

1 **Long-read-resolved, ecosystem-wide exploration of nucleotide and**
2 **structural microdiversity of lake bacterioplankton genomes**

3

4 Yusuke Okazaki^{a,b,1}, Shin-ichi Nakano^c, Atsushi Toyoda^d, Hideyuki Tamaki^b

5

6 a. Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan

7 b. Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology,
8 Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan

9 c. Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 520-2113, Japan

10 d. Advanced Genomics Center, National Institute of Genetics, 1111 Yata, Mishima City, Shizuoka,
11 411-8540, Japan

12

13 ¹Corresponding author:

14 Yusuke Okazaki

15 Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan

16 E-mail: okazaki.yusuke.e31@kyoto-u.jp

17 Tel: +81-774-38-3270, Fax: +81-774-38-3269

18 **Abstract**

19 Reconstruction of metagenome-assembled genomes (MAGs) has become a fundamental approach in
20 microbial ecology. However, an MAG is hardly complete and overlooks genomic microdiversity
21 because metagenomic assembly fails to resolve microvariants among closely related genotypes.
22 Aiming at understanding the universal factors that drive or constrain prokaryotic genome
23 diversification, we performed an ecosystem-wide high-resolution metagenomic exploration of
24 microdiversity by combining spatiotemporal (2 depths × 12 samples) sampling from a pelagic
25 freshwater system, MAG reconstruction using long- and short-read metagenomic sequences, and
26 profiling of single nucleotide variants (SNVs) and structural variants (SVs) through mapping of short
27 and long reads to the MAGs, respectively. We reconstructed 575 MAGs, including 29 circular
28 assemblies, providing high-quality reference genomes of freshwater bacterioplankton. Read mapping
29 against these MAGs identified 100–101,781 SNVs/Mb, 0–305 insertions, 0–467 deletions, 0–41
30 duplications, and 0–6 inversions for each MAG. Nonsynonymous SNVs were accumulated in genes
31 potentially involved in cell surface structural modification to evade phage recognition. Most (80.2%)
32 deletions overlapped with a gene-coding region, and genes of prokaryotic defense systems were most
33 frequently (>8% of the genes) involved in a deletion. Some such deletions exhibited a monthly shift
34 in their allele frequency, suggesting a rapid turnover of genotypes in response to phage predation.
35 MAGs with extremely low microdiversity were either rare or opportunistic bloomers, suggesting that
36 population persistency is key to their genomic diversification. The results lead to the conclusion that
37 prokaryotic genomic diversification is primarily driven by viral load and constrained by a population
38 bottleneck.

39 **Introduction**

40 In microbial ecology, reconstruction of metagenome-assembled genomes (MAGs) from an uncultured
41 microbial assemblage has become a routine technique that has reshaped and substantially expanded
42 our understanding of prokaryotic diversity (1, 2). However, MAGs are hardly complete (i.e., circularly
43 assembled) due to difficulties in assembling repetitive (e.g., rRNA genes) and hyper-variable
44 (microdiverse) regions in a genome coexisting in the same sample (3, 4). In particular, genomic
45 microdiversity hampers metagenomic assembly and results in incompleteness or absence of an MAG
46 even at deep sequencing depths, which has been recognized as “the great metagenomics anomaly” (5).
47 Moreover, a metagenomic assembler generally tries to generate a consensus long contig rather than
48 fragmented assemblies reflecting different microvariants (3, 6). Consequently, in a metagenomic
49 assembly, genomic microdiversity is either unassembled or masked by a consensus sequence.

50 Genomic microdiversity provides information essential to understanding microbial ecology
51 and evolution. Hypervariability of genes involved in cell surface structural modification is thought to
52 be a consequence of the virus–host arms race (7, 8). Intraspecies flexibility of genes responsible for
53 the availability of substrates and nutrients suggests that functionally diversified populations
54 collectively occupy the diverse microniches (9). The degree of genomic microdiversification varies
55 among lineages and is thought to depend on a number of ecological and evolutionary factors such as
56 mutation rate, generation time, population size, genetic mobility, fitness, and drift (10, 11). However,
57 due to the aforementioned difficulties, a comprehensive investigation of genomic microdiversity
58 covering a consortium of microbes in an ecosystem is challenging, and the universal factors that drive
59 or constrain their genomic diversification remain to be elucidated.

60 To address this, the present study took a three-step approach. The first was comprehensive
61 metagenomic sampling in an ecosystem. We targeted freshwater bacterioplankton assemblages
62 sampled spatiotemporally (2 depths × 12 months) at a pelagic station on Lake Biwa, a monomictic

63 lake with an oxygenated hypolimnion that harbors one of the best-studied freshwater microbial
64 ecosystems (12–16). The second step was long-read metagenomic assembly, which can overcome the
65 problem of fragmented assembly using reads longer than a repeat or hypervariable region (17–20).
66 This was done to generate high-quality reference MAGs covering the diversity of bacterioplankton in
67 the lake. The third step was short- and long-read metagenomic read mapping to the MAGs, in which
68 genomic microvariants were identified as inconsistencies between a consensus assembly and mapped
69 reads (21–23). Notably, we aimed to detect two different types of microvariants, single nucleotide
70 variants (SNVs) and structural variants (SVs), namely, insertion, deletion, duplication, or inversion of
71 a genomic sequence. While short-read mapping efficiently detects SNVs due to its high base accuracy
72 (24, 25), it cannot resolve most SVs that are longer than the canonical short read length (i.e., 150–250
73 bp). SVs are often associated with gains and losses of genes, which account for a large part of genomic
74 and functional heterogeneity among closely related genotypes (9, 10). Here, the limitation of short-
75 read mapping is complemented by long-read mapping, in which SVs can be located with reads
76 discontinuously aligned to a consensus assembly (26–28). Our three-step approach allowed a high-
77 resolution, ecosystem-wide exploration of SNVs and SVs covering the broad spectrum of prokaryotic
78 diversity in the lake. The results were comparatively analyzed from spatiotemporal, phylogenetic, and
79 gene functionality perspectives, aiming at characterizing factors behind the genomic
80 microdiversification.

81 **Materials and Methods**

82 **Sample collection**

83 Water samples were collected monthly from May 2018 to April 2019 at a pelagic station (water depth
84 ca. 73 m) on Lake Biwa (35°13'09.5" N, 135°59'44.7" E) from two water depths, representing the
85 epilimnion (5 m) and hypolimnion (65 m) (24 samples in total). Vertical profiles of chlorophyll-a
86 concentration, temperature, and dissolved oxygen were collected using a RINKO CTD profiler

87 (ASTD102; JFE Advantech). The collected lake water was immediately sequentially filtered through
88 a 200 μm mesh, 5 μm polycarbonate filter (TMTP14250; Merck Millipore), and 0.22 μm pore Sterivex
89 cartridge (SVGP01050; Merck Millipore), using a peristaltic pump system onboard. Filtration was
90 performed until the Sterivex cartridge was clogged (1–2.5 liters of lake water were filtered for each
91 cartridge), and at least four Sterivex cartridges were collected for each sample. The filters were flash-
92 frozen in a dry-ice ethanol bath, transported to the laboratory on dry ice, and stored at -80°C until
93 further processing. Water samples were collected between 8:00 am and 11:00 am on each sampling
94 day and processed to the freezing step within 1 h after collection. Prokaryotic cell abundance was
95 determined for each sample using a flow cytometer (CytoFLEX; Beckman Coulter) following fixation
96 of the water sample with 1% glutaraldehyde and staining with 0.25 \times SYBR Green solution (S7563;
97 Invitrogen).

98 **DNA extraction**

99 DNA was extracted from the Sterivex filters (i.e., 0.22–5 μm size fraction) using an AllPrep
100 DNA/RNA Mini Kit (80204; Qiagen) with a modified protocol: the filter paper removed from a
101 Sterivex cartridge was put into a Lysing Matrix E tube (6914050; MP Biomedicals) with a mixture of
102 400 μL RLT plus buffer (containing 1% β -mercaptoethanol following the kit's protocol) and 400 μL
103 phenol/chloroform/isoamyl alcohol (25:24:1 v/v/v); bead-beating was performed at 3500 rpm for 30 s
104 (MS-100; TOMY Digital Biology), followed by cooling on ice for 1 min, then again at 3500 rpm for
105 30 sec; the supernatant after centrifugation (16,000 g for 5 min at room temperature) was mixed with
106 500 μL chloroform/isoamyl alcohol (24:1 v/v) to remove the residual phenol, then centrifuged again;
107 then the supernatant was used as the loading material for the AllPrep DNA spin column and processed
108 following the manufacturer's instruction. The quantity and quality of the DNA were measured using
109 a Qubit dsDNA HS Assay kit (Q32851; Thermo Fisher Scientific) and a spectrophotometer (NanoDrop
110 2000; Thermo Fisher Scientific). Consequently, at least 2 μg purified DNA were obtained from each

111 sample.

112 **Sequencing**

113 The extracted DNA was used for both short- and long-read shotgun metagenomic sequencing. For
114 short-read sequencing, the DNA was sheared to 500 bp on average using an ultrasonicator (Covaris),
115 and a 24-sample multiplexed library was prepared using a MGIEasy Universal DNA Library Prep Set
116 (1000006986; MGI), Circularization Kit (1000005259; MGI), and MGISEQ 2000RS High-throughput
117 Sequencing Set (1000013857; MGI) with seven cycles of PCR amplification. A 1 × 400 bp single-end
118 sequencing was run using one lane of the MGI DNBSEQ-G400 platform. For long-read sequencing,
119 long DNA molecules were purified using diluted (0.45×) AMPure XP beads, and a sequencing library
120 was prepared using a Ligation Sequencing Kit (LSK-109; Oxford Nanopore). Each of the 24 samples
121 was sequenced by an R9.4.1 flow-cell (FLO-MIN106D; Oxford Nanopore) using the Oxford
122 Nanopore GridION platform for 72 h. Base-calling was performed using Guppy (v3.2.10; high
123 accuracy mode).

