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Abstract
The parahippocampal cingulum bundle (PHCB) connects regions known to be vulnerable to
early Alzheimer’s disease (AD) pathology, such as posteromedial cortex and medial
temporal lobe. While AD-related pathology has been robustly associated with alterations in
PHCB microstructure, specifically lower fractional anisotropy (FA) and higher mean
diffusivity (MD), emerging evidence indicates that the reverse pattern is evident in younger
adults at-risk of AD. In one such study, Hodgetts et al. (2019) reported that healthy young
adult carriers of the apolipoprotein-E (APOE) €4 allele — the strongest common genetic risk
factor for AD — showed higher FA and lower MD in the PHCB but not the inferior longitudinal
fasciculus (ILF). These results are consistent with proposals claiming that heightened neural
activity and connectivity have a significant role in posteromedial cortex vulnerability to
amyloid-B and tau spread beyond the medial temporal lobe. Given the implications for
understanding AD risk, here we sought to replicate Hodgetts et al.’s finding in a larger
sample (N = 128; 40 APOE €4 carriers, 88 APOE €4 non-carriers) of young adults (age
range: 19-33). Extending this work further, we also conducted exploratory analyses using a
more advanced measure of microstructure: hindrance modulated orientational anisotropy
(HMOA). These analyses included an investigation of hemispheric asymmetry in PHCB and
ILF HMOA. Contrary to the original study, we observed no difference in PHCB
microstructure between APOE ¢4 carriers and non-carriers. Bayes factors (BFs) further
revealed moderate-to-strong evidence in support of these null findings. APOE ¢4-related
differences in ILF HMOA asymmetry were evident, however, with carriers demonstrating
lower leftward asymmetry. Our findings indicate that young adult APOE €4 carriers do not
show alterations in PHCB microstructure, as observed by Hodgetts et al., but may show

altered asymmetry in ILF microstructure.

Keywords: APOE, Alzheimer’s disease, parahippocampal cingulum bundle, inferior

longitudinal fasciculus, diffusion MRI, structural connectivity
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1. Introduction

Alzheimer’s disease (AD) is a chronic, progressive disease and the most common cause of
dementia (Scheltens et al., 2021). The hallmark pathological features of AD are the
presence of extracellular amyloid-B-containing plaques and intracellular tau-containing
neurofibrillary tangles (DeTure & Dickson, 2019; Trejo-Lopez et al., 2021). Although
controversial (Frisoni et al., 2022; Herrup, 2015), the dominant hypothesis in the field — the
amyloid cascade hypothesis — holds that the accumulation of amyloid-f3 peptide is the critical
factor in AD pathogenesis (Selkoe & Hardy, 2016). Amyloid-8 accumulation follows a
relatively distinct spatiotemporal pattern in the ageing brain, beginning preferentially in
posteromedial regions, including retrosplenial/posterior cingulate cortices and precuneus
(Mattsson et al., 2019; Palmqvist et al., 2017; Villeneuve et al., 2015). Collectively, these
regions are sometimes referred to as posteromedial cortex (Parvizi et al., 2006). The
vulnerability of posteromedial cortex to AD pathology has been linked to its hub-like
properties (Jagust, 2018), in particular its high-levels of baseline metabolic/neural activity
and high intrinsic/extrinsic connectivity (Bero et al., 2012; Buckner et al., 2009; de Haan et
al., 2012). Notably, posteromedial cortex is densely connected with several medial temporal
lobe structures, such as parahippocampal cortex and hippocampus, forming a “posterior
medial”’ or “extended navigation” network (Murray et al., 2017; Ranganath & Ritchey, 2012).
This broader network is implicated in several inter-related cognitive functions that are
impaired early in AD, such as episodic memory (Rajah et al., 2017), perceptual scene
discrimination (Lee et al., 2006), and spatial navigation (Coughlan et al., 2018). Given this,
there is a pressing need to identify biomarkers that capture the functional and/or structural
integrity of this AD-vulnerable brain network. In this context, the parahippocampal cingulum
bundle (PHCB) — a prominent white matter tract linking posteromedial cortex with the medial
temporal lobe (Bubb et al., 2018; Heilbronner & Haber, 2014; Jitsuishi & Yamaguchi, 2021) —
represents a strong candidate for understanding and characterising connectivity alterations

associated with AD.
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Increasing evidence indicates that PHCB connectivity is altered in AD. Using diffusion
magnetic resonance imaging (dMRI), a non-invasive method that examines the random,
microscopic movement of water molecules, it is possible to delineate the major white matter
tracts of the brain and evaluate their microstructural properties in vivo (Assaf et al., 2019). In
most AD-relevant dMRI studies, white matter microstructure is assessed via measures
derived from the diffusion tensor, notably fractional anisotropy (FA) and mean diffusivity
(MD; Harrison et al., 2020). Low FA and high MD are widely interpreted as representing
poorer microstructural integrity and thus lower connectivity (Yeh et al., 2021), although
multiple biological factors — including neuroinflammation (Kor et al., 2022) — can influence
these measures (Jones, Kndsche, & Turner, 2013). Studies comparing AD patients to
cognitively normal older adults using dMRI have reliably observed both lower FA and higher
MD in the cingulum bundle and the PHCB in particular (Acosta-Cabronero et al., 2010;
Bozzali et al., 2012; Choo et al., 2010; Kantarci et al., 2017). In addition, longitudinal
changes in PHCB microstructure — reduced FA, increased MD — have been reported among
AD patients but not cognitively normal older adults (Mayo et al., 2017). Indeed, it has
recently been suggested that PHCB FA constitutes a highly effective biomarker for

differentiating between typical ageing and AD (Dalboni da Rocha et al., 2020).

