

## **Tract-specific white matter microstructure alterations among young adult *APOE ε4* carriers: A replication and extension study**

Rikki Lissaman<sup>a</sup>, Thomas M. Lancaster<sup>a, b</sup>, Greg D. Parker<sup>a</sup>, Kim S. Graham<sup>a</sup>, Andrew D. Lawrence<sup>a, \*</sup>, & Carl J. Hodgetts<sup>a, c, \*</sup>

<sup>a</sup>Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom

<sup>b</sup>School of Psychology, University of Bath, Bath, United Kingdom

<sup>c</sup>Department of Psychology, Royal Holloway, University of London, Egham, United Kingdom

\*These authors jointly supervised this work.

Corresponding author: Carl J. Hodgetts ([carl.hodgetts@rhul.ac.uk](mailto:carl.hodgetts@rhul.ac.uk))

**Number of pages:** 43

**Number of figures:** 3

**Number of tables:** 1

**Number of words:** Abstract (285); Introduction (1659); Discussion (1415)

1

## Abstract

2 The parahippocampal cingulum bundle (PHCB) connects regions known to be vulnerable to  
3 early Alzheimer's disease (AD) pathology, such as posteromedial cortex and medial  
4 temporal lobe. While AD-related pathology has been robustly associated with alterations in  
5 PHCB microstructure, specifically lower fractional anisotropy (FA) and higher mean  
6 diffusivity (MD), emerging evidence indicates that the reverse pattern is evident in younger  
7 adults at-risk of AD. In one such study, Hodgetts et al. (2019) reported that healthy young  
8 adult carriers of the apolipoprotein-E (*APOE*)  $\epsilon 4$  allele – the strongest common genetic risk  
9 factor for AD – showed higher FA and lower MD in the PHCB but not the inferior longitudinal  
10 fasciculus (ILF). These results are consistent with proposals claiming that heightened neural  
11 activity and connectivity have a significant role in posteromedial cortex vulnerability to  
12 amyloid- $\beta$  and tau spread beyond the medial temporal lobe. Given the implications for  
13 understanding AD risk, here we sought to replicate Hodgetts et al.'s finding in a larger  
14 sample ( $N = 128$ ; 40 *APOE*  $\epsilon 4$  carriers, 88 *APOE*  $\epsilon 4$  non-carriers) of young adults (age  
15 range: 19-33). Extending this work further, we also conducted exploratory analyses using a  
16 more advanced measure of microstructure: hindrance modulated orientational anisotropy  
17 (HMOA). These analyses included an investigation of hemispheric asymmetry in PHCB and  
18 ILF HMOA. Contrary to the original study, we observed no difference in PHCB  
19 microstructure between *APOE*  $\epsilon 4$  carriers and non-carriers. Bayes factors (BFs) further  
20 revealed moderate-to-strong evidence in support of these null findings. *APOE*  $\epsilon 4$ -related  
21 differences in ILF HMOA asymmetry were evident, however, with carriers demonstrating  
22 lower leftward asymmetry. Our findings indicate that young adult *APOE*  $\epsilon 4$  carriers do not  
23 show alterations in PHCB microstructure, as observed by Hodgetts et al., but may show  
24 altered asymmetry in ILF microstructure.

25

26 **Keywords:** *APOE*, Alzheimer's disease, parahippocampal cingulum bundle, inferior  
27 longitudinal fasciculus, diffusion MRI, structural connectivity

28 **1. Introduction**

29 Alzheimer's disease (AD) is a chronic, progressive disease and the most common cause of  
30 dementia (Scheltens et al., 2021). The hallmark pathological features of AD are the  
31 presence of extracellular amyloid- $\beta$ -containing plaques and intracellular tau-containing  
32 neurofibrillary tangles (DeTure & Dickson, 2019; Trejo-Lopez et al., 2021). Although  
33 controversial (Frisoni et al., 2022; Herrup, 2015), the dominant hypothesis in the field – the  
34 amyloid cascade hypothesis – holds that the accumulation of amyloid- $\beta$  peptide is the critical  
35 factor in AD pathogenesis (Selkoe & Hardy, 2016). Amyloid- $\beta$  accumulation follows a  
36 relatively distinct spatiotemporal pattern in the ageing brain, beginning preferentially in  
37 posteromedial regions, including retrosplenial/posterior cingulate cortices and precuneus  
38 (Mattsson et al., 2019; Palmqvist et al., 2017; Villeneuve et al., 2015). Collectively, these  
39 regions are sometimes referred to as posteromedial cortex (Parvizi et al., 2006). The  
40 vulnerability of posteromedial cortex to AD pathology has been linked to its hub-like  
41 properties (Jagust, 2018), in particular its high-levels of baseline metabolic/neural activity  
42 and high intrinsic/extrinsic connectivity (Bero et al., 2012; Buckner et al., 2009; de Haan et  
43 al., 2012). Notably, posteromedial cortex is densely connected with several medial temporal  
44 lobe structures, such as parahippocampal cortex and hippocampus, forming a “posterior  
45 medial” or “extended navigation” network (Murray et al., 2017; Ranganath & Ritchey, 2012).  
46 This broader network is implicated in several inter-related cognitive functions that are  
47 impaired early in AD, such as episodic memory (Rajah et al., 2017), perceptual scene  
48 discrimination (Lee et al., 2006), and spatial navigation (Coughlan et al., 2018). Given this,  
49 there is a pressing need to identify biomarkers that capture the functional and/or structural  
50 integrity of this AD-vulnerable brain network. In this context, the parahippocampal cingulum  
51 bundle (PHCB) – a prominent white matter tract linking posteromedial cortex with the medial  
52 temporal lobe (Bubb et al., 2018; Heilbronner & Haber, 2014; Jitsuishi & Yamaguchi, 2021) –  
53 represents a strong candidate for understanding and characterising connectivity alterations  
54 associated with AD.

56 Increasing evidence indicates that PHCB connectivity is altered in AD. Using diffusion  
57 magnetic resonance imaging (dMRI), a non-invasive method that examines the random,  
58 microscopic movement of water molecules, it is possible to delineate the major white matter  
59 tracts of the brain and evaluate their microstructural properties *in vivo* (Assaf et al., 2019). In  
60 most AD-relevant dMRI studies, white matter microstructure is assessed via measures  
61 derived from the diffusion tensor, notably fractional anisotropy (FA) and mean diffusivity  
62 (MD; Harrison et al., 2020). Low FA and high MD are widely interpreted as representing  
63 poorer microstructural integrity and thus lower connectivity (Yeh et al., 2021), although  
64 multiple biological factors – including neuroinflammation (Kor et al., 2022) – can influence  
65 these measures (Jones, Knösche, & Turner, 2013). Studies comparing AD patients to  
66 cognitively normal older adults using dMRI have reliably observed both lower FA and higher  
67 MD in the cingulum bundle and the PHCB in particular (Acosta-Cabronero et al., 2010;  
68 Bozzali et al., 2012; Choo et al., 2010; Kantarci et al., 2017). In addition, longitudinal  
69 changes in PHCB microstructure – reduced FA, increased MD – have been reported among  
70 AD patients but not cognitively normal older adults (Mayo et al., 2017). Indeed, it has  
71 recently been suggested that PHCB FA constitutes a highly effective biomarker for  
72 differentiating between typical ageing and AD (Dalboni da Rocha et al., 2020).

73

74 Studies of amnestic mild cognitive impairment (aMCI), a transitional stage between typical  
75 ageing and AD (Albert et al., 2011), further highlight that PHCB alterations precede the  
76 onset of AD dementia. In one region-of-interest (ROI) meta-analysis, for example, Yu et al.  
77 (2017) identified robust alterations in PHCB microstructure (lower FA, higher MD) among  
78 individuals with aMCI. This is congruent with the notion that cingulum bundle alterations  
79 predict cognitive decline in aMCI and may even predict conversion to AD (Gozdas et al.,  
80 2020). Studies combining positron emission tomography and dMRI have also allowed PHCB  
81 changes to be linked directly to AD pathology. For example, amyloid- $\beta$  burden has been  
82 associated with longitudinal changes in white matter microstructure that are consistent with  
83 patterns observed in aMCI and AD (Rieckmann et al., 2016; Song et al., 2018; Vipin et al.,

84 2019). In particular, high levels of cortical amyloid- $\beta$  burden at baseline have been  
85 associated with accelerated decline in PHCB FA and a trend-level increase in PHCB MD  
86 (Rieckmann et al., 2016). In keeping with this tract-specific finding, one recent cross-  
87 sectional study reported that lower FA and higher MD in the PHCB was associated with  
88 greater cortical amyloid- $\beta$  and entorhinal tau burden, especially in those with high levels of  
89 pre-existing pathology (Pichet Binette et al., 2021). It thus appears that PHCB  
90 microstructure is detrimentally impacted over the course of AD, including stages prior to the  
91 onset of dementia symptoms.

92

93 Emerging research indicates, however, that asymptomatic individuals exhibit alterations in  
94 white matter microstructure that run counter to the characteristic AD pattern. Illustrating this  
95 point, several studies have observed higher FA and lower MD in early-stage amyloid- $\beta$   
96 pathology, a pattern that is reversed as pathology further accrues (Collij et al., 2021; Dong et  
97 al., 2020; Wolf et al., 2015). These findings point to a biphasic pattern of microstructure over  
98 the disease course, with a period of high FA/low MD preceding the pattern commonly  
99 observed in patients with aMCI and AD. While increased FA in the context of early AD  
100 pathology could reflect neuroinflammation (Benitez et al., 2021; Dong et al., 2020), there is  
101 evidence that heightened activity and connectivity – including structural connectivity – may  
102 actually precede AD pathology, predisposing individuals to later amyloid- $\beta$  deposition (Bero  
103 et al., 2012; Buckner et al., 2009; de Haan et al., 2012). Support for this proposal can be  
104 found in studies of young adults carriers of the apolipoprotein-E (*APOE*)  $\epsilon$ 4 allele. The *APOE*  
105  $\epsilon$ 4 allele is the strongest common genetic risk factor for AD (Belloy et al., 2019), and is also  
106 associated with a younger age of onset and faster rate of posteromedial amyloid- $\beta$   
107 accumulation (Burnham et al., 2020; Mishra et al., 2018). In line with the notion that this  
108 amyloid- $\beta$  accumulation is related to earlier connectivity changes, a study applying graph  
109 theoretical analysis to dMRI data observed that age was negatively associated with local  
110 interconnectivity in posteromedial regions, but only among *APOE*  $\epsilon$ 4 carriers (Brown et al.,  
111 2011). Higher levels of local interconnectivity in younger adults drove this finding, such that

112 there was a putative *APOE* ε4-related increase in connectivity early in life that was  
113 subsequently followed by a sharper decline later in the lifespan (Brown et al., 2011; see also  
114 Ma et al., 2017). Relatedly, Felsky and Voineskos (2013) further reported higher cingulum  
115 bundle FA in younger *APOE* ε4 carriers compared to younger non-carriers, but lower  
116 cingulum bundle FA in older *APOE* ε4 carriers compared to older non-carriers. Given that  
117 young adults are unlikely to possess significant amyloid-β burden (Jansen et al., 2015),  
118 these findings suggest that early-life structural alterations may precede pathology.

119

120 Consistent with this, Hodgetts et al. (2019) observed higher FA and lower MD among *APOE*  
121 ε4 carriers relative to non-carriers in the PHCB but not the inferior longitudinal fasciculus  
122 (ILF), a tract that connects the occipital lobe to the ventro-anterior temporal lobe (Herbet et  
123 al., 2018). Hodgetts et al. also found that PHCB microstructure was correlated with  
124 posteromedial cortex activity during perceptual scene discrimination, a task that has  
125 previously been shown to elicit heightened activity in young *APOE* ε4 carriers (Shine et al.,  
126 2015) and is sensitive to AD (Lee et al., 2006). Based on the proposal that heightened  
127 neural activity and connectivity can have a significant role in hub-like vulnerability to amyloid-  
128 β (Bero et al., 2012; Buckner et al., 2009; de Haan et al., 2012), it is plausible that such  
129 early-life PHCB alterations may explain why *APOE* ε4 is associated with earlier and faster  
130 posteromedial amyloid-β accumulation (Burnham et al., 2020; Mishra et al., 2018).

131 Moreover, as the spread of tau has been linked to heightened functional connectivity  
132 between posteromedial cortex and the medial temporal lobe (Ziontz et al., 2021) –  
133 presumably mediated by the PHCB (Jacobs et al., 2018) – it is possible that early-life  
134 increases in structural connectivity are also related to elevated tau in *APOE* ε4 carriers  
135 (Therriault et al., 2020).

136

137 In view of the potential implications for understanding the role of *APOE* ε4 in AD risk, we  
138 sought to replicate Hodgetts et al.'s (2019) finding that healthy young adult *APOE* ε4 carriers  
139 demonstrate higher FA and lower MD than non-carriers in the PHCB but not the ILF. We

140 analysed data from an independent data set of young adults, with a total sample over four  
141 times larger than the original study. This replication attempt thus constitutes an important  
142 test of the notion that increased PHCB connectivity, as indexed by higher FA and lower MD,  
143 is evident in young adult *APOE* ε4 carriers, potentially increasing vulnerability to both  
144 amyloid-β accumulation and tau spread.