124 **Read assembly and contig polishing**

125 Each of the 24 raw long-read libraries was assembled using two different assemblers: Flye (v2.8; --
126 plasmids --meta) (29) and Raven (v1.5.0) (30). The assembled contigs were polished with long reads
127 using Racon (v1.4.13) (31) and Medaka (v1.0.3) (<https://github.com/nanoporetech/medaka>), and then
128 with short reads using Pilon (v1.23) (32) and two rounds of Racon. Read mapping for polishing was
129 performed using Minimap2 (v2.17) (33) and Bowtie2 (v2.3.5.1) (34). Quality control of short reads
130 was performed using Cutadapt (v2.5) (35) and fastp (v0.20.0) (36). The detailed workflow and
131 parameters are available in Figure S1.

132 **Binning and bin curation**

133 Contigs longer than 2.5 kb were selected using SeqKit (v0.13.2) (37) and their read coverage across
134 the 24 samples was calculated by mapping the quality-controlled short reads using CoverM (v0.4.0; -

135 m metabat) (<https://github.com/wwood/CoverM>). The coverage table was input to MetaBAT (v2.12.1)
136 (38) and MaxBin (v2.2.7) (39) to bin the contigs from each of the 24 Flye and Raven assemblies. The
137 resulting 18,621 bins, containing redundancy derived from 24 samples (2 depths \times 12 months), two
138 assemblers (Flye and Raven), and two binners (MetaBAT and MaxBin) (Fig. S1), were curated by the
139 following procedures. Bins sharing an average nucleotide identity (ANI) $> 95\%$ were clustered using
140 FastANI (v1.31) (40) and the hclust function (method = “average”) of R v4.0.0 (<https://www.r-project.org/>). This resulted in 3053 bin clusters and 1595 singletons, hereinafter referred to as
141 superbins. Next, bins in the same superbin were merged as follows. First, bin quality score (BQS) was
142 determined as (completeness – [5 \times contamination]), referring to the output of checkM (v1.1.3) (41)
143 for each bin. Then, bins derived from the same sample (i.e., only different in the assembler or binner)
144 were merged using quickmerge (v0.3), which bridges gaps in one assembly (acceptor) using sequences
145 of another assembly (donor) based on alignment overlaps (42). Starting from the bin with the highest
146 BQS as an acceptor, bins were iteratively merged by providing a donor bin in the order of BQS. For
147 bins with the same BQS, the bin with fewer contigs was selected in priority. The “--hco” parameter
148 was set to 20, which means that the aligned length should be more than 20 times longer than the
149 unaligned length to merge two contigs. Next, if multiple merged bins in the same superbin (i.e., those
150 from different samples) showed a BQS > 50 , they were further merged in the same manner as above.
151 Notably, inter-sample merges did not always generate a better bin than intra-sample merged bins,
152 presumably because of the genomic compositional heterogeneity between samples. Finally, a
153 representative bin was determined for each of the 4648 superbins by selecting the one with the highest
154 BQS among the original and merged bins.

156 Among the 4648 representative bins, 331 consisted of a single contig. Because quickmerge
157 does not consider genome circularity, we attempted their circularization in the following procedure.
158 First, using nucmer (v3.1) (43), the first and last 50 kb of the contig were aligned against the set of

159 contigs in the same superbin to find a “bridging contig” that may close the gap between the ends. Next,
160 if a bridging contig was found, it was supplied as “new_assembly.fasta” to the circlator (v1.5.5) merge
161 function with the “--ref_end 50000” parameter (44). If the circularization was successful, the contig
162 was rotated to start from a dnaA gene using the circlator fixstart (--min_id 30) function.

163 Finally, the 4648 representative bins were quality-filtered at BQS > 50, followed by
164 dereplication using dRep (v3.0.1; -comp 0 -con 100 -sa 0.95 --SkipMash --S_algorithm fastANI) (45).
165 The resulting 575 bins were designated as representative/reference metagenome-assembled genomes
166 (rMAGs).

167 **Analysis of rMAGs**

168 The 575 rMAGs were taxonomically classified using GTDB-Tk (v1.5.0) with the reference data
169 version r202 (46), and the genes were annotated using prokka (v1.14.6) (47) and eggNOGmapper
170 (v2.1.5) (48). Annotated genes were functionally categorized according to KEGG PATHWAY and
171 KEGG BRITE hierarchies (49) assigned to each gene by eggNOGmapper. For further analysis, we
172 selected the top 25 functional categories that covered 33% of the genes. To evaluate the frequency of
173 indel errors that eluded polishing, we followed the idea of the IDEEL software—interrupted open
174 reading frames (ORFs), which are often introduced by a frameshift, were used as an indicator of indel
175 errors (18). Specifically, amino acid sequences of each rMAG predicted by prodigal (v2.6.3) (50) were
176 aligned against the Uniref90 database (release-2020_06) (51) using DIAMOND blastp (v2.0.6; -k 1 -
177 e 1e-5) (52). Based on the results, the proportion of amino acid sequences in which > 90% of the length
178 was aligned to a Uniref90 sequence was determined for each rMAG and designated as the proportion
179 of ORFs aligned > 90% (POA90) score. Coverage-based abundance relative to the total sequenced
180 DNA in each of the 24 samples was determined as reads per kilobase of genome per million reads
181 sequenced (RPKMS), which was generated by mapping the quality-controlled short reads to the 575
182 rMAGs using bowtie2 (v2.4.2) (34), followed by counting of mapped and unmapped reads using

183 CoverM (--min-read-percent-identity 92). Habitat preference (epilimnion or hypolimnion) of each
184 rMAG was determined using the metric P_{epi} , which was defined as the quotient of RPKMS in the
185 epilimnion versus the sum of the value in the epilimnion and hypolimnion (i.e., epilimnion
186 /[epilimnion + hypolimnion]) during the stratification period (May to December). When P_{epi} was $>$
187 0.95 or < 0.05 , the rMAG was determined as an epilimnion or hypolimnion specialist, respectively
188 (13).

189 **Analysis of SNVs and SVs**

190 The gene loci and mapping results (i.e., bam files) generated above were input to inStrain (v1.0.0;
191 profile --database_mode --pairing_filter all_reads), which provides genome- and gene-wide SNV
192 profiles based on the short-read alignment (24). SVs were detected by mapping the raw long reads to
193 the rMAGs using NGMLR (v0.2.7) (26) and inputting the resulting bam files to Sniffles (v1.0.12) (26).
194 Among the five types of SVs reported by Sniffles, deletion, insertion, duplication, and inversion were
195 further analyzed, while translocation was removed in the downstream analyses because translocation
196 can involve multiple contigs in different bins and is hard to interpret in metagenomic data.
197 Subsequently, SVs with low (< 0.1) allele frequency (reported by Sniffle) were filtered out. SVs longer
198 than 100 kb were also removed as they were seemingly artifacts introduced by genome circularity,
199 which Sniffles does not account for.

200 The representative sample providing the highest short-read coverage among the 24 samples
201 was determined for each rMAG, and the result from the representative sample was used for
202 representative SNV and SV profiles. To remove low-quality data derived from low read coverage,
203 rMAGs that showed $> 10\times$ short-read coverage in the representative sample ($n = 178$) were selected
204 and analyzed in detail.

205 **Results**

206 **General characteristics of the rMAGs**

207 The 24 samples were associated with broad physicochemical conditions. Thermal stratification
208 occurred from May to December, and the prokaryotic cell abundance was 0.82–4.30 (average = 2.00)
209 $\times 10^6$ cells mL⁻¹ (Table S1). For each of the samples, 10.9–27.5-Gb long reads (N50 = 4360–5807 bp)
210 were assembled, and the resulting contigs were polished using 7.0–9.3-Gb short reads (Table S1 and
211 Fig. S1). From the 24 polished contig sets, our pipeline generated 575 nonredundant rMAGs covering
212 21 phyla of bacteria and archaea (Table S2). The number of contigs, POA90 (indel correction score,
213 see Materials and Methods for detail), and completeness of the rRNA genes all showed better results
214 in rMAGs with higher short-read coverage (Fig. 1a–c). For each of the 24 samples, 45.4–72.1% (mean
215 = 60.4%) of the short-reads were mapped to any of the 575 rMAGs (Fig. S2), indicating that the
216 rMAGs accounted for the majority of the extracted DNA. A ubiquity–abundance plot (Fig. 1d)
217 demonstrated that the rMAGs included common freshwater bacterioplankton lineages known to
218 dominate in Lake Biwa (12, 13, 53). Relative abundance of the rMAGs revealed their diverse
219 distribution pattern across the months and depths (Fig. S3).

220 **SNVs and SVs detected in the rMAGs**

221 The 178 rMAGs with $> 10\times$ short-read coverage in at least one sample were further analyzed for
222 detection of SNVs and SVs. The results revealed the broad spectrum of genomic microdiversity across
223 the rMAGs (Fig. 2). The number of SNVs per 1 Mb ranged from 100 to 101,781 and significantly
224 varied among the habitat preferences (Fig. 2b). Among the four types of SVs detected, insertion (0–
225 305 sites per rMAG) and deletion (0–467) dominated over duplication (0–41) and inversion (0–6) (Fig.
226 2d). The numbers of insertions and deletions were strongly correlated (Pearson's $r = 0.925$), while they
227 showed weaker correlations (Pearson's $r = 0.241$ and 0.285) with the number of SNVs (Fig. S4).
228 Unlike SNVs, the number of SVs (deletions) did not significantly vary among the habitat preferences

229 (Fig. 2e). Both the numbers of SNVs and SVs (deletions) varied among and within the phyla (Fig. 2c
230 and f).

231 **Genes involved in SNVs and SVs**

232 On average, 66.5%, 24.3%, and 7.5% of SNVs were synonymous, nonsynonymous, and intergenic,
233 respectively (Fig. 2a). The nonsynonymous SNV ratio exhibited a negative correlation with the SNV
234 numbers, and exceptionally high ratios (> 35%) were observed among rMAGs (n = 15) with low SNV
235 numbers (< 7500 per 1 Mb) (Fig. 3a). The nonsynonymous SNV ratio was positively correlated with
236 genome size (Fig. 3b). Gene-resolved SNV frequency and pN/pS exhibited differences among
237 different functional categories (Fig. 4).

