

1 A Single Cell Cloning Platform for Gene Edited Functional Murine Hematopoietic Stem Cells

2

3

4 Hans Jiro Becker^{1,2,*}, Reiko Ishida², Adam C. Wilkinson³, Takaharu Kimura¹, Michelle Sue Jann Lee⁴,
5 Cevayir Coban⁴, Yasunori Ota⁵, Arinobu Tojo⁶, David Kent⁷, Satoshi Yamazaki^{1,2,*}

6

7 1 Laboratory for Stem Cell Therapy, Faculty of Medicine, Tsukuba University, Ibaraki, Japan

8 2 Division of Stem Cell Biology, Center for Stem Cell Therapy, The Institute of Medical Science, The
9 University of Tokyo, Tokyo, Japan

10 3 MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of
11 Oxford, UK

12 4 Division of Malaria Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo,
13 Japan

14 5 Department of Pathology, Research Hospital, The Institute of Medical Science, The University of
15 Tokyo, Tokyo, Japan

16 6 Tokyo Medical and Dental University, Tokyo, Japan

17 7 York Biomedical Research Institute, Department of Biology, University of York, UK

18

19 *Corresponding authors: j-becker@ims.u-tokyo.ac.jp, y-sato4@md.tsukuba.ac.jp

20 **MAIN TEXT**

21 **Abstract**

22 Gene editing using engineered nucleases frequently produces on- and off-target indels in
23 hematopoietic stem cells (HSCs). Gene-edited HSC cultures thus contain genetically
24 heterogenous populations, the majority of which either do not carry the desired edit or harbor
25 unwanted mutations. In consequence, transplanting edited HSCs carries the risks of suboptimal
26 efficiency and of unwanted mutations in the graft. Here, we present an approach for expanding
27 gene-edited HSCs at clonal density, allowing for genetic profiling of individual clones before
28 transplantation. We achieved this by developing a defined, polymer-based expansion system
29 and identifying long-term expanding clones within the CD201⁺CD150⁺CD48⁻c-Kit⁺Sca-1⁺Lin⁻
30 population of pre-cultured HSCs. Using the *Prkdc*^{scid} immunodeficiency model, we
31 demonstrate that we can expand and profile edited HSC clones to check for desired and
32 unintended modifications. Transplantation of *Prkdc*-corrected HSCs rescued the
33 immunodeficient phenotype. Our *ex vivo*-manipulation platform establishes a novel paradigm
34 to control genetic heterogeneity in HSC gene editing and therapy.

35

36 **Keywords**

37 Hematopoietic stem cell, *ex vivo* expansion, clonal expansion, chemically defined culture,
38 stem cell culture, gene editing, CRISPR/Cas9, transplantation, regenerative medicine.

39 **Introduction**

40 The rapid adoption of engineered nucleases has put hematopoietic stem cells (HSCs) at the center of
41 gene editing applications. The ability to functionally interrogate genes by introducing or correcting
42 mutations at precise loci has greatly advanced our understanding of HSC biology and has enabled
43 curative approaches for genetic diseases. CRISPR/Cas9 currently represents the most widespread
44 system for gene editing of the hematopoietic system (Naldini, 2019). A target-specific guide RNA
45 (gRNA) directs the Cas9 endonuclease to a genomic site of interest, where it induces a DNA double
46 strand break (DSB). The subsequent engagement of the cell-intrinsic DNA damage repair (DDR)
47 machinery can be exploited to create targeted modifications in HSCs (Dever et al., 2016; De Ravin et
48 al., 2017; Schioli et al., 2017). Since mutagenic repair (e.g. non-homologous end joining (NHEJ))
49 takes precedence in primitive HSCs (Mohrin et al., 2010), a phenomenon closely tied to their dormant
50 phenotype, random small insertions and deletions (indels) represent the most common on-target
51 editing outcome (Dever et al., 2016; Genovese et al., 2014). In contrast, correction via templated repair
52 (i.e. homology-directed repair (HDR)) among long-term (LT)-HSCs remains inefficient (Lattanzi et al.,
53 2021; Mohrin et al., 2010). Off-target mutations may also raise concerns about genotoxicity in
54 Cas9-edited cells (Tsai and Joung, 2016). Together, these unwanted mutations may confound the
55 effects of the edited gene of interest and represent incalculable risks in basic and translational research
56 settings. Apart from gene editing, maintaining HSC self-renewal in long-term cultures required by
57 gene editing protocols remains challenging (Wilkinson et al., 2020). Consequently, edited and
58 bulk-expanded HSC cultures contain genetically and functionally heterogenous populations and only
59 include a low fraction of functional HSCs with the desired genetic modifications.

60 Expansion of single, *bona fide* HSCs would overcome this limitation by enabling direct profiling of
61 on- and off-target editing outcomes, allowing for selective transplantation only of clones with a
62 defined mutational pattern. However, current protocols do not allow for expansion of HSCs at clonal
63 density to the extent necessary for transplantation. Clonal expansion technologies for embryonic stem
64 cells (ESCs) and induced pluripotent stem cells (iPSCs) have been a major driver for advances in the

65 biology and translational research of PSCs, yet the generation of functional HSCs from PSCs remains
66 a major hurdle.

67 We recently reported on a serum-free, polyvinyl alcohol (PVA)-based HSC expansion protocol that
68 permits up to 899-fold expansion of HSCs over a period of 4 weeks (Wilkinson et al., 2019). Here, we
69 use this protocol to show that bulk expansion produces a genetically heterogenous graft with on- and
70 off-target indels. Addressing this issue, we present a novel system that supports single cell expansion
71 of edited HSCs and define a phenotype that assists in selecting precultured clones with long-term
72 expansion potential. We apply this system to a gene correction model of severe combined
73 immunodeficiency (SCID), demonstrating the feasibility of single cell expansion for sequence-based
74 selection of edited HSC clones.

75 **Results**

76 *Gene-edited HSCs correct *Prkdc*^{scid} immunodeficiency but bear on- and off-target indels*

77 The immunodeficient phenotype in CB17/SCID mice is caused by a T to A mutation in the *Prkdc* gene

78 (*Prkdc*^{scid}), creating a premature termination codon (PTC; p.Y4046X) and leading to functional loss of

79 its product, DNA-dependent protein kinase catalytic subunit (DNA-PKcs, Fig. 1A) (Araki et al., 1997).

80 DNA-PKcs is indispensable for the resolution of DNA double strand breaks (DSBs) during V(D)J

81 recombination, which is reflected in the absence of functional B and T cells in CB17/SCID mice.

82 To determine whether the *Prkdc*^{scid} phenotype can be corrected with gene edited and bulk-expanded

83 HSCs and to assess the levels of indels generated in the process, we designed a gene editing protocol

84 based on our previously established *ex vivo* HSC expansion platform (Fig. 1B) (Wilkinson et al., 2019).

85 CD201⁺CD150⁺c-Kit⁺Lin⁻ cells from CB17/SCID mice were cultured in PVA-based medium

86 (PVA-HSC) for three days (Fig. S1A). We included CD201 (EPCR) in our isolation panel since the

87 commonly employed marker Stem Cell Antigen 1 (Sca-1) is known to be poorly expressed on

88 hematopoietic cells of non-C57BL/6 mouse strains and because CD201 has shown to be a reliable

89 marker in BALB/c mice, from which the CB17/SCID strain is derived (Vazquez et al., 2015). Cas9

90 ribonucleoprotein (RNP) complexes and a corrective HDR template were delivered into HSCs three

91 days after isolation. One week after editing, the majority of alleles contained indels (*Prkdc*^{indel}, 48%),

92 while 26% had incorporated the HDR donor sequence (*Prkdc*^{HDR}, Fig. 1C). HDR frequencies were

93 lowest (11±2%) in the most stringently defined HSC population (CD201⁺CD150⁺KL) and increased in

94 fractions with lower HSC enrichment, in line with previous reports (Fig. S1B)(Dever et al., 2016). One

95 week post editing (day 10 of culture), most cells in the expansion cultures remained c-Kit⁺ and Lin⁻, with

96 a majority also expressing CD150 (Fig. 1D). Although the initial starting population of

97 CD201⁺CD150⁺KL cells represented only 14.7% of expanded HSCs, absolute quantification revealed a

98 8.9-fold expansion (Fig. 1E).

99 To validate functional recovery of edited SCID HSCs, we transplanted expanded bulk HSC cultures into
100 irradiated CB17/SCID recipients 7 days post-editing. B220⁺ B cells as well as CD4⁺ and CD8⁺ T cells

101 could be detected in peripheral blood (PB) samples from 4 weeks post-SCT (Fig. 1F). Spleens of
102 transplanted mice contained high fractions of B and T cells ($B220^+$ 36%, $CD4^+$ 16%. $CD8^+$ 6% of
103 splenocytes, Fig. S1C). We further found that thymocytes of transplanted mice were abundant with
104 $CD4^+CD8^+$ double positive (DP), $CD4^+$, and $CD8^+$ single positive (SP) cells (Fig. S1D) and thymus
105 histology showed cortical and medullary regions (Fig. S1E). The distributions of lymphocyte
106 populations in the spleen and thymus were similar to those in age matched CB17/WT mice, suggesting
107 orthotopic development of B and T lymphocytes. Secondary transplantations confirmed that LT-HSCs
108 had been successfully edited in our gene correction model (Fig. 1F).

109 As mentioned above, the high frequency of indel and scid alleles in the transplanted HSPC population
110 is a key limitation of this straightforward bulk expansion approach (Fig. 1C). To check how this
111 distribution was reflected in mature cell lineages, we sequenced PB cells 16-20 weeks post-SCT. As
112 expected, $Prkdc^{HDR}$ frequencies were high in lymphocytes ($B220^+$: 69%, $CD4^+$: 70%, $CD8^+$: 63%),
113 suggesting at least monoallelic correction in these populations (Fig. 1G). Since noncorrected cells fail
114 to complete lymphocyte development in this model, their high prevalence in the transplanted graft did
115 not obstruct the rescue of these mature compartments. By contrast, myeloid cells, which are not subject
116 to the same selective pressure, showed a high rate of on-target indels ($Prkdc^{indel}$, 52%) and a low
117 frequency of $Prkdc^{HDR}$ alleles (14%, Fig. 1G). Off-target analysis of bulk-expanded HSCs showed a low
118 but substantial prevalence of non-intended edits (Fig. 1H, Table S1).

119 While gene-edited HSCs effectively reversed the $Prkdc^{scid}$ phenotype, these results indicate that most
120 transplanted HSCs and their progeny contained unintended perturbations. The low allelic chimerism of
121 $Prkdc^{HDR}$ and high abundance of $Prkdc^{indel}$ among myeloid cells demonstrate the challenge of ensuring
122 that all hematopoietic cells are supplied by a genetically defined population of edited HSPCs. The
123 potentially negative consequences of on-target indels has also recently been highlighted in other gene
124 correction models (Wilkinson et al., 2021). This drawback inspired us to establish a single cell HSC
125 expansion system that would allow sequence-based selection of *bona fide* HSCs at the clonal level.

126 *CD150⁺CD201⁺CD48⁻KSL cells contain clones with long term expansion potential*

127 Single cell expansion of edited HSCs requires the identification of clones with prospective long-term
128 (LT) expansion potential within a population of precultured cells. Cell surface markers are particularly
129 useful since they permit flow cytometric profiling and simultaneous cloning via fluorescence-activated
130 cell sorting. However, HSC marker expression undergoes a dynamic shift over the course of *ex vivo*
131 expansion (Cheng and Lodish, 2005; Noda et al., 2008).

132 To address this issue, we leveraged index sorting analysis to identify HSC markers that predict LT
133 expansion of HSC clones. Fresh CD34⁻CD150⁺c-Kit⁺Sca-1⁺Lin⁻(CD34⁻CD150⁺KSL) HSCs were
134 cultured for 10 days, after which KSL cells were subjected to index sorting. We used C57BL/6-derived
135 HSCs for these experiments, since this was the background of mice used to optimize our HSC culture
136 system (Wilkinson et al., 2019) and is widely used in the field. Marker profiles of each sorted KSL cell
137 were compared with HSC colony formation after 14 days. Expression of a total of six HSC markers
138 within the KSL population, divided into two panels (CD34, CD48 and CD105; as well as CD135,
139 CD150 and CD201), were evaluated (Fig. 2A). Colony formation was observed in 17.1% of sorted
140 KSL clones (set 1: 16.2%, set 2: 19.1%), mainly from clones within the CD48⁻, CD150⁺ and CD201⁺
141 KSL populations (Fig. 2B). Quantification of expression levels confirmed significantly higher
142 expression of CD150 and CD201 as well as lower expression of CD48 among colony-forming HSCs
143 (Fig. 2C-D). CD135 expression was lower in colony-forming HSCs (Fig. 2C), however, the small
144 absolute difference in expression precludes the use of this marker for effective gating.

145 We next performed RNA sequencing to characterize the populations defined by these markers in
146 10-day bulk-expanded HSPCs (Fig. S2A). Comparing global expression profiles, we found the
147 greatest difference between CD201⁺CD150⁺CD48⁻ and CD201⁻CD150⁺ KSL cells, with
148 CD201⁺CD150⁺CD48⁺KSL cells representing an intermediary phenotype (Fig. S2B). This
149 representation was mirrored in the expression profiles of canonical genes related to hematopoiesis:
150 transcripts of HSC-associated genes, such as *Hlf*, *Mecom* and *Fgd5*, were more abundant in
151 CD201⁺CD150⁺CD48⁻KSL cells, whereas downstream progenitor-associated genes (*MPO*, *Cebpa*)

152 were upregulated in CD201⁺CD150⁺ KSL cells (Fig. 2E). Enrichment analysis confirmed that the
153 transcriptional phenotype of CD201⁺CD150⁺CD48⁻ KSL cells was similar to that of LT-HSCs (Fig. 2F),
154 while CD201⁺CD150⁺ KSL cells were similar to progenitor cells (Fig. 2G). GO term enrichment
155 pointed to a proliferating state of CD201⁺CD150⁺ KSL cells, with several enriched mitosis- and
156 translation-related pathways (Fig. S2D), matching our previous observation that progenitor cells
157 proliferate more rapidly than primitive HSCs in culture (Fig. 1E).

158 These results indicate that CD150⁺CD201⁺CD48⁻ KSL cells possess LT expansion potential and retain
159 a transcriptional phenotype associated with *bona fide* HSCs after extended culture. We thus considered
160 these cells suitable for single cell cloning and expansion. However, we found that the
161 CD201⁺CD150⁺CD48⁻ expression profile was lost in single clone-derived colonies generated from this
162 population after 14 days, suggesting that repopulating activity had been compromised (Fig. S2E).
163 Since we have shown previously that HSC marker expression is preserved in bulk cultures even after
164 28 days of expansion (Wilkinson et al., 2019), we reasoned that the single cell cloning step and
165 expansion conditions, rather than the total length of *ex vivo* expansion, were not supported by our
166 expansion system.

167

168 *Soluplus is a superior alternative to PVA for single cell HSC expansion*

169 Having established that HSC activity among bulk cultured cells is enriched in the
170 CD150⁺CD201⁺CD48⁻ KSL population but that PVA-based culture conditions poorly supported their
171 clonal expansion after re-sorting, we sought to improve clonal expansion culture conditions by
172 screening alternative serum replacement compounds. We cultured 50 freshly isolated CD34⁻ KSL cells
173 in media supplemented with recombinant albumin, PVA and 7 different polymers and evaluated cell
174 growth after one week. Of all compounds tested, only Soluplus led to comparable levels of
175 proliferation as PVA and recombinant albumin (Fig. S3A). Soluplus is an amphiphilic polyvinyl
176 caprolactam-acetate polyethylene glycol (PCL-PVAc-PEG) graft copolymer approved for clinical use
177 as a drug solubilizer (Linn et al., 2012). To identify the most suitable concentration, we performed

178 transplantations with HSCs grown in titrated concentrations of Soluplus. Sixteen-week chimerism was
179 comparable in all dose groups (Fig. S3B). Supplementation with 0.2% Soluplus occasionally led to
180 mild micelle formation in cultures, which obscured the visibility of cells. Based on our assay, we
181 selected a concentration of 0.1% Soluplus for our expansion system.

