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Abstract 
IFNg alters the immunopeptidome presented on HLA class I (HLA-I), and its activity 

on cancer cells is known to be important for effective immunotherapy responses. We 

performed proteomic analyses of untreated and IFNg-treated colorectal cancer 

patient-derived organoids (PDOs) and combined this with transcriptomic and HLA-I 

immunopeptidomics data to dissect mechanisms that lead to remodeling of the 

immunopeptidome through IFNg. IFNg-induced changes in the abundance of source 

proteins, switching from the constitutive- to the immunoproteasome, and differential 

upregulation of different HLA alleles explained some, but not all, observed peptide 

abundance changes. By selecting for peptides which increased or decreased the most 

in abundance, but originated from proteins with limited abundance changes, we 

discovered that the amino acid composition of presented peptides also influences 

whether a peptide is up- or downregulated on HLA-I through IFNg. The presence of 

proline within the peptide core was most strongly associated with peptide 

downregulation. This was validated in an independent dataset. Proline substitution in 

relevant core positions did not influence the predicted HLA-I binding affinity or stability, 

indicating that proline effects on peptide processing may be most relevant. 

Understanding the multiple factors that influence the abundance of peptides presented 

on HLA-I in the absence or presence of IFNg is important to identify the best targets 

for antigen-specific cancer immunotherapies such as vaccines or T-cell receptor 

engineered therapeutics.  
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Introduction 
 

The presentation of peptides on HLA class I (HLA-I) is central for the adaptive immune 

system to detect malignant cells. Presentation of immunogenic peptides such as non-

mutated cancer-associated antigens or neoantigens on malignant cells facilitates their 

recognition and destruction by cytotoxic CD8 T-cells. Interferon gamma (IFNg) is a 

cytokine that is released from activated CD8 T-cells and other immune cell types. IFNg 

binds to IFNg receptors, which activate the JAK/STAT pathway, leading to expression 

of interferon response factor transcription factors (IRFs). IRFs stimulate the 

expression of a plethora of IFNg-regulated genes leading to major changes in the 

cellular transcriptome and proteome. Proteins involved in the processing and 

subsequent presentation of peptide antigens on HLA-I molecules show particularly 

strong upregulation, including the immunoproteasome catalytic components PSMB8, 

PSMB9, and PSMB10 which facilitate an increase in overall proteasomal activity, and 

also a specific increase of its chymotryptic activity(1,2). Peptidases which can trim, but 

also destroy, peptides before loading onto HLAs, such as LAP3(3), THOP1(4), 

ERAP1(5), and ERAP2(6), and the peptide transporters TAP1 and TAP2, which 

shuttle peptides into the endoplasmic reticulum where HLA loading occurs, are also 

upregulated. Furthermore, IFNg increases HLA expression. The combined effect of 

increased proteasomal peptide generation, peptide processing and transport, and 

HLA upregulation is a strong increase of peptide presentation by HLA-I on the cell 

surface. Further to this, IFNg exposure inhibits the cell cycle and triggers apoptosis(7).  

 

In contrast to these anti-tumour effects, IFNg also promotes the expression of 

immunosuppressive molecules. These include PD-L1, the ligand of the PD1 immune 

checkpoint, and IDO1, whose expression in cancer cells and other cells in the tumour 

microenvironment suppresses T-cell activity(8–10). Immunotherapy with PD1/PD-L1 

inhibitors has been highly successful in several cancer types(11–13). This supports a 

dominant role of the PD1/PD-L1 immune checkpoint in restraining tumour reactive T-

cells. Consistent with a central role of IFNg for PD-L1 expression, tumours that respond 

to PD1/PD-L1 inhibitors often show high IFNg activity(14). Moreover, several recent 

studies have shown that defective IFNg-signaling in cancer cells leads to resistance to 

immunotherapy with checkpoint-inhibitors(15–17). 
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Although intact IFNg signaling in cancer cells is critical for checkpoint-inhibitor efficacy, 

it is still unclear which specific IFNg-induced molecular changes are responsible for 

this dependency. Understanding how the immunopeptidome is remodeled by IFNg in 

greater detail may provide insights into this. Furthermore, novel immunotherapies 

such as cancer vaccines(18,19) and engineered TCR-based therapies such as 

Tebentafusp(20), target T-cells towards specific peptide antigens presented on HLA 

of cancer cells. Understanding the characteristics of antigens that are consistently 

presented in the presence or absence of IFNg, and which ones are lost or sparsely 

presented in one of these conditions, hence appears highly relevant for the selection 

of optimal target antigens.  