238 Among the four types of SVs, we further focused on deletions because deletion was the most
239 prevalent SV type (Fig. 2d), and genes involved in deletions can be simply characterized on a genome.
240 The second is not the case for insertion, in which the involved genes appear in the mapped long reads,
241 which are unpolished and unannotated. On average, 80.2% of deletions overlapped with a gene-coding
242 region (Fig. 5a), and the ratio of gene-coding deletions showed a wide range within and among the
243 phyla (Fig. 5b). Gene-coding deletions were most frequently overlapped with transporter genes, which
244 reflects the large number of transporter genes in the rMAGs (Fig. S5). Normalized by the gene counts,
245 genes associated with the prokaryotic defense system were most often (> 8% of the genes) involved
246 in deletions (Fig. 6a). Among the genes affiliated with the prokaryotic defense system, those associated
247 with the type I restriction and modification (RM) system were most abundant in deletion, followed by
248 genes comprising toxin–antitoxin (TA) systems, other RM systems, and CRISPR–Cas systems (Fig.
249 6b).

250 **Discussion**

251 **Long-read metagenomes generated an ecosystem-wide, high-quality prokaryotic**

252 **genome collection from Lake Biwa**

253 Long-read metagenomics successfully reconstructed high-quality MAGs (Fig. 1) representing the
254 majority of the prokaryotic diversity in the lake across seasons and depths (Fig. 1d and Fig. S2), which
255 was not possible by conventional short-read metagenomics in Lake Biwa (13) or other deep freshwater
256 lakes (54–56). The MAGs included 29 closed assemblies, including the first circular representatives
257 of predominant hypolimnetic bacterioplankton lineages, namely Chloroflexi CL500–11 (rMAG_38),
258 *Nitrosoarchaeum* (rMAG_256), Verrucomicrobia CL120–10 (rMAG_78), Kapabacteria LiUU-9-330
259 (rMAG_1819), and a member of Nitrosomonadaceae (rMAG_1024) (57, 58).

260 We should note that we aimed to generate continuous consensus contigs by merging results
261 from different assemblers and samples rather than disjoining microvariants of each genotype. We took
262 this “consensus-first” approach because our subsequent aim was to detect microdiversity masked by
263 the consensus assembly through read mapping. Caveats in analyzing our rMAGs are that they may not
264 represent a single genotype existing in the environment, and they may still contain base errors left
265 unpolished due to inadequate short-read coverage. The POA90 score suggested that fragmented ORFs
266 introduced by uncorrected indel error are common in the majority of genomes with $< 10\times$ short-read
267 coverage (Fig. 1b). In light of these limitations, we designate our MAGs as rMAGs
268 (representative/reference MAGs) to differentiate them from those generated by conventional short-
269 read metagenomics and focused on those with $> 10\times$ short-read coverage ($n = 178$) for further analyses.

270 The general trend that a higher read coverage resulted in a higher-quality rMAG (Fig. 1)
271 suggests that our sequencing effort (Table S1) was unsaturated and deeper sequencing would generate
272 a greater number of high-quality rMAGs. However, read coverage alone was not sufficient to
273 reconstruct a high-quality rMAG. For example, an rMAG of LD12 (*Candidatus Fonsibacter*), which
274 is among the most abundant freshwater bacterioplankton lineages (59, 60), was fragmented and lacked
275 rRNA genes, despite their extremely high read coverage ($> 400\times$ in short reads). Members of

276 Pelagibacterales (also known as the SAR11 clade), including LD12, harbor high genomic
277 microdiversity in the flanking region of the rRNA gene operon that is presumably responsible for
278 immunity against their phage (21, 59, 61, 62). Our results indicate that long-read sequencing generally
279 deals well with “the great metagenomics anomaly” (5) but is still unable to solve the issue in extreme
280 cases. Nonetheless, rMAGs provided an unprecedentedly high-quality lake prokaryotic genome
281 collection, which allowed ecosystem-wide exploration of their genomic microdiversity through read
282 mapping.

283 **Broad spectrum of genomic microdiversity resolved by SNVs and SVs**

284 We found more than 1000-fold differences in the SNV frequency across the rMAGs (Fig. 2a), which
285 is in line with a report on another freshwater system (63). The dominance of synonymous SNVs (Fig.
286 2a) is also in agreement with previous works in freshwater (63) and marine (21, 64) systems,
287 supporting the idea that the bacterioplankton assemblage is generally under purifying selection with
288 most of the nucleotide variation being neutral. The positive correlation between nonsynonymous SNV
289 ratio and genome size (Fig. 3b) agrees with the hypothesis that genome streamlining is associated with
290 strong purifying selection (65–67). We further found that the frequency of SNVs was lower (Fig. 2b)
291 and also more temporally stable (Fig. S6) in genomes of hypolimnion inhabitants than those of
292 epilimnion inhabitants. These results imply a lower mutation rate in the deeper water layer, presumably
293 due to the lower biological productivity owing to the lower temperature and resource availability in
294 the hypolimnion.

295 One of the major achievements of the present study was the detection of SVs in a
296 metagenomic sample facilitated by long-read mapping. Compared to the SV analysis for an isolated
297 clonal genome, that for metagenomic assembly generates more complex outputs as it refers to a
298 consensus assembly derived from a highly heterogeneous population. Notably, our approach was not
299 efficient in detecting SVs with a high allele variation or frequency because such a highly

300 heterogeneous region often eludes metagenomic assembly. Given these technical limitations, our goal
301 was not to resolve all SVs, but rather to discover patterns of SV distribution among environmental
302 prokaryotic genomes under the same methodological criteria. Indeed, most SVs in a genome were
303 consecutively detected across samples of different months (Fig. S7), supporting the reproducibility
304 and robustness of our analysis.

305 Similar to SNVs, we observed significant variation in SV frequency among the rMAGs (Fig.
306 2d). The relationship between the number of SNVs and SVs was weak because several rMAGs had an
307 extremely high number of SVs (Fig. S4). Notably, members of Planctomycetes harbored
308 disproportionately high numbers of SVs (Fig. 2f) and a lower frequency (55.9–81.0%) of coding
309 deletions (i.e., those overlapping with an ORF) than the average (80.2%) (Fig. 5b). Further
310 investigation found that their non-coding deletions were often associated with intergenic tandem
311 repeats (Fig. S8). Such duplications and deletions can be introduced by slippage of DNA polymerase
312 during replication and can regulate the transcriptional activity or act as a recombination site (68).
313 Planctomycetes generally harbor a large genome with a high number of genes with unknown functions
314 (69). A recent exploration of freshwater Planctomycetes MAGs reported a correlation between their
315 genome size and intergenic nucleotide length (70). Together, their intergenic plasticity might play an
316 essential role in maintaining their genomic integrity. Although characterization of individual SVs is
317 beyond the scope of the present study, overall, our long-read–resolved ecosystem-wide analysis
318 reveals the ubiquity of SVs in environmental prokaryotic genomes and sheds light on their role in
319 regulating genomic structure and function.

320 **Genetic bottleneck as a major constraint of genomic microdiversity**

321 The negative relationship between SNV frequency and their nonsynonymous rate (Fig. 3a) suggests
322 that stronger purifying selection acts on a genome in which more mutations are accumulated. Based
323 on this assumption, the lineages with a high nonsynonymous SNV ratio and a low number of SNVs

324 may have experienced a recent population bottleneck and not mutated sufficiently to be negatively
325 selected. In other words, their diversification process might still be dominated by random drift or
326 positive selection. Indeed, the top 15 rMAGs with the highest nonsynonymous SNV ratio (delineated
327 in Fig. 3a) were either continuously rare in the hypolimnion or mostly rare but predominant in a short
328 period (boom-and-bust) in either of the water layers (Fig. S3). The former case could be the
329 consequence of the low growth and mutation rates in the hypolimnion, which makes their genome
330 diversification slow enough to be observed before purifying selection dominates. Notably, among
331 these cases, the highest nonsynonymous SNV ratio was observed in rMAG_34, which is affiliated
332 with Levybacteria (OP11), a member of the Candidate phyla radiation (CPR) (71). Recently, a
333 comprehensive exploration of freshwater CPR MAGs (72) reported exceptionally high ANI (99.53%)
334 between Levybacterial MAGs reconstructed from Lake Biwa (13) and Lake Baikal (55) metagenomes.
335 We confirmed that our Levybacterial rMAG also belonged to the same species (ANI > 99.5% to both).
336 Collectively, it is possible that Levybacteria was recently migrated from the Eurasian continent to Lake
337 Biwa, and their genomic microdiversity was still constrained by the genetic bottleneck.

338 Among the latter (boom-and-bust) cases, prominent examples were two Verrucomicrobial
339 rMAGs (rMAG_2736 and rMAG_29), which had extremely low numbers of SNVs and SVs (Figs. 3a
340 and Table S2) and transiently dominated in the either of the water layers (Fig. S3). Both rMAGs were
341 circular, indicating that long-read metagenomes generate a complete assembly unless hampered by
342 high microdiversity or low read coverage. The boom-and-bust dynamics of Verrucomicrobia agrees
343 with the general assumption that they are opportunistic strategists rapidly responding to a supply of
344 carbohydrates (73, 74). Notably, rMAG_29 (taxonomically assigned to the genus “CAINDI01” by
345 GTDB) was among the most abundant bacterioplankton lineages in the lake during their bloom (Figs.
346 1d and S3), with their relative abundance (RPKMS) increasing over 12-fold in just 1 month (1.39 in
347 November to 16.92 in December). Because their bloom was observed from May to June and from

348 December to January in the hypolimnion (Fig. S3), their growth was likely triggered by a supply of
349 polysaccharides exudated from sinking phytoplankton cells derived from the spring and autumn algal
350 blooms in the epilimnion, as observed in a previous study in the lake (75). Taken together, the
351 ecological strategy of CAINDI01 (to rapidly exploit intermittent resources) produced periodic genetic
352 bottlenecks and effectively eluded selective processes, which resulted in their extremely low genomic
353 microdiversity in the lake despite their quantitative dominance. Interestingly, CAINDI01 encoded as
354 many as 236 transposase genes (annotated by prokka), but none of them were associated with SVs,
355 except for an inversion involving IS21 transposases (data not shown). The results further suggest that
356 their rapid population turnover prevented invasions of mobile genetic elements (MGEs). Collectively,
357 we conclude that a genetic bottleneck is a primary factor constraining genomic microdiversification.