182 To validate the cell growth supporting properties of Soluplus, we directly compared single HSC
183 expansion conditions using Soluplus and PVA. Freshly isolated, single CD34⁻CD150⁺KSL cells from
184 C57BL/6 mice were cultured in individual wells on 96-well plates. After 19 days, expansion was
185 evaluated by flow cytometric profiling including cell viability and HSC marker expression (Fig. 3A).
186 Cell viability was higher in clones cultured in Soluplus-supplemented medium, as measured by
187 propidium iodide (PI) exclusion staining (Fig. S3C). Accordingly, the percentage of cloned HSCs
188 forming viable cell colonies (i.e. >20% live cells) was higher under Soluplus expansion conditions
189 (Fig. 3B). Furthermore, we found that Soluplus supplementation was associated with a higher
190 retention of HSC marker expression. In particular, the fraction of CD201⁺CD150⁺KSL cells was
191 higher in clones cultured in Soluplus-containing medium, suggesting that Soluplus was superior in
192 expanding phenotypically primitive HSCs (Fig. 3C, S3D).

193 We next asked if HSC clones cultured in Soluplus medium produce functional HSC grafts *in vivo*.
194 Freshly isolated CD45.1⁺CD34⁻CD150⁺KSL HSCs were cloned and cultured for 35 days. Three
195 clones containing 35%, 17% and 6% CD201⁺CD150⁺KSL cells were selected for split-clone
196 transplantation into 10 to 15 CD45.2⁺ recipients against 5×10^5 WBM cells (Fig. 3D). All recipients
197 showed multilineage LT engraftment ($\geq 1\%$ chimerism) in PB samples despite the high number of
198 recipients per clone (Fig. 3E). Secondary transplantations from pooled bone marrow of highly
199 chimeric mice showed successful engraftment of CD45.1⁺ cells in all secondary recipients (Fig. 3E).

200 To quantify the potential for single HSC expansion with Soluplus, we performed a limiting dilution
201 assay (LDA) with a CD34⁻CD150⁺KSL clone expanded for 28 days (6.37×10^5 cells) and containing
202 84% of CD201⁺CD150⁺KSL cells (Fig. S3E). We observed multilineage chimerism of $\geq 1\%$ in all dose
203 groups including from just 10 cells (in 2/5 recipients, Fig. S3F-G). Based on these results, we

204 estimated a mean HSC frequency of 1/18.9 (confidence interval (CI) 1/6.1-1/61.4) in the culture using
205 extreme limiting dilution analysis (ELDA, Fig. 3F)(Hu and Smyth, 2009) and determined that the
206 initial HSC had expanded >33,000-fold (range 10,375- to 104,426-fold corresponding to frequency
207 CIs) under our culture conditions. Thus, our results suggest that Soluplus is superior to PVA in
208 supporting efficient expansion of single HSCs. Based on these encouraging results, we attempted to
209 expand precultured and gene-edited HSC clones.

210

211 *Soluplus enables single cell expansion of edited HSCs*

212 To evaluate HSC gene editing and clonal expansion with single allele resolution, we developed a
213 strategy that targets Protein Tyrosine Phosphatase Receptor Type C (*Ptprc*), a cell surface protein. Two
214 alleles of the *Ptprc* gene are common among major inbred mouse strains: *Ptprc*^a and *Ptprc*^b, which
215 code for CD45.1 (Ly5.1) and CD45.2 (Ly5.2), respectively. The CD45.1 allele is expressed in SJL/J
216 and STS/A strains, while C57BL/6 and BALB/c strains share the CD45.2 allele (Komuro et al., 1974).
217 Sequence diversion between these two alleles amounts to 12 base differences that result in 5 amino
218 acid substitutions (Zebedee et al., 1991). The epitope of CD45.1- and CD45.2-binding antibody clones
219 A20 and 104 is defined by a single base difference at codon 302 (based on reference transcript
220 NM_001111316.2, Fig. 4A)(Mercier et al., 2016). We leveraged the low complexity of this single
221 nucleotide polymorphism (SNP) to simultaneously identify and clone gene-edited HSCs, followed by
222 single cell expansion and transplantation (Fig. 4B). To this end, we knocked in the CD45.1-specific
223 SNP variant (A→G, p.K302E) into the *Ptprc* gene of CD45.2⁺ HSCs (Fig. S4A).

224 CD34⁻CD150⁺KSL HSCs from CD45.2⁺ C57BL/6 mice were cultured in Soluplus-HSC expansion
225 medium for 3 days, after which we targeted *Ptprc* for allele conversion. Four days after editing, 20%
226 ($\pm 5.8\%$) of cells had converted to the CD45.1⁺CD45.2⁻ phenotype (Fig. S4B). As with the SCID model,
227 conversion rates were lower in the primitive CD201⁺CD150⁺KSL fraction (Fig. S4C). We started 570
228 single cell cultures from the CD45.1⁺CD201⁺CD150⁺KSL population. 14 days later, cell proliferation
229 could be observed in, and appropriate flow cytometric data could be obtained from, 46% of all sorted

230 clones (261/570). Surface marker expression was heterogenous, with 24% (63/261) containing at least
231 10% of CD201⁺CD150⁺KSL cells (Fig. 4C). Fifty-one colonies were selected for transplantation into
232 single CD45.2⁺ recipients. Donor chimerism of $\geq 5\%$ was observed in 29/51 (57%) and 17/51 (33%)
233 recipients 4 and 16 weeks after transplantation, respectively. Among the recipients showing LT
234 chimerism, multilineage reconstitution (myeloid, B cell and T cell lineages $\geq 5\%$ of donor
235 hematopoiesis) was observed in 8 recipients (16% of recipients) (Fig. 4D), while the remaining mice
236 showed biased donor hematopoiesis (Fig. S4D). Linear correlation analysis of pre-SCT marker
237 expression and 16-week chimerism revealed several parameters associated with LT engraftment, the
238 strongest of which was the fraction of CD201⁺CD150⁺KSL cells in the transplanted graft (Fig. 4E, Fig.
239 S4E). Secondary transplants were performed with whole bone marrow cells from a highly
240 chimeric primary recipient. Analysis of bone marrow cells revealed high chimerism of 77% within the
241 KSL population (Fig. S4F). Sixteen weeks after secondary transplantation, multilineage PB donor
242 chimerism was observed in all secondary recipients (Fig. 4F).
243 Together, these results established that HSCs can be gene edited and clonally expanded while
244 maintaining their self-renewal properties using our expansion system. Our experiments also confirm
245 the expression of CD201 and CD150 on expanded clones as predictive of LT engraftment. This
246 approach therefore provided the framework for probing single HSC clones for on- and off-target edits
247 prior to transplantation.
248

249 *Single cell expansion of edited HSCs permits the assembly of a genetically defined HSC graft*
250 To explore this approach, we adopted our single cell expansion platform to the SCID
251 immunodeficiency model. Unlike CD45 allele conversion, *Prkdc* editing does not produce a detectable
252 marker on cell surface proteins. Therefore, the generation of a high proportion of *Prkdc*^{HDR} alleles
253 prior to cloning is desirable to increase the total yield of transplantable candidates. As it has been
254 reported that inactive *Prkdc* may shunt the DDR towards the HDR pathway in cell lines, increasing
255 knockin rates (Riesenbergs et al., 2019), we initially compared HDR efficiencies in *Prkdc*-deficient

256 (CB17/SCID) and -proficient (CB17/WT) HSCs using our CD45 allele conversion assay. We did not
257 observe an increase in the CD45.1⁺ fractions, suggesting that HDR frequencies are unaltered in SCID
258 HSCs (Fig. S5A). In contrast, the population of CD45^{-/-} knockout cells was significantly increased in
259 SCID HSCs, suggesting higher prevalence of indels due to non-HR-based repair. Sequencing of alleles
260 in this population revealed a relatively higher proportion of large indels (≥ 5 bp, Fig. S5B) in SCID
261 HSCs, indicative of alternative end joining pathways such as microhomology-mediated end joining
262 (MMEJ), which has been reported to be de-repressed in *Prkdc*-deficient cells (McVey et al., 2008).
263 Analogous to our previous experiments, we expanded SCID HSCs in Soluplus-supplemented
264 expansion medium and edited SCID HSCs to correct the *Prkdc*^{scid} mutation. After editing,
265 CD201⁺CD150⁺CD48⁻KL cells were cloned by flow cytometry and expanded for 14 days (Fig. 5A).
266 Since expression of CD201 and CD150 was predictive of LT engraftment, we first screened for
267 colonies containing a CD201⁺CD150⁺KL population of over 10% and then checked for the presence of
268 the corrected allele (*Prkdc*^{HDR}) and absence of off-target mutations. Candidate clones were then
269 combined and administered to a SCID recipient (Fig. 5A). Phenotypic profiling data could be obtained
270 from 19% (384) of sorted clones (Fig. 5B). Of these, 26% (99/384) contained a population of
271 CD201⁺CD150⁺KL HSCs $\geq 10\%$, and sequencing of all intended loci could be achieved in most of
272 these clones (96/384). We detected *Prkdc*^{HDR} in 57% (55/96) of genotyped clones, and all corrected
273 clones were free of off-target mutations at predicted sites (Fig. 5C). As a result, an average of 18
274 HDR⁺Off-target⁻ colonies were selected for transplant per experiment. Due to this selection step, the
275 combined allelic composition of the selected clones was dominated by *Prkdc*^{HDR} alleles (67%, Fig.
276 5D). This stands in contrast to our bulk-transplant approach, in which indel alleles were most abundant
277 (Fig. 1C). In PB samples from transplanted SCB17/SCID mice, we detected B and T lymphocytes
278 from week 4 through week 20 post-transplant, confirming LT engraftment (Fig. 5E). In contrast to our
279 bulk-transplant experiments, the *Prkdc*^{HDR} allele was highly prevalent not only in lymphoid, but also in
280 myeloid cells ($> 60\%$, Fig. 5F). Notably, *Prkdc*^{indel} frequency was low in all PB lineages.
281 Having achieved robust reconstitution of lymphoid cells, we asked if correction of the *Prkdc*^{scid} allele

282 also led to development of a functional immune system. Double (CD4⁺CD8⁺) and single (CD4⁺ and
283 CD8⁺) positive cells were detected among thymocytes of SCID recipients (Fig. S5C). Length diversity
284 of the third complementary determining region (CDR3) in the T cell receptor gene is a direct function of
285 *Prkdc* activity. We measured CDR3 region length distributions within multiple T cell receptor beta chain
286 (*Tcrb*) gene families of splenic CD4⁺ T cells using spectratype analysis (Pannetier et al., 1993).
287 Distribution profiles showed gaussian distribution patterns without oligoclonal spikes (Fig. S5D),
288 suggesting that restored *Prkdc* activity permitted the generation of unbiased CDR3 regions. To confirm
289 the status of immune cell function *in vivo*, we immunized transplanted CB17/SCID mice with a
290 T-dependent antigen, nitroiodophenyl (NIP)-conjugated OVA (NIPOVA), intraperitoneally (i.p.)(Lee et
291 al., 2019). NIP₃₀-specific IgG and IgM levels were significantly elevated in the serum of transplanted
292 CB17/SCID mice 19 days post-immunization (p.i.), indicative of a specific humoral immune response
293 (Fig. S5E). On the other hand, untreated CB17/SCID mice showed no specific response. To assess
294 cellular immunity, we inoculated mice with the human lung cancer cell line A549, hypothesizing that
295 reconstitution of immunity would trigger xenograft rejection. Indeed, rejection of the injected cells
296 was observed in transplanted mice only, whereas progressive tumor growth was detected in
297 nontransplanted SCID mice (Fig. 5G). We therefore conclude that the molecular and functional
298 hallmarks defining the *Prkdc*^{scid} phenotype had been reversed. In sum, these results illustrate that a
299 functional graft can be assembled from individually expanded and profiled gene-edited HSC clones.

300 **Discussion**

301 Here, we have introduced a fully defined culture system for clonal expansion and selection of
302 gene-edited LT-HSCs. To our knowledge, this represents the first protocol to clonally expand, directly
303 sequence, and transplant any functional primary adult tissue stem cells without the use of pluripotent
304 intermediary cells. We believe our results not only have important implications for studying the
305 genetics of hematopoiesis, but also highlight the potential of this approach for gene therapy. With the
306 widespread interest in gene editing as a new therapeutic modality, concerns about hazardous on- and
307 off-target mutations in edited cell products have become more visible (Sheridan, 2021). A string of
308 recent reports have uncovered previously underappreciated lesions, such as kilo- and megabase-scale
309 deletions as well as chromotrypsis, illustrating the potential risk of Cas9-based gene editing
310 (Adikusuma et al., 2018; Boutin et al., 2021; Leibowitz et al., 2021). Our defined culture system
311 addresses this concern in the murine model by enabling marker-free selection of edited LT-HSC clones
312 with known on- and off-target mutational profiles.

313 Surface markers associated with HSC activity specifically in expanded HSCs have been identified in
314 the human and murine systems, e.g. ITGA3 (Tomellini et al., 2019), EPCR (CD201) (Fares et al.,
315 2017), and CD48 (Noda et al., 2008). We found that the CD201⁺CD150⁺CD48[−]KSL phenotype was
316 most likely to contain long-term expanding clones, and that the addition of Soluplus facilitated the
317 expansion of transplantable, *bona fide* HSC colonies to previous unattainable levels of over
318 30,000-fold. *In vivo*, this translated to high levels of chimerism in split-clone transplantations. The
319 mechanism by which Soluplus, a biocompatible excipient for oral drug formulations, exerts its
320 HSC-supportive properties remain undefined, yet it seems reasonable to assume that Soluplus
321 enhances the solubility and stability of cytokines and other essential factors (Linn et al., 2012; Obata et
322 al., 2014). The fact that many sorted clones did not produce colonies at all underlines the need for
323 novel markers to further resolve LT-HSC activity in expansion cultures.

324 Previous studies have achieved molecular reversion of the *Prkdc*^{scid} mutation in Lin[−] bone marrow cells,
325 but low efficiencies have obstructed effective functional correction of immunodeficiency *in vivo*

326 (Abdul-Razak et al., 2018; Rahman et al., 2015). This might be attributed to the higher occurrence of
327 mutagenic repair events, such as MMEJ. Our demonstration that a sufficient corrected cell dose can be
328 generated despite this challenging background highlights the utility of HSC expansion to propagate
329 corrected cells *ex vivo*. Such an approach would also be highly applicable to settings where on-target
330 mutations are detrimental and limit the curative potential of gene correction approaches, e.g.
331 correction of the hemoglobin sickle allele (Wilkinson et al., 2021).