Studies of amnestic mild cognitive impairment (aMCl), a transitional stage between typical
ageing and AD (Albert et al., 2011), further highlight that PHCB alterations precede the
onset of AD dementia. In one region-of-interest (ROl) meta-analysis, for example, Yu et al.
(2017) identified robust alterations in PHCB microstructure (lower FA, higher MD) among
individuals with aMCI. This is congruent with the notion that cingulum bundle alterations
predict cognitive decline in aMCIl and may even predict conversion to AD (Gozdas et al.,
2020). Studies combining positron emission tomography and dMRI have also allowed PHCB
changes to be linked directly to AD pathology. For example, amyloid- burden has been
associated with longitudinal changes in white matter microstructure that are consistent with

patterns observed in aMCI and AD (Rieckmann et al., 2016; Song et al., 2018; Vipin et al.,
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2019). In particular, high levels of cortical amyloid-B burden at baseline have been
associated with accelerated decline in PHCB FA and a trend-level increase in PHCB MD
(Rieckmann et al., 2016). In keeping with this tract-specific finding, one recent cross-
sectional study reported that lower FA and higher MD in the PHCB was associated with
greater cortical amyloid-B and entorhinal tau burden, especially in those with high levels of
pre-existing pathology (Pichet Binnette et al., 2021). It thus appears that PHCB
microstructure is detrimentally impacted over the course of AD, including stages prior to the

onset of dementia symptoms.

Emerging research indicates, however, that asymptomatic individuals exhibit alterations in
white matter microstructure that run counter to the characteristic AD pattern. lllustrating this
point, several studies have observed higher FA and lower MD in early-stage amyloid-
pathology, a pattern that is reversed as pathology further accrues (Collij et al., 2021; Dong et
al., 2020; Wolf et al., 2015). These findings point to a biphasic pattern of microstructure over
the disease course, with a period of high FA/low MD preceding the pattern commonly
observed in patients with aMCIl and AD. While increased FA in the context of early AD
pathology could reflect neuroinflammation (Benitez et al., 2021; Dong et al., 2020), there is
evidence that heightened activity and connectivity — including structural connectivity — may
actually precede AD pathology, predisposing individuals to later amyloid-B deposition (Bero
et al., 2012; Buckner et al., 2009; de Haan et al., 2012). Support for this proposal can be
found in studies of young adults carriers of the apolipoprotein-E (APOE) €4 allele. The APOE
€4 allele is the strongest common genetic risk factor for AD (Belloy et al., 2019), and is also
associated with a younger age of onset and faster rate of posteromedial amyloid-
accumulation (Burnham et al., 2020; Mishra et al., 2018). In line with the notion that this
amyloid-B accumulation is related to earlier connectivity changes, a study applying graph
theoretical analysis to dMRI data observed that age was negatively associated with local
interconnectivity in posteromedial regions, but only among APOE €4 carriers (Brown et al.,

2011). Higher levels of local interconnectivity in younger adults drove this finding, such that
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there was a putative APOE ¢4-related increase in connectivity early in life that was
subsequently followed by a sharper decline later in the lifespan (Brown et al., 2011; see also
Ma et al., 2017). Relatedly, Felsky and Voineskos (2013) further reported higher cingulum
bundle FA in younger APOE €4 carriers compared to younger non-carriers, but lower
cingulum bundle FA in older APOE €4 carriers compared to older non-carriers. Given that
young adults are unlikely to possess significant amyloid- burden (Jansen et al., 2015),

these findings suggest that early-life structural alterations may precede pathology.

Consistent with this, Hodgetts et al. (2019) observed higher FA and lower MD among APOE
€4 carriers relative to non-carriers in the PHCB but not the inferior longitudinal fasciculus
(ILF), a tract that connects the occipital lobe to the ventro-anterior temporal lobe (Herbet et
al., 2018). Hodgetts et al. also found that PHCB microstructure was correlated with
posteromedial cortex activity during perceptual scene discrimination, a task that has
previously been shown to elicit heightened activity in young APOE €4 carriers (Shine et al.,
2015) and is sensitive to AD (Lee et al., 2006). Based on the proposal that heightened
neural activity and connectivity can have a significant role in hub-like vulnerability to amyloid-
B (Bero et al., 2012; Buckner et al., 2009; de Haan et al., 2012), it is plausible that such
early-life PHCB alterations may explain why APOE €4 is associated with earlier and faster
posteromedial amyloid-B accumulation (Burnham et al., 2020; Mishra et al., 2018).
Moreover, as the spread of tau has been linked to heightened functional connectivity
between posteromedial cortex and the medial temporal lobe (Ziontz et al., 2021) —
presumably mediated by the PHCB (Jacobs et al., 2018) — it is possible that early-life
increases in structural connectivity are also related to elevated tau in APOE €4 carriers

(Therriault et al., 2020).

In view of the potential implications for understanding the role of APOE €4 in AD risk, we
sought to replicate Hodgetts et al.’s (2019) finding that healthy young adult APOE €4 carriers

demonstrate higher FA and lower MD than non-carriers in the PHCB but not the ILF. We
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140 analysed data from an independent data set of young adults, with a total sample over four
141 times larger than the original study. This replication attempt thus constitutes an important
142  test of the notion that increased PHCB connectivity, as indexed by higher FA and lower MD,
143 is evident in young adult APOE €4 carriers, potentially increasing vulnerability to both

144  amyloid-B accumulation and tau spread.