 

Previously, we studied the immunopeptidome of 5 colorectal cancer (CRC) patient-

derived organoids (PDOs) by mass spectrometry (MS). PDO cells were grown to large 

numbers followed by immunoaffinity capture of HLA-I/peptide complexes, analysis by 

high performance liquid chromatography and tandem MS. This detected between 

2,124 and 16,030 HLA-I peptides per PDO(21). Treatment of PDOs with IFNg strongly 

increased HLA-I expression (mean 219.5% increase) but only had a modest effect on 

the number of unique peptides presented (mean 7.1% increase). However, a much 

larger number of peptides changed in abundance, and between 1,439 and 3,942 

peptides were gained, and 561 to 2,446 peptides were lost on individual PDOs through 

IFNg.  

 

Furthermore, we found that peptides generated by chymotryptic-type cleavage activity 

were more likely to increase in abundance, which we attributed to the switch of the 

proteasome to immunoproteasome triggered by IFNg signaling.  However, we did not 

detect a strong enrichment of chymotryptic-like ligands in the peptides which most-

highly increased in abundance under IFNg. This highlights a limited understanding of 

the molecular mechanisms and peptide features that regulate peptide abundance on 

HLA-I in IFNg conditions. The aim of this work was to dissect the mechanisms that 

lead to up-/downregulation or appearance/loss of specific peptides under IFNg 

exposure. We combined global cellular proteomic analysis with our published 

transcriptomics and immunopeptidomics datasets(21) to first investigate the impact of 
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transcript and protein abundance on immunopeptidome remodeling, and to 

subsequently analyze peptide regulatory mechanisms that are independent of source 

protein abundance. The insights from this study should ultimately lead to more 

accurate predictions of the immunopeptidome in cells exposed to IFNg, information 

which could be valuable for cancer vaccine or TCR therapy designs. 

 

Materials and methods 
PDO culture and treatment 
Established PDOs were expanded to large numbers (3.85x107–1X108 cells/pellet) in 

DMEM/F12 media with 20% fetal bovine serum, 1X Glutamax, 100 units/ml 

penicillin/streptomycin and 2% matrigel. For treatment, cells were changed into fresh 

media supplemented with DMSO or 600ng/mL IFNg (R&D Systems) and incubated for 

48 hours. Cells were harvested with TrypLE express (ThermoFisher). PDOs were 

cultured identically for transcriptomic, proteomic, and flow cytometric analysis.  

 

RNA-sequencing  
We reanalyzed our previously described RNA sequencing data(21,22).  
 

Tandem-mass-tag (TMT) proteomics 
PDOs were cultured as described, washed twice with ice-cold PBS and snap-frozen 

before further processing. Further technical details are provided in the Supplementary 

Methods. The protein abundance values in each sample were normalized by the 

loading input of each sample. 

 
MS immunopeptidomics 

MS immunopeptidomics data had been acquired as described(21,23). The peptide 

intensity values in each sample were normalized by the total detected peptide intensity 

for each condition. The validation dataset was obtained from(24) and was normalized 

in the same way. 

 

Prediction of NetMHC percentile ranks from MS-detected peptides 
All HLA-I MS-detected peptides were entered into NetMHCpan4.0(25). The HLA 

allotypes determined for each PDO line were used to subset peptides in to HLA-I-
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allocated groups. nM prediction was used where peptide HLA-affinity was the factor 

in question, and predicted rank was used where all peptide presentation factors were 

to be considered. 

 

Relative peptide start position 
Relative peptide start position within protein was calculated for each peptide by 

dividing the peptide start position by the protein length. The longest protein length for 

each protein was selected from the database search Fasta file to ensure every peptide 

was encompassed. 

 

HLA typing 
HLA typing results from the previous publication were used(21). 

 

Surface HLA quantification by flow cytometry 
HLA surface expression was assessed using pan-HLA-A/B/C antibody (BioLegend, 

W6/32), anti-HLA-A03 (ThermoFisher Scientific, GAP.A3), and anti-HLA-B27 (Bio-

Rad, HLA-ABC-m3). Samples were run on a Sony SH800 cell sorter. 