332 A possible limitation of single cell-expanded HSCs for SCT is the oligoclonal composition of the
333 transplanted graft, which might raise concerns regarding clonal dominance. While these concerns are
334 warranted, it is important to consider the impact of Cas9 gene editing on the clonal composition of
335 HSC pools *in vivo*. Cas9-mediated DSBs induce activation of p53 in edited HSCs, restricting clonal
336 diversity (Dever et al., 2016; Schioli et al., 2019). A recent study by Ferrari, Jacob et al. has shown
337 that the long-term repopulating graft arising from a Cas9-edited human HSC pool is dominated by less
338 than 10 clones after transplantation into NSG mice (Ferrari et al., 2020). Similarly, Sharma, Dever et al.
339 have reported that a median of 2 clones contribute to 50% of allele diversity in an *HBB* gene editing
340 model (Sharma et al., 2021). Although these observations obtained from xenograft models may not
341 accurately inform our understanding of clonal dynamics in the autologous setting, they do reflect the
342 negative impact of Cas9 gene editing on HSC clonal diversity. Thus, one can speculate that our
343 screening process based on the CD201⁺CD150⁺CD48⁻KSL phenotype selects for clones that would
344 have dominated long-term hematopoiesis even if the bulk population had been transplanted.
345 In summary, we have developed an easily adoptable and powerful clonal expansion platform for
346 precise genetic and functional interrogation of HSCs at the single cell level.

347 **Author contributions**

348 Conceptualization, H.J.B. and S.Y.; Methodology, H.J.B., R.I., M.S.J.L., S.Y.; Investigation, H.J.B,
349 R.I., M.S.J.L., S.Y.; Formal Analysis, H.J.B., R.I., M.S.J.L., A.W., D.K., T.K., C.C., A.T., Y.O.;
350 Writing – Original Draft, H.J.B.; Writing – Review & Editing, A.W. and D.K.; Resources, A.T., Y.O.;
351 Funding Acquisition, S.Y.; Supervision, S.Y.

352

353 **Acknowledgments**

354 We thank the University of Tokyo Institute of Medical Science (IMSUT) FACS core laboratory for
355 expert technical assistance. We thank T. Sano, Dr. K. Kolter and Dr. F. Guth of BASF for providing
356 expert knowledge regarding the polymers used in this study, and K. Woltjen for fruitful discussions.
357 We further thank Dr. M. Muratani and Tsukuba i-Laboratory LLP for sequencing services
358 (<https://www.tsukuba-i-lab.com>). This work was supported by the German Research Foundation
359 (BE 6847/1-1 to H.J.B.), the Japan Society for the Promotion of Science (JSPS; #20K16234 to
360 M.S.J.L., #21F21108 and #20K21612 to S.Y.), the Kay Kendall Leukaemia Fund (A.C.W.), the Japan
361 Science and Technology Agency (JST; #18071245 to C.C.), and the Japanese Agency for Medical
362 Research and Development (AMED; #21bm0404077h0001 and #21bm0704055h0002 to S.Y.).

363

364 **Declaration of Interests**

365 The authors have no relevant interests to disclose.

366 **MAIN FIGURE TITLES AND LEGENDS**

367 **Figure 1. Autologous HSCT gene correction rescues the *Prkdc*^{scid} phenotype but introduces on-
368 and off-target indels.**

369 (A) Genomic context of the *Prkdc*^{scid} mutation in exon 85. White boxes: exons, grey box, 3'UTR.
370 * denotes location of *Prkdc*^{scid} mutation. (B) Experimental scheme of the gene editing and HSC
371 expansion model. (C) Post-editing allele distribution at the *Prkdc* locus, assessed by ICE (n=3 cultures).
372 (D) Fractions of immunophenotypically defined HSPC populations within cultures on day 10 of
373 culture, 7 days post-editing. Percentage of all live cells (n=3 cultures). (E) Absolute cell numbers (left
374 panel) and fold-change expansion (right panel) of cultured HSPCs, day 10 of culture. (F) Left:
375 Frequencies of peripheral blood (PB) leukocytes as percentage of all live leukocytes (n=3 groups, 3-4
376 mice per group). Plot next to dashed line shows frequencies 12 weeks post-secondary SCT (n=5 mice).
377 Right: representative FACS plots 20 weeks post-transplant. (G) Frequencies of *Prkdc* alleles in sorted
378 PB cells 20 weeks post-SCT (n=3 experiments, 3-4 mice per group). (H) On- and off-target (OT)
379 activity of the *Prkdc*-specific gRNA, assessed with TIDE. The seven highest scoring off-target sites, as
380 predicted by COSMID, were interrogated. See Table S1 for detailed information about the off-target
381 sites interrogated.

382 **Figure 2. Identification of a surface marker combination for long-term (LT) expanding HSC**

383 **clones.**

384 **(A)** Experimental setup. **(B)** Uniform Manifold Approximation and Projection (UMAP) representation
385 of sorted KSL clones with overlay of panel 1 (upper) and 2 (lower) surface markers. Expansion
386 colony-forming clones are indicated in red. **(C-D)** Quantification of markers associated with colony
387 expansion. Left: Fluorescence intensity (FI) measured at index sorting. Data presented as
388 log-transformed and normalized to mean. Box plots with whiskers showing minimum and maximum.
389 Center: Fraction of clones of the indicated phenotype showing LT expansion. Right: Representative
390 FACS sorting plots, LT-expanding clones indicated in red. **(C)** Panel 1 (n= 110 clones); **(D)** panel 2
391 (n=117 clones). Multiple Mann-Whitney tests with FDR correction. **(E)** RNAseq expression profiles of
392 select HSC- and progenitor-associated genes. Error bars represent SD. One-way ANOVA with Tukey's
393 post-test. **(F-G)**, Gene set enrichment analysis (GSEA) of differentially expressed genes in
394 CD201⁺CD150⁺CD48⁻KSL **(F)** and CD201⁺CD150⁺KSL **(G)** cells.

395 *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.

396 **Figure 3. Optimization of polymer-based cultures for single cell HSC expansion.**

397 **(A)** Scheme of experimental setup. **(B)** Percentage of colonies with $\geq 20\%$ live cells (n=5 experiments).

398 Unpaired, two-tailed t-test. **(C)** Percentage of phenotypic HSC populations in live colonies cultured in

399 PVA (n=94)- and Soluplus (n=155)-based media. Multiple Mann-Whitney tests with FDR correction.

400 **(D)** Schematic of split clone transplantation. **(E)** Donor PB chimerism and lineage distribution in 3

401 recipient groups transplanted with split clones. Secondary SCT was performed with the group showing

402 highest chimerism, data shown to the right of the dashed line. **(F)** Left: ELDA output of HSC

403 frequency calculation. Right: Box plot represents calculated reciprocal mean, upper and lower limits of

404 HSC frequency.

405 Error bars represent SD. ***P<0.001, ****P<0.0001.

406 **Figure 4. Single cell cloning of gene-edited functional HSCs.**

407 **(A)** Schematic showing the extracellular domain of CD45 with allele-specific antibody clones 104 and
408 A20 and the epitope-defining amino acid. **(B)** Experimental setup of the single cell editing and
409 expansion experiment. **(C)** Left: Fractions of CD201⁺CD150⁺KSL cells in single cell-derived cultures
410 14 days after cloning (n=261 clones). Right: Histogram of CD201⁺CD150⁺KSL cell frequency.
411 Zoomed-in region shows clones with >10% CD201⁺CD150⁺KSL cells. **(D)** CD45.1⁺ donor PB
412 chimerism and lineage distribution in single recipients with long-term (LT) engraftment $\geq 5\%$ and
413 multilineage reconstitution (n=8). **(E)** Linear correlation plots of CD201⁺CD150⁺KSL cell frequency
414 and 16-week donor chimerism. Red dots indicate LT repopulating and multilineage clones. Pearson
415 correlation. **(F)** CD45.1⁺ PB chimerism and lineage distribution in secondary recipients (n=5).
416 Error bars represent SD.

417 **Figure 5. Autologous HSCT using single cell cloned gene-corrected HSCs is curative in a**
418 **immunodeficiency mouse model.**

419 (A) Schematic of the single clone *Prkdc*^{scid} correction model. (B) Single cell SCID HSC expansion
420 outcomes. Left: Frequencies of phenotypic HSC populations in screened colonies (n=384 from 3
421 experiments). Right: Histogram of CD201⁺CD150⁺KL cell frequency. Enlarged region shows clones
422 with $\geq 10\%$ CD201⁺CD150⁺KL cells. (C) Genotyping of candidate clones (n=96 clones, 3
423 experiments). Only clones with at least one HDR-corrected allele were sequenced at the off-target loci.
424 (D) Allelic composition of the combined cell mixture at the edited *Prkdc* locus (n=3). (E) Frequencies
425 of PB leukocytes in CB17/SCID recipients. Left: Lineage distributions in treated mice (n=3) and in
426 recipients receiving only 2×10^5 CB17/SCID whole bone marrow cells (neg. ctrl., n=3). Right:
427 representative FACS plots at 16 weeks post-SCT. (F) Allele frequencies in sorted PB cells 20 weeks
428 post-SCT (n=3 mice from 3 experiments). (G) Xenograft transplantation assay. A549 cells expressing
429 the luminescent reporter Akaluc were injected s.c. and tumor growth was tracked by *in vivo* imaging.
430 Left: Representative images from CB17/WT, transplanted CB17/SCID, and untreated CB17/SCID
431 mice 3 and 14 days after inoculation. Right: Quantification of luminescence over a 14-day period
432 (CB17/WT: n=4, CB17/SCID-SCT: n=3, CB17/SCID+SCT: n=3). Two-way ANOVA and Tukey's
433 multiple comparison test.

434 Error bars represent SD. *P<0.05, **P<0.01, ****P<0.0001.

435 **SUPPLEMENTAL FIGURE TITLES AND LEGENDS**

436 **Figure S1. Functional correction of *Prkdc*^{scid} HSCs.** Related to Fig. 1.

437 **(A)** Gating strategy for the isolation of CD201⁺CD150⁺KL cells from CB17/SCID mouse BM.

438 **(B)** Frequency of HDR⁺ alleles within phenotypically defined HSPC populations 7 days post gene
439 editing (n=3 cultures). **(C)** Immunophenotype of splenocytes 20 weeks post-SCT (n=3 mice per group).

440 **(D)** Frequencies of double (CD4⁺CD8⁺) and single positive (CD4⁺ and CD8⁺) thymocytes 20 weeks
441 post-SCT. Data points represent individual mice. **(E)** Sections of thymi isolated from a CB17/SCID
442 recipient transplanted with gene edited HSCs 20 weeks post-SCT. Upper panel: hematoxylin-eosin
443 (HE), lower panel: cytokeratin (CK) stains.

444 One-(B) and two-way(C, D) ANOVA with Tukey's multiple comparison test.

445 Error bars represent SD. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.

446 **Figure S2. Transcriptional and immune phenotype of cultured, gene-edited HSCs.** Related to
447 Fig. 2.

448 (A) Gating strategy applied for the isolation of CD201⁺CD150⁺CD48⁻KSL,
449 CD201⁺CD150⁺CD48⁺KSL and CD201⁻CD150⁺KSL cells for RNAseq analysis on day 10 of bulk
450 expansion. (B) Principal component analysis (PCA) of CD201⁺CD150⁺CD48⁻KSL,
451 CD201⁺CD150⁺CD48⁺KSL and CD201⁻CD150⁺KSL cells (n=3 replicates). (C) Heatmap showing the
452 top 40 differentially regulated (up- and down-regulated) genes in CD201⁺CD150⁺CD48⁻KSL (1) and
453 CD201⁻CD150⁺KSL (3) populations, with expression data of CD201⁺CD150⁺CD48⁺KSL (2) cells
454 (n=3 replicates). (D) Nine most significantly enriched GO terms (biological process) in
455 CD201⁺CD150⁺CD48⁻ and CD201⁻CD150⁺KSL populations. (E) Expansion of precultured and cloned
456 CD201⁺CD150⁺CD48⁻KSL cells. CD34⁻CD150⁺KSL cells were isolated and expanded in bulk for 10
457 days before cloning. The colonies generated from these clones were analyzed 14 days post-sort. Left:
458 Representative images of single clone-derived HSC colonies 13 days post-sort. Right: Phenotypic
459 fractions within expanded colonies, as a percentage of live cells (n=14).

460 **Figure S3. Titration of Soluplus supplementation and immune phenotype of Soluplus-expanded**

461 **HSC clones.** Related to Fig. 3.

462 **(A)** Albumin replacement polymer screening for *ex vivo* expansion of murine HSCs. 50 freshly
463 isolated C57BL/6 CD34⁺KSL cells were cultured in media supplemented with the indicated polymers
464 for 7 days. Recombinant human albumin and PVA (87% hydrolyzed) served as positive controls.
465 Concentration of all polymers was 0.1% (m/v). Total cells were counted to assess growth support (n=3
466 cultures). **(B)** Soluplus supplementation titration assay. Fifty C57BL/6-Ly5.1 (CD45.1⁺)
467 CD34⁺CD150⁺KSL cells grown in titrated concentrations of Soluplus (0.01%, 0.02%, 0.1% and 0.2%)
468 were expanded for 14 days and split-transplanted into CD45.2⁺ recipients (n=4 to 9 per group) against
469 2 x10⁵ CD45.1⁺/CD45.2⁺ whole bone marrow competitor cells. Peripheral blood (PB) chimerism and
470 lineage distribution is shown. Supplementation with 0.2% Soluplus produced mild micelle formation
471 in cultures, which was not toxic, but occasionally obstructed the visibility of cells. Two-way ANOVA
472 with Tukey's multiple comparison test. **(C)** Left panel: Percentage of viable cells in HSC colonies
473 grown from freshly isolated single CD34⁺CD150⁺KSL cells after 19 days of culture in PVA (n=288)-
474 and Soluplus (n=290)-based media, as evaluated by flow cytometry (%PI⁻ of all events). Right panel:
475 Representative FACS plots of single-cell derived colonies (day 19). Two-tailed Mann-Whitney test.
476 **(D)** Representative FACS plots of individual clones expanded in PVA- and Soluplus-supplemented
477 media. **(E)** Schematic of limiting dilution assay (LDA). **(F)** Donor PB chimerism four to 16 weeks
478 post-SCT (5 mice per group). Cutoff level (1%) denoted with gray line. **(G)** PB lineage distribution of
479 CD45.1⁺ donor cells. Each bar represents an individual recipient.
480 Error bars represent SD. *P<0.05, ****P<0.0001.

481 **Figure S4. *Ptprc* allele conversion efficiency and single clone transplantation assays.** Related to
482 Fig. 4.

483 **(A)** Genomic context of the *Ptprc*^a and *Ptprc*^b alleles. White boxes: exons. *denotes site of SNP. **(B)**
484 Distribution of CD45 phenotypes among live cells 4 days post-editing. Representative FACS plot (left)
485 and summary data (right, n=6 cultures). **(C)** Distribution of CD45 phenotypes among
486 CD201⁺CD150⁺KSL cells 4 days post-editing (n=3 cultures). **(D)** CD45.1⁺ chimerism and lineage
487 distribution in single recipients that did show LT chimerism $\geq 5\%$ but did not display multilineage
488 distribution (defined as each lineage $\geq 5\%$). Four to 16 weeks post-SCT. Related to Fig. 4d. **(E)**
489 Correlation plots of different expansion culture phenotypes versus LT donor chimerism (16 weeks).
490 Red dots indicate multilineage and LT repopulating clones. Pearson correlation. **(F)** Bone marrow
491 CD45.1⁺ donor chimerism within the KSL compartment of a representative primary recipient.
492 Error bars represent SD.

493 **Figure S5. Functional rescue of SCID immunodeficiency with edited and single-cell expanded**

494 **HSC graft.** Related to Fig. 5.