145

146 We also report additional exploratory analyses that seek to extend this work by incorporating  
147 a more advanced measure of microstructure: hindrance modulated orientational anisotropy  
148 (HMOA; Dell'Acqua et al., 2013). HMOA is regarded as a tract-specific measure of  
149 microstructure and is argued to be more sensitive to alterations in anisotropy than either FA  
150 or MD (Dell'Acqua et al., 2013). As such, we investigated whether *APOE* ε4 is associated  
151 with differences in PHCB and ILF HMOA, complementing the primary (replication) analyses.  
152 In addition, we also assessed whether *APOE* ε4 is associated with asymmetry in PHCB and  
153 ILF HMOA. Recent evidence suggests that AD is characterised by a loss of typical or  
154 “healthy” leftward structural and functional asymmetry in the brain (Banks et al., 2018; Roe  
155 et al., 2021; Tyrer et al., 2020), perhaps as a result of hemispheric differences in  
156 susceptibility to AD pathology (Lubben et al., 2021; Weise et al., 2018). Given the proposal  
157 that early-life *APOE* ε4-related alterations in neural activity and connectivity increase  
158 vulnerability to AD pathology, notably amyloid-β accumulation but perhaps also tau spread, it  
159 is plausible that this allele may be associated with changes in the asymmetry of key white  
160 matter tracts. To our knowledge, no study to date has yet investigated this possibility,  
161 especially in healthy young adults.

162

## 163 **2. Method**

### 164 2.1. Participants

165 Participant data were acquired from a repository at the Cardiff University Brain Research  
166 Imaging Centre. Portions of this data have been published elsewhere (Foley et al., 2017;  
167 Koelewijn et al., 2019). Participants were healthy adults, who were screened via interview or

168 questionnaire for the presence of neuropsychiatric disorders. All were right-handed, had  
169 normal or corrected-to-normal vision, and provided informed consent for their data to be  
170 used in imaging genetics analyses. All procedures were originally reviewed and approved by  
171 the Cardiff University School of Psychology Research Ethics Committee. For the current  
172 study, participants were only included if they completed the requisite MRI scans, had *APOE*  
173 genotype information available, and were aged 35 years or under ( $N = 148$ ). After additional  
174 exclusions were applied – described below (see also Supplementary Figure 1) – the final  
175 sample comprised 128 participants (86 females, 42 males) aged between 19 and 33 years  
176 ( $M = 23.8$ ,  $SD = 3.6$ ).

177

178 Consistent with Hodgetts et al. (2019), the final sample was split into carrier and non-carrier  
179 groups based on the presence/absence of the *APOE*  $\epsilon 4$  allele (Table 1). Participants  
180 carrying both risk-enhancing ( $\epsilon 4$ ) and risk-reducing ( $\epsilon 2$ ) *APOE* alleles were included as part  
181 of the carrier group, as the  $\epsilon 2\epsilon 4$  genotype is associated with higher levels of AD pathology  
182 and risk (Goldberg et al., 2020; Jansen et al., 2015; Reiman et al., 2020). Although *APOE* is  
183 often directly genotyped, as in Hodgetts et al.'s study, here it was inferred from imputed  
184 (1000G phase 1, version 3) genome-wide genetic data (for more detail, see Foley et al.,  
185 2017). Previous research has demonstrated that it is possible to accurately infer *APOE*  
186 genotypes using this method (Lupton et al., 2018; Oldmeadow et al., 2014; Radmanesh et  
187 al., 2014). Overall, the current sample included 40 *APOE*  $\epsilon 4$  carriers (4  $\epsilon 2/\epsilon 4$ , 33  $\epsilon 3/\epsilon 4$ , 3  
188  $\epsilon 4/\epsilon 4$ ) and 88 *APOE*  $\epsilon 4$  non-carriers (4  $\epsilon 2/\epsilon 2$ , 14  $\epsilon 2/\epsilon 3$ , 70  $\epsilon 3/\epsilon 3$ ). An effect size sensitivity  
189 analysis calculated using the *pwr* package (version 1.2-2; Champely, 2018) in R (version  
190 3.6.0; R Core Team, 2019) using RStudio (version 1.3.1093; RStudio Team, 2020) revealed  
191 that the smallest effect size detectable at 80% power was Cohen's  $d_s = 0.575$  ( $1-\beta = .80$ ,  
192 Bonferroni-corrected  $\alpha = .016$ , directional hypothesis). By comparison, even without  
193 correcting the  $\alpha$  level for multiple comparisons, the smallest effect size detectable at 80%  
194 power in Hodgetts et al.'s study was Cohen's  $d_s = 0.931$  ( $1-\beta = .80$ ,  $\alpha = .05$ , directional

195 hypothesis). Basic sample characteristics in this study and in Hodgetts et al.'s study are  
196 compared in Supplementary Table 1.

197

198

**Table 1**

*Basic Sample Characteristics Separated by APOE ε4 Carrier Status.*

|                                             | <i>APOE ε4+</i><br>(n = 40) | <i>APOE ε4-</i><br>(n = 88) | Statistics                                                              |
|---------------------------------------------|-----------------------------|-----------------------------|-------------------------------------------------------------------------|
| Age (years; <i>M</i> ± <i>SD</i> )          | 23.9 ±3.3                   | 23.7 ±3.7                   | $t(84.84) = 0.226, p = .822$ , Cohen's $d_s$ = 0.042, $BF_{10} = 0.206$ |
| Sex (Males/Females; <i>n</i> ) <sup>a</sup> | 12/28                       | 30/58                       | $X^2(1, N = 128) = 0.209, p = .648, \varphi = 0.04$ , $BF_{10} = 0.241$ |

*Note.* Frequentist null hypothesis significance tests (two-sided Welch's *t*-test for age, chi-square test for sex) revealed no significant difference between *APOE ε4* carriers and non-carriers in terms of age or sex. Effect sizes were also small, while complementary BF analyses provided moderate evidence in support of the null hypothesis of no difference.

Abbreviations: *APOE ε4+* = *APOE ε4* carrier, *APOE ε4-* = *APOE ε4* non-carrier, *M* = mean, *n* = number of participants, *SD* = standard deviation.

<sup>a</sup>Although sex was self-reported, it was checked against chromosomal sex as part of genetic quality control procedures (Foley et al., 2017).

199

200

201 2.2. MRI scan parameters

202 Scanning was conducted on a GE SIGNA HDx 3T MRI system (General Electric Healthcare,

203 Milwaukee, WI) with an eight-channel receive-only head coil. Whole-brain high angular

204 resolution diffusion imaging data (Tuch et al., 2002) were acquired using a diffusion-

205 weighted single-shot echo-planar imaging sequence (TE = 89ms; voxel dimensions = 2.4 x

206 2.4 x 2.4mm; FOV = 230mm x 230mm; acquisition matrix = 96 x 96; 60 slices aligned AC/PC

207 with 2.4mm thickness and no gap). Gradients were applied along 30 isotropic directions

208 (Jones et al., 1999) with *b* = 1200 s/mm<sup>2</sup>. Three non-diffusion-weighted images were

209 acquired with *b* = 0 s/mm<sup>2</sup>. Acquisitions were cardiac-gated using a peripheral pulse

210 oximeter. T1-weighted anatomical images were acquired using a three-dimensional fast

211 spoiled gradient-echo sequence (TR/TE = 7.8/3s; voxel dimensions = 1mm isotropic; FOV

212 ranging from 256 x 256 x 168mm to 256 x 256 x 180mm; acquisition matrix ranging from 256  
213 x 256 x 168 to 256 x 256 x 180; flip angle = 20°). These sequences were similar to those  
214 used by Hodgetts et al. (2019), with only subtle differences between the two studies  
215 (outlined in Supplementary Table 2).

216

217 2.3. dMRI

218 2.3.1. Pre-processing

219 The dMRI data were corrected for motion- and eddy current-induced distortions in  
220 ExploreDTI (version 4.8.6; Leemans et al., 2009), with an appropriate reorientation of the b-  
221 matrix (Leemans & Jones, 2009). Images were registered to down-sampled T1-weighted  
222 images (1.5mm isotropic resolution) to correct for susceptibility deformations (Irfanoglu et al.,  
223 2012). Data were visually checked as part of quality assurance procedures, leading to the  
224 removal of two participants from the analysis due to poor quality data. Consistent with  
225 Hodgetts et al. (2019), the two-compartment free-water elimination procedure was  
226 implemented using in-house MATLAB code (version R2015a; MathWorks, Inc., 2015) to  
227 correct for voxel-wise partial volume artefacts (Pasternak et al., 2009). This procedure has  
228 been shown to improve tract delineation, as well as the sensitivity and specificity of  
229 measures traditionally derived from the diffusion tensor (Pasternak et al., 2009). Free-water  
230 corrected FA and MD maps were then used in further analyses. FA represents the degree to  
231 which diffusion is constrained in a particular direction, ranging from 0 (isotropic diffusion) to 1  
232 (anisotropic diffusion). By contrast, MD ( $10^{-3}\text{mm}^2\text{s}^{-1}$ ) represents the average diffusivity rate.

233

234 2.3.2. Tractography

235 The RESDORF algorithm was used to identify outliers in the diffusion data (Parker, 2014),  
236 and then tractography was conducted in ExploreDTI using the modified damped Richardson  
237 Lucy spherical deconvolution algorithm (Dell'Acqua et al., 2010). Spherical deconvolution  
238 approaches enable multiple peaks to be extracted in the white matter fibre orientation  
239 density function (fODF) within a given voxel. This allows complex fibre arrangements, such

240 as crossing/kissing fibres, to be modelled more accurately (Dell'Acqua & Tournier, 2019).  
241 The current study and the original study by Hodgetts et al. (2019) both used spherical  
242 deconvolution approaches, although the latter used the constrained spherical deconvolution  
243 algorithm (Jeurissen et al., 2011). While this might lead to subtle differences between the  
244 two studies, the modified damped Richardson Lucy deconvolution algorithm was selected  
245 here because it is considered less sensitive to miscalibration (Parker et al., 2013). To  
246 minimise any further discrepancies between the studies, tracts were reconstructed using the  
247 same parameters used by Hodgetts et al. (fODF amplitude threshold = 0.1; step size =  
248 0.5mm; angle threshold = 60°).

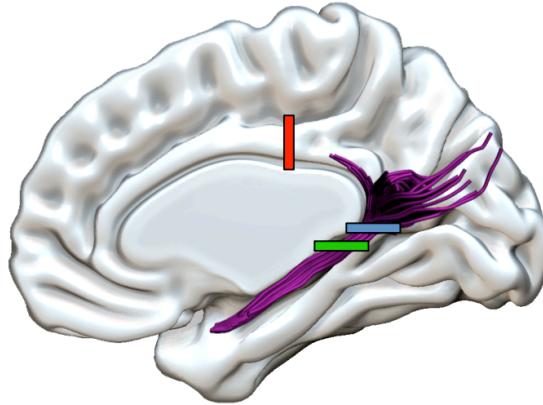
249

250 In-house semi-automated tractography software (Parker et al., 2012) was used to generate  
251 three-dimensional reconstructions of the PHCB and ILF in both hemispheres. The software  
252 was trained on manual reconstructions generated by author R.L. using a waypoint ROI  
253 approach in ExploreDTI, where “SEED”, “AND”, and “NOT” ROIs were used to isolate tract-  
254 specific streamlines (Figure 1). ROIs were placed in the same regions as described by  
255 Hodgetts et al. (2019). Placement was therefore guided by established protocols for the  
256 PHCB (Jones, Christiansen et al., 2013) and the ILF (Wakana et al., 2007), respectively. All  
257 reconstructions generated by the semi-automated software were visually inspected by  
258 authors R.L. and C.J.H. and, where required, manually edited post hoc to remove  
259 erroneous, anatomically implausible fibres. Participants for whom the PHCB and ILF could  
260 not be reconstructed in both hemispheres were removed from analysis ( $n = 18$ ). Thereafter,  
261 measures of microstructure were obtained and averaged across tracts. Although the semi-  
262 automated approach used here differs to that used by Hodgetts et al., larger studies have  
263 shown this to be useful (Foley et al., 2017; Metzler-Baddeley et al., 2019). Furthermore,  
264 during visual inspection, author C.J.H. confirmed that tract reconstruction produced  
265 qualitatively similar outputs to those obtained in the original, to-be-replicated study.

266

267

268 **Figure 1**


269 *Manual Reconstructions of the PHCB and ILF*

270

271

272

- 273       "SEED"
- 274       "AND"
- 275       "NOT"



276

277



281

282 Note. "SEED", "AND", and "NOT" ROIs used to manually reconstruct the PHCB are  
283 highlighted (*upper panel*). Example tract reconstructions are shown for both the PHCB and  
284 ILF (*lower panel*). The resulting tracts were used to train the semi-automated tractography  
285 software (Parker et al., 2012) and produce tracts for the entire sample. Abbreviations: ILF =  
286 inferior longitudinal fasciculus, PHCB = parahippocampal cingulum, ROI = region of interest.

287

288

289 2.3.3. Tract-based spatial statistics (TBSS)

290 Complementary voxel-wise statistical analysis of the FA and MD data was conducted using  
291 TBSS (Smith et al., 2006). Each participant's free-water corrected FA and MD maps were  
292 first aligned in standard MNI space using nonlinear registration (Andersson et al., 2007a,  
293 2007b). Next, the mean FA images were created and subsequently thinned (threshold = 0.2)  
294 to generate the mean FA skeleton, which represents the centre of all tracts common to the  
295 group. Each participant's aligned FA and MD data were then projected onto the skeleton and  
296 the resulting data carried forward for voxel-wise cross-subject analysis. These analyses  
297 were performed using *randomise* (Winkler et al., 2014), a permutation-based inference tool.