358 Conversely, the extent of genomic microdiversification may be used to predict the existence
359 or absence of a recent bottleneck event. For instance, rMAG_739 (Chitinophagaceae of the phylum
360 Bacteroidetes) was the fourth-most SNV-rich rMAG, with a low nonsynonymous rate (Fig. 3a), despite
361 the fact that they were detectable only from June to October in the epilimnion (Fig. S3). These results
362 suggest that they did not experience a recent genetic bottleneck and thus are allochthonous,
363 presumably maintaining their large genetic pool in the inflowing river, sediment, or the water column
364 horizontally distant from our sampling site. It should also be noted that no sign of a recent bottleneck
365 event was found among common and abundant freshwater bacterioplankton lineages (e.g., LD12, acI,
366 acIV, and CL500–11). Interestingly, the two most SNV-rich members, rMAG_1314 and rMAG_102,
367 were continuously and ubiquitously abundant species of LD12 and acI, respectively, rather than the
368 most abundant ones (i.e., rMAG_300 and rMAG_28) of the lineage (Figs. 3a and S3). These facts
369 further support the hypothesis that persistent rather than abundant populations exhibit higher intra-
370 population sequence variation (76).

371 **Phage predation as a major driving force of genomic microdiversification**

372 The lowest pN/pS in housekeeping genes involved in replication, transcription, translation, and
373 oxidative phosphorylation (Fig. 4b) agreed with a previous study in the Baltic Sea (25) and indicated
374 that genes involved in core functions are under stronger purifying selection. By contrast, high pN/pS
375 were observed among genes potentially involved in cell surface structural modification, namely
376 glycosyltransferases, lipopolysaccharide biosynthesis, and peptidoglycan biosynthesis proteins (Fig.
377 4b). Hypervariability of such genes has been observed in genomes of ubiquitous marine and freshwater
378 bacterioplankton and is considered beneficial in evading the host recognition system of their phage
379 (7–9). Our results further demonstrate that these traits are universal in the ecosystem and suggest that
380 phage predation is the most prevalent selective pressure generating amino acid-level gene diversity.

381 The SV profiling demonstrated that deletion was overrepresented in genes involved in
382 prokaryotic defense systems, namely, RM systems, TA systems, and CRISPR–Cas systems (Fig. 6a).
383 Among them, the three proteins making up the Type I RM system (R, M, and S) were the most
384 represented (Fig. 6b). A previous metaepigenomic exploration revealed the diversity of DNA
385 methylated motifs and methyltransferase genes among Lake Biwa bacterioplankton assemblages (77).
386 Interestingly, the study reported a corresponding pair of a methylated motif and a methyltransferase
387 gene is often absent in MAGs, which could be attributable to the incompleteness of MAGs or to the
388 limited sensitivity of the method. Further, the study found that the ratio of methylation in each motif
389 in a genome varied considerably from 19% to 99%, for which the authors reasoned the methodological
390 limitation of modification detection power (77). Our results introduce another possible explanation for
391 these observations: the mobility of RM-related genes within a sequence-discrete population might
392 have resulted in the heterogeneous recovery of methylated motifs or methyltransferase genes in an
393 MAG. The variable nature of epigenetic modification proposes another layer of genomic
394 microdiversity, which will be key to revealing the mechanism behind the virus–host arms race.

395 The next most represented defense genes in deletions were those involved in TA systems
396 (Fig. 6b), which can also act as an antiphage system (78). Recent experimental work has demonstrated
397 that mobility and rapid turnover of genes involved in intracellular defense machinery are essential
398 mechanisms to maintaining the core genome in the face of phage predation (79). Our results that RM
399 and TA systems are highly mobile (Fig. 6b) suggest the prevalence of such mechanisms in the
400 ecosystem. In addition, SNV analysis revealed that the prokaryotic defense system was the gene
401 category with the lowest nucleotide diversity (Fig. 4a) and among the highest pN/pS ratios (Fig. 4b),
402 which implies that the defense genes are positively selected by phage predation. Meanwhile, both RM
403 and TA systems can behave as selfish and addictive elements and are prone to be horizontally
404 transferred with an MGE (78, 80, 81). Their beneficial and parasitic aspects are not mutually exclusive,
405 and the relative contribution of the two remains unresolved. Thus, we cannot rule out the possibility
406 that some defense genes are rather parasitic and nonbeneficial or even detrimental for the host. In any
407 case, these genes are among the most prevalent mobile genes generating genomic heterogeneity within
408 a sequence-discrete population.

409 Although not as frequent as RM and TA systems, we also found deletions associated with
410 genes involved in the CRISPR–Cas system (Fig. 6b). Further investigation revealed individual cases
411 in which the whole CRISPR–Cas system was involved in a deletion, and one of them further included
412 TA system genes (Fig. S9). Experimental studies have suggested that the CRISPR–Cas system can
413 disseminate horizontally (82, 83) and is sometimes encoded in an MGE, which facilitates not only
414 adaptive immunity against phages but also inter-MGE competition and guided transposition of the
415 MGE (84–86). Our results provide evidence of the mobility of the CRISPR–Cas system in an
416 ecosystem, although it remains unknown whether it is beneficial or parasitic for the host.

417 Finally, we note that our monthly investigation revealed a shift in the allele frequency of
418 deletions or insertions involving the CRISPR–Cas system and CRISPR spacers during the study period

419 (Figs. S9 and S10). The results suggest monthly turnover of the population composition driven by the
420 virus–host arms race. Such a rapid shift of population composition has been demonstrated from the
421 virus side in the marine system (22). Our results are the demonstration from the host side and propose
422 the significance of not only sympatric but also temporal microdiversity. In summary, our ecosystem-
423 wide investigation of SNVs and SVs suggests that phage predation is the major driving force of
424 genomic microdiversification among the environmental microbial assemblage. The key question for
425 future works is whether and how the mobility of defense genes is beneficial for the host, for which the
426 microdiversity of the counteracting viral genome must be explored.

427 Conclusion

428 Our ecosystem-wide high-resolution approach combining spatiotemporal sampling and long- and
429 short-read metagenomics resulted in two major achievements. First, we presented a collection of high-
430 quality MAGs covering the majority of the prokaryotic diversity in a deep freshwater lake, which will
431 be a valuable reference for future studies in freshwater microbial ecology. Then the broad spectrum of
432 SNVs and SVs masked in the MAGs were detected by short- and long-read mapping, respectively,
433 which is the second and greater achievement of this work. Based on the results, we conclude that
434 genomic microdiversification is primarily driven by viral load and constrained by genetic bottlenecks.

435 We also demonstrated the performance and limitation of our “consensus-first” approach (Fig.
436 1). To push the consensus-first approach further, future works can consider gaining a deeper
437 sequencing depth (for instance, using the PromethION platform (87, 88)) and obtaining longer
438 sequencing reads with a more sophisticated DNA extraction method (89). Alternative possible
439 approaches include genome-free metagenomics, which directly handles pan-metagenomic graphs
440 without the prerequisite of a linear genomic assembly (90). The ultimate approach will be a strain-
441 resolved assembly, which usually requires an isolated culture or single cell but was recently
442 accomplished in a metagenomic assembly using highly accurate long reads (i.e., PacBio HiFi reads)

443 (20), although it is still too costly for common application.

444 Lakes are physically separated unique ecosystems and thus harbor genetically isolated
445 microbiomes (91), while those in the marine system are likely distributed globally (64, 92) presumably
446 following the rapid circulation of global surface seawater (93). This implies that we can further
447 perform a comparative study among different lakes, in which each lake can be considered as a replicate
448 or control of an ecosystem. The two main factors affecting genome microdiversification (genetic
449 bottlenecks and virus–host interactions) are both lake-specific. The microbiomes in different lakes
450 have a different history of biological interactions in different physicochemical conditions, which
451 would result in different trajectories of genome microdiversification. For instance, we hypothesize that
452 a larger and older lake is less affected by genetic bottlenecks in terms of time and space. That is, the
453 extent of bacterioplankton microdiversification in Lake Biwa (the largest and oldest lake in Japan)
454 might be the greatest among the lakes in the country but might be lower than that of Lake Baikal, the
455 largest and oldest freshwater lake on the earth. Such inter-lake comparative analyses will be an
456 effective approach to further validate the findings in the present study and unveil the universal
457 mechanisms in the diversification and evolution of the microbial genome.

458 **Data availability**

459 The raw sequencing reads generated in the present study are available under accession numbers
460 DRR333363–DRR333410 (BioProject ID: PRJDB12736) as summarized in Table S1. Nucleotide
461 fasta files of the rMAGs are available in <https://doi.org/10.6084/m9.figshare.19165673.v1>

462 **Author contributions**

463 YO and HT conceived the study and performed experimental work. YO and SN performed field
464 sampling. AT performed DNA sequencing. YO conducted data analysis and wrote the draft. All authors
465 contributed to finalizing the draft and approved for the final version.

466 **Acknowledgements**

467 We are grateful to Yukiko Goda, Tetsuji Akatsuka, Yasuhiko Yamaguchi, and crews of research vessels
468 Hasu, Hakkengo, and Biwakaze for their assistance in Lake Biwa sampling. We thank Bioengineering
469 Lab. Co., Ltd for providing sequencing resources. Computation time was provided by the
470 SuperComputer System, Institute for Chemical Research, Kyoto University. This study was supported
471 by Center for Ecological Research, Kyoto University, a Joint Usage / Research Center, The Kyoto
472 University Foundation, and JSPS KAKENHI Grant Numbers 16H06279 (PAGS), 18J00300, and
473 19H03302.

474 **Conflict of interest**

475 The authors declare no conflict of interest.

476 **References**

- 477 1. D. H. Parks, *et al.*, A standardized bacterial taxonomy based on genome phylogeny
478 substantially revises the tree of life. *Nature Biotechnology* **36**, 996–1004 (2018).
- 479 2. R. M. Bowers, *et al.*, Minimum information about a single amplified genome (MISAG) and a
480 metagenome-assembled genome (MIMAG) of bacteria and archaea. *Nature Biotechnology* **35**,
481 725–731 (2017).
- 482 3. N. D. Olson, *et al.*, Metagenomic assembly through the lens of validation: recent advances in
483 assessing and improving the quality of genomes assembled from metagenomes. *Briefings in
484 Bioinformatics* **20**, 1140–1150 (2019).
- 485 4. C. Yuan, J. Lei, J. Cole, Y. Sun, Reconstructing 16S rRNA genes in metagenomic data.
486 *Bioinformatics* **31**, i35–i43 (2015).
- 487 5. M. D. Ramos-Barbero, *et al.*, Recovering microbial genomes from metagenomes in
488 hypersaline environments: The Good, the Bad and the Ugly. *Systematic and Applied
489 Microbiology* **42**, 30–40 (2019).