495 (A) HDR pathway efficiency in *Prkdc*-deficient HSCs. CB17/SCID and wildtype (CB17/WT)
496 CD201⁺CD150⁺KL cells were isolated and cultured for 3 days, after which the CD45 allele conversion
497 assay was performed (analogous to the experiment presented in Fig. 4A). Left: representative FACS
498 plot showing the distribution of CD45 phenotypes among live cells HSCs 4 days post-editing.
499 Representative FACS plot (left) and summary data (right, n=3 cultures). (B) Indel sizes at the *Prkdc*
500 locus in the CD45.1⁺CD45.2⁺ population of *Prkdc* WT and SCID HSCs 4 days post-editing. Left:
501 Summary data of small (<5bp) and large (\geq 5bp) deletion events (n=3 cultures). Right: Representative
502 examples of indel distributions showing the most frequent alleles in both groups. (C) Representative
503 FACS plot showing frequencies of double (CD4⁺CD8⁺) and single positive (CD4⁺ and CD8⁺) cells
504 from the thymus of a CB17/SCID recipient 20 weeks after transplantation. (D) CDR3 length
505 spectratype analysis of the Tcrb-V1, -V8.1 and -V9 genes in splenic CD4⁺ cells. Each bar represents
506 the relative frequency of a CDR3 length species (n=1 mouse). (E) Serum levels of NIP₃₀-specific IgG
507 and IgM 19 days after immunization (CB17/SCID+SCT: n=4 mice; CB17/WT and treatment-naïve
508 CB17/SCID: n=3).

509 One-(E) and two-way (A, B) ANOVA with Tukey's multiple comparison test.

510 Error bars represent SD. *P<0.05, **P<0.01, ****P<0.0001.

511 **MATERIAL AND METHODS**

512 **Resource availability**

513 *Lead contact*

514 Further information and requests for resources and reagents should be directed to Satoshi
515 Yamazaki (y-sato4@md.tsukuba.ac.jp).

516

517 *Materials availability*

518 This study did not generate new unique reagents.

519

520 *Data and code availability*

521 The RNAseq data and data belonging to figures have been uploaded to a Dryad repository and will be
522 published upon acceptance of the manuscript (DOI: 10.5061/dryad.m905qfv2f).

523

524 **Experimental model and subject details**

525 *Mice*

526 Male C.B-17/Icr-^{+/+}Jcl wildtype (CB17/WT) and male C.B-17/Icr-^{scid/scid}Jcl (CB17/SCID) mice were
527 obtained from Clea Inc., Japan. C57BL/6NCrSlc (Ly 5.2, CD45.2) mice were purchased from SLC
528 Inc., Japan. C57BL/6-Ly5.1 (Ly 5.1, CD45.1) mice were purchased from Sankyo Labo, Japan. All
529 mice were obtained at age 8-10 weeks and housed in specific-pathogen-free (SPF) conditions at up to
530 5 mice per cage, with free access to standard rodent feed and kept under a 12h light/12h dark cycle. All
531 animal protocols were approved by the Animal Care and Use Committee of the Institute of Medical
532 Science, University of Tokyo.

533

534 *Primary cell and cell line cultures*

535 All cell culture operations were conducted under sterile hoods. Cells were kept in an incubator
536 (Panasonic) at 37°C and a constant CO₂ fraction of 5%. For gene editing experiments, HSCs were

537 cultured in hypoxia (5% F₁O₂). Cell concentrations were determined on a Countess II cytometer
538 (Thermo Fisher Scientific) after staining with Turk's staining buffer (bone marrow cells) or trypan
539 blue dead stain solution. Male HSCs were cultured in a Ham's F12 medium (Wako) supplemented
540 with 10mM HEPES (Thermo Fisher Scientific), recombinant cytokines murine TPO (100 ng/ml,
541 Peprotech) and SCF (10 ng/ml, Peprotech), as well as insulin-transferrin-selenium (ITS, Thermo
542 Fisher Scientific, 1:100 dilution) and 1% Penicillin-Streptomycin-L-Glutamine (PSG, Wako).
543 Recombinant human albumin (Albumin Biosciences), polyvinyl alcohol (PVA, 84% hydrolyzed,
544 Sigma), Kollidon 12 FP, Kollidon 17 PF, Kollidon 90 F, Poloxamer 188 Bio, Poloxamer 407 Geismar,
545 povidone and Soluplus (all BASF) were added at a concentration of 0.1% v/v (except for Soluplus
546 titration experiments). PVA and Soluplus-supplemented media are designated PVA-HSC and
547 Soluplus-HSC expansion medium, respectively. Polymers were added from prepared stocks of 10%
548 w/v in ddH₂O. Recombinant cytokines, ITS, PSG and polymers were freshly added to base media
549 before each application. Cells were cultured on human fibronectin-coated 24-well dishes (Corning, for
550 gene editing bulk expansion cultures) or on untreated U-bottom 96-well plates (TPP, for cultures
551 starting with 1-50 cells). Human male epithelial lung cancer cell line A549 (ATCC) was cultured in
552 DMEM (Wako) supplemented with 10% FBS (Thermo Fisher) and 1% Penicillin-Streptomycin
553 (Wako). Cells were passaged after reaching 70-80% confluency. Transduction procedure with
554 Akaluc-expressing lentivirus is described in the method detail section below.

555

556 **Method details**

557 *Murine HSC isolation*

558 Male 8-10 week-old mice were sacrificed by cervical dislocation after isoflurane anesthesia. Pelvic,
559 femur and tibia bones were isolated and crushed, and the obtained cell solution was filtered through a
560 48 µm nylon mesh and whole bone marrow cells were counted. Positive selection of it⁺ cells was
561 performed with anti-APC magnetic-activated cell sorting (MACS, Miltenyi Biotec) antibodies after
562 staining cells with c-Kit-APC antibody for 30 minutes. Enriched it⁺ cells were incubated with

563 anti-Lineage antibody cocktail (consisting of biotinylated Gr1[LY-6G/LY-6C], CD11b, CD4, CD8a,
564 CD45R[B220], IL7-R α , TER119) for 30 minutes. This was followed by staining with CD34-FITC,
565 CD201-PE (for CB17 strains) or Sca-1-PE (for C57BL/6 strains), c-Kit-APC, streptavidin-APC/eFluor
566 780 and CD150-PE/Cy7 antibodies for 90 minutes. CD201 $^+$ CD150 $^+$ c-Kit $^+$ Lin $^-$ (CD201 $^+$ CD150 $^+$ KL)
567 cells and CD34 $^-$ CD150 $^+$ c-Kit $^+$ Sca-1 $^+$ Lin $^-$ (CD34 $^-$ CD150 $^+$ KSL) cells from CB17 and C57BL/6 bone
568 marrows, respectively, were sorted via fluorescence-activated cell sorting (FACS) on a Aria II cell
569 sorter (BD) using a 100 μ m nozzle and appropriate filters and settings. Propidium iodide (PI) was used
570 to exclude dead cells. For bulk expansion of HSCs before gene editing, 5000 cells were sorted into 1
571 ml of HSC expansion medium per well. Medium changes were not performed until gene editing (day 3
572 of culture). For single cell expansion of freshly isolated HSCs, single HSCs were sorted into
573 individual wells on a 96-well U-bottom plate (TPP) pre-filled with 200 μ l of culture medium. Culture
574 medium was changed on day 7 post-sort, after which complete media changes were performed every
575 2-3 days.

576

577 *CRISPR/Cas9 gene editing*

578 Seventeen micrograms of recombinant *S. pyogenes* Cas9 (S.p. Cas9 Nuclease V3, IDT) were
579 complexed with single guide RNA (sgRNA, synthesized at IDT) at a molar ratio of 1:2.5 (104 pmol
580 Cas9:260 pmol sgRNA) for 10 minutes at 25°C to form ribonucleoprotein (RNP) complexes.
581 Sequences of sgRNA targeting *Prkdc*^{scid} (*Prkdc*_gRNA1) and *Ptprc*^b (CD45.2, *Ptprc*_gRNA1) are
582 listed in Table S2. Expanded HSCs were washed twice with PBS, pelleted, and resuspended in 20 μ l
583 electroporation buffer P3 (Lonza). Cells were gently added to the RNP duplex. For knockin
584 experiments, 200 pmol of single-strand oligonucleotide (ssODN) templates (synthesized at IDT, Table
585 S2) were added to the cell-RNP suspension. The suspension was transferred to a single 20 μ l
586 electroporation cuvette on a 16-well strip (P3 Primary Cell 96-well-Nucleofector Kit, Lonza).
587 Electroporation was carried out on a 4D nucleofector device (Lonza) using programs DI-100 (CB17
588 HSCs) and EO-100 (C57BL/6 HSCs). Cells were immediately recovered in pre-warmed medium and

589 gently split-transferred into 3 wells on a human fibronectin-coated 24-well plate (Corning) at 1 ml per
590 well. A medium change was performed one day after nucleofection, and further medium changes were
591 performed every 2-3 days.

592

593 *Indel and HDR quantification in bulk-expanded cultures*

594 To quantify indel and HDR rates from bulk cultured cells, genomic DNA (gDNA) was extracted using
595 NucleoSpin Tissue XS columns (Macherey-Nagel). DNA concentration was measured on a Nanodrop
596 spectrophotometer (Thermo Fisher). 1-10 ng of gDNA was used for polymerase chain reactions (PCR),
597 formulated as 0.5 μ M forward and reverse primers (Prkdc_inner_F, Prkdc_inner_R), 10 μ l 2X buffer,
598 and 0.5 U of Gflex *Thermococcus* DNA polymerase (Takara) in a 20 μ l reaction. The PCR reaction
599 setup was as follows: initial denaturation 94°C, 60s; followed by 35 cycles of denaturation 98°C, 10s;
600 annealing 60°C, 15s; extension 68°C, 45s; and final extension 68°C, 45s. PCR products were
601 separated on a 1.5% agarose gel via electrophoresis and fragments corresponding to the expected
602 amplification target were cut and gel-purified using the Wizard SV gel and PCR clean-up system
603 (Promega). Fourty nanograms of purified fragment was subjected to Sanger sequencing (FASMAC,
604 Japan) using the forward primer (Prkdc_inner_F). For assessment of HDR rates in bulk cultures, we
605 used the web-based tool Inference of CRISPR edits (ICE, Synthego, <https://ice.synthego.com>).
606 Sequences from non-edited HSCs were provided as negative control samples. Potential off-target sites
607 associated with the designed *Prkdc* gRNA were identified using COSMID (Cradick et al., 2014) with
608 up to 3 mismatches in the absence of indels in the seed sequence and 2 mismatches in the presence of
609 one insert or deletion. All targets showing a score <3 were amplified using the same cycling conditions
610 outlined above. For bulk expansion cultures, only “inner” primer pairs were used for PCRs (see Table
611 S2). Sequencing was performed with either forward or reverse PCR primers (specified with “SEQ” in
612 Table S2), except off-target site #6, for which a dedicated sequencing primer was designed
613 (OT_06_SEQ). On- and off target indel frequency was calculated with the Tracking of Indels by
614 Decomposition (TIDE) algorithm (Brinkman et al., 2014).

615 *Analysis of bulk expanded cells*

616 Cell counting operations were performed on a Countess II cytometer (Thermo Fisher Scientific). For
617 flow cytometric studies of bulk expansion cultures, i.e. HSPCs cultured in 1 ml of expansion media, a
618 100 μ l aliquot was removed from the culture well, washed in PBS, and stained with lineage antibodies
619 (PB- and BV421-conjugated against Gr1[LY-6G/LY-6C], CD11b, CD4, CD8, CD45R[B220],
620 TER119), CD34-FITC, CD201-PE, Sca-1-APC/Cy7, c-Kit-APC, CD150-PE/Cy7 antibodies for 45
621 minutes. After washing once with PBS, cells were analyzed on a FACSVerse or FACSAria II flow
622 cytometer (BD).

623

624 *Peripheral blood analyses*

625 For chimerism and lineage analysis, peripheral blood was drawn from mice by retro-orbital sinus
626 sampling under general anesthesia. Red blood cells (RBC) in a sample of 40 μ l were lysed in 1 ml of
627 Ammonium-Chloride-Potassium (ACK, 0.15 M NH4Cl, 0.01 M KHCO3, 0.1 mM Na2EDTA) buffer
628 for 15 minutes at room temperature. RBC lysis was repeated 2 times. Lysed blood cells were stained
629 with Gr1-PE, CD11b-PE, CD4-APC, CD45R[B220]-APC/eFluor 780, CD8-PE/Cy7 for SCID mouse
630 samples and with Gr1-PE, CD11b-PE, CD4-APC, CD8a-APC, CD45R[B220]-APC/eFluor 780,
631 CD45.1-PE/Cy7 and CD45.2-BV421 for C57BL/6 mice samples for 30 minutes at room temperature.
632 Cells were resuspended in 200 μ l PBS/PI before recording events on a FACSVerse (BD) analyzer
633 using the appropriate filters and settings.

634

635 *Fluorescence-activated single cell index sorting*

636 CD34 $^+$ CD150 $^-$ KSL cells were isolated from C57BL/6 mice and cultured on a 96-well dish in
637 PVA-HSC expansion medium at 50 cells per well. After 10 days, cells were stained with antibodies
638 against KSL (biotinylated lineage-antibodies (same mixture as used in 'Murine HSC isolation'),
639 followed by c-Kit-APC/H7, Sca-1-BV605, and streptavidin-BV421). Cells were then divided into two
640 sets, and each set was stained with an antibody panel (panel 1: CD34-FITC, CD48-APC, CD105-PE;

641 panel 2: CD135-APC, CD201-PE, CD150-PE/Cy7). We cloned single KSL cells using the index
642 sorting function on a FACS Aria II (BD). Well location and expression data of the sorted clones were
643 extracted using the IndexSort plugin for FlowJo (Freier, 2020). Dimensionality reduction was
644 performed with the UMAP plugin for FlowJo (McInnes et al., 2018). Expression data of the sorted
645 clones were log-transformed and normalized to mean.

646

647 *RNAseq analysis of expanded HSCs*

648 Expanded cells were washed in PBS once and stained with the identical panel specified in ‘Analysis of
649 bulk expanded cells’, except for CD48-FITC, which was used instead of CD34-FITC. Over 5000 cells
650 per population were sorted into 1.5 ml tubes and subsequently lysed in 600 μ l Trizol LS reagent
651 (Thermo Fisher Scientific). RNA purification, library preparation and next-generation sequencing was
652 performed by Tsukuba i-Laboratory, LLC. Libraries were prepared using the SMARTer cDNA
653 synthesis kit (Takara) and the high-output kit v2 (Illumina), followed by sequencing on a NextSeq 500
654 sequencer (Illumina) at 2x 36 paired end reads. Data normalization and comparative analyses were
655 performed with the DESeq2 package in R (Love et al., 2014). Genes with an adjusted $p < 0.05$ were
656 considered differentially expressed. Enrichment analysis of differentially expressed genes was
657 performed with the gene set enrichment analysis (GSEA) functions in the clusterProfiler package (Wu
658 et al., 2021) using molecular signature database (MSigDB) gene ontology biological process (C5
659 GO:BP) as well as chemical and genetic perturbations (C2:CGP) gene set collections. Heatmaps were
660 generated with the ComplexHeatmap package (Gu et al., 2016).