298 For both FA and MD, a general linear model contrasting *APOE* ε4 carriers and non-carriers  
299 (FA: carrier > non-carrier; MD: carrier < non-carrier) was applied (*n* permutations = 1000).  
300 Mirroring Hodgetts et al.'s (2019) example, analyses were first restricted to the PHCB using  
301 an ROI mask [labelled "cingulum (hippo-campus)"] from the John Hopkins University ICBM-  
302 DTI-81 white-matter tractography atlas. An exploratory whole-brain analysis was then  
303 conducted. Statistically significant clusters were extracted from both analyses using  
304 threshold-free cluster enhancement with a corrected *a* level of 0.05 (Smith and Nichols,  
305 2009).

306

307 2.4. Statistical analyses

308 Except for TBSS, all statistical analyses were conducted using R in RStudio. In addition to  
309 common frequentist null hypothesis significance tests, Bayes factors (BFs) were calculated.  
310 BFs quantify the degree to which the observed data favours predictions made by two  
311 models, in this case the null hypothesis and the alternative hypothesis. Consequently, BF  
312 analyses can provide evidence in support of the null (Dienes, 2014). In accordance with the  
313 evidence categories outlined by Lee and Wagenmakers (2013), a  $BF_{+0}$  ( $BF_{10}$  for two-sided  
314 tests) greater than 3 was considered to represent at least moderate evidence for the  
315 alternative hypothesis, whereas a  $BF_{+0}$  less than .33 was considered to represent at least  
316 moderate evidence for the null hypothesis.

317

318 2.4.1. Primary (replication) analyses

319 To test whether *APOE* ε4 carriers showed higher FA and lower MD in the PHCB but not the  
320 ILF, one-sided Welch's *t*-tests were conducted. As in Hodgetts et al. (2019), all tests were  
321 repeated, once with male participants removed and once with ε2 carriers removed. These  
322 additional tests – performed independently of each other – were originally conducted based  
323 on evidence that *APOE* ε4 may have a stronger effect on AD biomarkers in females than  
324 males (Riedel et al., 2016), whereas *APOE* ε2 may have a protective effect on AD  
325 biomarkers (Suri et al., 2013). To ensure that the probability of falsely rejecting the null – the

326 Type I error rate – was not inflated, a Bonferroni correction was applied to the  $\alpha$  level (.05 / 3  
327 = .016). Two BFs were also calculated: a default JZS BF and a replication BF. The default  
328 JZS BF, which uses a default prior distribution and was computed using the *BayesFactor*  
329 package (version 0.9.12-4.2; Morey & Rouder, 2018), examines whether an effect is present  
330 or absent in the data collected in the replication study regardless of the original effect. Here,  
331 one-sided (directional) default JZS BFs were calculated. The replication BF, by contrast,  
332 uses the posterior distribution of the original study as the prior distribution in the replication  
333 study, examining whether the original effect is present or absent in the data collected in the  
334 replication study. This BF was computed using previously published R code (Verhagen &  
335 Wagenmakers, 2014).

336

337 2.4.2. Secondary (extension) analyses

338 2.4.2.1. HMOA index

339 It remains to be seen whether *APOE*  $\epsilon 4$ -related differences in PHCB microstructure are  
340 better captured by measures other than FA and MD, which are sensitive to various aspects  
341 of white matter microstructure without being specific to any one (Jones, Knösche, & Turner,  
342 2013). One such measure is HMOA, which is defined as the absolute amplitude of each  
343 fODF lobe (Dell'Acqua et al., 2013). This is normalised using a reference amplitude in order  
344 to create an index bound between zero and one. A value of zero reflects the absence of a  
345 fibre, whereas a value of one reflects the highest fODF signal that can realistically be  
346 detected in biological tissue (Dell'Acqua et al., 2013).

347

348 Given the lack of a directional hypothesis relating to HMOA, two-sided Welch's *t*-tests and  
349 two-sided default JZS BFs were used to identify any differences between *APOE*  $\epsilon 4$  carriers  
350 and non-carriers. In keeping with the primary (replication) analyses described above, these  
351 tests were repeated with males removed and then with  $\epsilon 2$  carriers removed. These  
352 analytical steps were performed independently. A Bonferroni correction was applied to the  
353 nominal  $\alpha$  level (.05 / 3 = .016).

354 2.4.2.2. Hemispheric asymmetry

355 Despite reports linking AD with a loss of leftward structural and functional asymmetry (Banks  
356 et al., 2018; Roe et al., 2021; Tyrer et al., 2020), which may be related to differences in  
357 hemispheric susceptibility to pathology (Lubben et al., 2021; Weise et al., 2018), no study to  
358 our knowledge has yet investigated whether the *APOE* ε4 allele is associated with  
359 asymmetry in PHCB or ILF microstructure. Moreover, considering the proposed interaction  
360 between *APOE* ε4 and sex in the context of AD risk (Riedel et al., 2016), there is also an  
361 interesting question as to whether sex moderates any potential *APOE* ε4-related association  
362 with hemispheric asymmetry. We therefore examined whether HMOA – a more tract-specific  
363 measure – was lateralised to the left or right hemisphere, and whether this was impacted by  
364 *APOE* ε4, sex, or their interaction.

365

366 As with the analyses described previously, the ILF was included as a comparison tract.

367 Lateralisation indices (LIs) were calculated for HMOA in both the PHCB and ILF [LI = (right -  
368 left) / (right + left)]. For any given participant, a negative LI score indicates that HMOA was  
369 higher in the left hemisphere, whereas a positive LI score indicates that HMOA was higher in  
370 the right hemisphere (Zhao et al., 2016). These  $LI_{HMOA}$  scores were subsequently analysed  
371 using robust multiple linear regression, which was carried out via the *lmmrob* function from the  
372 *robustbase* package (version 0.93-7; Maechler et al., 2021). The fitted models were as  
373 follows:

374

375  $LI_{HMOA} \sim APOE \varepsilon 4 \text{ carrier status} \times \text{sex} + \text{age}$  (1)

376

377 LIs were entered as dependent variables. *APOE* ε4 carrier status and sex were treated as  
378 categorical variables and coded using deviation coding. Age – included as a covariate of “no  
379 interest” – was centred and scaled. The interaction between *APOE* ε4 carrier status and sex  
380 was included in the model. Results were deemed statistically significant if the observed *p*  
381 value was smaller than the nominal *α* level of 0.05.

382 2.5. Data and code availability  
383 R code used to analyse and visualise data in the current study is made publicly available via  
384 the Open Science Framework (<https://osf.io/f6jp3/>). Due to the sensitive nature of the data,  
385 the original ethics do not allow for the public archiving of study data (for more information,  
386 see Koelewijn et al., 2019). Access to pseudo-anonymised data may be granted, however,  
387 after the signing and approval of suitable data-transfer agreements. Readers seeking access  
388 through this mechanism should contact Professor Krish D. Singh at the Cardiff University  
389 Brain Research Imaging Centre ([singhkd@cardiff.ac.uk](mailto:singhkd@cardiff.ac.uk)).

390

### 391 **3. Results**

392 3.1. Primary (replication) analyses

393 3.1.1. Effect of *APOE ε4* on PHCB FA and MD

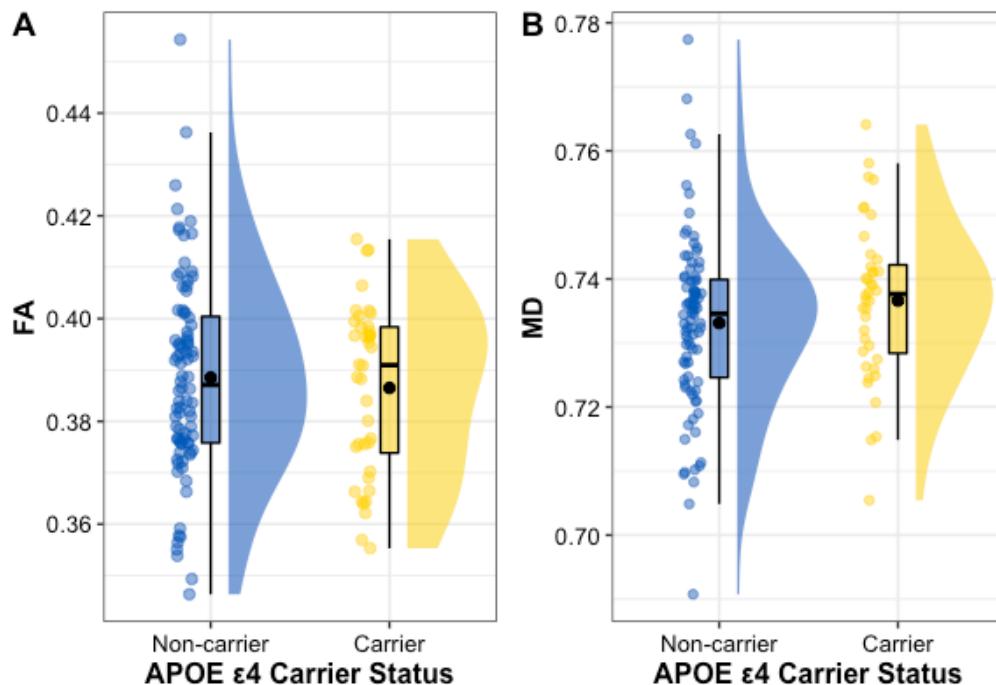
394 FA values for the PHCB – separated by *APOE ε4* carrier status – are shown in Figure 2A.

395 Contrary to our initial hypothesis, PHCB FA was not significantly higher for *APOE ε4* carriers  
396 than non-carriers ( $t(87.559) = -0.606$ ,  $p = .727$ , Cohen's  $d_s = -0.112$ ). Supporting this, BF  
397 analysis produced moderate evidence in favour of the null (default JZS  $BF_{+0} = 0.138$ ,  
398 replication  $BF_{10} = 0.141$ ). Removing males from the analysis did not alter the results in any  
399 meaningful way ( $t(57.685) = 0.045$ ,  $p = .482$ , Cohen's  $d_s = 0.01$ , default JZS  $BF_{+0} = 0.246$ ,  
400 replication  $BF_{10} = 0.168$ ), nor did removing ε2 carriers ( $t(84.459) = -0.923$ ,  $p = .821$ , Cohen's  
401  $d_s = -0.183$ , default JZS  $BF_{+0} = 0.125$ , replication  $BF_{10} = 0.271$ ).

402

403 MD values for the PHCB – separated by *APOE ε4* carrier status – are shown in Figure 2B.

404 Again, contrary to prior expectations, PHCB MD was not significantly lower for *APOE ε4*  
405 carriers than non-carriers ( $t(83.625) = 1.429$ ,  $p = .922$ , Cohen's  $d_s = 0.267$ ). Here, BF  
406 analysis revealed strong evidence in favour of the null (default JZS  $BF_{+0} = 0.092$ , replication  
407  $BF_{10} = 0.057$ ). As with FA, the results for MD did not change substantively after removing  
408 males ( $t(59.729) = 1.515$ ,  $p = .933$ , Cohen's  $d_s = 0.341$ , default JZS  $BF_{+0} = 0.106$ , replication


409  $BF_{10} = 0.054$ ) or after removing  $\epsilon 2$  carriers ( $t(79.581) = 1.328, p = .906$ , Cohen's  $d_s = 0.267$ ,  
410 default JZS  $BF_{+0} = 0.103$ , replication  $BF_{10} = 0.1$ ).

411

412

413 **Figure 2**

414 *Differences in PHCB FA and MD Between APOE  $\epsilon 4$  Carriers and Non-Carriers*



425 Note. Differences in (A) PHCB FA and (B) MD ( $10^{-3}\text{mm}^2\text{s}^{-1}$ ) between APOE  $\epsilon 4$  carriers and  
426 non-carriers are shown. Individual data points, each representing a single participant, are  
427 shown alongside boxplots and density plots ("raincloud plots"; Allen et al., 2021). A small  
428 amount of jitter has been added to each data point for clarity. To facilitate interpretation, the  
429 mean value (black circle) and median value (a black line) for each group are both shown.  
430 Abbreviations: FA = fractional anisotropy, MD = mean diffusivity.

431

432

433 3.1.2. Effect of APOE  $\epsilon 4$  on ILF FA and MD

434 The same analysis was conducted on ILF FA and MD. Analysis revealed that ILF FA was  
435 not significantly higher for APOE  $\epsilon 4$  carriers than non-carriers ( $t(86.143) = -0.864, p = .805$ ,  
436 Cohen's  $d_s = -0.16$ ). BF analysis provided moderate-to-strong evidence favouring the  
437 absence of an effect (default JZS  $BF_{+0} = 0.12$ ), as well as anecdotal-to-moderate evidence  
438 favouring the absence of the effect reported by Hodgetts et al. (replication  $BF_{10} = 0.309$ ).

