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Abstract 18 

Reconstruction of metagenome-assembled genomes (MAGs) has become a fundamental approach in 19 

microbial ecology. However, an MAG is hardly complete and overlooks genomic microdiversity 20 

because metagenomic assembly fails to resolve microvariants among closely related genotypes. 21 

Aiming at understanding the universal factors that drive or constrain prokaryotic genome 22 

diversification, we performed an ecosystem-wide high-resolution metagenomic exploration of 23 

microdiversity by combining spatiotemporal (2 depths × 12 samples) sampling from a pelagic 24 

freshwater system, MAG reconstruction using long- and short-read metagenomic sequences, and 25 

profiling of single nucleotide variants (SNVs) and structural variants (SVs) through mapping of short 26 

and long reads to the MAGs, respectively. We reconstructed 575 MAGs, including 29 circular 27 

assemblies, providing high-quality reference genomes of freshwater bacterioplankton. Read mapping 28 

against these MAGs identified 100–101,781 SNVs/Mb, 0–305 insertions, 0–467 deletions, 0–41 29 

duplications, and 0–6 inversions for each MAG. Nonsynonymous SNVs were accumulated in genes 30 

potentially involved in cell surface structural modification to evade phage recognition. Most (80.2%) 31 

deletions overlapped with a gene-coding region, and genes of prokaryotic defense systems were most 32 

frequently (>8% of the genes) involved in a deletion. Some such deletions exhibited a monthly shift 33 

in their allele frequency, suggesting a rapid turnover of genotypes in response to phage predation. 34 

MAGs with extremely low microdiversity were either rare or opportunistic bloomers, suggesting that 35 

population persistency is key to their genomic diversification. The results lead to the conclusion that 36 

prokaryotic genomic diversification is primarily driven by viral load and constrained by a population 37 

bottleneck.  38 
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Introduction 39 

In microbial ecology, reconstruction of metagenome-assembled genomes (MAGs) from an uncultured 40 

microbial assemblage has become a routine technique that has reshaped and substantially expanded 41 

our understanding of prokaryotic diversity (1, 2). However, MAGs are hardly complete (i.e., circularly 42 

assembled) due to difficulties in assembling repetitive (e.g., rRNA genes) and hyper-variable 43 

(microdiverse) regions in a genome coexisting in the same sample (3, 4). In particular, genomic 44 

microdiversity hampers metagenomic assembly and results in incompleteness or absence of an MAG 45 

even at deep sequencing depths, which has been recognized as “the great metagenomics anomaly” (5). 46 

Moreover, a metagenomic assembler generally tries to generate a consensus long contig rather than 47 

fragmented assemblies reflecting different microvariants (3, 6). Consequently, in a metagenomic 48 

assembly, genomic microdiversity is either unassembled or masked by a consensus sequence.  49 

 Genomic microdiversity provides information essential to understanding microbial ecology 50 

and evolution. Hypervariability of genes involved in cell surface structural modification is thought to 51 

be a consequence of the virus–host arms race (7, 8). Intraspecies flexibility of genes responsible for 52 

the availability of substrates and nutrients suggests that functionally diversified populations 53 

collectively occupy the diverse microniches (9). The degree of genomic microdiversification varies 54 

among lineages and is thought to depend on a number of ecological and evolutionary factors such as 55 

mutation rate, generation time, population size, genetic mobility, fitness, and drift (10, 11). However, 56 

due to the aforementioned difficulties, a comprehensive investigation of genomic microdiversity 57 

covering a consortium of microbes in an ecosystem is challenging, and the universal factors that drive 58 

or constrain their genomic diversification remain to be elucidated. 59 

 To address this, the present study took a three-step approach. The first was comprehensive 60 

metagenomic sampling in an ecosystem. We targeted freshwater bacterioplankton assemblages 61 

sampled spatiotemporally (2 depths × 12 months) at a pelagic station on Lake Biwa, a monomictic 62 
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lake with an oxygenated hypolimnion that harbors one of the best-studied freshwater microbial 63 

ecosystems (12–16). The second step was long-read metagenomic assembly, which can overcome the 64 

problem of fragmented assembly using reads longer than a repeat or hypervariable region (17–20). 65 

This was done to generate high-quality reference MAGs covering the diversity of bacterioplankton in 66 

the lake. The third step was short- and long-read metagenomic read mapping to the MAGs, in which 67 

genomic microvariants were identified as inconsistencies between a consensus assembly and mapped 68 

reads (21–23). Notably, we aimed to detect two different types of microvariants, single nucleotide 69 

variants (SNVs) and structural variants (SVs), namely, insertion, deletion, duplication, or inversion of 70 

a genomic sequence. While short-read mapping efficiently detects SNVs due to its high base accuracy 71 