661

662 *Marker profiling of single cell expanded HSC clones*

663 To measure HSC marker expression in single cell-derived clonal cultures, 30 μ l aliquots of cells were
664 recovered from HSC colonies (cultured in 200 μ l), transferred to a 96-well staining plate, washed in
665 PBS, and stained with either PB/BV421- or FITC-conjugated lineage antibodies (Gr1[LY-6G/LY-6C],
666 CD11b, CD4, CD8, CD45R[B220], TER119), CD201-PE, Sca-1-APC/Cy7, c-Kit-APC and

667 CD150-PE/Cy7 for 45 minutes at room temperature. After washing with PBS on-plate, cells were
668 resuspended in 200 μ l PBS/PI and examined on a FACSVerse analyzer (BD) using appropriate filters
669 and settings. Acquisition time was set to 20 seconds to ensure enough cells remained for genomic
670 DNA extraction, if necessary.

671

672 *Genotyping of Prkdc-edited single cell HSC clones*

673 To quantify HDR in single cell expanded clones of *Prkdc*-corrected HSCs (genotyping), cells left over
674 from HSC marker profiling (see previous section) were subjected to gDNA extraction using
675 NucleoSpin Tissue XS columns (Macherey-Nagel). gDNA was eluted in 18 μ l of ddH₂O. Only clones
676 containing CD201⁺CD150⁺KL cells were selected for genotyping. For genotyping of the *Prkdc* locus,
677 a nested PCR strategy was employed. The outer PCR formulation was 5 μ l of gDNA, 0.5 μ M forward
678 and reverse outer primers (Prkdc_outer_F, Prkdc_outer_R) and 12.5 μ l of Q5 2X master mix
679 (containing Q5 DNA polymerase, dNTPs and Mg²⁺) (New England Biosciences) in a 25 μ l reaction.
680 The PCR reaction setup was as follows: initial denaturation 98°C, 30s; followed by 35 cycles of
681 denaturation 98°C, 10s; annealing 65°C, 15s; extension 72°C, 45s; and final extension 72°C, 120s.
682 The PCR product was diluted 1:20 for the inner PCR reaction. For this reaction, 1 μ l of diluted PCR
683 product was combined with 0.5 μ M forward and reverse nested primers (Prkdc_inner_F,
684 Prkdc_inner_R) and 25 μ l of Q5 2X master mix in a 50 μ l reaction. 700 bp PCR products were
685 purified and sequenced as outlined above ('Indel and HDR quantification in bulk-expanded cultures').
686 A semi-nested PCR strategy was employed for sequencing of off-target edits, first amplifying all sites
687 in a multiplex PCR reaction using outer and inner primers, followed by a second reaction for
688 individual targets using inner primers only. The multiplex PCR reaction contained primers specific to
689 all off-target loci. The formulation was 5 μ l of gDNA, 0.25 μ M outer and inner primers, 25 μ l 2X
690 buffer, and 1.25 U of Gflex *Thermococcus* DNA polymerase (Takara) in a 50 μ l reaction. The PCR
691 reaction setup was as follows: initial denaturation 94°C, 60s; followed by 35 cycles of denaturation
692 98°C, 10s; annealing 60°C, 15s; extension 68°C, 120s; and final extension 68°C, 45s. The PCR

693 product was diluted 1:20 and used for amplification of individual off-target sites. These reactions were
694 formulated as follows: 1 μ l of diluted PCR product, 0.25 μ M inner primers, 12.5 μ l 2X buffer, and
695 0.625 U of Gflex *Thermococcus* DNA polymerase (Takara) in a 25 μ l reaction. The PCR reaction
696 setup was as follows: initial denaturation 94°C, 60s; followed by 35 cycles of denaturation 98°C, 10s;
697 annealing 60°C, 15s; extension 68°C, 120s; and final extension 68°C, 45s. After agarose gel separation,
698 appropriate PCR products were purified and sequenced using the inner reverse primers. Sequencing
699 was performed with either forward or reverse inner PCR primers (specified with “SEQ” in Table S2),
700 except off-target site #6, for which a dedicated sequencing primer was used (OT_06_SEQ). Sequence
701 traces were aligned to reference sequences to check for mutations.

702

703 *Stem cell transplantation (SCT)*

704 Cells in *Prkdc*-edited bulk HSC cultures were washed, resuspended in 300 μ l PBS and divided into 3
705 aliquots for transplantation into three recipients. For experiments comparing PVA and Soluplus
706 expansion conditions, single cell-derived clones were split into several aliquots for SCT into multiple
707 recipients as stated in the main text. *Ptprc*-edited single cell clones were transplanted into a one
708 recipient. For single cell *Prkdc*-corrected clones, candidate clones were selected based on HSC marker
709 and genotyping and combined to a single dose for transplantation into one CB17/SCID recipient. For
710 SCT with *Prkdc*-corrected cells, 0.2 $\times 10^6$ whole bone marrow (WBM) cells from 10 week old male
711 CB17/SCID mice were added to the graft as support to ensure survival immediately after
712 myeloablation. For non-edited and *Ptprc*-edited C57BL/6-derived HSCs, 0.2 $\times 10^6$ WBM competitor
713 cells from C57BL/6 CD45.1 $^+$ /CD45.2 $^+$ F1 mice were added unless stated otherwise in the main text.
714 CB17/SCID and C57BL/6 mice were lethally irradiated with 2.5 Gy and 9 Gy, respectively,
715 immediately prior to transplantation. Cells were injected via tail vein injection. Secondary bone
716 marrow transplants were performed by extracting WBM cells from the primary recipient and
717 transplanting 1 $\times 10^6$ cells into lethally irradiated secondary recipients.

718

719 *CDR3 spectratyping*

720 The spectratyping protocol originally published by Pannetier et al. was followed with modifications
721 by Ahmed et al. (Ahmed et al., 2009; Pannetier et al., 1993). Splenocytes were recovered by crushing
722 freshly excised spleens between two glass slides (Matsunami). CD4⁺ lymphocytes were enriched using
723 CD4 magnetic-activated cell sorting (MACS) positive selection according to anufacturer's intructions
724 (Miltenyi Biotec) and lysed in 300 μ l Trizol reagent (Thermo Fisher) per 10⁶ cells. RNA was purified
725 using the Direct-zol RNA Microprep kit (Zymo) and eluted in 15 μ l ddH₂O. 150 ng of RNA was
726 subjected for cDNA synthesis using Superscript IV reverse transcriptase (Thermo Fisher) according to
727 manufacturer's instructions. 2 μ l of cDNA was used per V β PCR reaction. The PCR reaction was
728 formulated as: 2 μ l of cDNA, 20 pmol TCR constant region (TCR-Cb) and V β gene-specific primer (1
729 μ M final concentration) (see Table S2), 10 μ l 2X buffer (containing deoxynucleoside triphosphates
730 (dNTPs) and Mg²⁺), and 0.5 U of Gflex DNA polymerase (Takara) in a 20 μ l reaction. The PCR
731 reaction setup was as follows: initial denaturation 94°C, 120s; followed by 40 cycles of denaturation
732 98°C, 10s; annealing 62°C, 30s; extension 68°C, 90s; and final extension 68°C, 600s. 5 μ l of PCR
733 product was then used in a runoff reaction including a FAM-labeled TCR-Cb primer. The reaction mix
734 was formulated as 5 μ l PCR product, 4 pmol 5'-FAM-labeled TCR constant region primer
735 (TCR-Cb-FAM, 0.2 μ M final concentration), 10 μ l 2X buffer (containing deoxynucleoside
736 triphosphates (dNTPs) and Mg²⁺), and 0.5 U of Gflex *Thermococcus* DNA polymerase (Takara) in a
737 20 μ l reaction. The PCR reaction setup was as follows: initial denaturation 94°C, 120s; followed by 20
738 cycles of denaturation 98°C, 10s; annealing 62°C, 30s; extension 68°C, 90s; and final extension 68°C,
739 300s. Ten microliters of the reaction mix were used for fragment sizing (performed at FASMAC,
740 Japan). Fragment size analysis was performed on the Thermo Fisher Connect platform
741 (<https://apps.thermofisher.com/>) using the peak scanner application. Relevant peaks were filtered and
742 imported into Prism software (Graphpad) for further analysis and visualization (Miqueu et al., 2007).
743 For Kolmogorov-Smirnov normality tests, a threshold level of 0.05 was selected to reject the
744 hypothesis that data was normally distributed.

745

746 *Immunization and ELISA assays*

747 Mice at 20 weeks after SCT with *Prkdc*-corrected HSCs were immunized with 100 µg of
748 nitroiodophenyl (NIP)-conjugated OVA (NIPOVA) (Biosearch Technologies) mixed 1:1 with
749 aluminium hydroxide (Invivogen) intraperitoneally (i.p.). Blood samples were collected after 12 and
750 19 days post-immunization via retro-orbital sinus sampling. Serum was recovered by centrifugation of
751 whole blood for 10 minutes at 5000g and stored at -20°C. For serum antibody detection, high binding
752 96-well microplates (Thermo Fisher) were pre-coated with NIP₃₀-BSA (Biosearch Technologies) at 2
753 µg/ml concentration overnight. After blocking wells with 1% BSA/PBS solution, 1:5000 dilutions of
754 serum samples were applied to the wells and incubated overnight at 4°C. Wells were washed with
755 0.05% PBS/Tween-20 (PBS-T) followed by incubation with horse radish peroxidase
756 (HRP)-conjugated secondary antibodies against murine IgG and IgM (1:5000 dilution, Southern
757 Biotech) for 2 hours. Enzymatic reaction was initiated by adding 100 µl of 3,3',5,5'-Tetramethyl
758 -benzidine (TMB) substrate solution (TCI) to each well, followed by termination of the reaction with
759 100 µl hydrochloric acid 1M (HCl, TCI). Absorbance readings were obtained on a microplate reader at
760 450 nm (Molecular Devices).

761

762 *Xenograft transplantation assay*

763 Human A549 cells were modified to constitutively express Akaluc, a firefly luciferase derivative with
764 improved bioluminescent activity (Iwano et al., 2018). Cultured cells were transduced with a VSV-G
765 pseudotyped lentiviral vector carrying an Akaluc-P2A-mNeonGreen transgene under the control of the
766 human ubiquitin C (UbC) promoter at an MOI of 10. After 14 days, stably transduced cells were
767 selected by sorting mNeonGreen-positive cells on a FACS Aria II (BD). Xenograft transplants
768 were performed by subcutaneously injecting 5 x10⁶ cells in 100 µl of PBS into the flanks of recipient
769 mice. Prior to intravital imaging, the fur above of the injection site was removed with household
770 depilatory cream. After anesthesia, 50 µl of Akalumine-HCl substrate (15 mM, Wako) were injected

771 intraperitoneally and mice were placed in an IVIS in vivo imaging system (PerkinElmer). Images were
772 acquired after 10-15 minutes using appropriate binning (1) and exposure settings.

773 **Quantification and statistical analysis**

774 Details regarding employed statistical tests as well as number of subjects and groups are stated in the
775 figure legends. Student's t-tests, one- and two-way analysis of variance (ANOVA) were performed in
776 Prism (version 9.1, Graphpad). Error bars denote standard deviations, unless otherwise stated in the
777 figure legends. Statistical evaluation surrounding RNASeq analysis, correlation calculations between
778 chimerism and CD201⁺CD150⁺KSL marker expression, as well as select visualizations of peripheral
779 blood lineage distributions were performed in R version 4 (R Core Team, 2020) with the appropriate
780 packages (outlined in key resources table). Pictograms and illustrations were generated with
781 BioRender (<https://www.biorender.com/>).

782 **REFERENCES**

783 Abdul-Razak, H.H., Rocca, C.J., Howe, S.J., Alonso-Ferrero, M.E., Wang, J., Gabriel, R., Bartholomae,
784 C.C., Gan, C.H. V., Garín, M.I., Roberts, A., et al. (2018). Molecular Evidence of Genome Editing in a
785 Mouse Model of Immunodeficiency. *Sci. Rep.* *8*, 8214.

786 Adikusuma, F., Piltz, S., Corbett, M.A., Turvey, M., McColl, S.R., Helbig, K.J., Beard, M.R., Hughes, J.,
787 Pomerantz, R.T., and Thomas, P.Q. (2018). Large deletions induced by Cas9 cleavage. *Nature* *560*,
788 E8–E9.

789 Ahmed, M., Lanzer, K.G., Yager, E.J., Adams, P.S., Johnson, L.L., and Blackman, M.A. (2009). Clonal
790 Expansions and Loss of Receptor Diversity in the Naive CD8 T Cell Repertoire of Aged Mice. *J.*
791 *Immunol.* *182*, 784–792.

792 Araki, R., Fujimori, A., Hamatani, K., Mita, K., Saito, T., Mori, M., Fukumura, R., Morimyo, M., Muto,
793 M., Itoh, M., et al. (1997). Nonsense mutation at Tyr-4046 in the DNA-dependent protein kinase
794 catalytic subunit of severe combined immune deficiency mice. *Proc. Natl. Acad. Sci. U. S. A.* *94*,
795 2438–2443.

796 Boutin, J., Rosier, J., Cappellen, D., Prat, F., Toutain, J., Pennamen, P., Bouron, J., Rooryck, C., Merlio,
797 J.P., Lamrissi-Garcia, I., et al. (2021). CRISPR-Cas9 globin editing can induce megabase-scale
798 copy-neutral losses of heterozygosity in hematopoietic cells. *Nat. Commun.* *12*, 4922.

799 Brinkman, E.K., Chen, T., Amendola, M., and Van Steensel, B. (2014). Easy quantitative assessment of
800 genome editing by sequence trace decomposition. *Nucleic Acids Res.* *42*, 1–8.

801 Cheng, C.Z., and Lodish, H.F. (2005). Murine hematopoietic stem cells change their surface phenotype
802 during ex vivo expansion. *Blood* *105*, 4314–4320.

803 Cradick, T.J., Qiu, P., Lee, C.M., Fine, E.J., and Bao, G. (2014). COSMID: A web-based tool for
804 identifying and validating CRISPR/Cas off-target sites. *Mol. Ther. - Nucleic Acids* *3*, e214.

805 Dever, D.P., Bak, R.O., Reinisch, A., Camarena, J., Washington, G., Nicolas, C.E., Pavel-Dinu, M.,
806 Saxena, N., Wilkens, A.B., Mantri, S., et al. (2016). CRISPR/Cas9 β -globin gene targeting in human
807 hematopoietic stem cells. *Nature* *539*, 384–389.

808 Fares, I., Chagraoui, J., Lehnertz, B., MacRae, T., Mayotte, N., Tomellini, E., Aubert, L., Roux, P.P.,
809 and Sauvageau, G. (2017). EPCR expression marks UM171-expanded CD34+ cord blood stem cells.
810 *Blood* *129*, 3344–3351.

811 Ferrari, S., Jacob, A., Beretta, S., Unali, G., Albano, L., Vavassori, V., Cittaro, D., Lazarevic, D.,
812 Brombin, C., Cugnata, F., et al. (2020). Efficient gene editing of human long-term hematopoietic stem
813 cells validated by clonal tracking. *Nat. Biotechnol.* *38*, 1298–1308.

814 Freier, C. (2020). indexSort: Retrieve Index Sorted Data and Visually Explore .fcs Date Files.

815 Genovese, P., Schiroli, G., Escobar, G., Tomaso, T. Di, Firrito, C., Calabria, A., Moi, D., Mazzieri, R.,
816 Bonini, C., Holmes, M.C., et al. (2014). Targeted genome editing in human repopulating haematopoietic
817 stem cells. *Nature* *510*, 235–240.

818 Gu, Z., Eils, R., and Schlesner, M. (2016). Complex heatmaps reveal patterns and correlations in
819 multidimensional genomic data. *Bioinformatics* *32*, 2847–2849.

820 Hu, Y., and Smyth, G.K. (2009). ELDA: Extreme limiting dilution analysis for comparing depleted and
821 enriched populations in stem cell and other assays. *J. Immunol. Methods* *347*, 70–78.