439 This slight discrepancy between BFs is likely because the original to-be-replicated effect was  
440 also small and did not reach the threshold for statistical significance, meaning that the  
441 informed prior used was already more “sceptical” than the default prior. Results remained  
442 largely unchanged when males were removed ( $t(49.129) = -0.069, p = .527$ , Cohen's  $d_s = -$   
443 0.016, default JZS  $BF_{+0} = 0.226$ , replication  $BF_{10} = 0.308$ ) and when  $\epsilon 2$  carriers were  
444 removed ( $t(79.5) = -0.893, p = .813$ , Cohen's  $d_s = -0.179$ , default JZS  $BF_{+0} = 0.126$ ).

445

446 ILF MD was not significantly lower for *APOE*  $\epsilon 4$  carriers than non-carriers ( $t(81.941) = 0.54,$   
447  $p = .705$ , Cohen's  $d_s = 0.101$ ). BFs again provided evidence in support of the null (default  
448 JZS  $BF_{+0} = 0.142$ , replication  $BF_{10} = 0.446$ ). Removing males had no notable impact on the  
449 results ( $t(55.856) = 0.818, p = .792$ , Cohen's  $d_s = 0.187$ , default JZS  $BF_{+0} = 0.144$ ,  
450 replication  $BF_{10} = 0.613$ ) nor did removing *APOE*  $\epsilon 2$  carriers ( $t(75.242) = 0.713, p = .761$ ,  
451 Cohen's  $d_s = 0.145$ , default JZS  $BF_{+0} = 0.137$ ).

452

### 453 3.1.2. TBSS

454 Consistent with the tractography analysis, PHCB-restricted TBSS analysis revealed no  
455 significant differences between *APOE*  $\epsilon 4$  carriers and non-carriers. This was true of both FA  
456 (contrast: carriers > non-carriers) and MD (contrast: carriers < non-carriers). Adopting an  
457 uncorrected  $\alpha$  level of  $p = .005$ , as has been done previously (Hodgetts et al., 2019; Postans  
458 et al., 2014), did not alter this outcome. Exploratory whole-brain TBSS analysis provided  
459 complementary evidence, with no differences evident between *APOE*  $\epsilon 4$  carriers and non-  
460 carriers.

461

## 462 3.2. Secondary (extension) analyses

### 463 3.2.1. Effect of *APOE* $\epsilon 4$ on PHCB and ILF HMOA

464 Analysis revealed no significant difference between *APOE*  $\epsilon 4$  carriers and non-carriers in  
465 terms of PHCB HMOA ( $t(90.357) = -0.399, p = .691$ , Cohen's  $d_s = -0.073$ ). BF analysis also  
466 provided moderate evidence in favour of the null (default JZS  $BF_{10} = 0.215$ ). These results

467 were largely unaffected by the removal of males ( $t(58.33) = 0.445, p = .658$ , Cohen's  $d_s =$   
468 0.10, default JZS  $BF_{10} = 0.258$ ) or the removal of  $\epsilon 2$  carriers ( $t(85.926) = -0.844, p = .401$ ,  
469 Cohen's  $d_s = -0.167$ , default JZS  $BF_{10} = 0.283$ ).

470

471 For completeness, the same analysis was conducted for ILF HMOA. Results revealed that  
472 *APOE*  $\epsilon 4$  carriers and non-carriers did not differ significantly in terms of ILF HMOA  
473 ( $t(94.682) = -0.762, p = .448$ , Cohen's  $d_s = -0.139$ ). BF analysis provided complementary  
474 evidence, largely favouring the null (default JZS  $BF_{10} = 0.251$ ). This remained the case when  
475 males were removed ( $t(48.941) = 0.394, p = .696$ , Cohen's  $d_s = 0.092$ , default JZS  $BF_{10} =$   
476 0.256) and when individuals possessing the  $\epsilon 2$  allele were removed ( $t(84.914) = -0.819, p =$   
477 .415, Cohen's  $d_s = -0.162$ , default JZS  $BF_{10} = 0.279$ ).

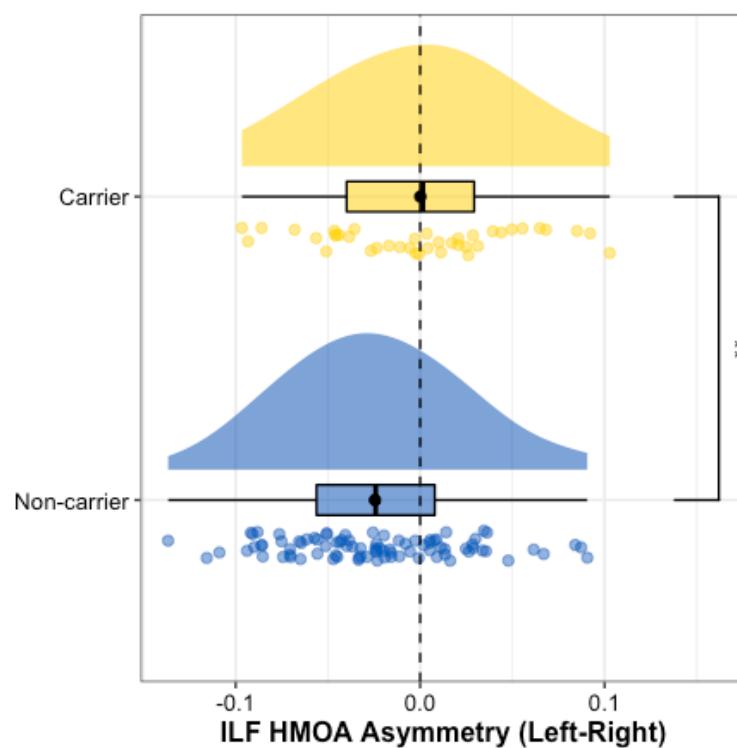
478

### 479 3.2.2. Hemispheric asymmetry in PHCB and ILF HMOA

480 In terms of hemispheric asymmetry, analysis revealed that HMOA was higher in the right ( $M$   
481 = .234,  $SD = .015$ ) than the left ( $M = .224, SD = .018$ ) PHCB ( $t(127) = -6.631, p < .001$ ,  
482 Cohen's  $d_z = -0.586$ , default JZS  $BF_{10} > 100$ ). Nevertheless, for PHCB  $LI_{HMOA}$ , there was no  
483 significant association with *APOE*  $\epsilon 4$  ( $b < -.001, p = .911$ ), sex ( $b = -.002, p = .743$ ), or their  
484 interaction ( $b = -.008, p = .558$ ). Consequently, we observed no evidence indicating that  
485 *APOE*  $\epsilon 4$ , sex, or their interactions influenced hemispheric asymmetry in PHCB  
486 microstructure.

487

488 The same analysis was conducted on ILF microstructure. HMOA was higher in the left ( $M =$   
489 .302,  $SD = .027$ ) than the right ( $M = .293, SD = .029$ ) hemisphere ( $t(127) = 3.778, p < .001$ ,  
490 Cohen's  $d_z = 0.334$ , default JZS  $BF_{10} = 74.09$ ). Examining whether this hemispheric  
491 asymmetry was influenced by *APOE*  $\epsilon 4$ , sex, or their interaction, LIs were again calculated  
492 and analysed. In the case of ILF  $LI_{HMOA}$ , there was a significant association with *APOE*  $\epsilon 4$  ( $b$   
493 = 0.027,  $p = .005$ ) but not with sex ( $b = 0.014, p = .156$ ) or their interaction ( $b = 0.007, p =$


494 .674). Figure 3 highlights the group-level differences in ILF  $LI_{HMOA}$ . As shown, this was driven  
495 by reduced leftward asymmetry in this tract among *APOE*  $\epsilon 4$  carriers than non-carriers.

496

497

498 **Figure 3**

499 *Difference in ILF  $LI_{HMOA}$  Between *APOE*  $\epsilon 4$  Carriers and Non-Carriers*



513 Note. Differences in ILF  $LI_{HMOA}$  between *APOE*  $\epsilon 4$  carriers and non-carriers are shown.  
514 Negative values indicate that HMOA was higher in the left hemisphere, whereas positive  
515 values indicate that HMOA was higher in the right hemisphere. Zero – highlighted by a  
516 dashed line – indicates no asymmetry. Individual data points, each representing a single  
517 participant, are shown alongside boxplots and density plots (“raincloud plots”; Allen et al.,  
518 2021). A small amount of jitter has been added to each data point for clarity. To facilitate  
519 interpretation, the mean value (black circle) and median value (a black line) for each group  
520 are both shown. Abbreviations: HMOA = hindrance modulate orientation anisotropy, LI =  
521 lateralisation index.

522

523

524 **4. Discussion**

525 In this study, we aimed to replicate Hodgetts et al.’s (2019) findings that healthy young

526 *APOE*  $\epsilon 4$  carriers show higher FA and lower MD than non-carriers in the PHCB but not the

527 ILF. Such a pattern would be in line with suggestions that individuals with pre-existing  
528 “hyper-connectivity” between posteromedial cortex and the medial temporal lobe may be  
529 more vulnerable to amyloid- $\beta$  accumulation (Buckner et al., 2009; Bero et al., 2012; de Haan  
530 et al., 2012) and/or tau spread (Jacobs et al., 2018; Ziontz et al., 2021). Extending this work,  
531 we also conducted analyses on HMOA, a measure that is proposed to be more sensitive to  
532 alterations in tract microstructure than FA or MD (Dell’Acqua et al., 2013). This included an  
533 investigation into hemispheric asymmetry in PHCB and ILF HMOA, as prior reports indicate  
534 that AD impacts brain asymmetry (Banks et al., 2018; Roe et al., 2021; Tyrer et al., 2020).

535

536 In contrast to the original study, we did not observe higher FA or lower MD in the PHCB of  
537 young *APOE*  $\epsilon$ 4 carriers compared to non-carriers. Rather, we found: no statistically  
538 significant effects in the expected direction (all  $ps \geq .482$ ); relatively small effect sizes  
539 (Cohen’s  $d_s$  range from -0.183 to 0.341); and BFs providing evidence in favour of the null  
540 (default JZS  $BF_{+0}$  range from .092 to .246, replication  $BF_{10}$  range from .054 to .273).

541 Crucially, these BFs represent moderate-to-strong evidence in support of the null hypothesis  
542 (Lee & Wagenmakers, 2013). As such, we not only failed to replicate the effect reported by  
543 Hodgetts et al. (2019), but also found evidence against the presence of such an effect.

544 There are several plausible explanations for this, although they are not necessarily mutually  
545 exclusive.

546

547 First, it could be the case that Hodgetts et al.’s (2019) findings were false positives (see also  
548 Dell’Acqua et al., 2015). Hodgetts et al.’s study included just 15 participants in the *APOE*  $\epsilon$ 4  
549 carrier and non-carrier groups and, as such, was likely underpowered to detect an effect of  
550 the magnitude one might expect from this common genetic variant, especially in early  
551 adulthood (Henson et al., 2020). Given that low statistical power reduces the probability that  
552 an observed effect represents a true effect (Button et al., 2013), it is possible that the effects  
553 reported by Hodgetts et al. were false positives, although it is unclear how this relates the  
554 their observation that PHCB microstructure correlated with posteromedial cortex activity

555 during perceptual scene discrimination (see also Shine et al., 2015). The BF analyses  
556 conducted here provide complementary support for this assertion, demonstrating that the  
557 observed data favour the null. Taken at face value, this interpretation casts doubt on the  
558 notion that increased connectivity between posteromedial cortex and the medial temporal  
559 lobe – mediated by individual differences in PHCB microstructure – represents a pre-existing  
560 *APOE ε4*-related trait enhancing vulnerability to amyloid-β accumulation and/or tau spread.

561

562 Alternatively, it could be the case that Hodgetts et al. (2019) observed a true effect, but its  
563 magnitude was exaggerated. Effect size inflation is most likely to occur in studies with small  
564 sample sizes, a phenomenon referred to as the “winner’s curse” (Button et al., 2013). If true,  
565 the analysis reported in this replication attempt might itself be underpowered to detect the  
566 effect of *APOE ε4* on PHCB FA and MD, thereby constituting a Type II error or false  
567 negative. Such an explanation would help to reconcile the observed findings with prior  
568 results indicating that *APOE ε4* does have an impact on posteromedial connectivity early in  
569 life (Brown et al., 2011; Felsky & Voineskos, 2013; Hodgetts et al., 2019). While this cannot  
570 currently be ruled out, it should be noted that an effect size sensitivity analysis revealed that  
571 the smallest effect size detectable at 80% power in the current study was Cohen’s  $d_s = 0.57$ .  
572 In addition, the BF analyses conducted here indicated that the observed data provided  
573 moderate-to-strong evidence in favour of the null, as opposed to simply providing  
574 inconclusive evidence. This shows that, even with the current sample size, our findings have  
575 relatively high evidential value (Dienes, 2014).

576

577 Another potential explanation is that the *APOE ε4* carriers and non-carriers included in the  
578 two studies differed in other AD-relevant factors. It is well established that while *APOE ε4*  
579 carriers are at increased risk of developing AD relative to non-carriers, not all go on to  
580 develop the disease (Liu et al., 2013). In fact, only ~50% of individuals with AD possess one  
581 or more copies of the *APOE ε4* allele (Karch et al., 2014), highlighting the importance of  
582 other factors – genetic and environmental – in disease risk/protection (Jagust & Mormino,

583 2011; Silva et al., 2019). Following this line of reasoning, it is possible that – due to sampling  
584 variation – the *APOE ε4* carrier and non-carrier groups included in the two studies differed in  
585 their overall AD risk profiles, with potential implications for white matter microstructure. This  
586 would at least partly explain why we failed to replicate the effect originally reported by  
587 Hodgetts et al. (2019). Nevertheless, it is important to recognise that this remains an open  
588 question, and large-scale dMRI studies are required to test this possibility.