145

146  We also report additional exploratory analyses that seek to extend this work by incorporating
147  a more advanced measure of microstructure: hindrance modulated orientational anisotropy
148 (HMOA,; Dell’Acqua et al., 2013). HMOA is regarded as a tract-specific measure of

149  microstructure and is argued to be more sensitive to alterations in anisotropy than either FA
150 or MD (Dell’Acqua et al., 2013). As such, we investigated whether APOE €4 is associated
151 with differences in PHCB and ILF HMOA, complementing the primary (replication) analyses.
152  In addition, we also assessed whether APOE €4 is associated with asymmetry in PHCB and
153 ILF HMOA. Recent evidence suggests that AD is characterised by a loss of typical or

154  “healthy” leftward structural and functional asymmetry in the brain (Banks et al., 2018; Roe
155 etal., 2021; Tyrer et al., 2020), perhaps as a result of hemispheric differences in

156  susceptibility to AD pathology (Lubben et al., 2021; Weise et al., 2018). Given the proposal
157  that early-life APOE €4-related alterations in neural activity and connectivity increase

158  vulnerability to AD pathology, notably amyloid-f accumulation but perhaps also tau spread, it
159 s plausible that this allele may be associated with changes in the asymmetry of key white
160  matter tracts. To our knowledge, no study to date has yet investigated this possibility,

161 especially in healthy young adults.

162

163 2. Method

164  2.1. Participants

165  Participant data were acquired from a repository at the Cardiff University Brain Research
166  Imaging Centre. Portions of this data have been published elsewhere (Foley et al., 2017;

167 Koelewijn et al., 2019). Participants were healthy adults, who were screened via interview or
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qguestionnaire for the presence of neuropsychiatric disorders. All were right-handed, had
normal or corrected-to-normal vision, and provided informed consent for their data to be
used in imaging genetics analyses. All procedures were originally reviewed and approved by
the Cardiff University School of Psychology Research Ethics Committee. For the current
study, participants were only included if they completed the requisite MRI scans, had APOE
genotype information available, and were aged 35 years or under (N = 148). After additional
exclusions were applied — described below (see also Supplementary Figure 1) — the final
sample comprised 128 participants (86 females, 42 males) aged between 19 and 33 years

(M =23.8, SD = 3.6).

Consistent with Hodgetts et al. (2019), the final sample was split into carrier and non-carrier
groups based on the presence/absence of the APOE ¢4 allele (Table 1). Participants
carrying both risk-enhancing (€4) and risk-reducing (¢2) APOE alleles were included as part
of the carrier group, as the €2¢4 genotype is associated with higher levels of AD pathology
and risk (Goldberg et al., 2020; Jansen et al., 2015; Reiman et al., 2020). Although APOE is
often directly genotyped, as in Hodgetts et al.’s study, here it was inferred from imputed
(1000G phase 1, version 3) genome-wide genetic data (for more detail, see Foley et al.,
2017). Previous research has demonstrated that it is possible to accurately infer APOE
genotypes using this method (Lupton et al., 2018; Oldmeadow et al., 2014; Radmanesh et
al., 2014). Overall, the current sample included 40 APOE €4 carriers (4 €2/€4, 33 €3/¢4, 3
€4/e4) and 88 APOE €4 non-carriers (4 €2/€2, 14 €2/€3, 70 €3/€3). An effect size sensitivity
analysis calculated using the pwr package (version 1.2-2; Champely, 2018) in R (version
3.6.0; R Core Team, 2019) using RStudio (version 1.3.1093; RStudio Team, 2020) revealed
that the smallest effect size detectable at 80% power was Cohen’s ds = 0.575 (1-p = .80,
Bonferroni-corrected a = .016, directional hypothesis). By comparison, even without
correcting the a level for multiple comparisons, the smallest effect size detectable at 80%

power in Hodgetts et al.’s study was Cohen’s ds= 0.931 (1-B = .80, a = .05, directional
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9
hypothesis). Basic sample characteristics in this study and in Hodgetts et al.’s study are
compared in Supplementary Table 1.

Table 1
Basic Sample Characteristics Separated by APOE €4 Carrier Status.
APOE ¢4+ APOE ¢4-
(n=40) (n=88) Statistics
Age (years; M + SD) 23.9+3.3 23.7+3.7 1(84.84)=0.226, p = .822, Cohen’s d;
=0.042, BF4, = 0.206
Sex (Males/Females; n)® 12/28 30/58 X2(1, N=128)=0.209, p = .648, ¢ =

0.04, BF4o = 0.241

Note. Frequentist null hypothesis significance tests (two-sided Welch’s t-test for age, chi-
square test for sex) revealed no significant difference between APOE €4 carriers and non-
carriers in terms of age or sex. Effect sizes were also small, while complementary BF
analyses provided moderate evidence in support of the null hypothesis of no difference.
Abbreviations: APOE €4+ = APOE €4 carrier, APOE ¢4- = APOE €4 non-carrier, M = mean, n
= number of participants, SD = standard deviation.

@Although sex was self-reported, it was checked against chromosomal sex as part of genetic
quality control procedures (Foley et al., 2017).

2.2. MRI scan parameters

Scanning was conducted on a GE SIGNA HDx 3T MRI system (General Electric Healthcare,
Milwaukee, WI) with an eight-channel receive-only head coil. Whole-brain high angular
resolution diffusion imaging data (Tuch et al., 2002) were acquired using a diffusion-
weighted single-shot echo-planar imaging sequence (TE = 89ms; voxel dimensions = 2.4 x
2.4 x 2.4mm; FOV = 230mm x 230mm; acquisition matrix = 96 x 96; 60 slices aligned AC/PC
with 2.4mm thickness and no gap). Gradients were applied along 30 isotropic directions
(Jones et al., 1999) with b = 1200 s/mm?. Three non-diffusion-weighted images were
acquired with b = 0 s/mm?. Acquisitions were cardiac-gated using a peripheral pulse
oximeter. T1-weighted anatomical images were acquired using a three-dimensional fast

spoiled gradient-echo sequence (TR/TE = 7.8/3s; voxel dimensions = 1mm isotropic; FOV
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212 ranging from 256 x 256 x 168mm to 256 x 256 x 180mm; acquisition matrix ranging from 256
213  x 256 x 168 to 256 x 256 x 180; flip angle = 20°). These sequences were similar to those
214  used by Hodgetts et al. (2019), with only subtle differences between the two studies

215  (outlined in Supplementary Table 2).