 

Statistics 
Statistical calculations and plots were performed in R (www.r-project.org) and on 

GraphPad Prism v9. Z-scores for the amino acid enrichment analysis were 

calculated by subtracting each value by the mean of all the difference values, then 

dividing by the standard deviation of all the difference values. 
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Results 
 
The aim of this study was to elucidate the molecular mechanisms through which IFNg 

alters HLA-I peptide presentation by comparing the immunopeptidome of untreated 

and 48-hour IFNg-treated CRC PDOs (CRC-01, CRC-04, CRC-05). This was achieved 

by combining previously generated transcriptomics and immunopeptidomics data(21) 

with new global proteomics data, obtained by tandem-mass-tag MS (TMT-MS). 7,408 

proteins were detected by TMT-MS across the three PDOs. IFNg-induced fold-

changes (FC) of transcript and protein abundance (Figure 1A) showed a significant 

positive correlation (Spearman’s r=0.34-0.69, p<2.2x10-16 for all 3 PDOs). IFNg 

increased the expression of a large number of genes/proteins whereas 

downregulation was only apparent in a smaller number of genes/proteins and was of 

limited magnitude.  

 

We next assessed whether transcripts/proteins that were previously described as 

IFNg-regulated, and have roles in antigen processing and presentation or immune 

evasion, undergo the expected changes. IFNg treatment increased RNA expression 

of most proteasome components, including constitutive proteasome catalytic subunits 

(PSMB5-7), and immunoproteasome catalytic components (PSMB8-10) (Figure 1B). 

In contrast, proteome data showed a strong decrease of the constitutive catalytic 

subunits. This disparity between RNA and protein abundance can be explained by the 

fact that immunoproteasome assembly is four times faster than that of the constitutive 

proteasome(26), so the excess unbound constitutive catalytic components will be 

degraded(1). This switch from constitutive to immunoproteasome alters the cleavage 

specificity towards an increased chymotryptic activity, as we observed in our previous 

study(21). The regulatory caps of the proteasome also change with IFNg treatment; in 

the absence of IFNg, the 26S proteasome forms by addition of the 19S cap to each 

end of the 20S proteasome core. The 19S cap is responsible for binding 

polyubiquitinated proteins and actively transporting them in to the 20S proteasome 

core. IFNg increased the expression of the 11S cap subunits which facilitate ubiquitin-

independent proteasomal degradation of proteins and enhance proteasomal 

throughput (27–29). PSME4 is a another proteasome cap subunit, recently shown to 
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inhibit the production of HLA-I compatible peptides(30). The decrease in PSME4 

protein abundance through IFNg may further increase peptide production. 

 

Figure 1: Transcriptomic and proteomic changes with IFNg treatment. A: 
Correlation of the fold-change in normalized mRNA read numbers against the fold-

change in normalized protein intensity. The Spearman’s rank test was used for 

statistical analysis. B: mRNA expression and protein intensity of selected genes in 

untreated and IFNg conditions.  

 

Among cytosolic peptidases, LAP3 (with a cleavage specificity towards hydrophobic 

N-terminal amino acids, primarily leucine) increased in protein abundance (Figure 1B), 

and most other cytosolic peptidases showed a small decrease. Both endoplasmic 

reticulum N-terminal aminopeptidases ERAP1 and ERAP2, which help to shape the 

immunopeptidome by final trimming on HLA-I(5,6), increased. TAP transporters and 

peptide loading complex (PLC) components increased in RNA expression and protein 
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abundance. Further to this, NLCR5, the master transcription factor for HLA-I 

expression, and consequently HLA-A, -B and -C increased strongly.  

 

We also assessed whether genes and proteins that are known to inhibit the activity of 

immune cells were upregulated by IFNg. Most immune evasion genes increased in 

expression, with IDO1 and CD274/PD-L1 showing the strongest increase at the 

protein level. Thus, IFNg triggered expected changes in known IFNg-regulated genes 

across all three organoid lines. 
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Figure 2. Influence of protein abundance and HLA expression changes on 
immunopeptidome remodeling. A: Correlation of protein fold-change between 

untreated and IFNg conditions, against normalized immunopeptidomics fold-change. 

Regression lines for all peptides are displayed as a solid black line, regression lines 

for peptides from proteins with FC <0.5 or >2 as a dotted line. The Spearman rank test 

was used for significance testing. Most increasing peptides (MIPs - top 10th percentile 

peptide FC) and most decreasing peptides (MDPs - bottom 10th percentile peptide FC) 

derived from low fold-change proteins (0.5-2X fold-change) are highlighted with red 

and blue boxes, respectively. B: Percentage of all peptides per PDO that were 

attributed to each HLA by NetMHCpan4.0 in untreated vs. IFNg-treated conditions. C: 
Percentage of the total peptide intensity per PDO represented on each HLA by 

NetMHCpan4.0 in untreated vs. IFNg-treated conditions. D: Expression of total surface 

HLA-I and single HLA-I allotypes in organoid lines CRC-01 (HLA-B27) and CRC-

04CRC-04 (HLA-A03), measured by flow cytometry. E: Log2 NetMHCpan4.0-

predicted nM binding affinity values for MIPs vs MDPs. The median is marked with a 

dotted line. F: Log2 change in peptide intensity between untreated and IFNg-treated 

conditions for peptides derived from the protein DYNC1H1, plotted against the relative 

position of the peptide in the protein. Peptides are color-coded by their 

NetMHCpan4.0-predicted source HLA, with the NetMHCpan4.0 predicted rank 

annotated above. The fold change of the DYNC1H1 protein in each PDO is noted at 

the bottom. 