589

590 Regarding the asymmetry of PHCB microstructure, we found that HMOA was higher in the  
591 right hemisphere. This is consistent with some previous reports using diffusion tensor  
592 metrics (Metzler-Baddeley et al., 2012; Powell et al., 2012), although certainly not all (Lebel  
593 et al., 2012; Thiebaut de Schotten et al., 2011). Prior research has suggested that while left-  
594 hemispheric networks exhibit increased nodal efficiency in brains areas supporting  
595 language, right-hemispheric networks exhibit increased nodal efficiency in brain areas  
596 related to episodic memory (Caeyenberghs & Leemans, 2014). This potentially highlights a  
597 functional role for the observed rightward asymmetry in PHCB microstructure. However, we  
598 did not observe an effect of *APOE ε4* or sex on the degree of PHCB asymmetry.

599

600 A different pattern emerged in the analysis of ILF microstructure, with HMOA characterised  
601 by leftward asymmetry. As with the PHCB, this finding is consistent with a number of studies  
602 examining asymmetry in ILF volume and diffusion tensor-derived measures of  
603 microstructure (Banfi et al., 2019; Panesar et al., 2018; Thiebaut de Schotten et al., 2011).  
604 We also observed that the degree of asymmetry in this tract was associated with *APOE ε4*  
605 carrier status, such that asymmetry was lower in carriers relative to non-carriers, mirroring to  
606 some extent the loss of leftward asymmetry in AD (Banks et al., 2018; Roe et al., 2021;  
607 Tyrer et al., 2020). The ILF connects occipital and ventro-anterior temporal lobe (Herbet et  
608 al., 2018), underpinning a network involved in representing item information, including  
609 semantic and perceptual information (Murray et al., 2017; Ranganath & Ritchey, 2012).  
610 Recent research suggests that complex item discrimination is impaired in AD risk (Fidalgo et

611 al., 2016; Mason et al., 2017), which has in turn been linked to the structure and function of  
612 components within this network (Berron et al., 2018; Olsen et al., 2017; Reagh et al., 2016).  
613 Indeed, complex item discrimination has been proposed as a useful measure for the  
614 detection of early AD (Gaynor et al., 2019). In addition, a recent study of young adult *APOE*  
615  $\epsilon 4$  carriers in the Human Connectome Project failed to replicate enhanced intrinsic functional  
616 connectivity between posteromedial cortex and the medial temporal lobe, as observed  
617 previously (Filippini et al., 2009), but found heightened activity in left hemisphere regions  
618 connected by the ILF during face encoding (Mentink et al., 2021), possibly suggestive of a  
619 lifelong neural inefficiency (Jagust & Mormino, 2011). Future research should seek to  
620 replicate further the effect of *APOE*  $\epsilon 4$  on reduced structural (and functional) left hemispheric  
621 asymmetry, especially given potential implications for later life cognition (Jiang et al., 2021;  
622 Maass et al., 2019).

623

624 **5. Summary**

625 In this study, we failed to replicate Hodgetts et al.'s (2019) finding that, relative to non-  
626 carriers, healthy young adult *APOE*  $\epsilon 4$  carriers show higher FA and lower MD in the PHCB  
627 but not the ILF. Rather, the observed data strongly supported the null hypothesis of no  
628 difference. Our findings thus suggest that young adult *APOE*  $\epsilon 4$  carriers do not show  
629 alterations in PHCB microstructure that might enhance vulnerability – via excessive  
630 connectivity-dependent neuronal activity – to amyloid- $\beta$  accumulation and/or tau spread.  
631 Nevertheless, marked patterns of hemispheric asymmetry were evident in PHCB and ILF  
632 microstructure, although only the latter was associated with *APOE*  $\epsilon 4$  carrier status. Given  
633 the potential implications for later life cognition, our study highlights an important area for  
634 future research seeking to understand how this AD risk factor impacts neural and cognitive  
635 efficiency years prior to the onset of clinical symptoms.

636

637

638

639 **Conflict of interests:** The authors declare no competing financial or non-financial interests.

640

641 **Acknowledgements:** We would like to thank Ofer Pasternak for providing the free-water  
642 elimination pipeline, Sonya Foley for assistance in identifying relevant data in the repository,  
643 and Mark Postans for helpful discussions.

644

645 **Funding:** This work was supported by a departmental PhD studentship from the School of  
646 Psychology, Cardiff University to R.L., and a Wellcome Strategic Award (104943/Z/14/Z) to  
647 C.J.H and K.S.G. Testing of the cohort was supported by the National Centre for Mental  
648 Health, supported by funds from Health and Care Research Wales (formerly National  
649 Institute for Social Care and Health Research) (Grant No. BR09).

650 **References**

651 Acosta-Cabronero, J., Williams, G. B., Pengas, G., & Nestor, P. J. (2010). Absolute  
652 diffusivities define the landscape of white matter degeneration in Alzheimer's disease.  
653 *Brain*, 133(2), 529–539. <https://doi.org/10.1093/brain/awp257>

654 Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., Gamst,  
655 A., Holtzman, D. M., Jagust, W. J., Petersen, R. C., Snyder, P. J., Carrillo, M. C.,  
656 Thies, B., & Phelps, C. H. (2011). The diagnosis of mild cognitive impairment due to  
657 Alzheimer's disease: Recommendations from the National Institute on Aging-  
658 Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease.  
659 *Alzheimer's & Dementia*, 7(3), 270–279. <https://doi.org/10.1016/j.jalz.2011.03.008>

660 Allen, M., Poggiali, D., Whitaker, K., Marshall, T. R., Langen, J. van, & Kievit, R. A. (2021).  
661 Raincloud plots: A multi-platform tool for robust data visualization. *Wellcome Open  
662 Research*, 4, 63. <https://doi.org/10.12688/wellcomeopenres.15191.2>

663 Andersson, J. L. R., Jenkinson, M., & Smith, S. (2007a). *Non-linear optimisation. FMRIB  
664 technical report TR07JA1*. [www.fmrib.ox.ac.uk/analysis/techrep](http://www.fmrib.ox.ac.uk/analysis/techrep)

665 Andersson, J. L. R., Jenkinson, M., & Smith, S. (2007b). *Non-linear registration, aka spatial  
666 normalisation FMRIB technical report TR07JA2*. [www.fmrib.ox.ac.uk/analysis/techrep](http://www.fmrib.ox.ac.uk/analysis/techrep)

667 Assaf, Y., Johansen-Berg, H., & Thiebaut de Schotten, M. (2019). The role of diffusion MRI  
668 in neuroscience. *NMR in Biomedicine*, 32(4), e3762. <https://doi.org/10.1002/nbm.3762>

669 Banfi, C., Koschutnig, K., Moll, K., Schulte-Körne, G., Fink, A., & Landerl, K. (2019). White  
670 matter alterations and tract lateralization in children with dyslexia and isolated spelling  
671 deficits. *Human Brain Mapping*, 40(3), 765–776. <https://doi.org/10.1002/hbm.24410>

672 Banks, S. J., Zhuang, X., Bayram, E., Bird, C., Cordes, D., Caldwell, J. Z. K., Cummings, J.  
673 L., & for the Alzheimer's Disease Neuroimaging Initiative. (2018). Default mode  
674 network lateralization and memory in healthy aging and Alzheimer's disease. *Journal  
675 of Alzheimer's Disease*, 66(3), 1223–1234. <https://doi.org/10.3233/JAD-180541>

676 Belloy, M. E., Napolioni, V., & Greicius, M. D. (2019). A quarter century of APOE and  
677 Alzheimer's disease: Progress to date and the path forward. *Neuron*, 101(5), 820–838.  
678 <https://doi.org/10.1016/j.neuron.2019.01.056>

679 Benitez, A., Jensen, J. H., Falangola, M. F., Spampinato, M. V., Rieter, W. J., Nietert, P. J.,  
680 Fountain-Zaragoza, S., Keith, K., Dhiman, S., & Helpern, J. A. (2021). Greater  
681 diffusion restriction in white matter tracts in preclinical AD. *Alzheimer's & Dementia*,  
682 17(S5), e054942. <https://doi.org/10.1002/alz.054942>

683 Bero, A. W., Bauer, A. Q., Stewart, F. R., White, B. R., Cirrito, J. R., Raichle, M. E., Culver,  
684 J. P., & Holtzman, D. M. (2012). Bidirectional relationship between functional  
685 connectivity and amyloid- $\beta$  deposition in mouse brain. *Journal of Neuroscience*,  
686 32(13), 4334–4340. <https://doi.org/10.1523/JNEUROSCI.5845-11.2012>

687 Berron, D., Neumann, K., Maass, A., Schütze, H., Fliessbach, K., Kiven, V., Jessen, F.,  
688 Sauvage, M., Kumaran, D., & Düzel, E. (2018). Age-related functional changes in  
689 domain-specific medial temporal lobe pathways. *Neurobiology of Aging*, 65, 86–97.  
690 <https://doi.org/10.1016/j.neurobiolaging.2017.12.030>

691 Bozzali, M., Giulietti, G., Basile, B., Serra, L., Spanò, B., Perri, R., Giubilei, F., Marra, C.,  
692 Caltagirone, C., & Cercignani, M. (2012). Damage to the cingulum contributes to  
693 Alzheimer's disease pathophysiology by deafferentation mechanism. *Human Brain  
694 Mapping*, 33(6), 1295–1308. <https://doi.org/10.1002/hbm.21287>

695 Brown, J. A., Terashima, K. H., Burggren, A. C., Ercoli, L. M., Miller, K. J., Small, G. W., &  
696 Bookheimer, S. Y. (2011). Brain network local interconnectivity loss in aging APOE-4  
697 allele carriers. *Proceedings of the National Academy of Sciences*, 108(51), 20760–  
698 20765. <https://doi.org/10.1073/pnas.1109038108>

699 Bubb, E. J., Metzler-Baddeley, C., & Aggleton, J. P. (2018). The cingulum bundle: Anatomy,  
700 function, and dysfunction. *Neuroscience & Biobehavioral Reviews*, 92, 104–127.  
701 <https://doi.org/10.1016/j.neubiorev.2018.05.008>

702 Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., Andrews-  
703 Hanna, J. R., Sperling, R. A., & Johnson, K. A. (2009). Cortical hubs revealed by

704 intrinsic functional connectivity: Mapping, assessment of stability, and relation to  
705 Alzheimer's disease. *Journal of Neuroscience*, 29(6), 1860–1873.  
706 <https://doi.org/10.1523/JNEUROSCI.5062-08.2009>

707 Burnham, S. C., Laws, S. M., Budgeon, C. A., Doré, V., Porter, T., Bourgeat, P., Buckley, R.  
708 F., Murray, K., Ellis, K. A., Turlach, B. A., Salvado, O., Ames, D., Martins, R. N., Rentz,  
709 D., Masters, C. L., Rowe, C. C., & Villemagne, V. L. (2020). Impact of APOE-ε4  
710 carriage on the onset and rates of neocortical Aβ-amyloid deposition. *Neurobiology of*  
711 *Aging*, 95, 46–55. <https://doi.org/10.1016/j.neurobiolaging.2020.06.001>

712 Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S. J., &  
713 Munafò, M. R. (2013). Power failure: Why small sample size undermines the reliability  
714 of neuroscience. *Nature Reviews Neuroscience*, 14(5), 365–376.  
715 <https://doi.org/10.1038/nrn3475>

716 Caeyenberghs, K., & Leemans, A. (2014). Hemispheric lateralization of topological  
717 organization in structural brain networks. *Human Brain Mapping*, 35(9), 4944–4957.  
718 <https://doi.org/10.1002/hbm.22524>

719 Champely, S. (2018). *pwr: Basic functions for power analysis* (Version 1.2-2) [Computer  
720 software]. <https://CRAN.R-project.org/package=pwr>

721 Choo, I. H., Lee, D. Y., Oh, J. S., Lee, J. S., Lee, D. S., Song, I. C., Youn, J. C., Kim, S. G.,  
722 Kim, K. W., Jhoo, J. H., & Woo, J. I. (2010). Posterior cingulate cortex atrophy and  
723 regional cingulum disruption in mild cognitive impairment and Alzheimer's disease.  
724 *Neurobiology of Aging*, 31(5), 772–779.  
725 <https://doi.org/10.1016/j.neurobiolaging.2008.06.015>

726 Collij, L. E., Ingala, S., Top, H., Wottschel, V., Stickney, K. E., Tomassen, J., Konijnenberg,  
727 E., ten Kate, M., Sudre, C., Lopes Alves, I., Yaquib, M. M., Wink, A. M., Van 't Ent, D.,  
728 Scheltens, P., van Berckel, B. N. M., Visser, P. J., Barkhof, F., & Braber, A. D. (2021).  
729 White matter microstructure disruption in early stage amyloid pathology. *Alzheimer's &*  
730 *Dementia: Diagnosis, Assessment & Disease Monitoring*, 13(1), e12124.  
731 <https://doi.org/10.1002/dad2.12124>

