612 

Indeed, complex item discrimination has been proposed as a useful measure for the 613 

detection of early AD (Gaynor et al., 2019). In addition, a recent study of young adult APOE 614 

ε4 carriers in the Human Connectome Project failed to replicate enhanced intrinsic functional 615 

connectivity between posteromedial cortex and the medial temporal lobe, as observed 616 

previously (Filippini et al., 2009), but found heightened activity in left hemisphere regions 617 

connected by the ILF during face encoding (Mentink et al., 2021), possibly suggestive of a 618 

lifelong neural inefficiency (Jagust & Mormino, 2011). Future research should seek to 619 

replicate further the effect of APOE ε4 on reduced structural (and functional) left hemispheric 620 

asymmetry, especially given potential implications for later life cognition (Jiang et al., 2021; 621 

Maass et al., 2019).  622 

 623 

5. Summary 624 

In this study, we failed to replicate Hodgetts et al.’s (2019) finding that, relative to non-625 

carriers, healthy young adult APOE ε4 carriers show higher FA and lower MD in the PHCB 626 

but not the ILF. Rather, the observed data strongly supported the null hypothesis of no 627 

difference. Our findings thus suggest that young adult APOE ε4 carriers do not show 628 

alterations in PHCB microstructure that might enhance vulnerability – via excessive 629 

connectivity-dependent neuronal activity – to amyloid-β accumulation and/or tau spread. 630 

Nevertheless, marked patterns of hemispheric asymmetry were evident in PHCB and ILF 631 

microstructure, although only the latter was associated with APOE ε4 carrier status. Given 632 

the potential implications for later life cognition, our study highlights an important area for 633 

future research seeking to understand how this AD risk factor impacts neural and cognitive 634 

efficiency years prior to the onset of clinical symptoms. 635 

 636 

 637 

 638 
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