 

We next assessed to what extent a change in abundance of source proteins influenced 

the presentation of their derived peptides on HLA-I. We plotted the FC in protein 

abundance between untreated and IFNg conditions against normalized FC of all HLA-

I presented peptides (Figure 2A). Normalization of the immunopeptidome data was 

performed similar to the normalization approach used for RNA and protein expression 

data: peptide intensity values were normalized so that the total intensity in untreated 

and IFNg treated conditions were identical for each PDO. This allowed us to 

investigate peptide abundance changes beyond those driven by the absolute increase 

in HLA-I expression with IFNg. This analysis revealed two distinct components in each 

PDO: one group of up- or downregulated peptides showed concordant changes in the 

source protein abundance through IFNg, and a second group of up- or downregulated 
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peptides derived from proteins with no or limited change in abundance (log2 -1 to 1 

FC). This shows that source protein abundance is one important driver of peptidome 

remodeling, but also that the surface presentation of an even larger number of 

peptides is controlled by additional mechanisms. 

 

Our next aim was to understand how this second group of peptides is regulated in 

these PDOs. We first hypothesized that IFNg upregulates different HLA alleles by 

different levels and that this may affect the diversity or abundance of their 

corresponding peptide repertoires. Plotting the number of unique peptides that were 

predicted by NetMHCpan4.0(25) to bind each HLA allele, showed only a small 

changes through IFNg treatment (Figure 2B). Next, we plotted the total peptide 

intensity per HLA allele as a surrogate measure of the total number of peptides 

presented on each HLA. When treated with IFNg, the relative intensity of peptides 

presented on HLA-B allotypes increased, whereas those on 3 of 5 HLA-A allotypes 

decreased (Figure 2C). This indicates that IFNg treatment increased the percentage 

of peptides presented by HLA-B among all HLA-I presented peptides, and reduced 

that presented by HLA-A. Importantly, the absolute number of peptides presented on 

HLA-A may still increase as HLA-A, -B and –C all showed upregulation in the 

proteomic data. To validate these findings, we performed flow cytometry staining for 

total HLA-I and for two HLA allotypes (HLA-A03 and HLA-B27), for which specific 

monoclonal antibodies were available. Pan-HLA antibody staining on CRC-01 showed 

a 2.91-fold upregulation of total HLA, whereas staining for HLA-B27 showed an 8.21-

fold increase (Figure 2D), 2.82-fold more than the total HLA. Further to this, CRC-04 

showed a 2.85-fold upregulation of total HLA and 2.29-fold upregulation of HLA-A03, 

which is 0.8-fold that of the total HLA upregulation (Figure 2D). This validated the 

results from the peptide analysis and is consistent with previous studies showing a 

stronger upregulation of HLA-B compared to HLA-A molecules with IFNg(23,31,32). 

Thus, peptides on HLA-B allotypes increase in relative abundance within the 

immunopeptidome of individual PDOs, whereas those on HLA-A showed a relative 

decrease with IFNg treatment. 

 

We next assessed whether binding affinities of peptides to their cognate HLA allele 

may influence up- or downregulation. We focused on 9-mer peptides that changed 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 26, 2022. ; https://doi.org/10.1101/2022.03.23.485466doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.23.485466
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

strongly in intensity, yet originated from source proteins with modest abundance 

changes (defined again as log2 -1 to 1 FC). The group of Most Increasing Peptides 

(MIPs) was defined as those in the top 10th percentile of the immunopeptidomics FC 

data (red box in Figure 2A) and Most Decreasing Peptides (MDPs) as the bottom 10th 

percentile (blue box in Figure 2A). Plotting the NetMHCpan4.0-predicted affinities of 

MIPs and MDPs for their HLA (Figure 2E) revealed a similar data distribution between 

the two groups, and no significant difference between medians (p=0.1204, Mann-

Whitney test). Thus, peptide binding affinity did not noticeably impact whether a 

peptide was up- or downregulated by IFNg. 