(24, 25), it cannot resolve most SVs that are longer than the canonical short read length (i.e., 150–250 72 

bp). SVs are often associated with gains and losses of genes, which account for a large part of genomic 73 

and functional heterogeneity among closely related genotypes (9, 10). Here, the limitation of short-74 

read mapping is complemented by long-read mapping, in which SVs can be located with reads 75 

discontinuously aligned to a consensus assembly (26–28). Our three-step approach allowed a high-76 

resolution, ecosystem-wide exploration of SNVs and SVs covering the broad spectrum of prokaryotic 77 

diversity in the lake. The results were comparatively analyzed from spatiotemporal, phylogenetic, and 78 

gene functionality perspectives, aiming at characterizing factors behind the genomic 79 

microdiversification. 80 

Materials and Methods 81 

Sample collection 82 

Water samples were collected monthly from May 2018 to April 2019 at a pelagic station (water depth 83 

ca. 73 m) on Lake Biwa (35°13′09.5″ N, 135°59′44.7″ E) from two water depths, representing the 84 

epilimnion (5 m) and hypolimnion (65 m) (24 samples in total). Vertical profiles of chlorophyll-a 85 

concentration, temperature, and dissolved oxygen were collected using a RINKO CTD profiler 86 
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(ASTD102; JFE Advantech). The collected lake water was immediately sequentially filtered through 87 

a 200 µm mesh, 5 µm polycarbonate filter (TMTP14250; Merck Millipore), and 0.22 µm pore Sterivex 88 

cartridge (SVGP01050; Merck Millipore), using a peristaltic pump system onboard. Filtration was 89 

performed until the Sterivex cartridge was clogged (1–2.5 liters of lake water were filtered for each 90 

cartridge), and at least four Sterivex cartridges were collected for each sample. The filters were flash-91 

frozen in a dry-ice ethanol bath, transported to the laboratory on dry ice, and stored at –80°C until 92 

further processing. Water samples were collected between 8:00 am and 11:00 am on each sampling 93 

day and processed to the freezing step within 1 h after collection. Prokaryotic cell abundance was 94 

determined for each sample using a flow cytometer (CytoFLEX; Beckman Coulter) following fixation 95 

of the water sample with 1% glutaraldehyde and staining with 0.25× SYBR Green solution (S7563; 96 

Invitrogen). 97 

DNA extraction 98 

DNA was extracted from the Sterivex filters (i.e., 0.22–5 µm size fraction) using an AllPrep 99 

DNA/RNA Mini Kit (80204; Qiagen) with a modified protocol: the filter paper removed from a 100 

Sterivex cartridge was put into a Lysing Matrix E tube (6914050; MP Biomedicals) with a mixture of 101 

400 μL RLT plus buffer (containing 1% β-mercaptoethanol following the kit’s protocol) and 400 μL 102 

phenol/chloroform/isoamyl alcohol (25:24:1 v/v/v); bead-beating was performed at 3500 rpm for 30 s 103 

(MS-100; TOMY Digital Biology), followed by cooling on ice for 1 min, then again at 3500 rpm for 104 

30 sec; the supernatant after centrifugation (16,000 g for 5 min at room temperature) was mixed with 105 

500 μL chloroform/isoamyl alcohol (24:1 v/v) to remove the residual phenol, then centrifuged again; 106 

then the supernatant was used as the loading material for the AllPrep DNA spin column and processed 107 

following the manufacturer’s instruction. The quantity and quality of the DNA were measured using 108 

a Qubit dsDNA HS Assay kit (Q32851; Thermo Fisher Scientific) and a spectrophotometer (NanoDrop 109 

2000; Thermo Fisher Scientific). Consequently, at least 2 µg purified DNA were obtained from each 110 
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sample.  111 

Sequencing 112 

The extracted DNA was used for both short- and long-read shotgun metagenomic sequencing. For 113 

short-read sequencing, the DNA was sheared to 500 bp on average using an ultrasonicator (Covaris), 114 

and a 24-sample multiplexed library was prepared using a MGIEasy Universal DNA Library Prep Set 115 

(1000006986; MGI), Circularization Kit (1000005259; MGI), and MGISEQ 2000RS High-throughput 116 

Sequencing Set (1000013857; MGI) with seven cycles of PCR amplification. A 1 × 400 bp single-end 117 

sequencing was run using one lane of the MGI DNBSEQ-G400 platform. For long-read sequencing, 118 

long DNA molecules were purified using diluted (0.45×) AMPure XP beads, and a sequencing library 119 

was prepared using a Ligation Sequencing Kit (LSK-109; Oxford Nanopore). Each of the 24 samples 120 

was sequenced by an R9.4.1 flow-cell (FLO-MIN106D; Oxford Nanopore) using the Oxford 121 

Nanopore GridION platform for 72 h. Base-calling was performed using Guppy (v3.2.10; high 122 

accuracy mode). 123 

Read assembly and contig polishing  124 

Each of the 24 raw long-read libraries was assembled using two different assemblers: Flye (v2.8; --125 

plasmids --meta) (29) and Raven (v1.5.0) (30). The assembled contigs were polished with long reads 126 

using Racon (v1.4.13) (31) and Medaka (v1.0.3) (https://github.com/nanoporetech/medaka), and then 127 

with short reads using Pilon (v1.23) (32) and two rounds of Racon. Read mapping for polishing was 128 

performed using Minimap2 (v2.17) (33) and Bowtie2 (v2.3.5.1) (34). Quality control of short reads 129 

was performed using Cutadapt (v2.5) (35) and fastp (v0.20.0) (36). The detailed workflow and 130 

parameters are available in Figure S1. 131 

Binning and bin curation 132 

Contigs longer than 2.5 kb were selected using SeqKit (v0.13.2) (37) and their read coverage across 133 

the 24 samples was calculated by mapping the quality-controlled short reads using CoverM (v0.4.0; -134 
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m metabat) (https://github.com/wwood/CoverM). The coverage table was input to MetaBAT (v2.12.1) 135 