822 Iwano, S., Sugiyama, M., Hama, H., Watakabe, A., Hasegawa, N., Kuchimaru, T., Tanaka, K.Z.,
823 Takahashi, M., Ishida, Y., Hata, J., et al. (2018). Single-cell bioluminescence imaging of deep tissue in
824 freely moving animals. *Science* *359*, 935–939.

825 Komuro, K., Itakura, K., Boyse, E.A., and John, M. (1974). Ly-5: A new T-lymphocyte antigen system.
826 *Immunogenetics* *1*, 452–456.

827 Lattanzi, A., Camarena, J., Lahiri, P., Segal, H., Srifa, W., Vakulskas, C.A., Frock, R.L., Kenrick, J.,
828 Lee, C., Talbott, N., et al. (2021). Development of β -globin gene correction in human hematopoietic
829 stem cells as a potential durable treatment for sickle cell disease. *Sci. Transl. Med.* *13*.

830 Lee, M.S.J., Natsume-Kitatani, Y., Temizoz, B., Fujita, Y., Konishi, A., Matsuda, K., Igari, Y., Tsukui,
831 T., Kobiya, K., Kuroda, E., et al. (2019). B cell-intrinsic MyD88 signaling controls IFN- γ -mediated
832 early IgG2c class switching in mice in response to a particulate adjuvant. *Eur. J. Immunol.* *49*,
833 1433–1440.

834 Leibowitz, M.L., Papathanasiou, S., Doerfler, P.A., Blaine, L.J., Sun, L., Yao, Y., Zhang, C.Z., Weiss,
835 M.J., and Pellman, D. (2021). Chromothripsis as an on-target consequence of CRISPR–Cas9 genome
836 editing. *Nat. Genet.* *53*, 895–905.

837 Linn, M., Collnot, E.M., Djuric, D., Hempel, K., Fabian, E., Kolter, K., and Lehr, C.M. (2012).
838 Soluplus® as an effective absorption enhancer of poorly soluble drugs in vitro and in vivo. *Eur. J. Pharm.*
839 *Sci.* *45*, 336–343.

840 Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for
841 RNA-seq data with DESeq2. *Genome Biol.* *15*, 1–21.

842 McInnes, L., Healy, J., and Melville, J. (2018). UMAP: Uniform Manifold Approximation and
843 Projection for Dimension Reduction.

844 McVey, M., and Lee, S.E. (2008). MMEJ repair of double-strand breaks (director's cut): deleted
845 sequences and alternative endings. *Trends Genet.* *24*, 529–538.

846 Mercier, F.E., Sykes, D.B., and Scadden, D.T. (2016). Single targeted exon mutation creates a true
847 congenic mouse for competitive hematopoietic stem cell transplantation: The C57BL/6-CD45.1STEM
848 mouse. *Stem Cell Reports* *6*, 985–992.

849 Miqueu, P., Guillet, M., Degauque, N., Doré, J.C., Soullou, J.P., and Brouard, S. (2007). Statistical
850 analysis of CDR3 length distributions for the assessment of T and B cell repertoire biases. *Mol.*
851 *Immunol.* *44*, 1057–1064.

852 Mohrin, M., Bourke, E., Alexander, D., Warr, M.R., Barry-Holson, K., Le Beau, M.M., Morrison, C.G.,
853 and Passegue, E. (2010). Hematopoietic Stem Cell Quiescence Promotes Error-Prone DNA Repair and
854 Mutagenesis. *Cell Stem Cell* *7*, 174–185.

855 Naldini, L. (2019). Genetic engineering of hematopoiesis: current stage of clinical translation and future
856 perspectives. *EMBO Mol. Med.* *11*, 1–12.

857 Noda, S., Horiguchi, K., Ichikawa, H., and Miyoshi, H. (2008). Repopulating Activity of Ex
858 Vivo-Expanded Murine Hematopoietic Stem Cells Resides in the CD48 – c-Kit + Sca-1 + Lineage
859 Marker – Cell Population . *Stem Cells* *26*, 646–655.

860 Obata, T., Suzuki, Y., Ogawa, N., Kurimoto, I., Yamamoto, H., Furuno, T., Sasaki, T., and Tanaka, M.

861 (2014). Improvement of the Antitumor Activity of Poorly Soluble Sapacitabine (CS-682) by Using

862 Soluplus ® as a Surfactant. *37*, 802–807.

863 Pannetier, C., Cochet, M., Darche, S., Casrouge, A., Zoller, M., and Kourilsky, P. (1993). The sizes of

864 the CDR3 hypervariable regions of the murine T-cell receptor β chains vary as a function of the

865 recombined germ-line segments. *Proc. Natl. Acad. Sci. U. S. A.* *90*, 4319–4323.

866 R Core Team (2020). R: A language and environment for statistical computing.

867 Rahman, S.H., Kuehle, J., Reimann, C., Mlambo, T., Alzubi, J., Maeder, M.L., Riedel, H., Fisch, P.,

868 Cantz, T., Rudolph, C., et al. (2015). Rescue of DNA-PK Signaling and T-Cell Differentiation by

869 Targeted Genome Editing in a prkdc Deficient iPSC Disease Model. *PLoS Genet.* *11*, 1–21.

870 De Ravin, S.S., Li, L., Wu, X., Choi, U., Allen, C., Koontz, S., Lee, J., Theobald-Whiting, N., Chu, J.,

871 Garofalo, M., et al. (2017). CRISPR-Cas9 gene repair of hematopoietic stem cells from patients with

872 X-linked chronic granulomatous disease. *Sci. Transl. Med.* *9*.

873 Riesenber, S., Chintalapati, M., Macak, D., Kanis, P., and Maricic, T. (2019). Simultaneous precise

874 editing of multiple genes in human cells. *Nucleic Acids Res.*

875 Schioli, G., Ferrari, S., Conway, A., Jacob, A., Capo, V., Albano, L., Plati, T., Castiello, M.C., Sanvito,

876 F., Gennery, A.R., et al. (2017). Preclinical modeling highlights the therapeutic potential of

877 hematopoietic stem cell gene editing for correction of SCID-X1. *Sci. Transl. Med.* *9*.

878 Schioli, G., Conti, A., Ferrari, S., della Volpe, L., Jacob, A., Albano, L., Beretta, S., Calabria, A.,

879 Vavassori, V., Gasparini, P., et al. (2019). Precise Gene Editing Preserves Hematopoietic Stem Cell

880 Function following Transient p53-Mediated DNA Damage Response. *Cell Stem Cell* *0*, 1–15.

881 Sharma, R., Dever, D.P., Lee, C.M., Azizi, A., Pan, Y., Camarena, J., Köhnke, T., Bao, G., Porteus,

882 M.H., and Majeti, R. (2021). The TRACE-Seq method tracks recombination alleles and identifies clonal

883 reconstitution dynamics of gene targeted human hematopoietic stem cells. *Nat. Commun.* *12*, 1–12.

884 Sheridan, C. (2021). CRISPR therapies march into clinic, but genotoxicity concerns linger. *Nat.*

885 *Biotechnol.* *39*, 897–899.

886 Tomellini, E., Fares, I., Lehnerz, B., Chagraoui, J., Mayotte, N., MacRae, T., Bordeleau, M.È., Corneau,
887 S., Bisaillon, R., and Sauvageau, G. (2019). Integrin- α 3 Is a Functional Marker of Ex Vivo Expanded
888 Human Long-Term Hematopoietic Stem Cells. *Cell Rep.* *28*, 1063-1073.e5.

889 Tsai, S.Q., and Joung, J.K. (2016). Defining and improving the genome-wide specificities of
890 CRISPR-Cas9 nucleases. *Nat. Rev. Genet.* *17*, 300–312.

891 Vazquez, S.E., Inlay, M.A., and Serwold, T. (2015). CD201 and CD27 identify hematopoietic stem and
892 progenitor cells across multiple murine strains independently of Kit and Sca-1. *Exp. Hematol.* *43*,
893 578–585.

894 Wilkinson, A.C., Ishida, R., Kikuchi, M., Sudo, K., Morita, M., Crisostomo, R.V., Yamamoto, R., Loh,
895 K.M., Nakamura, Y., Watanabe, M., et al. (2019). Long-term ex vivo haematopoietic-stem-cell
896 expansion allows nonconditioned transplantation. *Nature* *571*, 117–121.

897 Wilkinson, A.C., Igarashi, K.J., and Nakauchi, H. (2020). Haematopoietic stem cell self-renewal in vivo
898 and ex vivo. *Nat. Rev. Genet.* *21*, 541–554.

899 Wilkinson, A.C., Dever, D.P., Baik, R., Camarena, J., Hsu, I., Charlesworth, C.T., Morita, C., Nakauchi,
900 H., and Porteus, M.H. (2021). Cas9-AAV6 gene correction of beta-globin in autologous HSCs improves
901 sickle cell disease erythropoiesis in mice. *Nat. Commun.* *12*, 686.

902 Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., Zhou, L., Tang, W., Zhan, L., et al. (2021).
903 clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. *Innov.* *2*, 100141.

904 Zebedee, S.L., Barritt, D.S., and Raschke, W.C. (1991). Comparison of Mouse Ly5a and Ly5h
905 Leucocyte Common Antigen Alleles. *Dev. Immunol.* *1*, 243–254.