 

Our next hypothesis was that other peptide-specific factors determine up- or down-

regulation, independently of protein and HLA abundance changes. To assess this, we 

first focused on large proteins that each contributed multiple MS-detected peptides in 

individual PDOs. A single protein can undergo a specific change in abundance and 

turnover with IFNg treatment  and this should affect all peptides that originate from that 

protein similarly. We therefore reasoned that the detection of up- and downregulation 

of peptides from the same protein with IFNg treatment would indicate that peptide-

specific characteristics influence these abundance changes. One limitation of this 

approach is that it does not control for differences in protein isoforms, which may be 

relevant for some proteins. Analysis of DYNC1H1, the protein that contributed the 

largest number of peptides across each of our PDOs, (Figure 2F), showed that some 

peptides originating from the same protein increased, whereas others decreased with 

IFNg treatment. This appeared independent of the cognate HLA allotype, and is hence 

not the consequence of differential HLA-A and –B upregulation. Analysis of 9 

additional large proteins, showed similar results (Supplementary Figure 1A-J). Thus, 

peptide-specific factors play a major role in determining whether a peptide is up or 

downregulated through IFNg.  

 

Some publications identified an overrepresentation of peptides derived from the N-

terminus of a protein due to premature termination of translation or nonsense mediated 

decay, but whether this effect increases or decreases with IFNg treatment is 

unknown(33,34). No systematic increase or decrease in the abundance of peptides 

located closer to the N-terminus was apparent in the analysis of long proteins (Figure 
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2F, Supplementary Figure 1A-J). To assess a much larger number of data points, we 

plotted the frequency of MIPs and MDPs against their relative location in the source 

protein (Supplementary Figure 1I). This showed only modest differences, suggesting 

that location within the protein had little effect on peptide production between UT and 

IFNg conditions.  
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Figure 3. Amino acid composition of MIPs vs MDPs and UEPs vs IEPs. A: 
Heatmap of the amino acid composition changes between 9-mer Most increasing 

peptides (MIPs - top 10th percentile peptide FC) and (MDPs - bottom 10th percentile 

peptide FC) as well as N- and C extensions. Detailed peptide numbers provided in 
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Supplementary Table 1 and 2. Percentage of peptides with highlighted amino acid in 

each position were calculated for each group, then the percentage values for the 

MDPs (N= 1,073) were subtracted from the MIPs (N=1,045). B: Percentage of 

peptides with proline in each position for MIPs (N= 1,073) and MDPs (N=1,045). C: 
Heatmap of the amino acid composition changes between (IFNg-exclusive peptides – 

IEPs) and (untreated-exclusive peptides – UEPs). Percentage of peptides with each 

amino acid in highlighted position were calculated for each group, then the percentage 

values for the UEPs (N=1,195) were subtracted from the IEPs (N=1,909). D: 
Percentage of peptides with proline in each position in IEPs and UEPs. Z-score 

analysis was used for the heatmaps, and changes with a Z-score <-2.5 or >2.5 were 

highlighted with a thick dotted line. Fisher’s exact test was used for statistical analysis 

of the proline abundance values, with significant results are indicated in green. 

 
We next investigated whether the amino acid composition of MIPs or MDPs 

influenced IFNg-induced changes in peptide abundance. MIPs and MDPs from each 

PDO were subset into their NetMHCpan4.0-predicted source HLA. We then 

analysed the frequency of all amino acids at each position of the 9-mers and values 

for MDPs were subtracted from MIP values (Figure 3A). The amino acid composition 

of the N-terminal and the C-terminal extensions adjacent to the presented peptide 

may also influence peptide processing(35), for example through the presence of 

specific cleavable amino acids or motifs for proteasome or peptidase processing. 

Therefore, we also assessed the 9aa N- and C-terminal extensions. Most differences 

were small, but Z-score analysis identified 12 amino acids in specific positions where 

the difference was 2.5 times larger than the standard deviation of all values (dotted 

outlines in Figure 3A). 

 

There was an overrepresentation of lysine, a basic amino acid, in position N1 of the 

N-terminal extension, with a Z-score of 3.4. Notable in this context was also the less 

marked overrepresentation of arginine, another basic amino acid, in position N1 which 

fell below the Z-score cutoff, with a score of 2.3. Although the increase in basic 

residues in position N1 may suggest an increase in tryptic cleavage activity with IFNg, 

we also identified an overrepresentation of lysine (Z-score of 5.5) in position 1 of MIPs. 