490 6. S. Nurk, D. Meleshko, A. Korobeynikov, P. A. Pevzner, metaSPAdes: a new versatile
491 metagenomic assembler. *Genome Research* **27**, 824–834 (2017).

492 7. F. Rodriguez-Valera, *et al.*, Explaining microbial population genomics through phage
493 predation. *Nature Reviews Microbiology* **7**, 828–836 (2009).

494 8. S. M. Neuenschwander, R. Ghai, J. Pernthaler, M. M. Salcher, Microdiversification in genome-
495 streamlined ubiquitous freshwater Actinobacteria. *The ISME Journal* **12**, 185–198 (2018).

496 9. M. Hoetzinger, J. Schmidt, J. Jezberová, U. Koll, M. W. Hahn, Microdiversification of a
497 Pelagic Polynucleobacter Species Is Mainly Driven by Acquisition of Genomic Islands from a
498 Partially Interspecific Gene Pool. *Applied and Environmental Microbiology* **83**, e02266-16
499 (2017).

500 10. J. O. McInerney, A. McNally, M. J. O'Connell, Why prokaryotes have pangenomes. *Nature
501 Microbiology* **2**, 17040 (2017).

502 11. T. van Rossum, P. Ferretti, O. M. Maistrenko, P. Bork, Diversity within species: interpreting
503 strains in microbiomes. *Nature Reviews Microbiology* **18**, 491–506 (2020).

504 12. Y. Okazaki, S.-I. Nakano, Vertical partitioning of freshwater bacterioplankton community in a
505 deep mesotrophic lake with a fully oxygenated hypolimnion (Lake Biwa, Japan).
506 *Environmental Microbiology Reports* **8**, 780–788 (2016).

507 13. Y. Okazaki, Y. Nishimura, T. Yoshida, H. Ogata, S. Nakano, Genome-resolved viral and
508 cellular metagenomes revealed potential key virus-host interactions in a deep freshwater lake.
509 *Environmental Microbiology* **21**, 4740–4754 (2019).

510 14. S. Shen, Y. Shimizu, Seasonal Variation in Viral Infection Rates and Cell Sizes of Infected
511 Prokaryotes in a Large and Deep Freshwater Lake (Lake Biwa, Japan). *Frontiers in
512 Microbiology* **12**, 624980 (2021).

513 15. I. Mukherjee, Y. Hodoki, S. Nakano, Seasonal dynamics of heterotrophic and plastidic protists

514 in the water column of Lake Biwa, Japan. *Aquatic Microbial Ecology* **80**, 123–137 (2017).

515 16. J. Cai, Y. Hodoki, S. Nakano, Phylogenetic diversity of the picocyanobacterial community
516 from a novel winter bloom in Lake Biwa. *Limnology* **22**, 161–167 (2021).

517 17. E. L. Moss, D. G. Maghini, A. S. Bhatt, Complete, closed bacterial genomes from microbiomes
518 using nanopore sequencing. *Nature Biotechnology* **38**, 701–707 (2020).

519 18. R. D. Stewart, *et al.*, Compendium of 4,941 rumen metagenome-assembled genomes for rumen
520 microbiome biology and enzyme discovery. *Nature Biotechnology* **37**, 953–961 (2019).

521 19. C. M. Singleton, *et al.*, Connecting structure to function with the recovery of over 1000 high-
522 quality metagenome-assembled genomes from activated sludge using long-read sequencing.
523 *Nature Communications* **12**, 2009 (2021).

524 20. D. M. Bickhart, *et al.*, Generating lineage-resolved, complete metagenome-assembled
525 genomes from complex microbial communities. *Nature Biotechnology* (2022)
526 <https://doi.org/10.1038/s41587-021-01130-z>.

527 21. M. López-Pérez, J. M. Haro-Moreno, F. H. Coutinho, M. Martínez-García, F. Rodriguez-
528 Valera, The Evolutionary Success of the Marine Bacterium SAR11 Analyzed through a
529 Metagenomic Perspective. *mSystems* **5**, e00605-20 (2020).

530 22. J. C. Ignacio-Espinoza, N. A. Ahlgren, J. A. Fuhrman, Long-term stability and Red Queen-like
531 strain dynamics in marine viruses. *Nature Microbiology* **5**, 265–271 (2020).

532 23. S. L. Garcia, *et al.*, Contrasting patterns of genome-level diversity across distinct co-occurring
533 bacterial populations. *The ISME Journal* **12**, 742–755 (2018).

534 24. M. R. Olm, *et al.*, inStrain profiles population microdiversity from metagenomic data and
535 sensitively detects shared microbial strains. *Nature Biotechnology* **39**, 727–736 (2021).

536 25. C. Sjöqvist, L. F. Delgado, J. Alneberg, A. F. Andersson, Ecologically coherent population
537 structure of uncultivated bacterioplankton. *The ISME Journal* **15**, 3034–3049 (2021).

538 26. F. J. Sedlazeck, *et al.*, Accurate detection of complex structural variations using single-
539 molecule sequencing. *Nature Methods* **15**, 461–468 (2018).

540 27. D. Heller, M. Vingron, SVIM: Structural variant identification using mapped long reads.
541 *Bioinformatics* **35**, 2907–2915 (2019).

542 28. S. S. Ho, A. E. Urban, R. E. Mills, Structural variation in the sequencing era. *Nature Reviews
543 Genetics* **21**, 171–189 (2020).

544 29. M. Kolmogorov, J. Yuan, Y. Lin, P. A. Pevzner, Assembly of long, error-prone reads using
545 repeat graphs. *Nature Biotechnology* **37**, 540–546 (2019).

546 30. R. Vaser, M. Šikić, Time- and memory-efficient genome assembly with Raven. *Nature
547 Computational Science* **1**, 332–336 (2021).

548 31. R. Vaser, I. Sović, N. Nagarajan, M. Šikić, Fast and accurate de novo genome assembly from
549 long uncorrected reads. *Genome Research* **27**, 737–746 (2017).

550 32. B. J. Walker, *et al.*, Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection
551 and Genome Assembly Improvement. *PLoS ONE* **9**, e112963 (2014).

552 33. H. Li, Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* **34**, 3094–3100
553 (2018).

554 34. B. Langmead, S. L. Salzberg, Fast gapped-read alignment with Bowtie 2. *Nature Methods* **9**,
555 357–359 (2012).

556 35. M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads.
557 *EMBnet.journal* **17**, 10–12 (2011).

558 36. S. Chen, Y. Zhou, Y. Chen, J. Gu, fastp: an ultra-fast all-in-one FASTQ preprocessor.
559 *Bioinformatics* **34**, i884–i890 (2018).

560 37. W. Shen, S. Le, Y. Li, F. Hu, SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File
561 Manipulation. *PLOS ONE* **11**, e0163962 (2016).

562 38. D. D. Kang, *et al.*, MetaBAT 2: an adaptive binning algorithm for robust and efficient genome
563 reconstruction from metagenome assemblies. *PeerJ* **7**, e7359 (2019).

564 39. Y. W. Wu, B. A. Simmons, S. W. Singer, MaxBin 2.0: An automated binning algorithm to
565 recover genomes from multiple metagenomic datasets. *Bioinformatics* **32**, 605–607 (2015).

566 40. C. Jain, L. M. Rodriguez-R, A. M. Phillippy, K. T. Konstantinidis, S. Aluru, High throughput
567 ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. *Nature Communications* **9**, 5114 (2018).

569 41. D. H. Parks, M. Imelfort, C. T. Skennerton, P. Hugenholtz, G. W. Tyson, CheckM: assessing
570 the quality of microbial genomes recovered from isolates, single cells, and metagenomes.
571 *Genome Research* **25**, 1043–1055 (2015).

572 42. M. Chakraborty, J. G. Baldwin-Brown, A. D. Long, J. J. Emerson, Contiguous and accurate de
573 novo assembly of metazoan genomes with modest long read coverage. *Nucleic Acids Research*
574 **44**, gkw654 (2016).

575 43. S. Kurtz, *et al.*, Versatile and open software for comparing large genomes. *Genome biology* **5**,
576 R12 (2004).

577 44. M. Hunt, *et al.*, Circlator: automated circularization of genome assemblies using long
578 sequencing reads. *Genome Biology* **16**, 294 (2015).

579 45. M. R. Olm, C. T. Brown, B. Brooks, J. F. Banfield, dRep: a tool for fast and accurate genomic
580 comparisons that enables improved genome recovery from metagenomes through de-
581 replication. *The ISME Journal* **11**, 2864–2868 (2017).

582 46. P.-A. Chaumeil, A. J. Mussig, P. Hugenholtz, D. H. Parks, GTDB-Tk: a toolkit to classify
583 genomes with the Genome Taxonomy Database. *Bioinformatics* **36**, 1925–1927 (2019).

584 47. T. Seemann, Prokka: Rapid prokaryotic genome annotation. *Bioinformatics* **30**, 2068–2069
585 (2014).

586 48. C. P. Cantalapiedra, A. Hernández-Plaza, I. Letunic, P. Bork, J. Huerta-Cepas, eggNOG-
587 mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the
588 Metagenomic Scale. *Molecular Biology and Evolution* **38**, 5825–5829 (2021).

589 49. M. Kanehisa, S. Goto, KEGG: Kyoto Encyclopedia of Genes and Genomes. *Nucleic Acids*
590 *Research* **28**, 27–30 (2000).

591 50. D. Hyatt, *et al.*, Prodigal: prokaryotic gene recognition and translation initiation site
592 identification. *BMC Bioinformatics* **11**, 119 (2010).

593 51. B. E. Suzek, H. Huang, P. McGarvey, R. Mazumder, C. H. Wu, UniRef: Comprehensive and
594 non-redundant UniProt reference clusters. *Bioinformatics* **23**, 1282–1288 (2007).

595 52. B. Buchfink, C. Xie, D. H. Huson, Fast and sensitive protein alignment using DIAMOND.
596 *Nature Methods* **12**, 59–60 (2015).