(38) and MaxBin (v2.2.7) (39) to bin the contigs from each of the 24 Flye and Raven assemblies. The 136 

resulting 18,621 bins, containing redundancy derived from 24 samples (2 depths × 12 months), two 137 

assemblers (Flye and Raven), and two binners (MetaBAT and MaxBin) (Fig. S1), were curated by the 138 

following procedures. Bins sharing an average nucleotide identity (ANI) > 95% were clustered using 139 

FastANI (v1.31) (40) and the hclust function (method = “average”) of R v4.0.0 (https://www.r-140 

project.org/). This resulted in 3053 bin clusters and 1595 singletons, hereinafter referred to as 141 

superbins. Next, bins in the same superbin were merged as follows. First, bin quality score (BQS) was 142 

determined as (completeness – [5 × contamination]), referring to the output of checkM (v1.1.3) (41) 143 

for each bin. Then, bins derived from the same sample (i.e., only different in the assembler or binner) 144 

were merged using quickmerge (v0.3), which bridges gaps in one assembly (acceptor) using sequences 145 

of another assembly (donor) based on alignment overlaps (42). Starting from the bin with the highest 146 

BQS as an acceptor, bins were iteratively merged by providing a donor bin in the order of BQS. For 147 

bins with the same BQS, the bin with fewer contigs was selected in priority. The “--hco” parameter 148 

was set to 20, which means that the aligned length should be more than 20 times longer than the 149 

unaligned length to merge two contigs. Next, if multiple merged bins in the same superbin (i.e., those 150 

from different samples) showed a BQS > 50, they were further merged in the same manner as above. 151 

Notably, inter-sample merges did not always generate a better bin than intra-sample merged bins, 152 

presumably because of the genomic compositional heterogeneity between samples. Finally, a 153 

representative bin was determined for each of the 4648 superbins by selecting the one with the highest 154 

BQS among the original and merged bins.  155 

 Among the 4648 representative bins, 331 consisted of a single contig. Because quickmerge 156 

does not consider genome circularity, we attempted their circularization in the following procedure. 157 

First, using nucmer (v3.1) (43), the first and last 50 kb of the contig were aligned against the set of 158 
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contigs in the same superbin to find a “bridging contig” that may close the gap between the ends. Next, 159 

if a bridging contig was found, it was supplied as “new_assembly.fasta” to the circlator (v1.5.5) merge 160 

function with the “--ref_end 50000” parameter (44). If the circularization was successful, the contig 161 

was rotated to start from a dnaA gene using the circlator fixstart (--min_id 30) function. 162 

 Finally, the 4648 representative bins were quality-filtered at BQS > 50, followed by 163 

dereplication using dRep (v3.0.1; -comp 0 -con 100 -sa 0.95 --SkipMash --S_algorithm fastANI) (45). 164 

The resulting 575 bins were designated as representative/reference metagenome-assembled genomes 165 

(rMAGs). 166 

Analysis of rMAGs 167 

The 575 rMAGs were taxonomically classified using GTDB-Tk (v1.5.0) with the reference data 168 

version r202 (46), and the genes were annotated using prokka (v1.14.6) (47) and eggNOGmapper 169 

(v2.1.5) (48). Annotated genes were functionally categorized according to KEGG PATHWAY and 170 

KEGG BRITE hierarchies (49) assigned to each gene by eggNOGmapper. For further analysis, we 171 

selected the top 25 functional categories that covered 33% of the genes. To evaluate the frequency of 172 

indel errors that eluded polishing, we followed the idea of the IDEEL software—interrupted open 173 

reading frames (ORFs), which are often introduced by a frameshift, were used as an indicator of indel 174 

errors (18). Specifically, amino acid sequences of each rMAG predicted by prodigal (v2.6.3) (50) were 175 

aligned against the Uniref90 database (release-2020_06) (51) using DIAMOND blastp (v2.0.6; -k 1 -176 

e 1e-5) (52). Based on the results, the proportion of amino acid sequences in which > 90% of the length 177 

was aligned to a Uniref90 sequence was determined for each rMAG and designated as the proportion 178 

of ORFs aligned > 90% (POA90) score. Coverage-based abundance relative to the total sequenced 179 

DNA in each of the 24 samples was determined as reads per kilobase of genome per million reads 180 

sequenced (RPKMS), which was generated by mapping the quality-controlled short reads to the 575 181 

rMAGs using bowtie2 (v2.4.2) (34), followed by counting of mapped and unmapped reads using 182 
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CoverM (--min-read-percent-identity 92). Habitat preference (epilimnion or hypolimnion) of each 183 

rMAG was determined using the metric Pepi, which was defined as the quotient of RPKMS in the 184 

epilimnion versus the sum of the value in the epilimnion and hypolimnion (i.e., epilimnion 185 

/[epilimnion + hypolimnion]) during the stratification period (May to December). When Pepi was > 186 

0.95 or < 0.05, the rMAG was determined as an epilimnion or hypolimnion specialist, respectively 187 

(13). 188 

Analysis of SNVs and SVs 189 

The gene loci and mapping results (i.e., bam files) generated above were input to inStrain (v1.0.0; 190 

profile --database_mode --pairing_filter all_reads), which provides genome- and gene-wide SNV 191 

profiles based on the short-read alignment (24). SVs were detected by mapping the raw long reads to 192 

the rMAGs using NGMLR (v0.2.7) (26) and inputting the resulting bam files to Sniffles (v1.0.12) (26). 193 