This cannot be explained by tryptic activity, as tryptic-like activity cleaves to the C-
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terminus of a basic residue, not the N-terminus. The small amino acids glycine and 

serine were underrepresented in position 1 of the MIPs (Z-scores of -2.7, and -2.9, 

respectively). This may be caused by the exchange of PSMB5, whose binding pocket 

has a preference for small amino acids, for PSMB8 in the immunoproteasome, which 

has a preference for chymotryptic-like substrates(2). However, some of these changes 

may also be due to activity of peptidases, as peptidases commonly cleave away 

additional amino acids from the N-terminus of a longer precursor peptide(35).  

 

The only positions in the C-terminal extension highlighted by our Z-score analysis were 

positions C2-C3, in which leucine was underrepresented (with Z-scores -3 and -2.9). 

The widely accepted view is that the C-terminus of the peptide is directly generated 

by the proteasome(23,36), as no carboxypeptidases have been identified in antigen 

processing. Therefore, one possible explanation for our observations is that the 

leucines in C2 and C3 influence pepide generation by the immunoproteasome.  

 

The amino acid with the largest difference within the 9-mer peptides was proline. This 

was underrepresented in positions 4 and 5 of MIPs with a Z-scores of -6.6 and -4.5, 

respectively (Figure 3A). Underrepresentation continued in the consecutive positions 

6-8, but these did not cross the Z-score threshold (-1.7, -1.2, and -1.0, respectively). 

We next plotted the proline abundance in MIP and MDPs for each position of the 

peptide and its N- and C extension and applied statistical testing. This showed 

significant differences for positions 4-6 and 8 (Figure 3B). We furthermore analysed 

all 10-mer MIP and MDP peptides identically to the 9-mers to ascertain whether these 

observations could be reproduced. This confirmed a similar underrepresentation in 

MIPs in positions 4-7, crossing the Z-score threshold in positions 4 and 5 

(Supplemental Figure 2A). To assess whether the depletion of proline in MIPs was 

detectable across PDOs and different HLA allotypes, we furthermore analysed the 

proline abundance in each position of 9-mer peptides separately for each PDO and 

HLA allotype. This showed consistent proline underrepresentation in MIPs, most 

strongly in positions 4 and 5 (Supplemental Figure 2B). Thus, peptides with proline in 

positions 4-5 were more likely to be downregulated through IFNg treatment and this 

was neither a PDO, nor a HLA-specific effect. Prolines in position 6-8 appeared to 

have a similar, but less pronounced effect. The heatmaps further demonstrated that 
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as proline decreased in abundance, there was no corresponding increase in another 

amino acid, but small increases dispersed among several amino acids. This suggests 

that the decrease of proline is a specific effect of IFNg. 

 

We also detected other larger changes in Z-score within the peptide: -4.9 and -3.8 for 

tyrosine and phenylalanine in P3; -3.4 for serine in P6; and -3.5 for glycine in P8. 

However, with the exception of tyrosine in P3, these findings were not reproduced in 

the original positions, or original positions +/-1 in the analysis of 10-mers 

(Supplementary Figure 2A). 

 

We next assessed whether peptides that were only detected in untreated PDOs 

(untreated-exclusive peptides – UEPs) or only detected with IFNg treatment (IFNg-

exclusive peptides – IEPs), and derived from proteins with a low FC (log2 -1 to 1 FC) 

showed the same signal. Proline was again underrepresented at positions 4-7 in IEPs 

compared against the UEPs (Figure 3C). The difference in proline abundance 

between UEPs and IEPs was significant in positions 4, 6 and 7 (Figure 3D). Of note, 

we also observed strong changes in the peptide anchor positions 2 and 9 that had not 

been apparent in the MIP vs MDP analysis. This can be explained by the relative 

overrepresentation of peptides presented by HLA-B among UEPs and by HLA-A in 

IEP, which is a consequence of the different levels of upregulation with IFNg we 

described above. To control for this, we also separated the condition-exclusive peptide 

groups by their source HLA (Supplementary Figure 2C). Due to the lower peptide 

numbers there is more variation in the data, but the IFNg-exclusive peptides showed 

a decrease in proline abundance in position 4 across different HLA allotypes. 

 

Taken together, our approach to scrutinize the changes in the peptidome showed that 

IFNg treatment results in an increased production of peptides with lysine, and a 

decreased production of peptides with small amino acids, at the N-terminus. Further 

to this, we found a decrease of peptides with proline in the center, mainly positions 4 

and 5, a pattern that was present across all three PDOs and different HLAs, strongly 

suggesting that this effect is conserved across biological models.  
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Figure 4. Validation of amino acid differences in the datasets from Goncalves et 

al. A: Correlation of proteomics fold-change between untreated and IFNg conditions, 

against normalized immunopeptidomics fold-change. Regression line for all peptides 

marked by a solid black line, regression line for peptides derived from proteins with 

FC > 2 and < 0.5 marked with a dotted line. Spearman rank analysis used to 

investigate correlation. MIPs (top 10th percentile peptide FC) and MDPs (bottom 10th 

percentile peptide FC) derived from low fold-change proteins (0.5-2X fold-change) 

highlighted with red and blue boxes, respectively. B: Heatmap of the 9-mer peptide 

amino acid constituent changes between MIPs and MDPs, as highlighted in Figure A. 