216

217 2.3.dMRI

218  2.3.1. Pre-processing

219  The dMRI data were corrected for motion- and eddy current-induced distortions in

220 ExploreDTI (version 4.8.6; Leemans et al., 2009), with an appropriate reorientation of the b-
221 matrix (Leemans & Jones, 2009). Images were registered to down-sampled T1-weighted
222  images (1.5mm isotropic resolution) to correct for susceptibility deformations (Irfanoglu et al.,
223  2012). Data were visually checked as part of quality assurance procedures, leading to the
224  removal of two participants from the analysis due to poor quality data. Consistent with

225  Hodgetts et al. (2019), the two-compartment free-water elimination procedure was

226  implemented using in-house MATLAB code (version R2015a; MathWorks, Inc., 2015) to
227  correct for voxel-wise partial volume artefacts (Pasternak et al., 2009). This procedure has
228 been shown to improve tract delineation, as well as the sensitivity and specificity of

229  measures traditionally derived from the diffusion tensor (Pasternak et al., 2009). Free-water
230  corrected FA and MD maps were then used in further analyses. FA represents the degree to
231 which diffusion is constrained in a particular direction, ranging from 0 (isotropic diffusion) to 1
232  (anisotropic diffusion). By contrast, MD (10°mm?s™") represents the average diffusivity rate.
233

234  2.3.2. Tractography

235 The RESDORE algorithm was used to identify outliers in the diffusion data (Parker, 2014),
236  and then tractography was conducted in ExploreDTI using the modified damped Richardson
237  Lucy spherical deconvolution algorithm (Dell’Acqua et al., 2010). Spherical deconvolution
238 approaches enable multiple peaks to be extracted in the white matter fibre orientation

239  density function (fODF) within a given voxel. This allows complex fibre arrangements, such
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240  as crossing/kissing fibres, to be modelled more accurately (Del’Acqua & Tournier, 2019).
241 The current study and the original study by Hodgetts et al. (2019) both used spherical

242  deconvolution approaches, although the latter used the constrained spherical deconvolution
243  algorithm (Jeurissen et al., 2011). While this might lead to subtle differences between the
244  two studies, the modified damped Richardson Lucy deconvolution algorithm was selected
245  here because it is considered less sensitive to miscalibration (Parker et al., 2013). To

246  minimise any further discrepancies between the studies, tracts were reconstructed using the
247  same parameters used by Hodgetts et al. (fODF amplitude threshold = 0.1; step size =

248  0.5mm; angle threshold = 60°).

249

250 In-house semi-automated tractography software (Parker et al., 2012) was used to generate
251 three-dimensional reconstructions of the PHCB and ILF in both hemispheres. The software
252  was trained on manual reconstructions generated by author R.L. using a waypoint ROI

253  approach in ExploreDTI, where “SEED”, “AND”, and “NOT” ROls were used to isolate tract-
254  specific streamlines (Figure 1). ROls were placed in the same regions as described by

255  Hodgetts et al. (2019). Placement was therefore guided by established protocols for the
256 PHCB (Jones, Christiansen et al., 2013) and the ILF (Wakana et al., 2007), respectively. All
257  reconstructions generated by the semi-automated software were visually inspected by

258 authors R.L. and C.J.H. and, where required, manually edited post hoc to remove

259  erroneous, anatomically implausible fibres. Participants for whom the PHCB and ILF could
260  not be reconstructed in both hemispheres were removed from analysis (n = 18). Thereafter,
261 measures of microstructure were obtained and averaged across tracts. Although the semi-
262 automated approach used here differs to that used by Hodgetts et al., larger studies have
263  shown this to be useful (Foley et al., 2017; Metzler-Baddeley et al., 2019). Furthermore,
264  during visual inspection, author C.J.H. confirmed that tract reconstruction produced

265  qualitatively similar outputs to those obtained in the original, to-be-replicated study.

266

267
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Figure 1

Manual Reconstructions of the PHCB and ILF

PHCB ILF

Note. “SEED”, “AND”, and “NOT” ROIs used to manually reconstruct the PHCB are
highlighted (upper panel). Example tract reconstructions are shown for both the PHCB and
ILF (lower panel). The resulting tracts were used to train the semi-automated tractography
software (Parker et al., 2012) and produce tracts for the entire sample. Abbreviations: ILF =
inferior longitudinal fasciculus, PHCB = parahippocampal cingulum, ROI = region of interest.

2.3.3. Tract-based spatial statistics (TBSS)

Complementary voxel-wise statistical analysis of the FA and MD data was conducted using
TBSS (Smith et al., 2006). Each participant’s free-water corrected FA and MD maps were
first aligned in standard MNI space using nonlinear registration (Andersson et al., 2007a,
2007b). Next, the mean FA images were created and subsequently thinned (threshold = 0.2)
to generate the mean FA skeleton, which represents the centre of all tracts common to the
group. Each participant’s aligned FA and MD data were then projected onto the skeleton and
the resulting data carried forward for voxel-wise cross-subject analysis. These analyses

were performed using randomise (Winkler et al., 2014), a permutation-based inference tool.
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For both FA and MD, a general linear model contrasting APOE €4 carriers and non-carriers
(FA: carrier > non-carrier; MD: carrier < non-carrier) was applied (n permutations = 1000).
Mirroring Hodgetts et al.’s (2019) example, analyses were first restricted to the PHCB using
an ROI mask [labelled “cingulum (hippo-campus)’] from the John Hopkins University ICBM-
DTI-81 white-matter tractography atlas. An exploratory whole-brain analysis was then
conducted. Statistically significant clusters were extracted from both analyses using
threshold-free cluster enhancement with a corrected a level of 0.05 (Smith and Nichols,

2009).