Among the five types of SVs reported by Sniffles, deletion, insertion, duplication, and inversion were 194 

further analyzed, while translocation was removed in the downstream analyses because translocation 195 

can involve multiple contigs in different bins and is hard to interpret in metagenomic data. 196 

Subsequently, SVs with low (< 0.1) allele frequency (reported by Sniffle) were filtered out. SVs longer 197 

than 100 kb were also removed as they were seemingly artifacts introduced by genome circularity, 198 

which Sniffles does not account for. 199 

The representative sample providing the highest short-read coverage among the 24 samples 200 

was determined for each rMAG, and the result from the representative sample was used for 201 

representative SNV and SV profiles. To remove low-quality data derived from low read coverage, 202 

rMAGs that showed > 10× short-read coverage in the representative sample (n = 178) were selected 203 

and analyzed in detail. 204 
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Results 205 

General characteristics of the rMAGs 206 

The 24 samples were associated with broad physicochemical conditions. Thermal stratification 207 

occurred from May to December, and the prokaryotic cell abundance was 0.82–4.30 (average = 2.00) 208 

×106 cells mL–1 (Table S1). For each of the samples, 10.9–27.5-Gb long reads (N50 = 4360–5807 bp) 209 

were assembled, and the resulting contigs were polished using 7.0–9.3-Gb short reads (Table S1 and 210 

Fig. S1). From the 24 polished contig sets, our pipeline generated 575 nonredundant rMAGs covering 211 

21 phyla of bacteria and archaea (Table S2). The number of contigs, POA90 (indel correction score, 212 

see Materials and Methods for detail), and completeness of the rRNA genes all showed better results 213 

in rMAGs with higher short-read coverage (Fig. 1a–c). For each of the 24 samples, 45.4–72.1% (mean 214 

= 60.4%) of the short-reads were mapped to any of the 575 rMAGs (Fig. S2), indicating that the 215 

rMAGs accounted for the majority of the extracted DNA. A ubiquity–abundance plot (Fig. 1d) 216 

demonstrated that the rMAGs included common freshwater bacterioplankton lineages known to 217 

dominate in Lake Biwa (12, 13, 53). Relative abundance of the rMAGs revealed their diverse 218 

distribution pattern across the months and depths (Fig. S3). 219 

SNVs and SVs detected in the rMAGs 220 

The 178 rMAGs with > 10× short-read coverage in at least one sample were further analyzed for 221 

detection of SNVs and SVs. The results revealed the broad spectrum of genomic microdiversity across 222 

the rMAGs (Fig. 2). The number of SNVs per 1 Mb ranged from 100 to 101,781 and significantly 223 

varied among the habitat preferences (Fig. 2b). Among the four types of SVs detected, insertion (0–224 

305 sites per rMAG) and deletion (0–467) dominated over duplication (0–41) and inversion (0–6) (Fig. 225 

2d). The numbers of insertions and deletions were strongly correlated (Pearson’s r = 0.925), while they 226 

showed weaker correlations (Pearson’s r = 0.241 and 0.285) with the number of SNVs (Fig. S4). 227 

Unlike SNVs, the number of SVs (deletions) did not significantly vary among the habitat preferences 228 
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(Fig. 2e). Both the numbers of SNVs and SVs (deletions) varied among and within the phyla (Fig. 2c 229 

and f). 230 

Genes involved in SNVs and SVs 231 

On average, 66.5%, 24.3%, and 7.5% of SNVs were synonymous, nonsynonymous, and intergenic, 232 

respectively (Fig. 2a). The nonsynonymous SNV ratio exhibited a negative correlation with the SNV 233 

numbers, and exceptionally high ratios (> 35%) were observed among rMAGs (n = 15) with low SNV 234 

numbers (< 7500 per 1 Mb) (Fig. 3a). The nonsynonymous SNV ratio was positively correlated with 235 

genome size (Fig. 3b). Gene-resolved SNV frequency and pN/pS exhibited differences among 236 

different functional categories (Fig. 4). 237 

Among the four types of SVs, we further focused on deletions because deletion was the most 238 

prevalent SV type (Fig. 2d), and genes involved in deletions can be simply characterized on a genome. 239 

The second is not the case for insertion, in which the involved genes appear in the mapped long reads, 240 

which are unpolished and unannotated. On average, 80.2% of deletions overlapped with a gene-coding 241 

region (Fig. 5a), and the ratio of gene-coding deletions showed a wide range within and among the 242 

phyla (Fig. 5b). Gene-coding deletions were most frequently overlapped with transporter genes, which 243 

reflects the large number of transporter genes in the rMAGs (Fig. S5). Normalized by the gene counts, 244 

genes associated with the prokaryotic defense system were most often (> 8% of the genes) involved 245 

in deletions (Fig. 6a). Among the genes affiliated with the prokaryotic defense system, those associated 246 

with the type I restriction and modification (RM) system were most abundant in deletion, followed by 247 

genes comprising toxin–antitoxin (TA) systems, other RM systems, and CRISPR–Cas systems (Fig. 248 

6b). 249 

Discussion 250 

Long-read metagenomes generated an ecosystem-wide, high-quality prokaryotic 251 
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genome collection from Lake Biwa 252 

Long-read metagenomics successfully reconstructed high-quality MAGs (Fig. 1) representing the 253 

majority of the prokaryotic diversity in the lake across seasons and depths (Fig. 1d and Fig. S2), which 254 

was not possible by conventional short-read metagenomics in Lake Biwa (13) or other deep freshwater 255 

lakes (54–56). The MAGs included 29 closed assemblies, including the first circular representatives 256 

of predominant hypolimnetic bacterioplankton lineages, namely Chloroflexi CL500–11 (rMAG_38), 257 