Percentage of peptides with highlighted amino acid in each position were calculated 

for each group, then the percentage values for the MDPs were subtracted from the 

MIPs. C: A graph depicting the percentage of peptides with proline in each position for 

the MIPs and MDPs. D. Heatmap of the 9-mer peptide amino acid constituent changes 

between (IFNg-exclusive peptides – IEPs) and (untreated-exclusive peptides – UEPs). 

Peptides were selected from ‘low fold-change’ proteins (0.5-2X fold-change). 

Percentage of peptides with highlighted amino acid in each position were calculated 
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for each group, then the percentage values for the UEPs were subtracted from the 

IEPs. Z-score analysis was used for the heatmaps, and changes with a Z-score <-2.5 

or >2.5 were highlighted with a thick dotted line. Fisher’s exact test was used for 

statistical analysis of the proline abundance values, with significant results are 

indicated in green. 

 
We next sought to validate our results in an independent dataset. The 

immunopeptidomics and proteomics datasets from the breast cancer cell line MDA-

MB-231(24) was appropriate for comparison as these are cancer cells that had also 

been treated with IFNg for 48 hours. We applied the same MIP vs MDP analysis 

method to 9-mers (Figure 4A). This confirmed the underrepresentation of proline at 

positions 4-6 and 8 of MIPs  (Figure 4B). Plotting the proline abundance between MIPs 

and MDPs, and statistical analysis with the Fischer’s exact test, showed statistically 

significant different in positions 3-6, and 8-9 (Figure 4C). We again observed a modest 

overrepresentation of lysine and arginine in position 1 of MIPs, however, this did not 

reach the Z-score threshold (Figure 4B).  

 

When the UEP vs IEP analysis was applied, it showed a decrease in proline in 

positions 4 and 6 in IEPs (Figure 4D) which did not cross the Z-score threshold. This 

could be due to the small sample number of 50 UEPs compared to 7,476 IEPs. 

Overall, the validation of an underrepresentation of proline in MIPs strongly supports 

that peptides harboring proline residues in positions 4, 5 and possibly also 6-8, are 

specifically downregulated through IFNg. 
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Figure 5. Simulating the impact of amino acid replacements on peptide affinity 
and binding stability to their cognate HLAs. A: Median log2 FC value from each 

HLA-A and -B from each PDO, demonstrating the impact of individually exchanging 

every single amino acid from detected peptides in positions 1-9 with proline, on 

NetMHCpan4.0-predicted nM affinity (N = 200 peptides per HLA). B: Median log2 FC 

value from each HLA-A and -B from each PDO, demonstrating the impact of 

individually exchanging every single amino acid from detected peptides in positions 1-

9 with proline, on NetMHCStabpan1.0-predicted (N = 200 peptides per HLA). C: 
Median log2 FC value of each HLA-A and -B from each PDO, demonstrating the 

impact of exchanging proline, in detected peptides with a single proline, with alanine, 

on NetMHCpan4.0-predicted nM affinity (inidividual sample numbers annontated on 

the plots). D: Median log2 FC value of each HLA-A and -B from each PDO, 

demonstrating the impact of exchanging proline, in detected peptides with a single 

proline, with alanine, on on NetMHCStabpan1.0-predicted half life (inidividual sample 

numbers annontated on the plots). E: Median log2 FC value of each HLA-A and -B 

from each PDO, demonstrating the impact of exchanging proline, in detected peptides 

with a single proline, with leucine (inidividual sample numbers annontated on the 

plots), on NetMHCpan4.0-predicted nM affinity. F: Median log2 FC value of each HLA-

A and -B from each PDO, demonstrating the impact of exchanging proline, in detected 
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peptides with a single proline, with leucine (inidividual sample numbers annontated on 

the plots), on NetMHCStabpan1.0-predicted. 

 

Proline has a unique impact on peptide secondary structures; its cyclic side chain 

gives the amino acid conformational rigidity, inducing a ‘kink’ of the amino acid 

sequence away from the proline residue which destabilizes secondary structures like 

helices and beta pleated sheets(37,38). We therefore investigated whether proline 

substitution impacts peptide affinity to or stability with its associated HLA. 