2.4. Statistical analyses

Except for TBSS, all statistical analyses were conducted using R in RStudio. In addition to
common frequentist null hypothesis significance tests, Bayes factors (BFs) were calculated.
BFs quantify the degree to which the observed data favours predictions made by two
models, in this case the null hypothesis and the alternative hypothesis. Consequently, BF
analyses can provide evidence in support of the null (Dienes, 2014). In accordance with the
evidence categories outlined by Lee and Wagenmakers (2013), a BF.q (BF 4o for two-sided
tests) greater than 3 was considered to represent at least moderate evidence for the
alternative hypothesis, whereas a BF . less than .33 was considered to represent at least

moderate evidence for the null hypothesis.

2.4.1. Primary (replication) analyses

To test whether APOE ¢4 carriers showed higher FA and lower MD in the PHCB but not the
ILF, one-sided Welch'’s t-tests were conducted. As in Hodgetts et al. (2019), all tests were
repeated, once with male participants removed and once with €2 carriers removed. These
additional tests — performed independently of each other — were originally conducted based
on evidence that APOE €4 may have a stronger effect on AD biomarkers in females than
males (Riedel et al., 2016), whereas APOE €2 may have a protective effect on AD

biomarkers (Suri et al., 2013). To ensure that the probability of falsely rejecting the null — the
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326  Type | error rate — was not inflated, a Bonferroni correction was applied to the a level (.05/ 3
327 =.016). Two BFs were also calculated: a default JZS BF and a replication BF. The default
328  JZS BF, which uses a default prior distribution and was computed using the BayesFactor
329  package (version 0.9.12-4.2; Morey & Rouder, 2018), examines whether an effect is present
330 or absent in the data collected in the replication study regardless of the original effect. Here,
331  one-sided (directional) default JZS BFs were calculated. The replication BF, by contrast,
332  uses the posterior distribution of the original study as the prior distribution in the replication
333  study, examining whether the original effect is present or absent in the data collected in the
334  replication study. This BF was computed using previously published R code (Verhagen &
335 Wagenmakers, 2014).

336

337  2.4.2. Secondary (extension) analyses

338 2.4.2.1. HMOA index

339 It remains to be seen whether APOE ¢4-related differences in PHCB microstructure are

340  better captured by measures other than FA and MD, which are sensitive to various aspects
341 of white matter microstructure without being specific to any one (Jones, Knésche, & Turner,
342  2013). One such measure is HMOA, which is defined as the absolute amplitude of each
343  fODF lobe (DellAcqua et al., 2013). This is normalised using a reference amplitude in order
344  to create an index bound between zero and one. A value of zero reflects the absence of a
345  fibre, whereas a value of one reflects the highest fODF signal that can realistically be

346  detected in biological tissue (Dell’Acqua et al., 2013).

347

348  Given the lack of a directional hypothesis relating to HMOA, two-sided Welch'’s t-tests and
349  two-sided default JZS BFs were used to identify any differences between APOE €4 carriers
350 and non-carriers. In keeping with the primary (replication) analyses described above, these
351 tests were repeated with males removed and then with €2 carriers removed. These

352  analytical steps were performed independently. A Bonferroni correction was applied to the

353 nominal alevel (.05/3 =.016).
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354  2.4.2.2. Hemispheric asymmetry

355  Despite reports linking AD with a loss of leftward structural and functional asymmetry (Banks
356 etal., 2018; Roe et al., 2021; Tyrer et al., 2020), which may be related to differences in

357  hemispheric susceptibility to pathology (Lubben et al., 2021; Weise et al., 2018), no study to
358  our knowledge has yet investigated whether the APOE €4 allele is associated with

359 asymmetry in PHCB or ILF microstructure. Moreover, considering the proposed interaction
360 between APOE €4 and sex in the context of AD risk (Riedel et al., 2016), there is also an

361 interesting question as to whether sex moderates any potential APOE ¢4-related association
362  with hemispheric asymmetry. We therefore examined whether HMOA — a more tract-specific
363 measure — was lateralised to the left or right hemisphere, and whether this was impacted by
364  APOE €4, sex, or their interaction.

365

366  As with the analyses described previously, the ILF was included as a comparison tract.

367  Lateralisation indices (LIs) were calculated for HMOA in both the PHCB and ILF [LI = (right -
368  left) / (right + left)]. For any given participant, a negative LI score indicates that HMOA was
369 higher in the left hemisphere, whereas a positive LI score indicates that HMOA was higher in
370  the right hemisphere (Zhao et al., 2016). These Llyumoa scores were subsequently analysed
371 using robust multiple linear regression, which was carried out via the Imrob function from the

372  robustbase package (version 0.93-7; Maechler et al., 2021). The fitted models were as

373  follows:

374

375  Llymoa ~ APOE €4 carrier status x sex + age (1)
376

377  Lls were entered as dependent variables. APOE €4 carrier status and sex were treated as
378  categorical variables and coded using deviation coding. Age — included as a covariate of “no
379 interest” — was centred and scaled. The interaction between APOE ¢4 carrier status and sex
380 was included in the model. Results were deemed statistically significant if the observed p

381 value was smaller than the nominal a level of 0.05.
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2.5. Data and code availability
R code used to analyse and visualise data in the current study is made publicly available via

the Open Science Framework (https://osf.io/f6jp3/). Due to the sensitive nature of the data,

the original ethics do not allow for the public archiving of study data (for more information,
see Koelewijn et al., 2019). Access to pseudo-anonymised data may be granted, however,
after the signing and approval of suitable data-transfer agreements. Readers seeking access
through this mechanism should contact Professor Krish D. Singh at the Cardiff University

Brain Research Imaging Centre (singhkd@cardiff.ac.uk).