Nitrosoarchaeum (rMAG_256), Verrucomicrobia CL120–10 (rMAG_78), Kapabacteria LiUU-9–330 258 

(rMAG_1819), and a member of Nitrosomonadaceae (rMAG_1024) (57, 58).  259 

We should note that we aimed to generate continuous consensus contigs by merging results 260 

from different assemblers and samples rather than disjoining microvariants of each genotype. We took 261 

this “consensus-first” approach because our subsequent aim was to detect microdiversity masked by 262 

the consensus assembly through read mapping. Caveats in analyzing our rMAGs are that they may not 263 

represent a single genotype existing in the environment, and they may still contain base errors left 264 

unpolished due to inadequate short-read coverage. The POA90 score suggested that fragmented ORFs 265 

introduced by uncorrected indel error are common in the majority of genomes with < 10× short-read 266 

coverage (Fig. 1b). In light of these limitations, we designate our MAGs as rMAGs 267 

(representative/reference MAGs) to differentiate them from those generated by conventional short-268 

read metagenomics and focused on those with > 10× short-read coverage (n = 178) for further analyses. 269 

 The general trend that a higher read coverage resulted in a higher-quality rMAG (Fig. 1) 270 

suggests that our sequencing effort (Table S1) was unsaturated and deeper sequencing would generate 271 

a greater number of high-quality rMAGs. However, read coverage alone was not sufficient to 272 

reconstruct a high-quality rMAG. For example, an rMAG of LD12 (Candidatus Fonsibacter), which 273 

is among the most abundant freshwater bacterioplankton lineages (59, 60), was fragmented and lacked 274 

rRNA genes, despite their extremely high read coverage (> 400× in short reads). Members of 275 
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Pelagibacterales (also known as the SAR11 clade), including LD12,  harbor high genomic 276 

microdiversity in the flanking region of the rRNA gene operon that is presumably responsible for 277 

immunity against their phage (21, 59, 61, 62). Our results indicate that long-read sequencing generally 278 

deals well with “the great metagenomics anomaly” (5) but is still unable to solve the issue in extreme 279 

cases. Nonetheless, rMAGs provided an unprecedentedly high-quality lake prokaryotic genome 280 

collection, which allowed ecosystem-wide exploration of their genomic microdiversity through read 281 

mapping. 282 

Broad spectrum of genomic microdiversity resolved by SNVs and SVs 283 

We found more than 1000-fold differences in the SNV frequency across the rMAGs (Fig. 2a), which 284 

is in line with a report on another freshwater system (63). The dominance of synonymous SNVs (Fig. 285 

2a) is also in agreement with previous works in freshwater (63) and marine (21, 64) systems, 286 

supporting the idea that the bacterioplankton assemblage is generally under purifying selection with 287 

most of the nucleotide variation being neutral. The positive correlation between nonsynonymous SNV 288 

ratio and genome size (Fig. 3b) agrees with the hypothesis that genome streamlining is associated with 289 

strong purifying selection (65–67). We further found that the frequency of SNVs was lower (Fig. 2b) 290 

and also more temporally stable (Fig. S6) in genomes of hypolimnion inhabitants than those of 291 

epilimnion inhabitants. These results imply a lower mutation rate in the deeper water layer, presumably 292 

due to the lower biological productivity owing to the lower temperature and resource availability in 293 

the hypolimnion. 294 

One of the major achievements of the present study was the detection of SVs in a 295 

metagenomic sample facilitated by long-read mapping. Compared to the SV analysis for an isolated 296 

clonal genome, that for metagenomic assembly generates more complex outputs as it refers to a 297 

consensus assembly derived from a highly heterogeneous population. Notably, our approach was not 298 

efficient in detecting SVs with a high allele variation or frequency because such a highly 299 
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heterogeneous region often eludes metagenomic assembly. Given these technical limitations, our goal 300 

was not to resolve all SVs, but rather to discover patterns of SV distribution among environmental 301 

prokaryotic genomes under the same methodological criteria. Indeed, most SVs in a genome were 302 

consecutively detected across samples of different months (Fig. S7), supporting the reproducibility 303 

and robustness of our analysis. 304 

Similar to SNVs, we observed significant variation in SV frequency among the rMAGs (Fig. 305 

2d). The relationship between the number of SNVs and SVs was weak because several rMAGs had an 306 

extremely high number of SVs (Fig. S4). Notably, members of Planctomycetes harbored 307 

disproportionally high numbers of SVs (Fig. 2f) and a lower frequency (55.9–81.0%) of coding 308 

deletions (i.e., those overlapping with an ORF) than the average (80.2%) (Fig. 5b). Further 309 

investigation found that their non-coding deletions were often associated with intergenic tandem 310 

repeats (Fig. S8). Such duplications and deletions can be introduced by slippage of DNA polymerase 311 

during replication and can regulate the transcriptional activity or act as a recombination site (68). 312 

Planctomycetes generally harbor a large genome with a high number of genes with unknown functions 313 