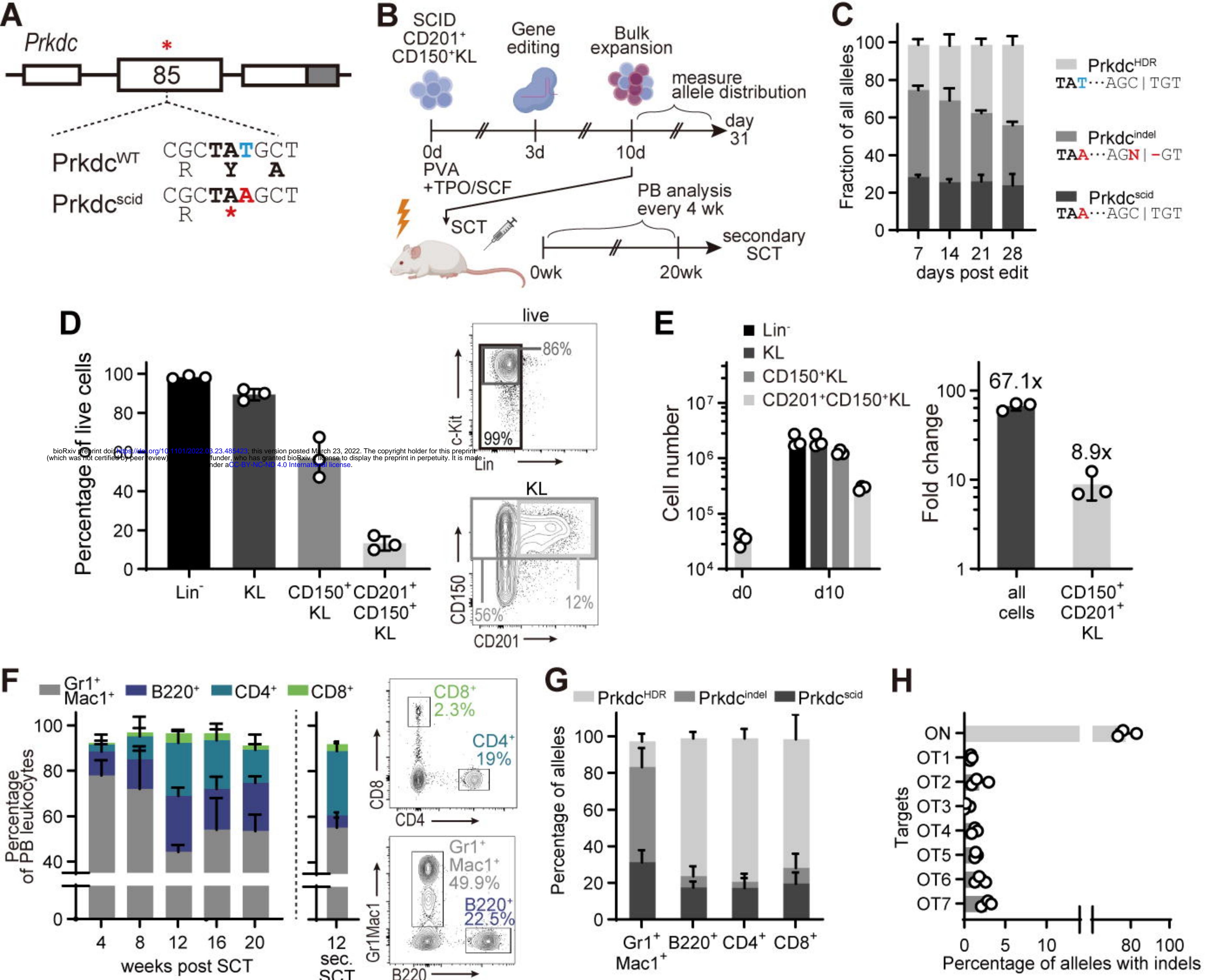
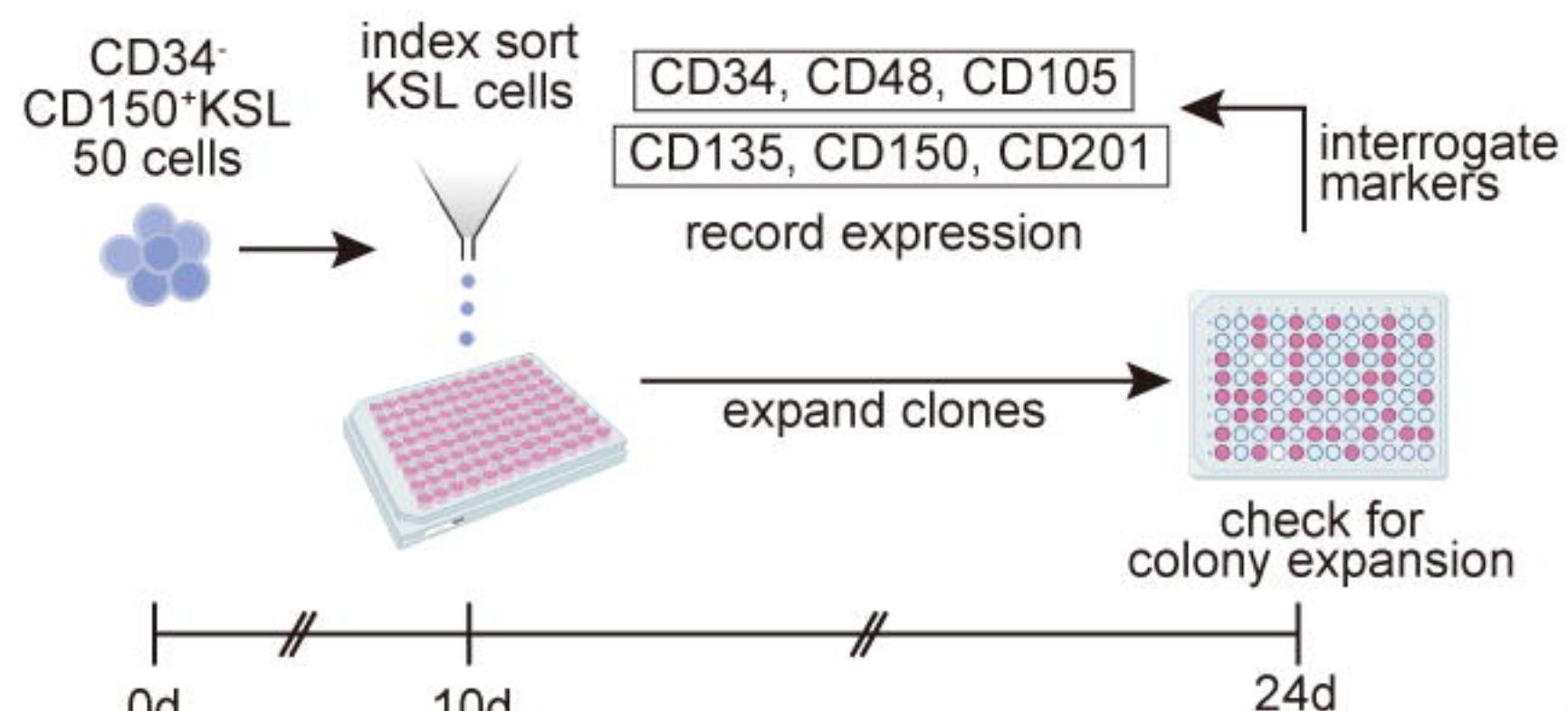
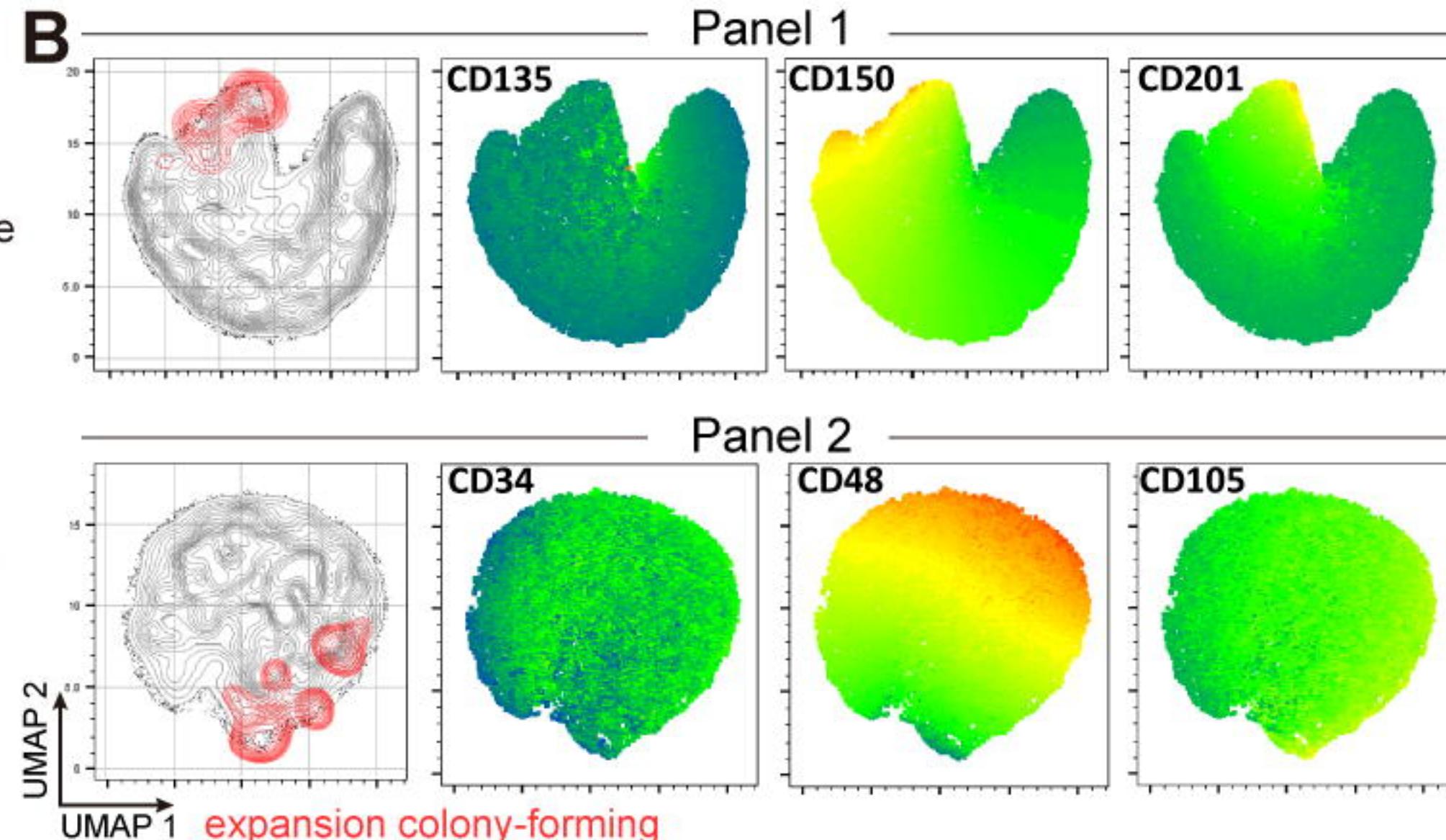
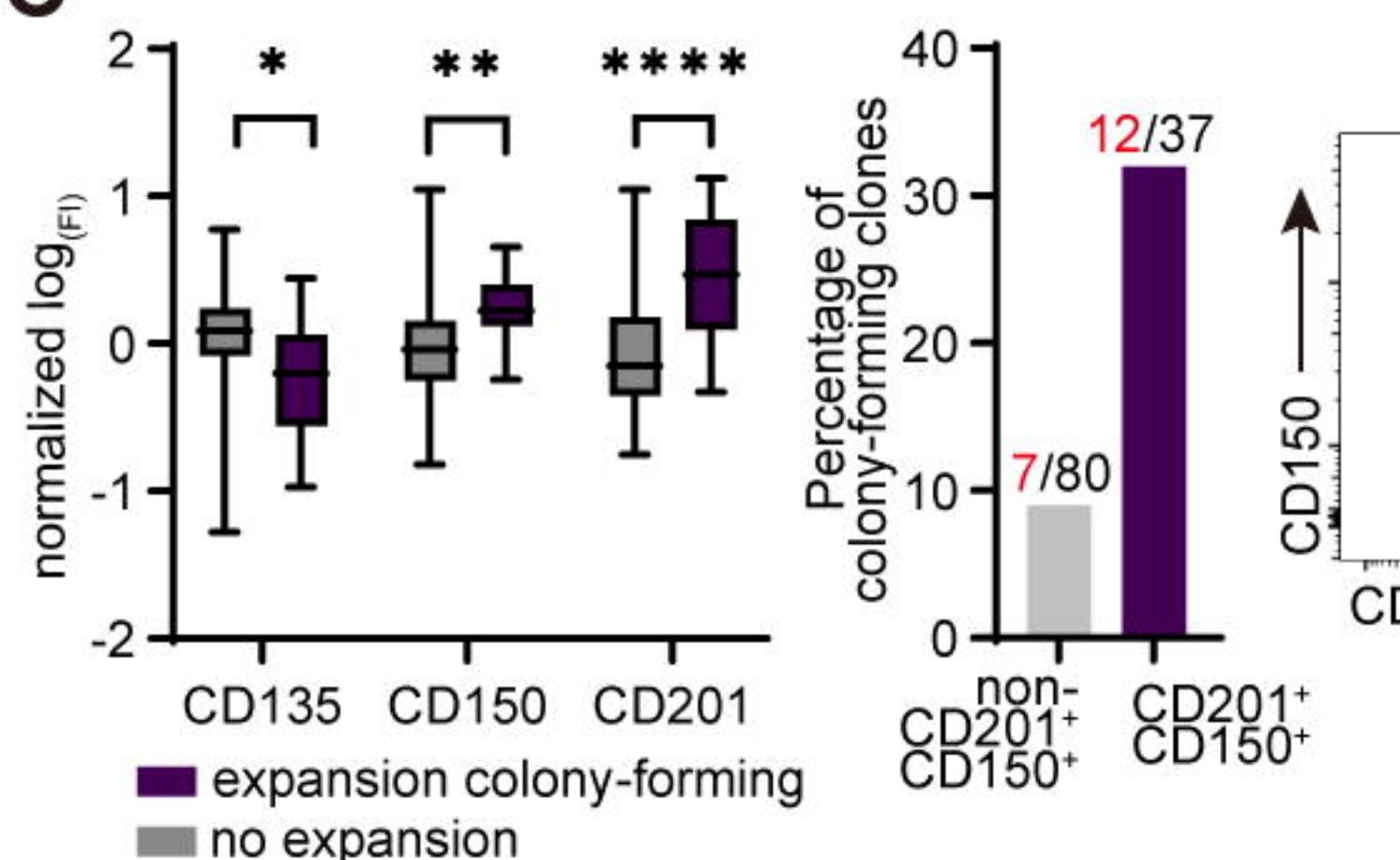
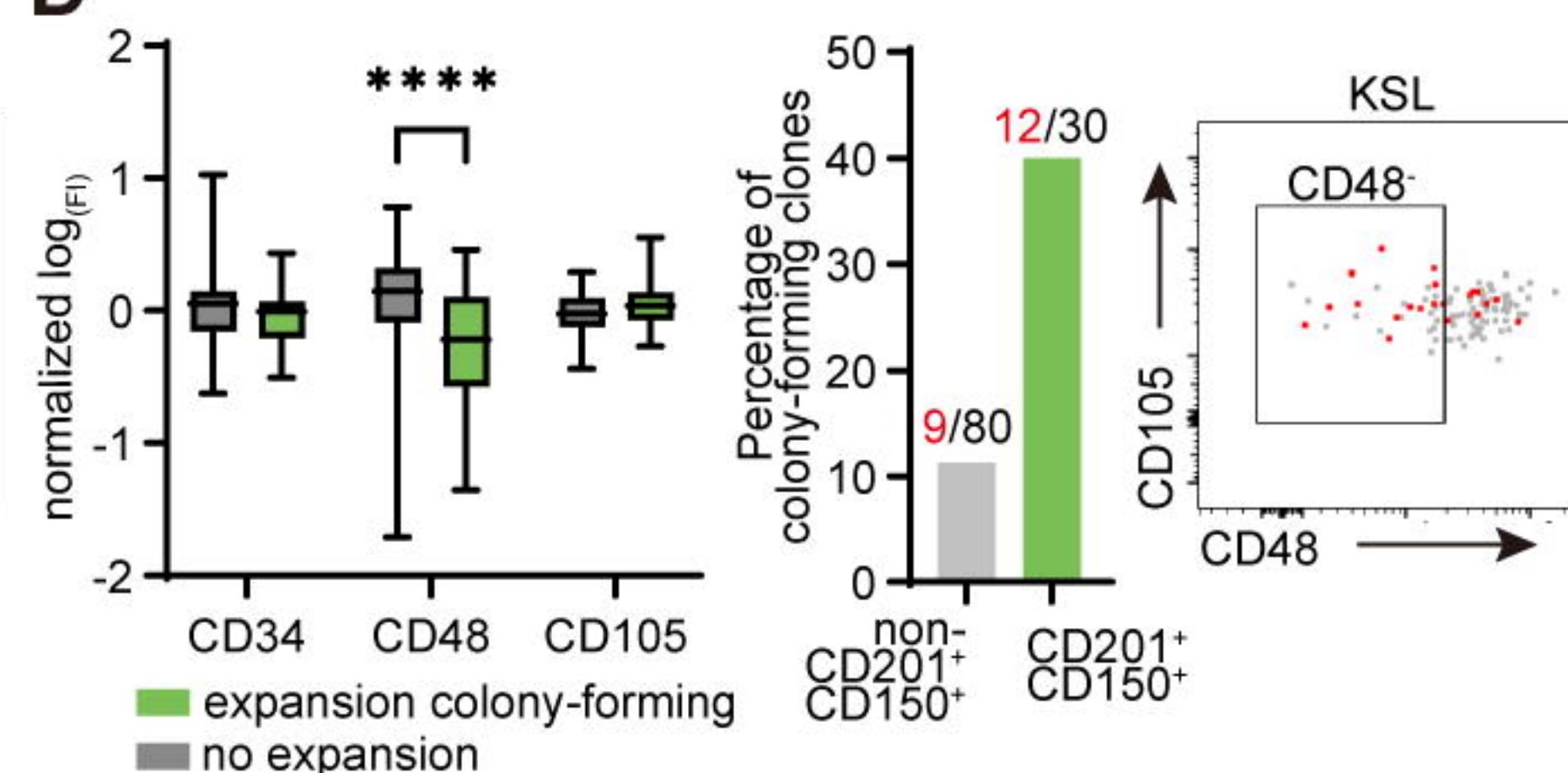
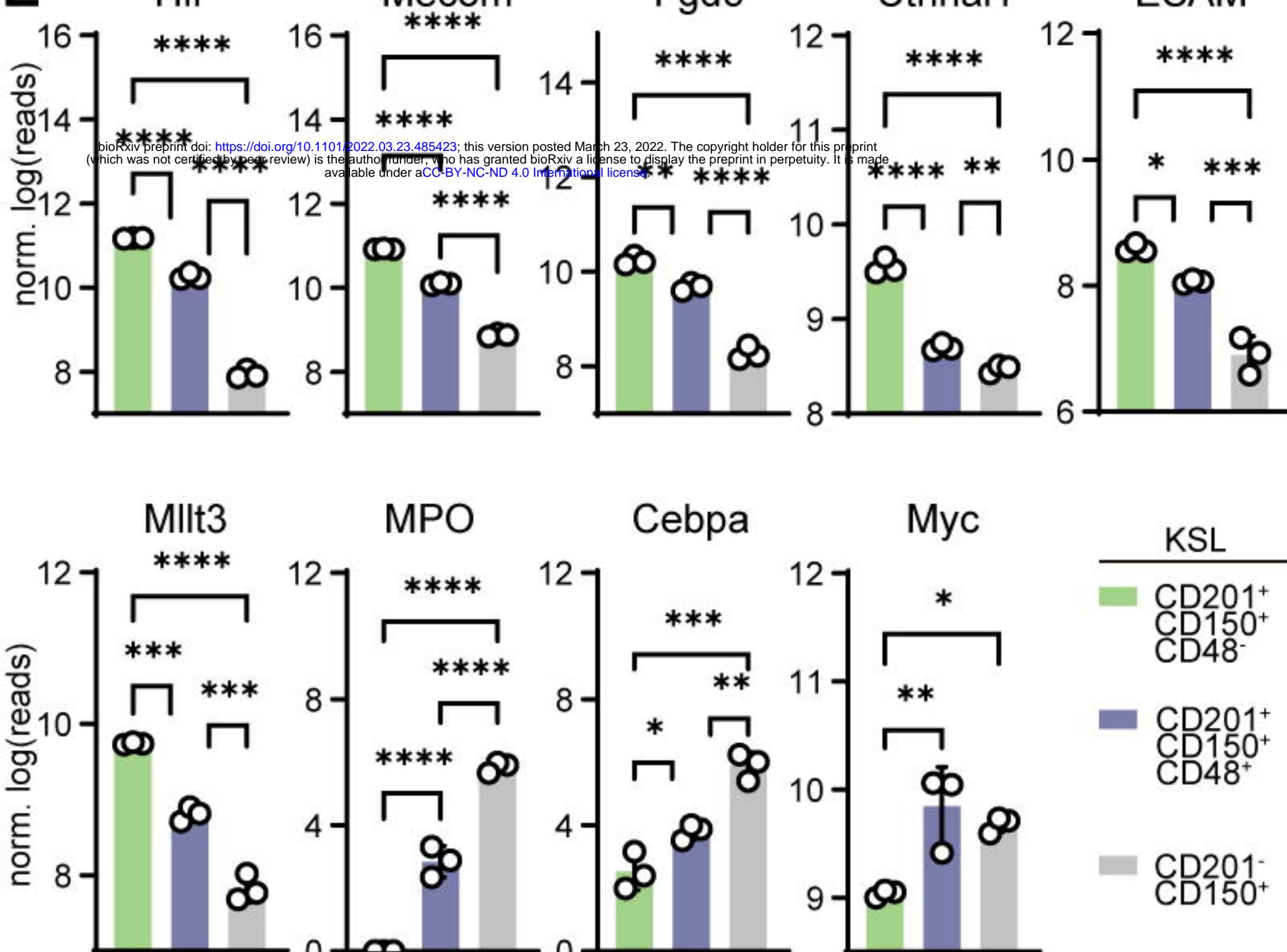
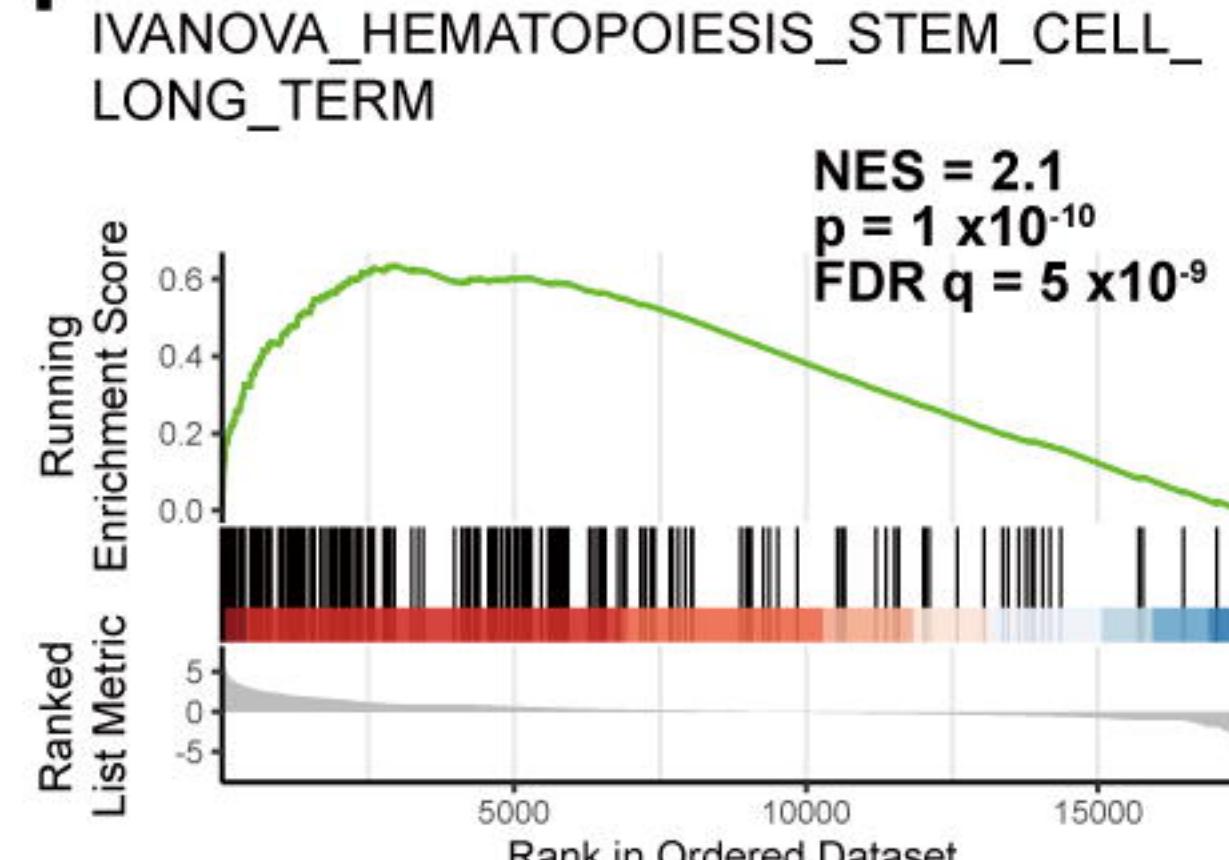