3. Results

3.1. Primary (replication) analyses

3.1.1. Effect of APOE ¢4 on PHCB FA and MD

FA values for the PHCB — separated by APOE €4 carrier status — are shown in Figure 2A.
Contrary to our initial hypothesis, PHCB FA was not significantly higher for APOE €4 carriers
than non-carriers (t(87.559) = -0.606, p = .727, Cohen’s ds = -0.112). Supporting this, BF
analysis produced moderate evidence in favour of the null (default JZS BF.;= 0.138,
replication BF o = 0.141). Removing males from the analysis did not alter the results in any
meaningful way (#(57.685) = 0.045, p = .482, Cohen’s ds = 0.01, default JZS BF., = 0.246,
replication BF o= 0.168), nor did removing €2 carriers ({(84.459) = -0.923, p = .821, Cohen’s

ds =-0.183, default JZS BF., = 0.125, replication BF = 0.271).

MD values for the PHCB — separated by APOE €4 carrier status — are shown in Figure 2B.
Again, contrary to prior expectations, PHCB MD was not significantly lower for APOE ¢4
carriers than non-carriers (£(83.625) = 1.429, p = .922, Cohen’s ds; = 0.267). Here, BF
analysis revealed strong evidence in favour of the null (default JZS BF., = 0.092, replication
BF 0= 0.057). As with FA, the results for MD did not change substantively after removing

males (£(59.729) = 1.515, p = .933, Cohen’s ds = 0.341, default JZS BF., = 0.106, replication
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409 BF4o=0.054) or after removing €2 carriers (£(79.581) = 1.328, p = .906, Cohen’s ds = 0.267,
410  default JZS BF., = 0.103, replication BF o= 0.1).

411

412

413  Figure 2

414 Differences in PHCB FA and MD Between APOE €4 Carriers and Non-Carriers

415 A B 0.781
416
0.44 - ‘
417 0.76 4
418 0.42+ o a
419 v 0.74-
L0401 % 2
420 “ -
I 8§
421 0.38+ g s $
.0
422 s
0.364 .
0.704
423 ¢
424 T U T U
Non-carrier Carrier Non-carrier Carrier
APOE ¢4 Carrier Status APOE ¢4 Carrier Status

425  Note. Differences in (A) PHCB FA and (B) MD (10 °mm?s™) between APOE ¢4 carriers and
426  non-carriers are shown. Individual data points, each representing a single participant, are
427  shown alongside boxplots and density plots (“raincloud plots”; Allen et al., 2021). A small
428 amount of jitter has been added to each data point for clarity. To facilitate interpretation, the
429  mean value (black circle) and median value (a black line) for each group are both shown.
430  Abbreviations: FA = fractional anisotropy, MD = mean diffusivity.

431

432

433  3.1.2. Effect of APOE €4 on ILF FA and MD

434  The same analysis was conducted on ILF FA and MD. Analysis revealed that ILF FA was
435 not significantly higher for APOE €4 carriers than non-carriers ({(86.143) = -0.864, p = .805,
436  Cohen’s d; = -0.16). BF analysis provided moderate-to-strong evidence favouring the
437  absence of an effect (default JZS BF., = 0.12), as well as anecdotal-to-moderate evidence

438 favouring the absence of the effect reported by Hodgetts et al. (replication BF4, = 0.309).
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439  This slight discrepancy between BFs is likely because the original to-be-replicated effect was
440 also small and did not reach the threshold for statistical significance, meaning that the
441 informed prior used was already more “sceptical” than the default prior. Results remained
442  largely unchanged when males were removed (£(49.129) = -0.069, p = .527, Cohen’s ds = -
443  0.016, default JZS BF., = 0.226, replication BF,, = 0.308) and when €2 carriers were
444  removed (£(79.5) = -0.893, p = .813, Cohen’s ds = -0.179, default JZS BF.; = 0.126).

445

446  ILF MD was not significantly lower for APOE ¢4 carriers than non-carriers ({(81.941) = 0.54,
447  p = .705, Cohen’s ds = 0.101). BFs again provided evidence in support of the null (default
448  JZS BF., = 0.142, replication BFo= 0.446). Removing males had no notable impact on the
449  results (#(55.856) = 0.818, p = .792, Cohen’s ds = 0.187, default JZS BF., = 0.144,
450  replication BFo = 0.613) nor did removing APOE €2 carriers (t(75.242) = 0.713, p = .761,
451  Cohen’s d;s = 0.145, default JZS BF.; = 0.137).

452

453 3.1.2. TBSS

454  Consistent with the tractography analysis, PHCB-restricted TBSS analysis revealed no
455  significant differences between APOE €4 carriers and non-carriers. This was true of both FA
456  (contrast: carriers > non-carriers) and MD (contrast: carriers < non-carriers). Adopting an
457  uncorrected a level of p = .005, as has been done previously (Hodgetts et al., 2019; Postans
458 et al., 2014), did not alter this outcome. Exploratory whole-brain TBSS analysis provided
459  complementary evidence, with no differences evident between APOE €4 carriers and non-
460 carriers.

461

462  3.2. Secondary (extension) analyses

463  3.2.1. Effect of APOE €4 on PHCB and ILF HMOA

464  Analysis revealed no significant difference between APOE €4 carriers and non-carriers in
465 terms of PHCB HMOA (£(90.357) = -0.399, p = .691, Cohen’s ds; = -0.073). BF analysis also

466  provided moderate evidence in favour of the null (default JZS BF = 0.215). These results
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were largely unaffected by the removal of males (£(58.33) = 0.445, p = .658, Cohen’s ds =
0.10, default JZS BF = 0.258) or the removal of €2 carriers ({(85.926) = -0.844, p = .401,

Cohen’s ds = -0.167, default JZS BF, = 0.283).