(69). A recent exploration of freshwater Planctomycetes MAGs reported a correlation between their 314 

genome size and intergenic nucleotide length (70). Together, their intergenic plasticity might play an 315 

essential role in maintaining their genomic integrity. Although characterization of individual SVs is 316 

beyond the scope of the present study, overall, our long-read–resolved ecosystem-wide analysis 317 

reveals the ubiquity of SVs in environmental prokaryotic genomes and sheds light on their role in 318 

regulating genomic structure and function. 319 

Genetic bottleneck as a major constraint of genomic microdiversity 320 

The negative relationship between SNV frequency and their nonsynonymous rate (Fig. 3a) suggests 321 

that stronger purifying selection acts on a genome in which more mutations are accumulated. Based 322 

on this assumption, the lineages with a high nonsynonymous SNV ratio and a low number of SNVs 323 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 23, 2022. ; https://doi.org/10.1101/2022.03.23.485478doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.23.485478
http://creativecommons.org/licenses/by/4.0/


15 

 

may have experienced a recent population bottleneck and not mutated sufficiently to be negatively 324 

selected. In other words, their diversification process might still be dominated by random drift or 325 

positive selection. Indeed, the top 15 rMAGs with the highest nonsynonymous SNV ratio (delineated 326 

in Fig. 3a) were either continuously rare in the hypolimnion or mostly rare but predominant in a short 327 

period (boom-and-bust) in either of the water layers (Fig. S3). The former case could be the 328 

consequence of the low growth and mutation rates in the hypolimnion, which makes their genome 329 

diversification slow enough to be observed before purifying selection dominates. Notably, among 330 

these cases, the highest nonsynonymous SNV ratio was observed in rMAG_34, which is affiliated 331 

with Levybacteria (OP11), a member of the Candidate phyla radiation (CPR) (71). Recently, a 332 

comprehensive exploration of freshwater CPR MAGs (72) reported exceptionally high ANI (99.53%) 333 

between Levybacterial MAGs reconstructed from Lake Biwa (13) and Lake Baikal (55) metagenomes. 334 

We confirmed that our Levybacterial rMAG also belonged to the same species (ANI > 99.5% to both). 335 

Collectively, it is possible that Levybacteria was recently migrated from the Eurasian continent to Lake 336 

Biwa, and their genomic microdiversity was still constrained by the genetic bottleneck. 337 

Among the latter (boom-and-bust) cases, prominent examples were two Verrucomicrobial 338 

rMAGs (rMAG_2736 and rMAG_29), which had extremely low numbers of SNVs and SVs (Figs. 3a 339 

and Table S2) and transiently dominated in the either of the water layers (Fig. S3). Both rMAGs were 340 

circular, indicating that long-read metagenomes generate a complete assembly unless hampered by 341 

high microdiversity or low read coverage. The boom-and-bust dynamics of Verrucomicrobia agrees 342 

with the general assumption that they are opportunistic strategists rapidly responding to a supply of 343 

carbohydrates (73, 74). Notably, rMAG_29 (taxonomically assigned to the genus “CAINDI01” by 344 

GTDB) was among the most abundant bacterioplankton lineages in the lake during their bloom (Figs. 345 

1d and S3), with their relative abundance (RPKMS) increasing over 12-fold in just 1 month (1.39 in 346 

November to 16.92 in December). Because their bloom was observed from May to June and from 347 
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December to January in the hypolimnion (Fig. S3), their growth was likely triggered by a supply of 348 

polysaccharides exudated from sinking phytoplankton cells derived from the spring and autumn algal 349 

blooms in the epilimnion, as observed in a previous study in the lake (75). Taken together, the 350 

ecological strategy of CAINDI01 (to rapidly exploit intermittent resources) produced periodic genetic 351 

bottlenecks and effectively eluded selective processes, which resulted in their extremely low genomic 352 

microdiversity in the lake despite their quantitative dominance. Interestingly, CAINDI01 encoded as 353 

many as 236 transposase genes (annotated by prokka), but none of them were associated with SVs, 354 

except for an inversion involving IS21 transposases (data not shown). The results further suggest that 355 

their rapid population turnover prevented invasions of mobile genetic elements (MGEs). Collectively, 356 

we conclude that a genetic bottleneck is a primary factor constraining genomic microdiversification. 357 

Conversely, the extent of genomic microdiversification may be used to predict the existence 358 

or absence of a recent bottleneck event. For instance, rMAG_739 (Chitinophagaceae of the phylum 359 

Bacteroidetes) was the fourth-most SNV-rich rMAG, with a low nonsynonymous rate (Fig. 3a), despite 360 

the fact that they were detectable only from June to October in the epilimnion (Fig. S3). These results 361 

suggest that they did not experience a recent genetic bottleneck and thus are allochthonous, 362 

presumably maintaining their large genetic pool in the inflowing river, sediment, or the water column 363 

horizontally distant from our sampling site. It should also be noted that no sign of a recent bottleneck 364 

event was found among common and abundant freshwater bacterioplankton lineages (e.g., LD12, acI, 365 

acIV, and CL500–11). Interestingly, the two most SNV-rich members, rMAG_1314 and rMAG_102, 366 

were continuously and ubiquitously abundant species of LD12 and acI, respectively, rather than the 367 

most abundant ones (i.e., rMAG_300 and rMAG_28) of the lineage (Figs. 3a and S3). These facts 368 

further support the hypothesis that persistent rather than abundant populations exhibit higher intra-369 

population sequence variation (76). 370 
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Phage predation as a major driving force of genomic microdiversification 371 