597 53. Y. Okazaki, Y. Hodoki, S. I. Nakano, Seasonal dominance of CL500-11 bacterioplankton
598 (phylum Chloroflexi) in the oxygenated hypolimnion of Lake Biwa, Japan. *FEMS*
599 *Microbiology Ecology* **83**, 82–92 (2013).

600 54. P. Q. Tran, *et al.*, Depth-discrete metagenomics reveals the roles of microbes in
601 biogeochemical cycling in the tropical freshwater Lake Tanganyika. *The ISME Journal* **15**,
602 1971–1986 (2021).

603 55. P. J. Cabello-Yeves, *et al.*, Microbiome of the deep Lake Baikal, a unique oxic bathypelagic
604 habitat. *Limnology and Oceanography* **65**, 1471–1488 (2020).

605 56. P. Xing, *et al.*, Stratification of microbiomes during the holomictic period of Lake Fuxian, an
606 alpine monomictic lake. *Limnology and Oceanography* **65**, S134–S148 (2020).

607 57. Y. Okazaki, *et al.*, Ubiquity and quantitative significance of bacterioplankton lineages
608 inhabiting the oxygenated hypolimnion of deep freshwater lakes. *The ISME Journal* **11**, 2279–
609 2293 (2017).

610 58. Y. Okazaki, M. M. Salcher, C. Callieri, S. Nakano, The Broad Habitat Spectrum of the CL500-
611 11 Lineage (Phylum Chloroflexi), a Dominant Bacterioplankton in Oxygenated Hypolimnia
612 of Deep Freshwater Lakes. *Frontiers in Microbiology* **9**, 2891 (2018).

613 59. M. W. Henson, V. C. Lanclos, B. C. Faircloth, J. C. Thrash, Cultivation and genomics of the
614 first freshwater SAR11 (LD12) isolate. *The ISME Journal* **12**, 1846–1860 (2018).

615 60. M. M. Salcher, J. Pernthaler, T. Posch, Seasonal bloom dynamics and ecophysiology of the
616 freshwater sister clade of SAR11 bacteria “that rule the waves” (LD12). *The ISME journal* **5**,
617 1242–1252 (2011).

618 61. J. Grote, *et al.*, Streamlining and Core Genome Conservation among Highly Divergent
619 Members of the SAR11 Clade. *mBio* **3**, e00252-12 (2012).

620 62. K. Zaremba-Niedzwiedzka, *et al.*, Single-cell genomics reveal low recombination frequencies
621 in freshwater bacteria of the SAR11 clade. *Genome Biology* **14**, R130 (2013).

622 63. M. L. Bendall, *et al.*, Genome-wide selective sweeps and gene-specific sweeps in natural
623 bacterial populations. *The ISME Journal* **10**, 1589–1601 (2016).

624 64. T. O. Delmont, *et al.*, Single-amino acid variants reveal evolutionary processes that shape the
625 biogeography of a global SAR11 subclade. *eLife* **8**, e46497 (2019).

626 65. Z. Sun, J. L. Blanchard, Strong Genome-Wide Selection Early in the Evolution of
627 Prochlorococcus Resulted in a Reduced Genome through the Loss of a Large Number of Small
628 Effect Genes. *PLoS ONE* **9**, e88837 (2014).

629 66. P. C. Kirchberger, M. L. Schmidt, H. Ochman, The Ingenuity of Bacterial Genomes. *Annual
630 Review of Microbiology* **74**, 815–834 (2020).

631 67. C. A. Martinez-Gutierrez, F. O. Aylward, Strong Purifying Selection Is Associated with
632 Genome Streamlining in Epipelagic Marinimicrobia. *Genome Biology and Evolution* **11**,
633 2887–2894 (2019).

634 68. K. Zhou, A. Aertsen, C. W. Michiels, The role of variable DNA tandem repeats in bacterial
635 adaptation. *FEMS Microbiology Reviews* **38**, 119–141 (2014).

636 69. S. Wiegand, M. Jogler, C. Jogler, On the maverick Planctomycetes. *FEMS Microbiology*
637 *Reviews* **42**, 739–760 (2018).

638 70. A.-Ş. Andrei, *et al.*, Niche-directed evolution modulates genome architecture in freshwater
639 Planctomycetes. *The ISME Journal* **13**, 1056–1071 (2019).

640 71. C. T. Brown, *et al.*, Unusual biology across a group comprising more than 15% of domain
641 Bacteria. *Nature* **523**, 208–211 (2015).

642 72. M.-C. Chiriac, *et al.*, Ecogenomics Sheds Light on Diverse Lifestyle Strategies in Freshwater
643 CPR. *Research Square* (2022) <https://doi.org/10.21203/rs.3.rs-776685/v2>.

644 73. S. He, *et al.*, Ecophysiology of Freshwater Verrucomicrobia Inferred from Metagenome-
645 Assembled Genomes. *mSphere* **2**, e00277-17 (2017).

646 74. P. J. Cabello-Yeves, *et al.*, Reconstruction of Diverse Verrucomicrobial Genomes from
647 Metagenome Datasets of Freshwater Reservoirs. *Frontiers in Microbiology* **8**, 2131 (2017).

648 75. M. Kagami, T. B. Gurung, T. Yoshida, J. Urabe, To sink or to be lysed? Contrasting fate of two
649 large phytoplankton species in Lake Biwa. *Limnology and Oceanography* **51**, 2775–2786
650 (2006).

651 76. A. Meziti, *et al.*, Quantifying the changes in genetic diversity within sequence-discrete
652 bacterial populations across a spatial and temporal riverine gradient. *The ISME Journal* **13**,
653 767–779 (2019).

654 77. S. Hiraoka, *et al.*, Metaepigenomic analysis reveals the unexplored diversity of DNA
655 methylation in an environmental prokaryotic community. *Nature Communications* **10**, 159
656 (2019).

657 78. D. Jurénas, N. Fraikin, F. Goormaghtigh, L. van Melderen, Biology and evolution of bacterial

658 toxin–antitoxin systems. *Nature Reviews Microbiology* (2022) <https://doi.org/10.1038/s41579-021-00661-1>.

660 79. F. A. Hussain, *et al.*, Rapid evolutionary turnover of mobile genetic elements drives bacterial
661 resistance to phages. *Science* **374**, 488–492 (2021).

662 80. I. Kobayashi, Behavior of restriction-modification systems as selfish mobile elements and their
663 impact on genome evolution. *Nucleic Acids Research* **29**, 3742–3756 (2001).

664 81. E. v. Koonin, K. S. Makarova, Y. I. Wolf, M. Krupovic, Evolutionary entanglement of mobile
665 genetic elements and host defence systems: guns for hire. *Nature Reviews Genetics* **21**, 119–131 (2020).

666 82. B. N. J. Watson, R. H. J. Staals, P. C. Fineran, CRISPR-Cas-Mediated Phage Resistance
668 Enhances Horizontal Gene Transfer by Transduction. *mBio* **9**, e02406-17 (2018).

669 83. J. S. Godde, A. Bickerton, The repetitive DNA elements called CRISPRs and their associated
670 genes: Evidence of horizontal transfer among prokaryotes. *Journal of Molecular Evolution* **62**,
671 718–729 (2006).

672 84. S. E. Klompe, P. L. H. Vo, T. S. Halpin-Healy, S. H. Sternberg, Transposon-encoded CRISPR–
673 Cas systems direct RNA-guided DNA integration. *Nature* **571**, 219–225 (2019).

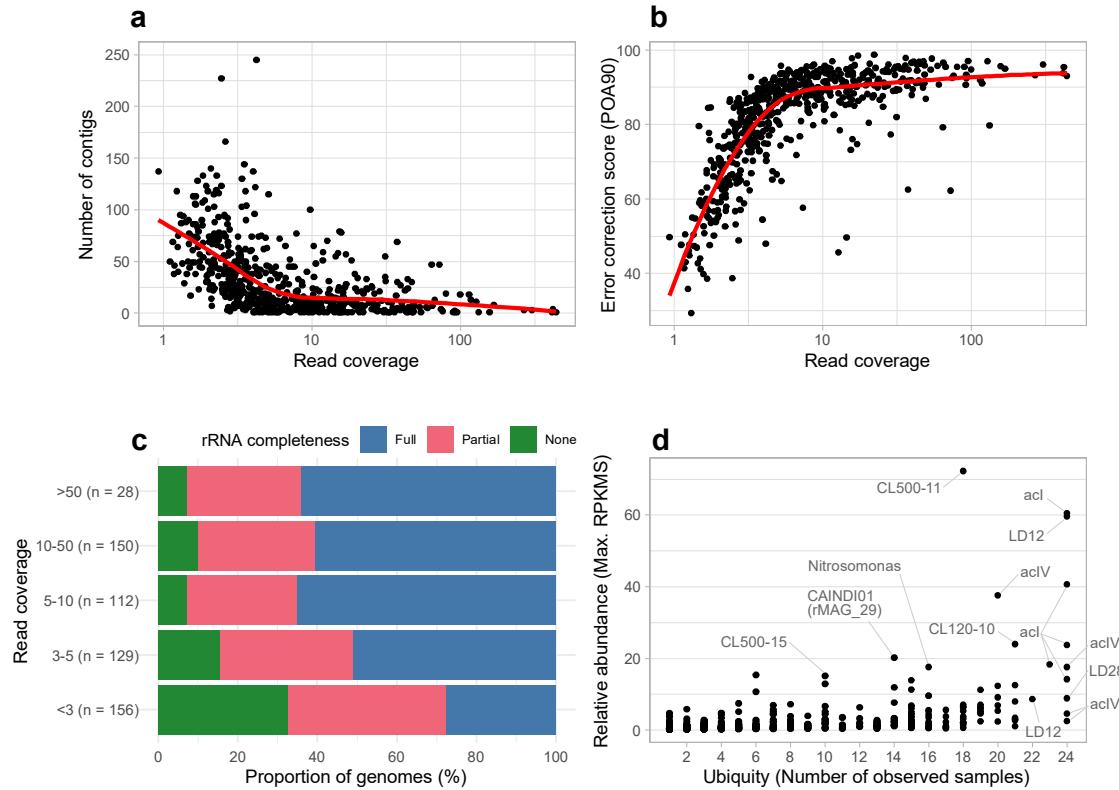
674 85. R. Pinilla-Redondo, *et al.*, CRISPR-Cas systems are widespread accessory elements across
675 bacterial and archaeal plasmids. *Nucleic Acids Research*, 1–14 (2021).