732 Coughlan, G., Laczó, J., Hort, J., Minihane, A.-M., & Hornberger, M. (2018). Spatial  
733 navigation deficits—Overlooked cognitive marker for preclinical Alzheimer disease?  
734 *Nature Reviews Neurology*, 14(8), 496–506. <https://doi.org/10.1038/s41582-018-0031-x>

735

736 Dalboni da Rocha, J. L., Bramati, I., Coutinho, G., Tovar Moll, F., & Sitaram, R. (2020).  
737 Fractional anisotropy changes in parahippocampal cingulum due to Alzheimer's  
738 disease. *Scientific Reports*, 10, 2660. <https://doi.org/10.1038/s41598-020-59327-2>

739 de Haan, W., Mott, K., Straaten, E. C. W. van, Scheltens, P., & Stam, C. J. (2012). Activity  
740 dependent degeneration explains hub vulnerability in Alzheimer's disease. *PLOS  
741 Computational Biology*, 8(8), e1002582. <https://doi.org/10.1371/journal.pcbi.1002582>

742 Dell'Acqua, F., Khan, W., Gottlieb, N., Giampietro, V., Ginestet, C., Bould, D., Newhouse, S.,  
743 Dobson, R., Banaschewski, T., Barker, G. J., Bokde, A. L. W., Büchel, C., Conrod, P.,  
744 Flor, H., Frouin, V., Garavan, H., Gowland, P., Heinz, A., Lemaître, H., ... the IMAGEN  
745 consortium. (2015). Tract based spatial statistic reveals no differences in white matter  
746 microstructural organization between carriers and non-carriers of the APOE ε4 and ε2  
747 alleles in young healthy adolescents. *Journal of Alzheimer's Disease*, 47(4), 977–984.  
748 <https://doi.org/10.3233/JAD-140519>

749 Dell'Acqua, F., Scifo, P., Rizzo, G., Catani, M., Simmons, A., Scotti, G., & Fazio, F. (2010). A  
750 modified damped Richardson–Lucy algorithm to reduce isotropic background effects in  
751 spherical deconvolution. *NeuroImage*, 49(2), 1446–1458.  
752 <https://doi.org/10.1016/j.neuroimage.2009.09.033>

753 Dell'Acqua, F., Simmons, A., Williams, S. C. R., & Catani, M. (2013). Can spherical  
754 deconvolution provide more information than fiber orientations? Hindrance modulated  
755 orientational anisotropy, a true-tract specific index to characterize white matter  
756 diffusion. *Human Brain Mapping*, 34(10), 2464–2483.  
757 <https://doi.org/10.1002/hbm.22080>

758 Dell'Acqua, F., & Tournier, J.-D. (2019). Modelling white matter with spherical deconvolution:  
759 How and why? *NMR in Biomedicine*, 32(4), e3945. <https://doi.org/10.1002/nbm.3945>

760 DeTure, M. A., & Dickson, D. W. (2019). The neuropathological diagnosis of Alzheimer's  
761 disease. *Molecular Neurodegeneration*, 14, 32. <https://doi.org/10.1186/s13024-019-0333-5>

762

763 Dienes, Z. (2014). Using Bayes to get the most out of non-significant results. *Frontiers in*  
764 *Psychology*, 5, 781. <https://doi.org/10.3389/fpsyg.2014.00781>

765 Dong, J. W., Jelescu, I. O., Ades-Aron, B., Novikov, D. S., Friedman, K., Babb, J. S., Osorio,  
766 R. S., Galvin, J. E., Shepherd, T. M., & Fieremans, E. (2020). Diffusion MRI  
767 biomarkers of white matter microstructure vary nonmonotonically with increasing  
768 cerebral amyloid deposition. *Neurobiology of Aging*, 89, 118–128.  
769 <https://doi.org/10.1016/j.neurobiolaging.2020.01.009>

770 Felsky, D., & Voineskos, A. N. (2013). APOE  $\epsilon$ 4, aging, and effects on white matter across  
771 the adult life span. *JAMA Psychiatry*, 70(6), 646–647.  
772 <https://doi.org/10.1001/jamapsychiatry.2013.865>

773 Fidalgo, C. O., Changoor, A. T., Page-Gould, E., Lee, A. C. H., & Barense, M. D. (2016).  
774 Early cognitive decline in older adults better predicts object than scene recognition  
775 performance. *Hippocampus*, 26(12), 1579–1592. <https://doi.org/10.1002/hipo.22658>

776 Filippini, N., MacIntosh, B. J., Hough, M. G., Goodwin, G. M., Frisoni, G. B., Smith, S. M.,  
777 Matthews, P. M., Beckmann, C. F., & Mackay, C. E. (2009). Distinct patterns of brain  
778 activity in young carriers of the APOE- $\epsilon$ 4 allele. *Proceedings of the National Academy*  
779 *of Sciences*, 106(17), 7209–7214. <https://doi.org/10.1073/pnas.0811879106>

780 Foley, S. F., Tansey, K. E., Caseras, X., Lancaster, T., Bracht, T., Parker, G., Hall, J.,  
781 Williams, J., & Linden, D. E. J. (2017). Multimodal brain imaging reveals structural  
782 differences in Alzheimer's disease polygenic risk carriers: A study in healthy young  
783 adults. *Biological Psychiatry*, 81(2), 154–161.  
784 <https://doi.org/10.1016/j.biopsych.2016.02.033>

785 Frisoni, G. B., Altomare, D., Thal, D. R., Ribaldi, F., van der Kant, R., Ossenkoppele, R.,  
786 Blennow, K., Cummings, J., van Duijn, C., Nilsson, P. M., Dietrich, P.-Y., Scheltens,  
787 P., & Dubois, B. (2022). The probabilistic model of Alzheimer disease: The amyloid

788 hypothesis revised. *Nature Reviews Neuroscience*, 23(1), 53–66.

789 <https://doi.org/10.1038/s41583-021-00533-w>

790 Gaynor, L. S., Curiel, R. E., Penate, A., Rosselli, M., Burke, S. N., Wicklund, M.,

791 Loewenstein, D. A., & Bauer, R. M. (2019). Visual object discrimination impairment as

792 an early predictor of Mild Cognitive Impairment and Alzheimer's disease. *Journal of the*

793 *International Neuropsychological Society*, 25(7), 688–698.

794 <https://doi.org/10.1017/S1355617719000316>

795 Goldberg, T. E., Huey, E. D., & Devanand, D. P. (2020). Association of APOE e2 genotype

796 with Alzheimer's and non-Alzheimer's neurodegenerative pathologies. *Nature*

797 *Communications*, 11, 4727. <https://doi.org/10.1038/s41467-020-18198-x>

798 Gozdas, E., Fingerhut, H., Chromik, L. C., O'Hara, R., Reiss, A. L., & Hosseini, S. M. H.

799 (2020). Focal white matter disruptions along the cingulum tract explain cognitive

800 decline in amnestic mild cognitive impairment (aMCI). *Scientific Reports*, 10, 10213.

801 <https://doi.org/10.1038/s41598-020-66796-y>

802 Harrison, J. R., Bhatia, S., Tan, Z. X., Mirza-Davies, A., Benkert, H., Tax, C. M. W., & Jones,

803 D. K. (2020). Imaging Alzheimer's genetic risk using diffusion MRI: A systematic

804 review. *NeuroImage: Clinical*, 27, 102359. <https://doi.org/10.1016/j.nicl.2020.102359>

805 Heilbronner, S. R., & Haber, S. N. (2014). Frontal cortical and subcortical projections provide

806 a basis for segmenting the cingulum bundle: Implications for neuroimaging and

807 psychiatric disorders. *Journal of Neuroscience*, 34(30), 10041–10054.

808 <https://doi.org/10.1523/JNEUROSCI.5459-13.2014>

809 Henson, R. N., Suri, S., Knights, E., Rowe, J. B., Kievit, R. A., Lyall, D. M., Chan, D., Eising,

810 E., & Fisher, S. E. (2020). Effect of apolipoprotein E polymorphism on cognition and

811 brain in the Cambridge Centre for Ageing and Neuroscience cohort. *Brain and*

812 *Neuroscience Advances*, 4, 1–12. <https://doi.org/10.1177/2398212820961704>

813 Herbet, G., Zemmoura, I., & Duffau, H. (2018). Functional anatomy of the inferior

814 longitudinal fasciculus: From historical reports to current hypotheses. *Frontiers in*

815 *Neuroanatomy*, 12, 77. <https://doi.org/10.3389/fnana.2018.00077>

816 Herrup, K. (2015). The case for rejecting the amyloid cascade hypothesis. *Nature Neuroscience*, 18(6), 794–799. <https://doi.org/10.1038/nn.4017>

817 Hodgetts, C. J., Shine, J. P., Williams, H., Postans, M., Sims, R., Williams, J., Lawrence, A. D., & Graham, K. S. (2019). Increased posterior default mode network activity and structural connectivity in young adult APOE-ε4 carriers: A multimodal imaging investigation. *Neurobiology of Aging*, 73, 82–91.

818 <https://doi.org/10.1016/j.neurobiolaging.2018.08.026>

819 Irfanoglu, M. O., Walker, L., Sarlls, J., Marenco, S., & Pierpaoli, C. (2012). Effects of image distortions originating from susceptibility variations and concomitant fields on diffusion MRI tractography results. *NeuroImage*, 61(1), 275–288.

820 <https://doi.org/10.1016/j.neuroimage.2012.02.054>

821 Jacobs, H. I. L., Hedden, T., Schultz, A. P., Sepulcre, J., Perea, R. D., Amariglio, R. E., Papp, K. V., Rentz, D. M., Sperling, R. A., & Johnson, K. A. (2018). Structural tract alterations predict downstream tau accumulation in amyloid-positive older individuals. *Nature Neuroscience*, 21(3), 424–431. <https://doi.org/10.1038/s41593-018-0070-z>

822 Jagust, W. (2018). Imaging the evolution and pathophysiology of Alzheimer disease. *Nature Reviews Neuroscience*, 19(11), 687–700. <https://doi.org/10.1038/s41583-018-0067-3>

823 Jagust, W. J., & Mormino, E. C. (2011). Lifespan brain activity, β-amyloid, and Alzheimer's disease. *Trends in Cognitive Sciences*, 15(11), 520–526.

824 <https://doi.org/10.1016/j.tics.2011.09.004>

825 Jansen, W. J., Ossenkoppele, R., Knol, D. L., Tijms, B. M., Scheltens, P., Verhey, F. R. J., Visser, P. J., Aalten, P., Aarsland, D., Alcolea, D., Alexander, M., Almdahl, I. S., Arnold, S. E., Baldeiras, I., Barthel, H., Berckel, B. N. M. van, Bibeau, K., Blennow, K., Brooks, D. J., ... Zetterberg, H. (2015). Prevalence of cerebral amyloid pathology in persons without dementia: A meta-analysis. *JAMA*, 313(19), 1924–1938.

826 <https://doi.org/10.1001/jama.2015.4668>

842 Jeurissen, B., Leemans, A., Jones, D. K., Tournier, J.-D., & Sijbers, J. (2011). Probabilistic  
843 fiber tracking using the residual bootstrap with constrained spherical deconvolution.  
844 *Human Brain Mapping*, 32(3), 461–479. <https://doi.org/10.1002/hbm.21032>

845 Jiang, L., Shing, N., Robin, J., Ladyka-Wojcik, N., Choi, A., Ryan, J. D., Barese, M. D., &  
846 Olsen, R. K. (2021). The association between visual discrimination and cognitive  
847 decline prior to clinical diagnosis. *Alzheimer's & Dementia*, 17(S6), e057335.  
848 <https://doi.org/10.1002/alz.057335>

849 Jitsuishi, T., & Yamaguchi, A. (2021). Posterior precuneus is highly connected to medial  
850 temporal lobe revealed by tractography and white matter dissection. *Neuroscience*,  
851 466, 173–185. <https://doi.org/10.1016/j.neuroscience.2021.05.009>

852 Jones, D. K., Christiansen, K. F., Chapman, R. J., & Aggleton, J. P. (2013). Distinct  
853 subdivisions of the cingulum bundle revealed by diffusion MRI fibre tracking:  
854 Implications for neuropsychological investigations. *Neuropsychologia*, 51(1), 67–78.  
855 <https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2012.11.018>

856 Jones, D. K., Horsfield, M. A., & Simmons, A. (1999). Optimal strategies for measuring  
857 diffusion in anisotropic systems by magnetic resonance imaging. *Magnetic Resonance  
858 in Medicine*, 42(3), 515–525. [https://doi.org/abc.cardiff.ac.uk/10.1002/\(SICI\)1522-  
2594\(199909\)42:3<515::AID-MRM14>3.0.CO;2-Q](https://doi.org/abc.cardiff.ac.uk/10.1002/(SICI)1522-<br/>859 2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q)

860 Jones, D. K., Knösche, T. R., & Turner, R. (2013). White matter integrity, fiber count, and  
861 other fallacies: The do's and don'ts of diffusion MRI. *NeuroImage*, 73, 239–254.  
862 <https://doi.org/10.1016/j.neuroimage.2012.06.081>

863 Kantarci, K., Murray, M. E., Schwarz, C. G., Reid, R. I., Przybelski, S. A., Lesnick, T., Zuk, S.  
864 M., Raman, M. R., Senjem, M. L., Gunter, J. L., Boeve, B. F., Knopman, D. S., Parisi,  
865 J. E., Petersen, R. C., Jack, C. R., & Dickson, D. W. (2017). White-matter integrity on  
866 DTI and the pathologic staging of Alzheimer's disease. *Neurobiology of Aging*, 56,  
867 172–179. <https://doi.org/10.1016/j.neurobiolaging.2017.04.024>