The lowest pN/pS in housekeeping genes involved in replication, transcription, translation, and 372 

oxidative phosphorylation (Fig. 4b) agreed with a previous study in the Baltic Sea (25) and indicated 373 

that genes involved in core functions are under stronger purifying selection. By contrast, high pN/pS 374 

were observed among genes potentially involved in cell surface structural modification, namely 375 

glycosyltransferases, lipopolysaccharide biosynthesis, and peptidoglycan biosynthesis proteins (Fig. 376 

4b). Hypervariability of such genes has been observed in genomes of ubiquitous marine and freshwater 377 

bacterioplankton and is considered beneficial in evading the host recognition system of their phage 378 

(7–9). Our results further demonstrate that these traits are universal in the ecosystem and suggest that 379 

phage predation is the most prevalent selective pressure generating amino acid-level gene diversity. 380 

 The SV profiling demonstrated that deletion was overrepresented in genes involved in 381 

prokaryotic defense systems, namely, RM systems, TA systems, and CRISPR–Cas systems (Fig. 6a). 382 

Among them, the three proteins making up the Type I RM system (R, M, and S) were the most 383 

represented (Fig. 6b). A previous metaepigenomic exploration revealed the diversity of DNA 384 

methylated motifs and methyltransferase genes among Lake Biwa bacterioplankton assemblages (77). 385 

Interestingly, the study reported a corresponding pair of a methylated motif and a methyltransferase 386 

gene is often absent in MAGs, which could be attributable to the incompleteness of MAGs or to the 387 

limited sensitivity of the method. Further, the study found that the ratio of methylation in each motif 388 

in a genome varied considerably from 19% to 99%, for which the authors reasoned the methodological 389 

limitation of modification detection power (77). Our results introduce another possible explanation for 390 

these observations: the mobility of RM-related genes within a sequence-discrete population might 391 

have resulted in the heterogeneous recovery of methylated motifs or methyltransferase genes in an 392 

MAG. The variable nature of epigenetic modification proposes another layer of genomic 393 

microdiversity, which will be key to revealing the mechanism behind the virus–host arms race. 394 
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 The next most represented defense genes in deletions were those involved in TA systems 395 

(Fig. 6b), which can also act as an antiphage system (78). Recent experimental work has demonstrated 396 

that mobility and rapid turnover of genes involved in intracellular defense machinery are essential 397 

mechanisms to maintaining the core genome in the face of phage predation (79). Our results that RM 398 

and TA systems are highly mobile (Fig. 6b) suggest the prevalence of such mechanisms in the 399 

ecosystem. In addition, SNV analysis revealed that the prokaryotic defense system was the gene 400 

category with the lowest nucleotide diversity (Fig. 4a) and among the highest pN/pS ratios (Fig. 4b), 401 

which implies that the defense genes are positively selected by phage predation. Meanwhile, both RM 402 

and TA systems can behave as selfish and addictive elements and are prone to be horizontally 403 

transferred with an MGE (78, 80, 81). Their beneficial and parasitic aspects are not mutually exclusive, 404 

and the relative contribution of the two remains unresolved. Thus, we cannot rule out the possibility 405 

that some defense genes are rather parasitic and nonbeneficial or even detrimental for the host. In any 406 

case, these genes are among the most prevalent mobile genes generating genomic heterogeneity within 407 

a sequence-discrete population. 408 

Although not as frequent as RM and TA systems, we also found deletions associated with 409 

genes involved in the CRISPR–Cas system (Fig. 6b). Further investigation revealed individual cases 410 

in which the whole CRISPR–Cas system was involved in a deletion, and one of them further included 411 

TA system genes (Fig. S9). Experimental studies have suggested that the CRISPR–Cas system can 412 

disseminate horizontally (82, 83) and is sometimes encoded in an MGE, which facilitates not only 413 

adaptive immunity against phages but also inter-MGE competition and guided transposition of the 414 

MGE (84–86). Our results provide evidence of the mobility of the CRISPR–Cas system in an 415 

ecosystem, although it remains unknown whether it is beneficial or parasitic for the host. 416 

Finally, we note that our monthly investigation revealed a shift in the allele frequency of 417 

deletions or insertions involving the CRISPR–Cas system and CRISPR spacers during the study period 418 
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(Figs. S9 and S10). The results suggest monthly turnover of the population composition driven by the 419 

virus–host arms race. Such a rapid shift of population composition has been demonstrated from the 420 

virus side in the marine system (22). Our results are the demonstration from the host side and propose 421 

the significance of not only sympatric but also temporal microdiversity. In summary, our ecosystem-422 

wide investigation of SNVs and SVs suggests that phage predation is the major driving force of 423 

genomic microdiversification among the environmental microbial assemblage. The key question for 424 

future works is whether and how the mobility of defense genes is beneficial for the host, for which the 425 

microdiversity of the counteracting viral genome must be explored.  426 

Conclusion 427 

Our ecosystem-wide high-resolution approach combining spatiotemporal sampling and long- and 428 

short-read metagenomics resulted in two major achievements. First, we presented a collection of high-429 

quality MAGs covering the majority of the prokaryotic diversity in a deep freshwater lake, which will 430 

be a valuable reference for future studies in freshwater microbial ecology. Then the broad spectrum of 431 

SNVs and SVs masked in the MAGs were detected by short- and long-read mapping, respectively, 432 

which is the second and greater achievement of this work. Based on the results, we conclude that 433 

genomic microdiversification is primarily driven by viral load and constrained by genetic bottlenecks. 434 

We also demonstrated the performance and limitation of our “consensus-first” approach (Fig. 435 