 

We first assessed whether proline in position 4-8 influences the NetMHCpan4.0-

predicted binding affinity to HLAs or the NetMHCstabpan1.0-predicted binding 

stability. Although binding affinity and stability are linked, they can differ, and stability 

may be more important for recognition by T-cell receptors(39). We sequentially 

replaced every amino acid in turn with proline, in a sample of 200 randomly selected 

9-mer MS-detected peptides from our PDOs, to investigate the impact proline 

inclusion has on the NetMHCpan4.0 predicted affinity and NetMHCstabpan1.0 

predicted stability (Figure 5 A-B). Replacing amino acids with proline was 

disadvantageous for peptide-HLA binding affinity and stability in the anchor residue 

positions P1-3 and P9. One exception was in the peptides which bind HLA-B35.08 in 

P2, where proline acts as an anchor residue, which saw increased affinity and stability. 

In contrast, substituting amino acids in P4-8 with proline had no strong effect on 

predicted binding affinity or stability, suggesting there is low specificity in these 

positions for peptide-HLA binding. To scrutinize this further, we selected all peptides 

containing a single proline and replaced it with either alanine or leucine (Figure 5 C-D 

and E-F). Alanine was selected as it eliminates side-chain interactions and doesn’t 

distort the confirmation of the main chain like proline. Leucine has similar properties 

to alanine, but it is a larger amino acid, so it is used where maintaining amino acid size 

may be important. Proline was infrequently detected in P1, 3, and 9 as it is less well 

tolerated in anchor positions for most HLA-I. The exception was again HLA-B35.08, 

which provides 94% of the detected peptides with proline in P2, due to its preference 

for proline as the anchor residue. Replacement of proline in P2 led to a large decrease 

in binding affinity and stability. Only small changes in peptide-HLA binding affinity and 

stability are seen in when replacing proline with alanine or leucine in P4-8; suggesting 
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that proline in these positions doesn’t cause any notable structural changes, and 

doesn’t influence the affinity or stability of the peptides for their predicted HLA.  

 

Discussion 
 

This study shows that peptide remodeling through IFNg is complex and influenced by 

multiple distinct mechanisms. Up- or downregulation of proteins by IFNg largely 

showed concordant abundance changes of corresponding peptides. However, an 

even larger fraction of peptides changed in cell surface abundance despite rather 

stable protein abundance. We and others have previously shown that this can be 

attributed, in part, to the increased chymotryptic activity of the 

immunoproteasome(21,23). Furthermore, IFNg signaling disproportionally increased 

HLA-B compared to HLA-A surface expression which led to an increase in peptides 

presented on HLA-B. Moreover, demonstrating that even peptides originating from the 

same protein can show a mix of up- and downregulation, and that this is neither 

dependent on their HLA binding affinities, nor their location within the source protein, 

allowed us to isolate peptide-specific characteristics that affect their abundance in 

IFNg conditions. 

 

The most notable novel finding was the underrepresentation of proline in the core of 

MIPs and IEPs. It has previously been shown that proline in the core of the peptide 

sequence protects peptides from internal cleavage by endopeptidases and the 

proteasome(35,40). Known proline endopeptidases are DPP9, PREP, DPP8, DPP3, 

but these were not upregulated by IFNg in our data. However, it is possible that the 

activity of such peptidases increases. An alternative theory is that the protective effect 

of proline is more relevant in the absence of IFNg. This may be due to the lower 

abundance and activity of the antigen processing and presentation machinery, which 

may cause peptides to spend more time in the cytoplasm and ER before being shuttled 

to the cell surface, giving any single peptide more exposure to peptidases and hence, 

a higher probability of internal cleavage. Acceleration of peptide generation, 

processing, and loading onto HLA-I through IFNg may allow peptides without proline 

to escape degradation. This may dilute proline-containing peptides within the peptide 

pool and explain their relative decrease or drop out. 
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Our insights into determinants of peptide abundance changes with IFNg exposure 

could be useful to improve the design of cancer vaccines or TCR engineered therapies 

as it could enable the more accurate selection of peptides likely to be presented on 

patient tumors. For example, peptides presented on HLA-B, which are likely to 

increase in intensity when T-cells release IFNg, may be preferable targets over those 

presented by HLA-A. Peptides with proline in positions 4 and 5, which favors peptide 

downregulation or even makes them undetectable in cancer cells exposed to IFNg, 

can be avoided. Whether the overall increased in HLA surface expression or the 

remodeling of the immunopeptidome is more relevant for the critical role of IFNg 

signaling for immunotherapy responses needs to be further investigated.   
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