868 Karch, C. M., Cruchaga, C., & Goate, A. M. (2014). Alzheimer's disease genetics: From the  
869 bench to the clinic. *Neuron*, 83(1), 11–26. <https://doi.org/10.1016/j.neuron.2014.05.041>

870 Koelewijn, L., Lancaster, T. M., Linden, D., Dima, D. C., Routley, B. C., Magazzini, L.,  
871 Barawi, K., Brindley, L., Adams, R., Tansey, K. E., Bompas, A., Tales, A., Bayer, A., &  
872 Singh, K. (2019). Oscillatory hyperactivity and hyperconnectivity in young APOE-ε4  
873 carriers and hypoconnectivity in Alzheimer's disease. *eLife*, 8, e36011.  
874 <https://doi.org/10.7554/eLife.36011>

875 Kor, D. Z. L., Jbabdi, S., Huszar, I. N., Mollink, J., Tendler, B. C., Foxley, S., Wang, C.,  
876 Scott, C., Smart, A., Ansorge, O., Pallebage-Gamarallage, M., Miller, K. L., & Howard,  
877 A. F. D. (2022). An automated pipeline for extracting quantitative histological metrics  
878 for voxelwise MRI-histology comparisons. *bioRxiv*, 1-40.  
879 <https://doi.org/10.1101/2022.02.10.479718>

880 Lebel, C., Gee, M., Camicioli, R., Wieler, M., Martin, W., & Beaulieu, C. (2012). Diffusion  
881 tensor imaging of white matter tract evolution over the lifespan. *NeuroImage*, 60(1),  
882 340–352. <https://doi.org/10.1016/j.neuroimage.2011.11.094>

883 Lee, A. C. H., Buckley, M. J., Gaffan, David., Emery, Tina., Hodges, J. R., & Graham, K. S.  
884 (2006). Differentiating the roles of the hippocampus and perirhinal cortex in processes  
885 beyond long-term declarative memory: A double dissociation in dementia. *Journal of*  
886 *Neuroscience*, 26(19), 5198–5203. <https://doi.org/10.1523/JNEUROSCI.3157-05.2006>

887 Lee, M. D., & Wagenmakers, E.-J. (2013). *Bayesian cognitive modeling: A practical course*  
888 (pp. xiii, 264). Cambridge University Press.  
889 <https://doi.org/10.1017/CBO9781139087759>

890 Leemans, A., Jeurissen, B., Sijbers, J., & Jones, D. K. (2009). ExploreDTI: A graphical  
891 toolbox for processing, analyzing, and visualizing diffusion MR data. *Proceedings of*  
892 *the 17th Scientific Meeting, International Society for Magnetic Resonance in Medicine*,  
893 17, 3537.

894 Leemans, A., & Jones, D. K. (2009). The B-matrix must be rotated when correcting for  
895 subject motion in DTI data. *Magnetic Resonance in Medicine*, 61(6), 1336–1349.  
896 <https://doi.org/10.1002/mrm.21890>

897 Liu, C.-C., Kanekiyo, T., Xu, H., & Bu, G. (2013). Apolipoprotein E and Alzheimer disease:  
898 Risk, mechanisms, and therapy. *Nature Reviews Neurology*, 9(2), 106–118.  
899 <https://doi.org/10.1038/nrneurol.2012.263>

900 Lubben, N., Ensink, E., Coetzee, G. A., & Labrie, V. (2021). The enigma and implications of  
901 brain hemispheric asymmetry in neurodegenerative diseases. *Brain Communications*,  
902 3(3), fcab211. <https://doi.org/10.1093/braincomms/fcab211>

903 Lupton, M. K., Medland, S. E., Gordon, S. D., Goncalves, T., MacGregor, S., Mackey, D. A.,  
904 Young, T. L., Duffy, D. L., Visscher, P. M., Wray, N. R., Nyholt, D. R., Bain, L.,  
905 Ferreira, M. A., Henders, A. K., Wallace, L., Montgomery, G. W., Wright, M. J., &  
906 Martin, N. G. (2018). Accuracy of inferred APOE genotypes for a range of genotyping  
907 arrays and imputation reference panels. *Journal of Alzheimer's Disease*, 64(1), 49–54.  
908 <https://doi.org/10.3233/JAD-171104>

909 Ma, C., Wang, J., Zhang, J., Chen, K., Li, X., Shu, N., Chen, Y., Liu, Z., & Zhang, Z. (2017).  
910 Disrupted brain structural connectivity: Pathological interactions between genetic  
911 APOE ε4 status and developed MCI condition. *Molecular Neurobiology*, 54(9), 6999–  
912 7007. <https://doi.org/10.1007/s12035-016-0224-5>

913 Maass, A., Berron, D., Harrison, T. M., Adams, J. N., La Joie, R., Baker, S., Mellinger, T.,  
914 Bell, R. K., Swinnerton, K., Inglis, B., Rabinovici, G. D., Düzel, E., & Jagust, W. J.  
915 (2019). Alzheimer's pathology targets distinct memory networks in the ageing brain.  
916 *Brain*, 142(8), 2492–2509. <https://doi.org/10.1093/brain/awz154>

917 Maechler, M., Rousseeuw, P., Croux, C., Todorov, V., Ruckstuhl, A., Salibian-Barrera, M.,  
918 Verbeke, T., Koller, M., Conceicao, E. L., & Anna di Palma, M. (2021). *robustbase*:  
919 *Basic robust statistics* (Version 0.93-7) [Computer software]. <http://CRAN.R-project.org/package=robustbase>

920 Mason, E. J., Hussey, E. P., Molitor, R. J., Ko, P. C., Donahue, M. J., & Ally, B. A. (2017).  
921 Family history of Alzheimer's disease is associated with impaired perceptual  
922 discrimination of novel objects. *Journal of Alzheimer's Disease*, 57(3), 735–745.  
923 <https://doi.org/10.3233/JAD-160772>

925 MathWorks, Inc. (2015). *MATLAB* (Version R2015a) [Computer software].

926 <https://uk.mathworks.com/>

927 Mattsson, N., Palmqvist, S., Stomrud, E., Vogel, J., & Hansson, O. (2019). Staging  $\beta$ -

928 amyloid pathology with amyloid positron emission tomography. *JAMA Neurology*,

929 76(11), 1319–1329. <https://doi.org/10.1001/jamaneurol.2019.2214>

930 Mayo, C. D., Mazerolle, E. L., Ritchie, L., Fisk, J. D., & Gawryluk, J. R. (2017). Longitudinal

931 changes in microstructural white matter metrics in Alzheimer's disease. *NeuroImage: Clinical*, 13, 330–338. <https://doi.org/10.1016/j.nicl.2016.12.012>

932

933 Mentink, L. J., Guimarães, J. P. O. F. T., Faber, M., Sprooten, E., Rikkert, M. G. M. O.,

934 Haak, K. V., & Beckmann, C. F. (2021). Functional co-activation of the default mode

935 network in APOE  $\epsilon$ 4-carriers: A replication study. *NeuroImage*, 118304.

936 <https://doi.org/10.1016/j.neuroimage.2021.118304>

937 Metzler-Baddeley, C., Jones, D. K., Steventon, J., Westacott, L., Aggleton, J. P., &

938 O'Sullivan, M. J. (2012). Cingulum microstructure predicts cognitive control in older

939 age and mild cognitive impairment. *Journal of Neuroscience*, 32(49), 17612–17619.

940 <https://doi.org/10.1523/JNEUROSCI.3299-12.2012>

941 Metzler-Baddeley, C., Mole, J. P., Sims, R., Fasano, F., Evans, J., Jones, D. K., Aggleton, J.

942 P., & Baddeley, R. J. (2019). Fornix white matter glia damage causes hippocampal

943 gray matter damage during age-dependent limbic decline. *Scientific Reports*, 9, 1060.

944 <https://doi.org/10.1038/s41598-018-37658-5>

945 Mishra, S., Blazey, T. M., Holtzman, D. M., Cruchaga, C., Su, Y., Morris, J. C., Benzinger, T.

946 L. S., & Gordon, B. A. (2018). Longitudinal brain imaging in preclinical Alzheimer

947 disease: Impact of APOE  $\epsilon$ 4 genotype. *Brain*, 141(6), 1828–1839.

948 <https://doi.org/10.1093/brain/awy103>

949 Morey, R. D., & Rouder, J. N. (2018). *BayesFactor: Computation of Bayes factors for*

950 *common designs* (Version 0.9.12-4.2) [Computer software]. <https://CRAN.r-project.org/package=BayesFactor>

951

952 Murray, E. A., Wise, S. P., & Graham, K. S. (2017). *The evolution of memory systems: Ancestors, anatomy, and adaptations*. Oxford University Press.

953

954 Oldmeadow, C., Holliday, E. G., McEvoy, M., Scott, R., Kwok, J. B. J., Mather, K., Sachdev, P., Schofield, P., & Attia, J. (2014). Concordance between direct and imputed APOE

955 genotypes using 1000 Genomes data. *Journal of Alzheimer's Disease*, 42(2), 391–

956

957 393. <https://doi.org/10.3233/JAD-140846>

958 Olsen, R. K., Yeung, L.-K., Noly-Gandon, A., D'Angelo, M. C., Kacollja, A., Smith, V. M.,

959 Ryan, J. D., & Barense, M. D. (2017). Human anterolateral entorhinal cortex volumes

960 are associated with cognitive decline in aging prior to clinical diagnosis. *Neurobiology*

961 of Aging, 57, 195–205. <https://doi.org/10.1016/j.neurobiolaging.2017.04.025>

962 Palmqvist, S., Schöll, M., Strandberg, O., Mattsson, N., Stomrud, E., Zetterberg, H.,

963 Blennow, K., Landau, S., Jagust, W., & Hansson, O. (2017). Earliest accumulation of

964 β-amyloid occurs within the default-mode network and concurrently affects brain

965 connectivity. *Nature Communications*, 8, 1214. <https://doi.org/10.1038/s41467-017-01150-x>

966

967 Panesar, S. S., Yeh, F.-C., Jacquesson, T., Hula, W., & Fernandez-Miranda, J. C. (2018). A

968 quantitative tractography study into the connectivity, segmentation and laterality of the

969 human inferior longitudinal fasciculus. *Frontiers in Neuroanatomy*, 12, 47.

970

<https://doi.org/10.3389/fnana.2018.00047>

971 Parker, G. D. (2014). *Robust processing of diffusion weighted image data* [PhD, Cardiff

972 University]. <https://orca.cardiff.ac.uk/61622/>

973 Parker, G. D., Marshall, D., Rosin, P. L., Drage, N., Richmond, S., & Jones, D. K. (2013). A

974 pitfall in the reconstruction of fibre ODFs using spherical deconvolution of diffusion

975 MRI data. *NeuroImage*, 65, 433–448.

976

<https://doi.org/10.1016/j.neuroimage.2012.10.022>

977 Parker, G. D., Rosin, P. L., & Marshall, D. (2012). *Automated segmentation of diffusion*

978 *weighted MRI tractography*. AVA / BMVA Meeting on Biological and Computer Vision,

979 Spring (AGM) Meeting, Cambridge, United Kingdom.

980 Parvizi, J., Van Hoesen, G. W., Buckwalter, J., & Damasio, A. (2006). Neural connections of  
981 the posteromedial cortex in the macaque. *Proceedings of the National Academy of  
982 Sciences*, 103(5), 1563–1568. <https://doi.org/10.1073/pnas.0507729103>

983 Pasternak, O., Sochen, N., Gur, Y., Intrator, N., & Assaf, Y. (2009). Free water elimination  
984 and mapping from diffusion MRI. *Magnetic Resonance in Medicine*, 62(3), 717–730.  
985 <https://doi.org/10.1002/mrm.22055>

986 Pichet Binette, A., Theaud, G., Rheault, F., Roy, M., Collins, D. L., Levin, J., Mori, H., Lee, J.  
987 H., Farlow, M. R., Schofield, P., Chhatwal, J. P., Masters, C. L., Benzinger, T., Morris,  
988 J., Bateman, R., Breitner, J. C., Poirier, J., Gonneaud, J., Descoteaux, M., ...  
989 PREVENT-AD Research Group. (2021). Bundle-specific associations between white  
990 matter microstructure and A $\beta$  and tau pathology in preclinical Alzheimer's disease.  
991 *eLife*, 10, e62929. <https://doi.org/10.7554/eLife.62929>

992 Postans, M., Hodgetts, C. J., Mundy, M. E., Jones, D. K., Lawrence, A. D., & Graham, K. S.  
993 (2014). Interindividual variation in fornix microstructure and macrostructure is related  
994 to visual discrimination accuracy for scenes but not faces. *Journal of Neuroscience*,  
995 34(36), 12121–12126. <https://doi.org/10.1523/JNEUROSCI.0026-14.2014>

996 Powell, J. L., Parkes, L., Kemp, G. J., Sluming, V., Barrick, T. R., & García-Fiñana, M.  
997 (2012). The effect of sex and handedness on white matter anisotropy: A diffusion  
998 tensor magnetic resonance imaging study. *Neuroscience*, 207, 227–242.  
999 <https://doi.org/10.1016/j.neuroscience.2012.01.016>