For completeness, the same analysis was conducted for ILF HMOA. Results revealed that
APOE ¢4 carriers and non-carriers did not differ significantly in terms of ILF HMOA
(t(94.682) = -0.762, p = .448, Cohen’s ds = -0.139). BF analysis provided complementary
evidence, largely favouring the null (default JZS BF4o = 0.251). This remained the case when
males were removed (£(48.941) = 0.394, p = .696, Cohen’s ds = 0.092, default JZS BF o =
0.256) and when individuals possessing the €2 allele were removed (£(84.914) = -0.819, p =

415, Cohen’s d; = -0.162, default JZS BF, = 0.279).

3.2.2. Hemispheric asymmetry in PHCB and ILF HMOA

In terms of hemispheric asymmetry, analysis revealed that HMOA was higher in the right (M
= .234, SD = .015) than the left (M = .224, SD = .018) PHCB (#(127) = -6.631, p < .001,
Cohen’s d, = -0.586, default JZS BF 1, > 100). Nevertheless, for PHCB Llywoa, there was no
significant association with APOE €4 (b <-.001, p = .911), sex (b =-.002, p = .743), or their
interaction (b = -.008, p = .558). Consequently, we observed no evidence indicating that
APOE €4, sex, or their interactions influenced hemispheric asymmetry in PHCB

microstructure.

The same analysis was conducted on ILF microstructure. HMOA was higher in the left (M =
.302, SD = .027) than the right (M = .293, SD = .029) hemisphere ({(127) = 3.778, p < .001,
Cohen’s d, = 0.334, default JZS BF 1, = 74.09). Examining whether this hemispheric
asymmetry was influenced by APOE €4, sex, or their interaction, LIs were again calculated
and analysed. In the case of ILF Llyuwoa, there was a significant association with APOE €4 (b

=0.027, p = .005) but not with sex (b = 0.014, p = .156) or their interaction (b = 0.007, p =
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494  .674). Figure 3 highlights the group-level differences in ILF Lljuoa. As shown, this was driven
495 by reduced leftward asymmetry in this tract among APOE €4 carriers than non-carriers.

496

497

498 Figure 3

499  Difference in ILF Lluyoa Between APOE €4 Carriers and Non-Carriers

500

501
502
carter]  —— T F——  —
503

504

*¥

505

506

507

Non-carrier - —

508 RUTHRBAR L, o

509

210 0.1 0.0 0.1
511 ILF HMOA Asymmetry (Left-Right)

512

513  Note. Differences in ILF Llymoa between APOE €4 carriers and non-carriers are shown.
514  Negative values indicate that HMOA was higher in the left hemisphere, whereas positive
515 values indicate that HMOA was higher in the right hemisphere. Zero — highlighted by a
516  dashed line — indicates no asymmetry. Individual data points, each representing a single
517  participant, are shown alongside boxplots and density plots (“raincloud plots”; Allen et al.,
518  2021). A small amount of jitter has been added to each data point for clarity. To facilitate
519 interpretation, the mean value (black circle) and median value (a black line) for each group
520 are both shown. Abbreviations: HMOA = hindrance modulate orientation anisotropy, LI =
521 lateralisation index.

522

523
524 4. Discussion
525 In this study, we aimed to replicate Hodgetts et al.’s (2019) findings that healthy young

526  APOE €4 carriers show higher FA and lower MD than non-carriers in the PHCB but not the
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527 ILF. Such a pattern would be in line with suggestions that individuals with pre-existing

528  “hyper-connectivity” between posteromedial cortex and the medial temporal lobe may be
529  more vulnerable to amyloid-B accumulation (Buckner et al., 2009; Bero et al., 2012; de Haan
530 etal.,, 2012) and/or tau spread (Jacobs et al., 2018; Ziontz et al., 2021). Extending this work,
531 we also conducted analyses on HMOA, a measure that is proposed to be more sensitive to
532  alterations in tract microstructure than FA or MD (Dell’Acqua et al., 2013). This included an
533 investigation into hemispheric asymmetry in PHCB and ILF HMOA, as prior reports indicate
534 that AD impacts brain asymmetry (Banks et al., 2018; Roe et al., 2021; Tyrer et al., 2020).
535

536 In contrast to the original study, we did not observe higher FA or lower MD in the PHCB of
537  young APOE ¢4 carriers compared to non-carriers. Rather, we found: no statistically

538  significant effects in the expected direction (all ps = .482); relatively small effect sizes

539 (Cohen’s ds range from -0.183 to 0.341); and BFs providing evidence in favour of the null
540  (default JZS BF., range from .092 to .246, replication BF 1o range from .054 to .273).

541 Crucially, these BFs represent moderate-to-strong evidence in support of the null hypothesis
542  (Lee & Wagenmakers, 2013). As such, we not only failed to replicate the effect reported by
543  Hodgetts et al. (2019), but also found evidence against the presence of such an effect.

544  There are several plausible explanations for this, although they are not necessarily mutually
545  exclusive.

546

547  First, it could be the case that Hodgetts et al.’s (2019) findings were false positives (see also
548 Dell’Acqua et al., 2015). Hodgetts et al.’s study included just 15 participants in the APOE €4
549  carrier and non-carrier groups and, as such, was likely underpowered to detect an effect of
550 the magnitude one might expect from this common genetic variant, especially in early

551  adulthood (Henson et al., 2020). Given that low statistical power reduces the probability that
552  an observed effect represents a true effect (Button et al., 2013), it is possible that the effects
553 reported by Hodgetts et al. were false positives, although it is unclear how this relates the

554  their observation that PHCB microstructure correlated with posteromedial cortex activity
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during perceptual scene discrimination (see also Shine et al., 2015). The BF analyses
conducted here provide complementary support for this assertion, demonstrating that the
observed data favour the null. Taken at face value, this interpretation casts doubt on the
notion that increased connectivity between posteromedial cortex and the medial temporal
lobe — mediated by individual differences in PHCB microstructure — represents a pre-existing

APOE ¢4-related trait enhancing vulnerability to amyloid- accumulation and/or tau spread.