676 86. P. Mohanraju, *et al.*, Alternative functions of CRISPR–Cas systems in the evolutionary arms
677 race. *Nature Reviews Microbiology* (2022) <https://doi.org/10.1038/s41579-021-00663-z>.

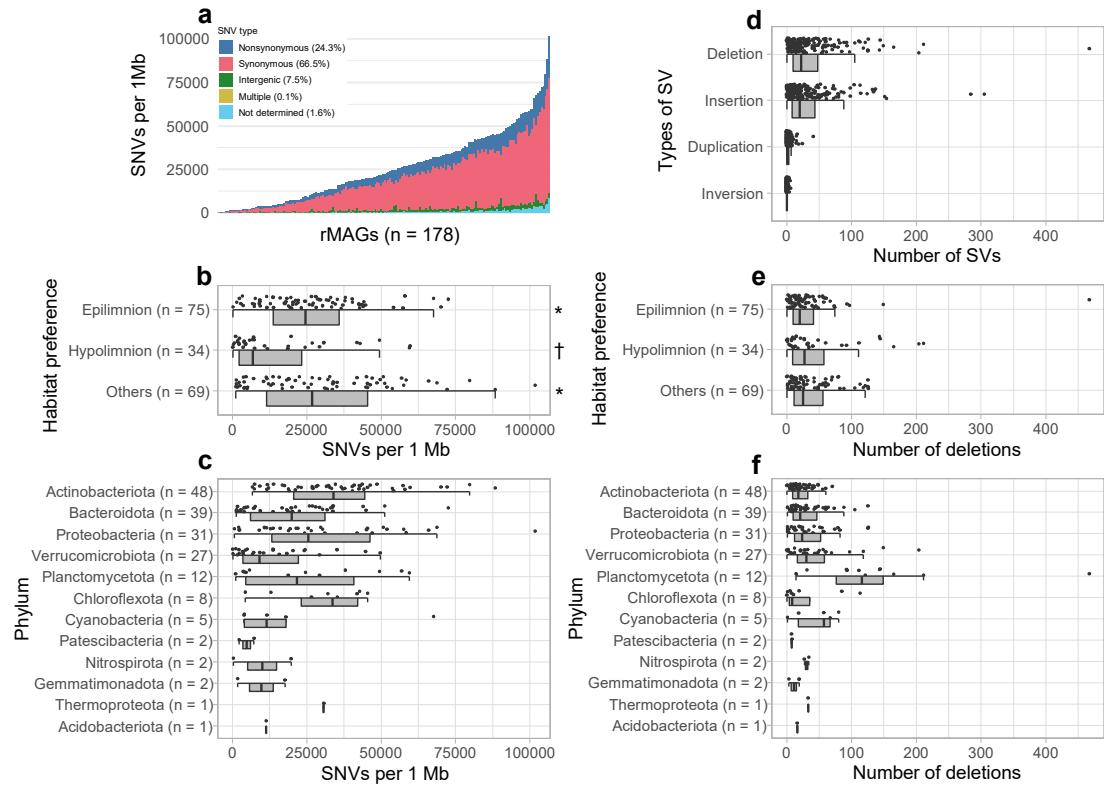
678 87. S. M. Nicholls, J. C. Quick, S. Tang, N. J. Loman, Ultra-deep, long-read nanopore sequencing
679 of mock microbial community standards. *GigaScience* **8**, giz043 (2019).

680 88. K. Yahara, *et al.*, Long-read metagenomics using PromethION uncovers oral bacteriophages
681 and their interaction with host bacteria. *Nature Communications* **12**, 27 (2021).

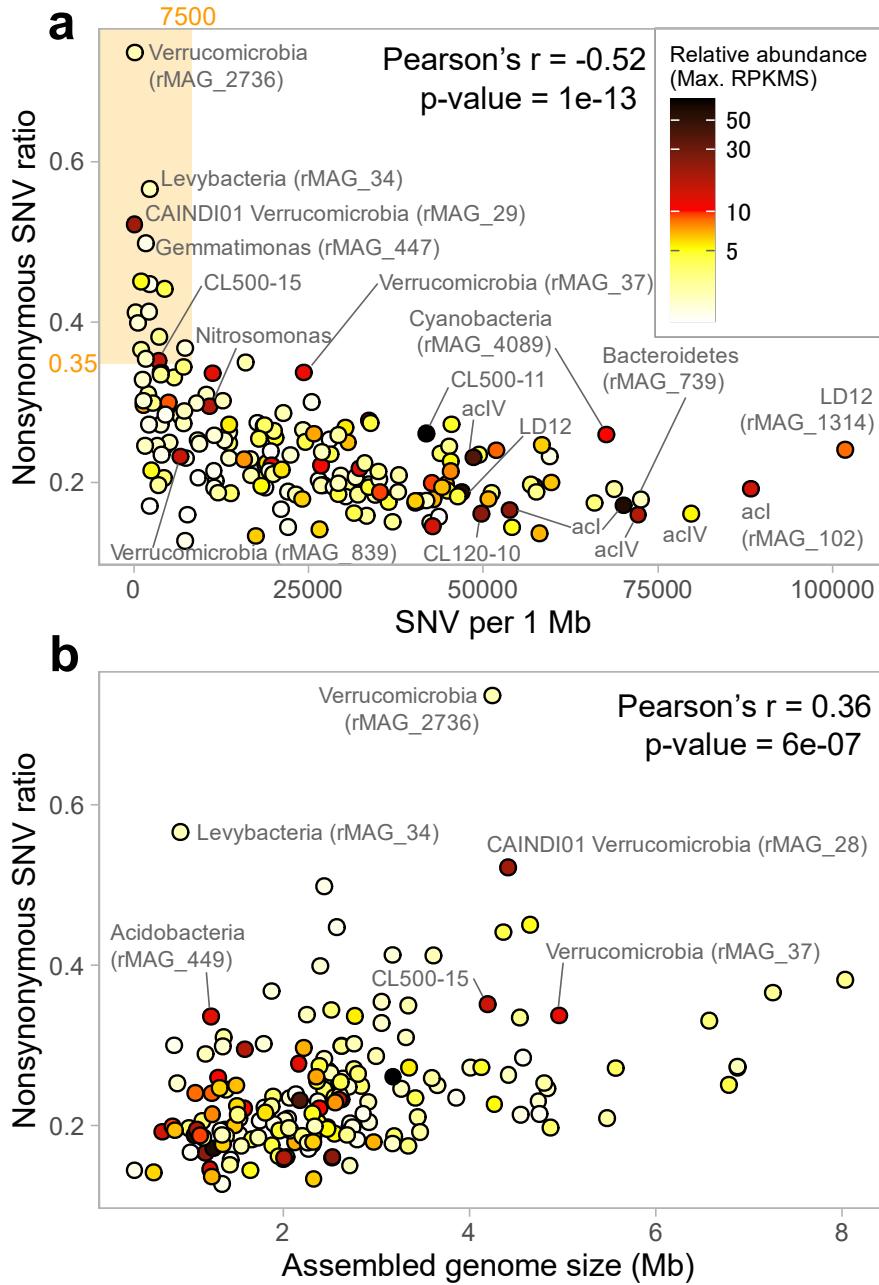
682 89. F. Trigodet, *et al.*, High molecular weight DNA extraction strategies for long-read sequencing
683 of complex metagenomes. *Molecular Ecology Resources* (2022) <https://doi.org/10.1111/1755-0998.13588>.

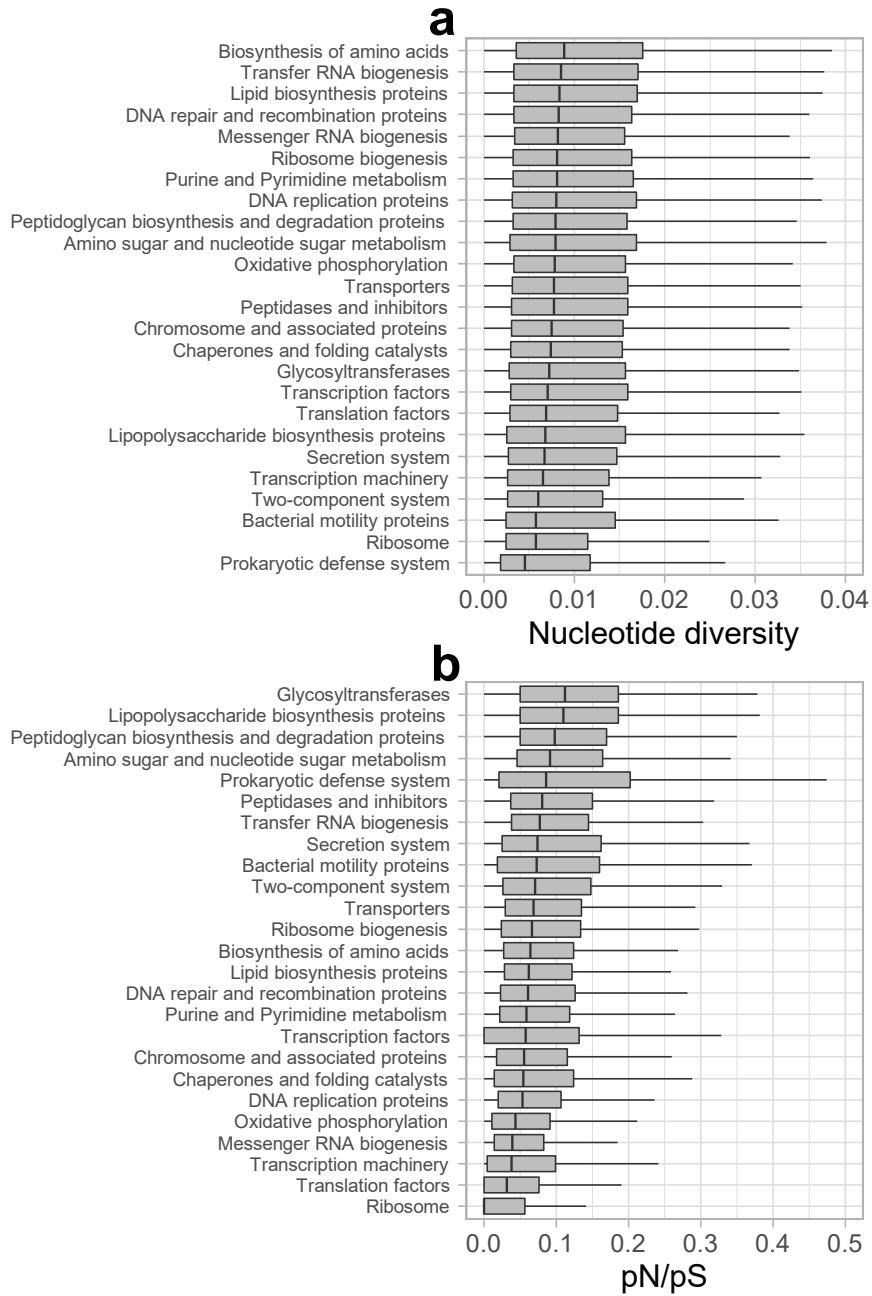

684
685 90. I. Coleman, T. Korem, Embracing Metagenomic Complexity with a Genome-Free Approach.
686 *mSystems* **6**, e00816-21 (2021).