1). To push the consensus-first approach further, future works can consider gaining a deeper 436 

sequencing depth (for instance, using the PromethION platform (87, 88)) and obtaining longer 437 

sequencing reads with a more sophisticated DNA extraction method (89). Alternative possible 438 

approaches include genome-free metagenomics, which directly handles pan-metagenomic graphs 439 

without the prerequisite of a linear genomic assembly (90). The ultimate approach will be a strain-440 

resolved assembly, which usually requires an isolated culture or single cell but was recently 441 

accomplished in a metagenomic assembly using highly accurate long reads (i.e., PacBio HiFi reads) 442 
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(20), although it is still too costly for common application. 443 

Lakes are physically separated unique ecosystems and thus harbor genetically isolated 444 

microbiomes (91), while those in the marine system are likely distributed globally (64, 92) presumably 445 

following the rapid circulation of global surface seawater (93). This implies that we can further 446 

perform a comparative study among different lakes, in which each lake can be considered as a replicate 447 

or control of an ecosystem. The two main factors affecting genome microdiversification (genetic 448 

bottlenecks and virus–host interactions) are both lake-specific. The microbiomes in different lakes 449 

have a different history of biological interactions in different physicochemical conditions, which 450 

would result in different trajectories of genome microdiversification. For instance, we hypothesize that 451 

a larger and older lake is less affected by genetic bottlenecks in terms of time and space. That is, the 452 

extent of bacterioplankton microdiversification in Lake Biwa (the largest and oldest lake in Japan) 453 

might be the greatest among the lakes in the country but might be lower than that of Lake Baikal, the 454 

largest and oldest freshwater lake on the earth. Such inter-lake comparative analyses will be an 455 

effective approach to further validate the findings in the present study and unveil the universal 456 

mechanisms in the diversification and evolution of the microbial genome. 457 
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Figure 1. Overview of the 575 rMAGs. Individual rMAGs are represented by each point. Distribution 

of the (a) number of contigs and (b) error correction score (POA90; proportion of open reading frames 

[ORFs] aligned > 90% of its length to the reference database) plotted against the read coverage. Solid 

red lines represent local regression (loess). Read coverage was defined as the average short-read 

coverage in the representative sample for each rMAG. (c) Proportion of rMAGs with different rRNA 

gene (i.e., 5S, 16S, and 23S) completeness grouped by read coverage value. (d) Ubiquity–abundance 

plot of the rMAGs. Relative abundance was defined as maximum reads per kilobase of genome per 

million reads sequenced (RPKMS) recorded among the 24 samples (i.e., those recorded in the 

representative sample of the rMAG). Ubiquity was defined as the number of samples in which short 

reads were mapped to > 50% of the length of the rMAG sequence. Abundant and ubiquitous members 

are labeled. Detailed statistics for the rMAGs are available in Table S2.  
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Figure 2. Overview of SNVs and SVs among the 178 rMAGs with > 10× short-read coverage. (a) 

Each bar represents an individual rMAG, sorted by the number of SNVs per 1 Mb. SNV types 

determined by inStrain are shown in different colors. The mean proportion of each SNV type among 

the rMAGs is shown in the color legend. (b–f) Individual rMAGs are represented by each point. 

Distribution of the number of SNVs per 1 Mb grouped by (b) habitat preference and (c) phylum. (d) 

Distribution of the number of the four types of SVs in an rMAG. Distribution of the number of 

deletions in an rMAG grouped by (e) habitat preference and (f) phylum. The same symbol (*or †) in 

(b) and (e) indicates no significant difference (p > 0.05 in the Wilcoxon rank-sum test) among the 

groups.  
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Figure 3. Nonsynonymous SNV ratio of each rMAG plotted against the (a) number of SNV per 1 Mb 

and (b) assembled genome size. Plot color indicates the relative abundance (maximum RPKMS) of 

each rMAG defined same as in Figure 1. Representative rMAGs with a high relative abundance or 

nonsynonymous SNV ratio are labeled. The orange-shaded area on (a) delineates the 15 rMAGs with 

outstandingly high nonsynonymous SNV ratios (> 35%) and a low number of SNVs (< 7500 per 1 

Mb).  
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Figure 4. Boxplots indicating the distribution of the (a) nucleotide diversity and (b) pN/pS of genes 

among the 178 high coverage rMAGs grouped by gene categories. The categories are sorted by the 

median. Both nucleotide diversity and pN/pS were determined by inStrain. The nucleotide diversity 

of a gene is defined as a gene-wide average of base-wise nucleotide diversity defined as 1 – (FA2 + FC2 

+ FG2 + FT2), where FX is the frequency of base X in the given nucleotide position.
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Figure 5. Overview of deletions among rMAGs. Three rMAGs with no deletions were removed from 

the analysis; the remaining 175 high-coverage rMAGs are shown. (a) Each bar represents an individual 

rMAG, sorted by the number of deletions. Coding (i.e., overlapping with a gene-coding region) and 

intergenic deletions are shown in different colors. The mean proportion of each deletion type among 

the rMAGs is shown in the color legend. (b) Distribution of the proportion of gene-coding deletions 

grouped by phylum. Individual rMAGs are represented by each point.  
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Figure 6. Genes involved in deletions among the 178 high-coverage rMAGs. (a) Proportion of genes 

involved in a deletion, grouped by gene categories. The same data shown by the number of genes are 

available in Figure S5. (b) Number of prokaryotic defense system genes involved in a deletion, colored 

by the type of defense system. 
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