1000 R Core Team. (2019). *R: A language and environment for statistical computing* (Version  
1001 3.6.0) [Computer software]. <https://www.R-project.org/>

1002 Radmanesh, F., Devan, W. J., Anderson, C. D., Rosand, J., Falcone, G. J., & for the  
1003 Alzheimer's Disease Neuroimaging Initiative. (2014). Accuracy of imputation to infer  
1004 unobserved APOE epsilon alleles in genome-wide genotyping data. *European Journal  
1005 of Human Genetics*, 22(10), 1239–1242. <https://doi.org/10.1038/ejhg.2013.308>

1006 Rajah, M. N., Wallace, L. M. K., Ankudowich, E., Yu, E. H., Swierkot, A., Patel, R.,  
1007 Chakravarty, M. M., Naumova, D., Pruessner, J., Joober, R., Gauthier, S., & Pasvanis,

1008 S. (2017). Family history and APOE4 risk for Alzheimer's disease impact the neural  
1009 correlates of episodic memory by early midlife. *NeuroImage: Clinical*, 14, 760–774.  
1010 <https://doi.org/10.1016/j.nicl.2017.03.016>

1011 Ranganath, C., & Ritchey, M. (2012). Two cortical systems for memory-guided behaviour.  
1012 *Nature Reviews Neuroscience*, 13(10), 713–726. <https://doi.org/10.1038/nrn3338>

1013 Reagh, Z. M., Ho, H. D., Leal, S. L., Noche, J. A., Chun, A., Murray, E. A., & Yassa, M. A.  
1014 (2016). Greater loss of object than spatial mnemonic discrimination in aged adults.  
1015 *Hippocampus*, 26(4), 417–422. <https://doi.org/10.1002/hipo.22562>

1016 Reiman, E. M., Arboleda-Velasquez, J. F., Quiroz, Y. T., Huentelman, M. J., Beach, T. G.,  
1017 Caselli, R. J., Chen, Y., Su, Y., Myers, A. J., Hardy, J., Paul Vonsattel, J., Younkin, S.  
1018 G., Bennett, D. A., De Jager, P. L., Larson, E. B., Crane, P. K., Keene, C. D., Kamboh,  
1019 M. I., Kofler, J. K., ... Jun, G. R. (2020). Exceptionally low likelihood of Alzheimer's  
1020 dementia in APOE2 homozygotes from a 5,000-person neuropathological study.  
1021 *Nature Communications*, 11, 667. <https://doi.org/10.1038/s41467-019-14279-8>

1022 Rieckmann, A., Van Dijk, K. R., Sperling, R. A., Johnson, K. A., Buckner, R. L., & Hedden, T.  
1023 (2016). Accelerated decline in white matter integrity in clinically normal individuals at  
1024 risk for Alzheimer's disease. *Neurobiology of Aging*, 42, 177–188.  
1025 <https://doi.org/10.1016/j.neurobiolaging.2016.03.016>

1026 Riedel, B. C., Thompson, P. M., & Brinton, R. D. (2016). Age, APOE and sex: Triad of risk of  
1027 Alzheimer's disease. *Journal of Steroid Biochemistry and Molecular Biology*, 160, 134–  
1028 147. <https://doi.org/10.1016/j.jsbmb.2016.03.012>

1029 Roe, J. M., Vidal-Piñeiro, D., Sørensen, Ø., Brandmaier, A. M., Düzel, S., Gonzalez, H. A.,  
1030 Kievit, R. A., Knights, E., Kühn, S., Lindenberger, U., Mowinckel, A. M., Nyberg, L.,  
1031 Park, D. C., Pudas, S., Rundle, M. M., Walhovd, K. B., Fjell, A. M., & Westerhausen,  
1032 R. (2021). Asymmetric thinning of the cerebral cortex across the adult lifespan is  
1033 accelerated in Alzheimer's disease. *Nature Communications*, 12(1), 721.  
1034 <https://doi.org/10.1038/s41467-021-21057-y>

1035 RStudio Team. (2020). *RStudio: Integrated development environment for R* (Version  
1036 1.3.1093) [Computer software]. <http://www.rstudio.com/>

1037 Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen, C. E.,  
1038 Cummings, J., & van der Flier, W. M. (2021). Alzheimer's disease. *The Lancet*,  
1039 397(10284), 1577–1590. [https://doi.org/10.1016/S0140-6736\(20\)32205-4](https://doi.org/10.1016/S0140-6736(20)32205-4)

1040 Selkoe, D. J., & Hardy, J. (2016). The amyloid hypothesis of Alzheimer's disease at  
1041 25 years. *EMBO Molecular Medicine*, 8(6), 595–608.  
1042 <https://doi.org/10.15252/emmm.201606210>

1043 Shine, J. P., Hodgetts, C. J., Postans, M., Lawrence, A. D., & Graham, K. S. (2015). APOE-  
1044 ε4 selectively modulates posteromedial cortex activity during scene perception and  
1045 short-term memory in young healthy adults. *Scientific Reports*, 5, 16322.  
1046 <https://doi.org/10.1038/srep16322>

1047 Silva, M. V. F., Loures, C. de M. G., Alves, L. C. V., de Souza, L. C., Borges, K. B. G., &  
1048 Carvalho, M. das G. (2019). Alzheimer's disease: Risk factors and potentially  
1049 protective measures. *Journal of Biomedical Science*, 26(1), 33.  
1050 <https://doi.org/10.1186/s12929-019-0524-y>

1051 Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E.,  
1052 Watkins, K. E., Ciccarelli, O., Cader, M. Z., Matthews, P. M., & Behrens, T. E. J.  
1053 (2006). Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion  
1054 data. *NeuroImage*, 31(4), 1487–1505.  
1055 <https://doi.org/10.1016/j.neuroimage.2006.02.024>

1056 Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: Addressing  
1057 problems of smoothing, threshold dependence and localisation in cluster inference.  
1058 *NeuroImage*, 44(1), 83–98. <https://doi.org/10.1016/j.neuroimage.2008.03.061>

1059 Song, Z., Farrell, M. E., Chen, X., & Park, D. C. (2018). Longitudinal accrual of neocortical  
1060 amyloid burden is associated with microstructural changes of the fornix in cognitively  
1061 normal adults. *Neurobiology of Aging*, 68, 114–122.  
1062 <https://doi.org/10.1016/j.neurobiolaging.2018.02.021>

1063 Suri, S., Heise, V., Trachtenberg, A. J., & Mackay, C. E. (2013). The forgotten APOE allele:  
1064 A review of the evidence and suggested mechanisms for the protective effect of APOE  
1065 e2. *Neuroscience & Biobehavioral Reviews*, 37(10), 2878–2886.  
1066 <https://doi.org/10.1016/j.neubiorev.2013.10.010>

1067 Therriault, J., Benedet, A. L., Pascoal, T. A., Mathotaarachchi, S., Chamoun, M., Savard, M.,  
1068 Thomas, E., Kang, M. S., Lussier, F., Tissot, C., Parsons, M., Qureshi, M. N. I., Vitali,  
1069 P., Massarweh, G., Soucy, J.-P., Rej, S., Saha-Chaudhuri, P., Gauthier, S., & Rosa-  
1070 Neto, P. (2020). Association of apolipoprotein E  $\epsilon$ 4 with medial temporal tau  
1071 independent of amyloid- $\beta$ . *JAMA Neurology*, 77(4), 470–479.  
1072 <https://doi.org/10.1001/jamaneurol.2019.4421>

1073 Thiebaut de Schotten, M., ffytche, D. H., Bizzi, A., Dell'Acqua, F., Allin, M., Walshe, M.,  
1074 Murray, R., Williams, S. C., Murphy, D. G. M., & Catani, M. (2011). Atlasing location,  
1075 asymmetry and inter-subject variability of white matter tracts in the human brain with  
1076 MR diffusion tractography. *NeuroImage*, 54(1), 49–59.  
1077 <https://doi.org/10.1016/j.neuroimage.2010.07.055>

1078 Trejo-Lopez, J. A., Yachnis, A. T., & Prokop, S. (2021). Neuropathology of Alzheimer's  
1079 disease. *Neurotherapeutics*. <https://doi.org/10.1007/s13311-021-01146-y>

1080 Tuch, D. S., Reese, T. G., Wiegell, M. R., Makris, N., Belliveau, J. W., & Wedeen, V. J.  
1081 (2002). High angular resolution diffusion imaging reveals intravoxel white matter fiber  
1082 heterogeneity. *Magnetic Resonance in Medicine*, 48(4), 577–582.  
1083 <https://doi.org/10.1002/mrm.10268>

1084 Tyrer, A., Gilbert, J. R., Adams, S., Stiles, A. B., Bankole, A. O., Gilchrist, I. D., & Moran, R.  
1085 J. (2020). Lateralized memory circuit dropout in Alzheimer's disease patients. *Brain*  
1086 *Communications*, 2(2), fcaa212. <https://doi.org/10.1093/braincomms/fcaa212>

1087 Verhagen, J., & Wagenmakers, E.-J. (2014). Bayesian tests to quantify the result of a  
1088 replication attempt. *Journal of Experimental Psychology: General*, 143(4), 1457–1475.  
1089 <https://doi.org/10.1037/a0036731>

1090 Villeneuve, S., Rabinovici, G. D., Cohn-Sheehy, B. I., Madison, C., Ayakta, N., Ghosh, P. M.,  
1091 La Joie, R., Arthur-Bentil, S. K., Vogel, J. W., Marks, S. M., Lehmann, M., Rosen, H.  
1092 J., Reed, B., Olichney, J., Boxer, A. L., Miller, B. L., Borys, E., Jin, L.-W., Huang, E. J.,  
1093 ... Jagust, W. (2015). Existing Pittsburgh compound-B positron emission tomography  
1094 thresholds are too high: Statistical and pathological evaluation. *Brain*, 138(7), 2020–  
1095 2033. <https://doi.org/10.1093/brain/awv112>

1096 Vipin, A., Ng, K. K., Ji, F., Shim, H. Y., Lim, J. K. W., Pasternak, O., Zhou, J. H., & for the  
1097 Alzheimer's Disease Neuroimaging Initiative. (2019). Amyloid burden accelerates  
1098 white matter degradation in cognitively normal elderly individuals. *Human Brain  
1099 Mapping*, 40(7), 2065–2075. <https://doi.org/10.1002/hbm.24507>

1100 Wakana, S., Caprihan, A., Panzenboeck, M. M., Fallon, J. H., Perry, M., Gollub, R. L., Hua,  
1101 K., Zhang, J., Jiang, H., Dubey, P., Blitz, A., van Zijl, P., & Mori, S. (2007).  
1102 Reproducibility of quantitative tractography methods applied to cerebral white matter.  
1103 *NeuroImage*, 36(3), 630–644. <https://doi.org/10.1016/j.neuroimage.2007.02.049>

1104 Weise, C. M., Chen, K., Chen, Y., Kuang, X., Savage, C. R., & Reiman, E. M. (2018). Left  
1105 lateralized cerebral glucose metabolism declines in amyloid- $\beta$  positive persons with  
1106 mild cognitive impairment. *NeuroImage: Clinical*, 20, 286–296.  
1107 <https://doi.org/10.1016/j.nicl.2018.07.016>

1108 Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014).  
1109 Permutation inference for the general linear model. *NeuroImage*, 92, 381–397.  
1110 <https://doi.org/10.1016/j.neuroimage.2014.01.060>

1111 Wolf, D., Fischer, F. U., Scheurich, A., Fellgiebel, A., & for the Alzheimer's Disease  
1112 Neuroimaging Alzheimer's Disease Neuroimaging Initiative. (2015). Non-linear  
1113 association between cerebral amyloid deposition and white matter microstructure in  
1114 cognitively healthy older adults. *Journal of Alzheimer's Disease*, 47(1), 117–127.  
1115 <https://doi.org/10.3233/JAD-150049>

1116 Yeh, C.-H., Jones, D. K., Liang, X., Descoteaux, M., & Connelly, A. (2021). Mapping  
1117 structural connectivity using diffusion MRI: Challenges and opportunities. *Journal of*  
1118 *Magnetic Resonance Imaging*, 53(6), 1666–1682. <https://doi.org/10.1002/jmri.27188>

1119 Yu, J., Lam, C. L. M., & Lee, T. M. C. (2017). White matter microstructural abnormalities in  
1120 amnestic mild cognitive impairment: A meta-analysis of whole-brain and ROI-based  
1121 studies. *Neuroscience & Biobehavioral Reviews*, 83, 405–416.  
1122 <https://doi.org/10.1016/j.neubiorev.2017.10.026>

1123 Zhao, J., Thiebaut de Schotten, M., Altarelli, I., Dubois, J., & Ramus, F. (2016). Altered  
1124 hemispheric lateralization of white matter pathways in developmental dyslexia:  
1125 Evidence from spherical deconvolution tractography. *Cortex*, 76, 51–62.  
1126 <https://doi.org/10.1016/j.cortex.2015.12.004>

1127 Zionsz, J., Adams, J. N., Harrison, T. M., Baker, S. L., & Jagust, W. J. (2021). Hippocampal  
1128 connectivity with retrosplenial cortex is linked to neocortical tau accumulation and  
1129 memory function. *Journal of Neuroscience*, 41(42), 8839–8847.  
1130 <https://doi.org/10.1523/JNEUROSCI.0990-21.2021>