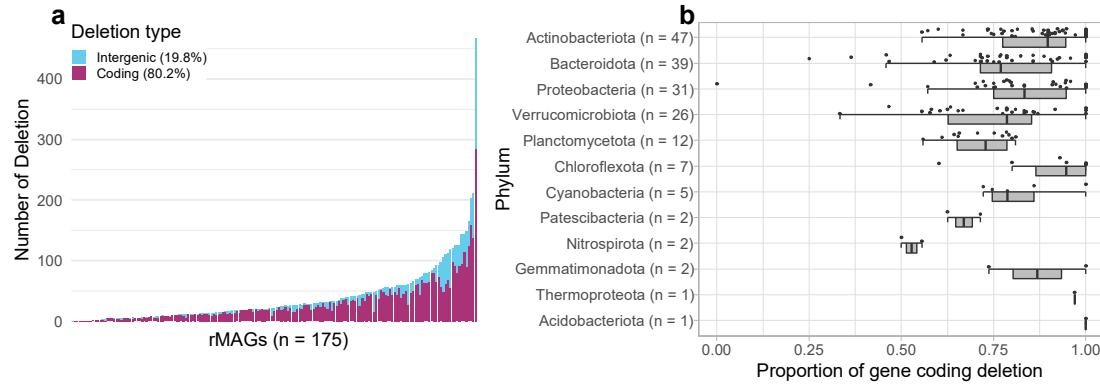
687 91. Y. Okazaki, *et al.*, Microdiversity and phylogeographic diversification of bacterioplankton in
688 pelagic freshwater systems revealed through long-read amplicon sequencing. *Microbiome* **9**,
689 24 (2021).


690 92. J. M. Haro-Moreno, *et al.*, Ecogenomics of the SAR11 clade. *Environmental Microbiology* **22**,
691 1748–1763 (2020).

692 93. B. F. Jönsson, J. R. Watson, The timescales of global surface-ocean connectivity. *Nature
693 Communications* **7**, 11239 (2016).


694


Figure 1. Overview of the 575 rMAGs. Individual rMAGs are represented by each point. Distribution of the (a) number of contigs and (b) error correction score (POA90; proportion of open reading frames [ORFs] aligned > 90% of its length to the reference database) plotted against the read coverage. Solid red lines represent local regression (loess). Read coverage was defined as the average short-read coverage in the representative sample for each rMAG. (c) Proportion of rMAGs with different rRNA gene (i.e., 5S, 16S, and 23S) completeness grouped by read coverage value. (d) Ubiquity–abundance plot of the rMAGs. Relative abundance was defined as maximum reads per kilobase of genome per million reads sequenced (RPKMS) recorded among the 24 samples (i.e., those recorded in the representative sample of the rMAG). Ubiquity was defined as the number of samples in which short reads were mapped to > 50% of the length of the rMAG sequence. Abundant and ubiquitous members are labeled. Detailed statistics for the rMAGs are available in Table S2.


Figure 2. Overview of SNVs and SVs among the 178 rMAGs with $> 10\times$ short-read coverage. (a) Each bar represents an individual rMAG, sorted by the number of SNVs per 1 Mb. SNV types determined by inStrain are shown in different colors. The mean proportion of each SNV type among the rMAGs is shown in the color legend. (b–f) Individual rMAGs are represented by each point. Distribution of the number of SNVs per 1 Mb grouped by (b) habitat preference and (c) phylum. (d) Distribution of the number of the four types of SVs in an rMAG. Distribution of the number of deletions in an rMAG grouped by (e) habitat preference and (f) phylum. The same symbol (* or †) in (b) and (e) indicates no significant difference ($p > 0.05$ in the Wilcoxon rank-sum test) among the groups.

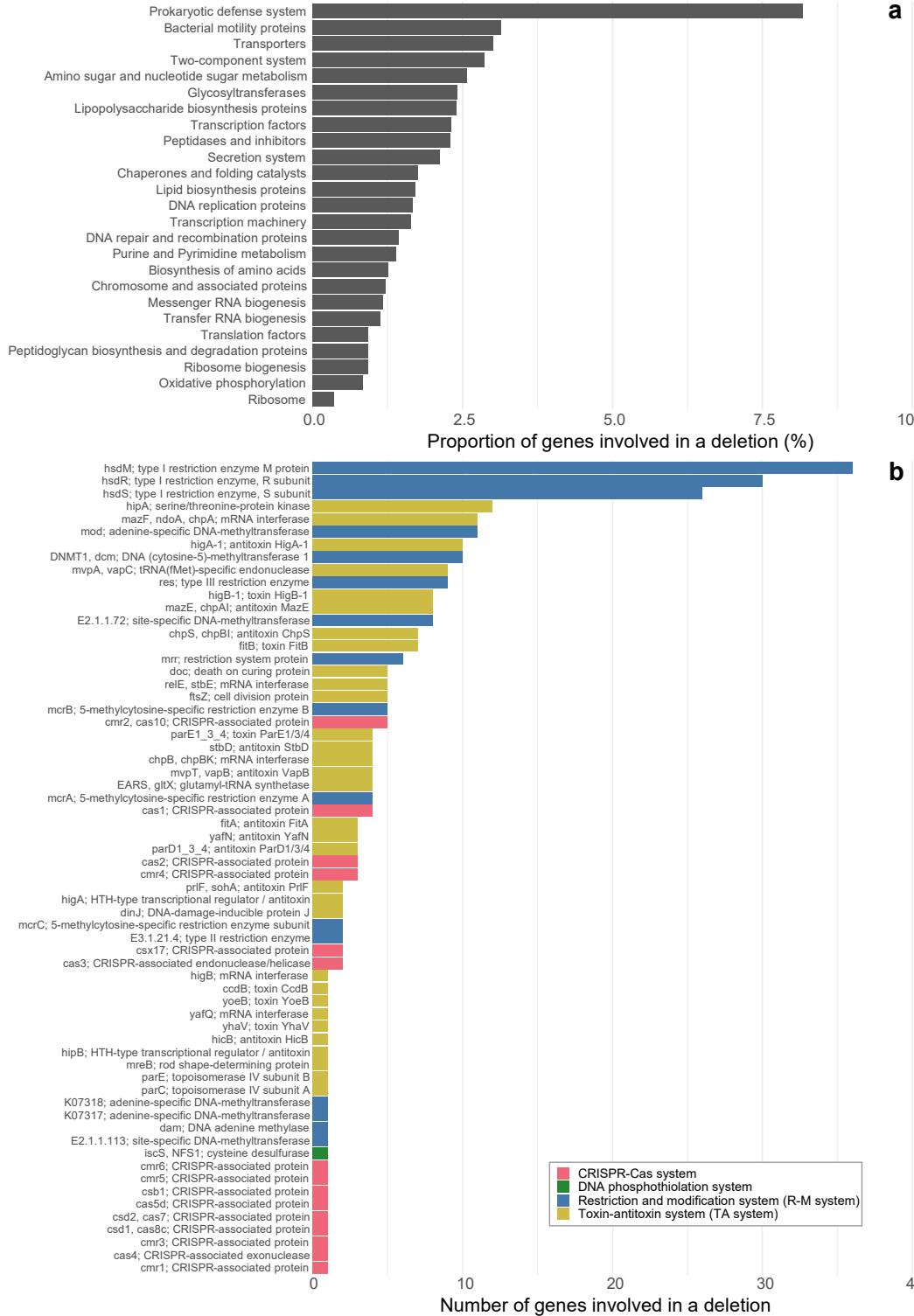

Figure 3. Nonsynonymous SNV ratio of each rMAG plotted against the (a) number of SNV per 1 Mb and (b) assembled genome size. Plot color indicates the relative abundance (maximum RPKMS) of each rMAG defined same as in Figure 1. Representative rMAGs with a high relative abundance or nonsynonymous SNV ratio are labeled. The orange-shaded area on (a) delineates the 15 rMAGs with outstandingly high nonsynonymous SNV ratios ($> 35\%$) and a low number of SNVs (< 7500 per 1 Mb).

Figure 4. Boxplots indicating the distribution of the (a) nucleotide diversity and (b) pN/pS of genes among the 178 high coverage rMAGs grouped by gene categories. The categories are sorted by the median. Both nucleotide diversity and pN/pS were determined by inStrain. The nucleotide diversity of a gene is defined as a gene-wide average of base-wise nucleotide diversity defined as $1 - (F_A^2 + F_C^2 + F_G^2 + F_T^2)$, where F_X is the frequency of base X in the given nucleotide position.

Figure 5. Overview of deletions among rMAGs. Three rMAGs with no deletions were removed from the analysis; the remaining 175 high-coverage rMAGs are shown. (a) Each bar represents an individual rMAG, sorted by the number of deletions. Coding (i.e., overlapping with a gene-coding region) and intergenic deletions are shown in different colors. The mean proportion of each deletion type among the rMAGs is shown in the color legend. (b) Distribution of the proportion of gene-coding deletions grouped by phylum. Individual rMAGs are represented by each point.

Figure 6. Genes involved in deletions among the 178 high-coverage rMAGs. (a) Proportion of genes involved in a deletion, grouped by gene categories. The same data shown by the number of genes are available in Figure S5. (b) Number of prokaryotic defense system genes involved in a deletion, colored by the type of defense system.