Alternatively, it could be the case that Hodgetts et al. (2019) observed a true effect, but its
magnitude was exaggerated. Effect size inflation is most likely to occur in studies with small
sample sizes, a phenomenon referred to as the “winner’s curse” (Button et al., 2013). If true,
the analysis reported in this replication attempt might itself be underpowered to detect the
effect of APOE €4 on PHCB FA and MD, thereby constituting a Type Il error or false
negative. Such an explanation would help to reconcile the observed findings with prior
results indicating that APOE €4 does have an impact on posteromedial connectivity early in
life (Brown et al., 2011; Felsky & Voineskos, 2013; Hodgetts et al., 2019). While this cannot
currently be ruled out, it should be noted that an effect size sensitivity analysis revealed that
the smallest effect size detectable at 80% power in the current study was Cohen’s ds; = 0.57.
In addition, the BF analyses conducted here indicated that the observed data provided
moderate-to-strong evidence in favour of the null, as opposed to simply providing
inconclusive evidence. This shows that, even with the current sample size, our findings have

relatively high evidential value (Dienes, 2014).

Another potential explanation is that the APOE €4 carriers and non-carriers included in the
two studies differed in other AD-relevant factors. It is well established that while APOE €4
carriers are at increased risk of developing AD relative to non-carriers, not all go on to
develop the disease (Liu et al., 2013). In fact, only ~50% of individuals with AD possess one
or more copies of the APOE ¢4 allele (Karch et al., 2014), highlighting the importance of

other factors — genetic and environmental — in disease risk/protection (Jagust & Mormino,
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2011; Silva et al., 2019). Following this line of reasoning, it is possible that — due to sampling
variation — the APOE ¢4 carrier and non-carrier groups included in the two studies differed in
their overall AD risk profiles, with potential implications for white matter microstructure. This
would at least partly explain why we failed to replicate the effect originally reported by
Hodgetts et al. (2019). Nevertheless, it is important to recognise that this remains an open

question, and large-scale dMRI studies are required to test this possibility.

Regarding the asymmetry of PHCB microstructure, we found that HMOA was higher in the
right hemisphere. This is consistent with some previous reports using diffusion tensor
metrics (Metzler-Baddeley et al., 2012; Powell et al., 2012), although certainly not all (Lebel
et al., 2012; Thiebaut de Schotten et al., 2011). Prior research has suggested that while left-
hemispheric networks exhibit increased nodal efficiency in brains areas supporting
language, right-hemispheric networks exhibit increased nodal efficiency in brain areas
related to episodic memory (Caeyenberghs & Leemans, 2014). This potentially highlights a
functional role for the observed rightward asymmetry in PHCB microstructure. However, we

did not observe an effect of APOE €4 or sex on the degree of PHCB asymmetry.

A different pattern emerged in the analysis of ILF microstructure, with HMOA characterised
by leftward asymmetry. As with the PHCB, this finding is consistent with a number of studies
examining asymmetry in ILF volume and diffusion tensor-derived measures of
microstructure (Banfi et al., 2019; Panesar et al., 2018; Thiebaut de Schotten et al., 2011).
We also observed that the degree of asymmetry in this tract was associated with APOE €4
carrier status, such that asymmetry was lower in carriers relative to non-carriers, mirroring to
some extent the loss of leftward asymmetry in AD (Banks et al., 2018; Roe et al., 2021;
Tyrer et al., 2020). The ILF connects occipital and ventro-anterior temporal lobe (Herbet et
al., 2018), underpinning a network involved in representing item information, including
semantic and perceptual information (Murray et al., 2017; Ranganath & Ritchey, 2012).

Recent research suggests that complex item discrimination is impaired in AD risk (Fidalgo et
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al., 2016; Mason et al., 2017), which has in turn been linked to the structure and function of
components within this network (Berron et al., 2018; Olsen et al., 2017; Reagh et al., 2016).
Indeed, complex item discrimination has been proposed as a useful measure for the
detection of early AD (Gaynor et al., 2019). In addition, a recent study of young adult APOE
€4 carriers in the Human Connectome Project failed to replicate enhanced intrinsic functional
connectivity between posteromedial cortex and the medial temporal lobe, as observed
previously (Filippini et al., 2009), but found heightened activity in left hemisphere regions
connected by the ILF during face encoding (Mentink et al., 2021), possibly suggestive of a
lifelong neural inefficiency (Jagust & Mormino, 2011). Future research should seek to
replicate further the effect of APOE €4 on reduced structural (and functional) left hemispheric
asymmetry, especially given potential implications for later life cognition (Jiang et al., 2021;

Maass et al., 2019).

5. Summary

In this study, we failed to replicate Hodgetts et al.’s (2019) finding that, relative to non-
carriers, healthy young adult APOE €4 carriers show higher FA and lower MD in the PHCB
but not the ILF. Rather, the observed data strongly supported the null hypothesis of no
difference. Our findings thus suggest that young adult APOE €4 carriers do not show
alterations in PHCB microstructure that might enhance vulnerability — via excessive
connectivity-dependent neuronal activity — to amyloid-8 accumulation and/or tau spread.
Nevertheless, marked patterns of hemispheric asymmetry were evident in PHCB and ILF
microstructure, although only the latter was associated with APOE €4 carrier status. Given
the potential implications for later life cognition, our study highlights an important area for
future research seeking to understand how this AD risk factor impacts neural and cognitive

efficiency years prior to the onset of clinical symptoms.
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