Fig. 1, Becker et al.


A


B

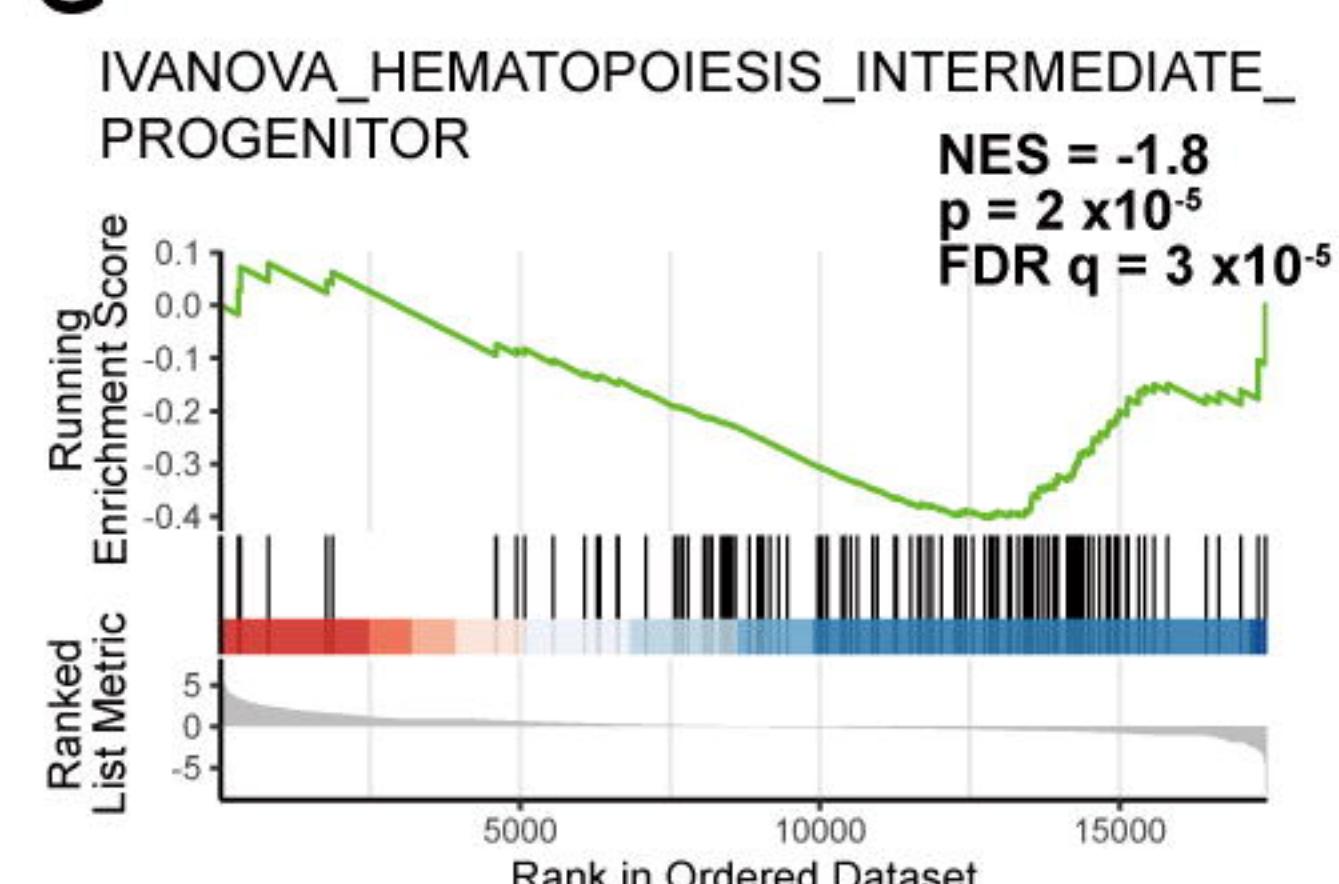
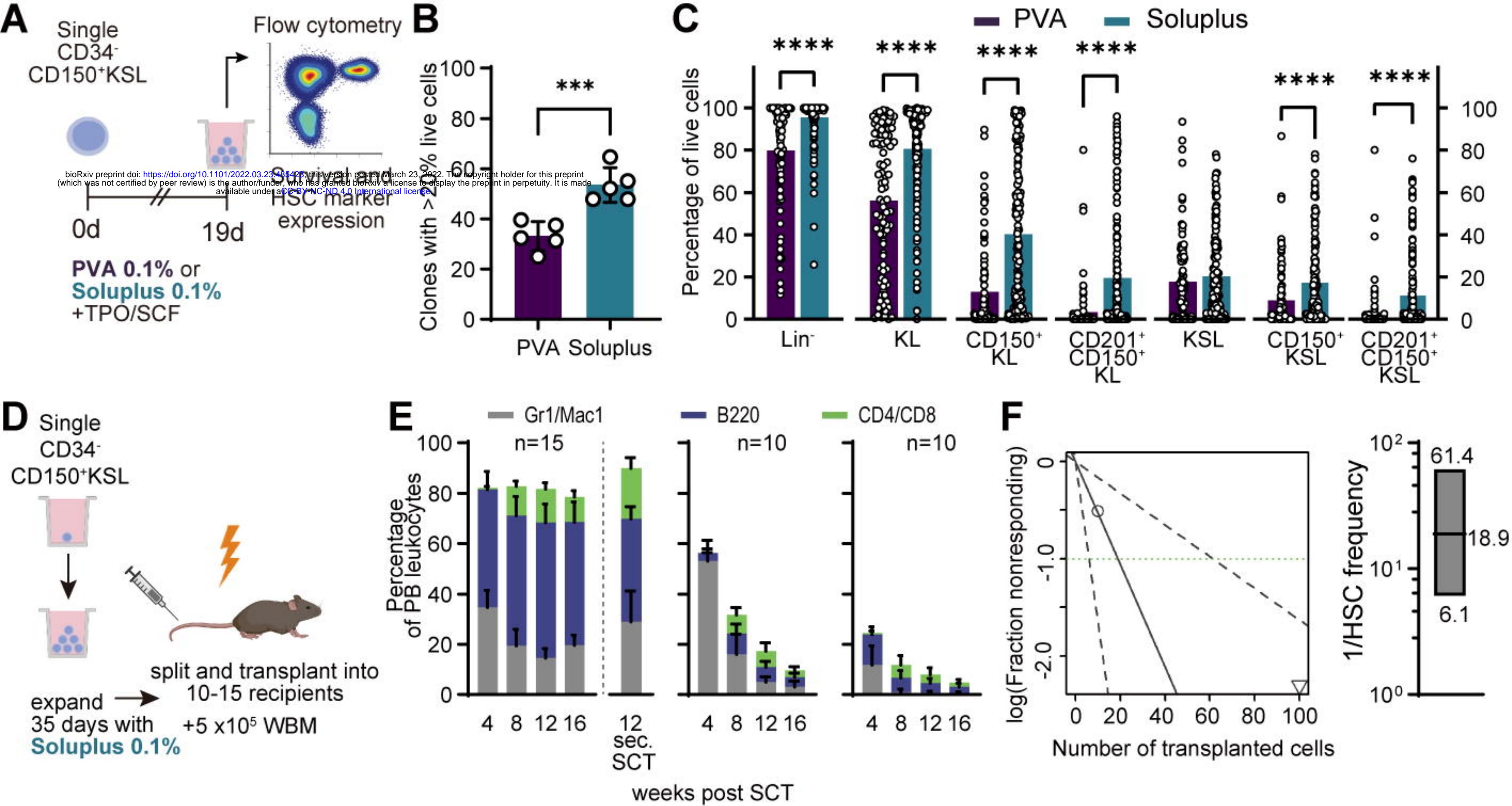
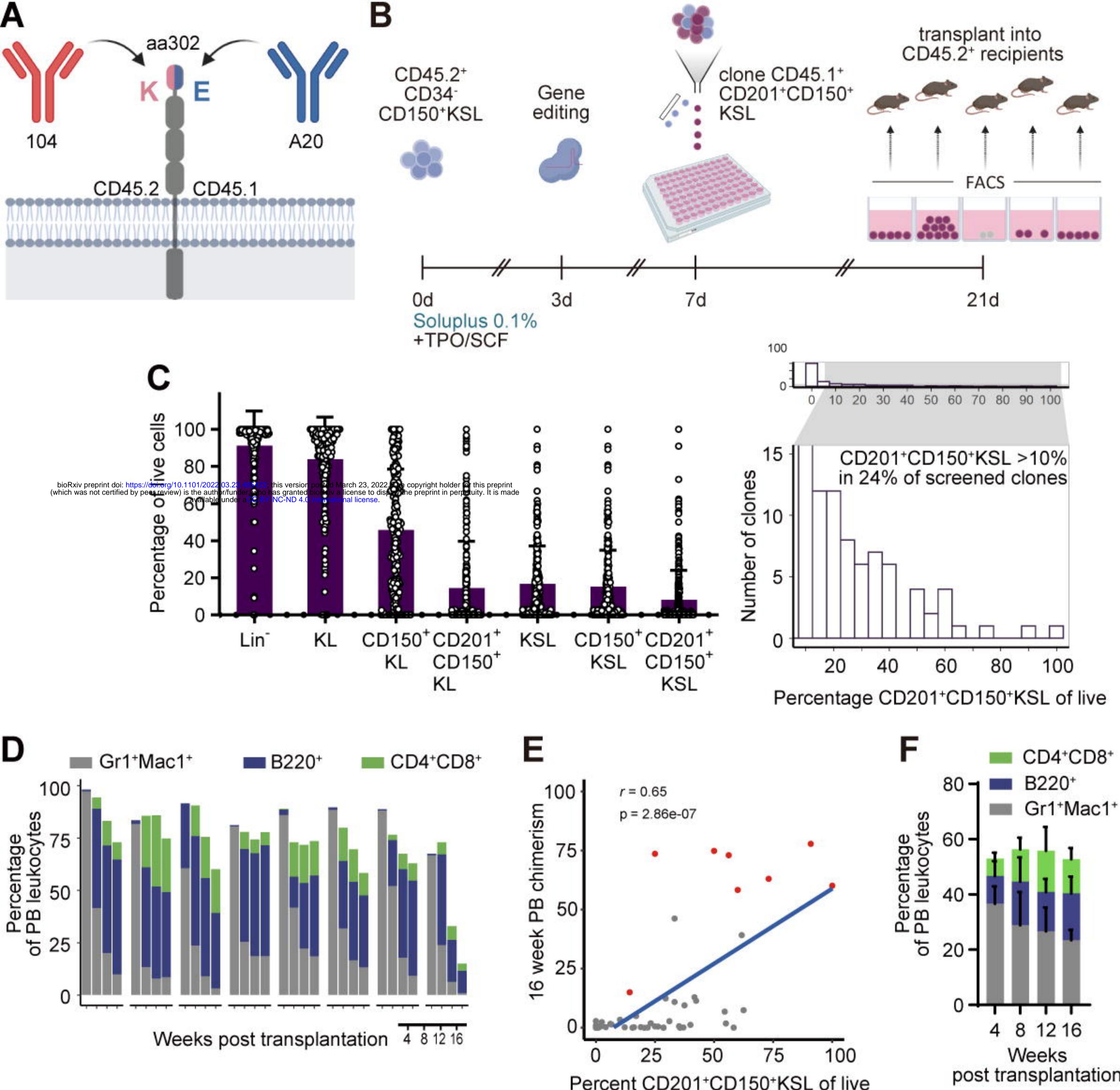

C

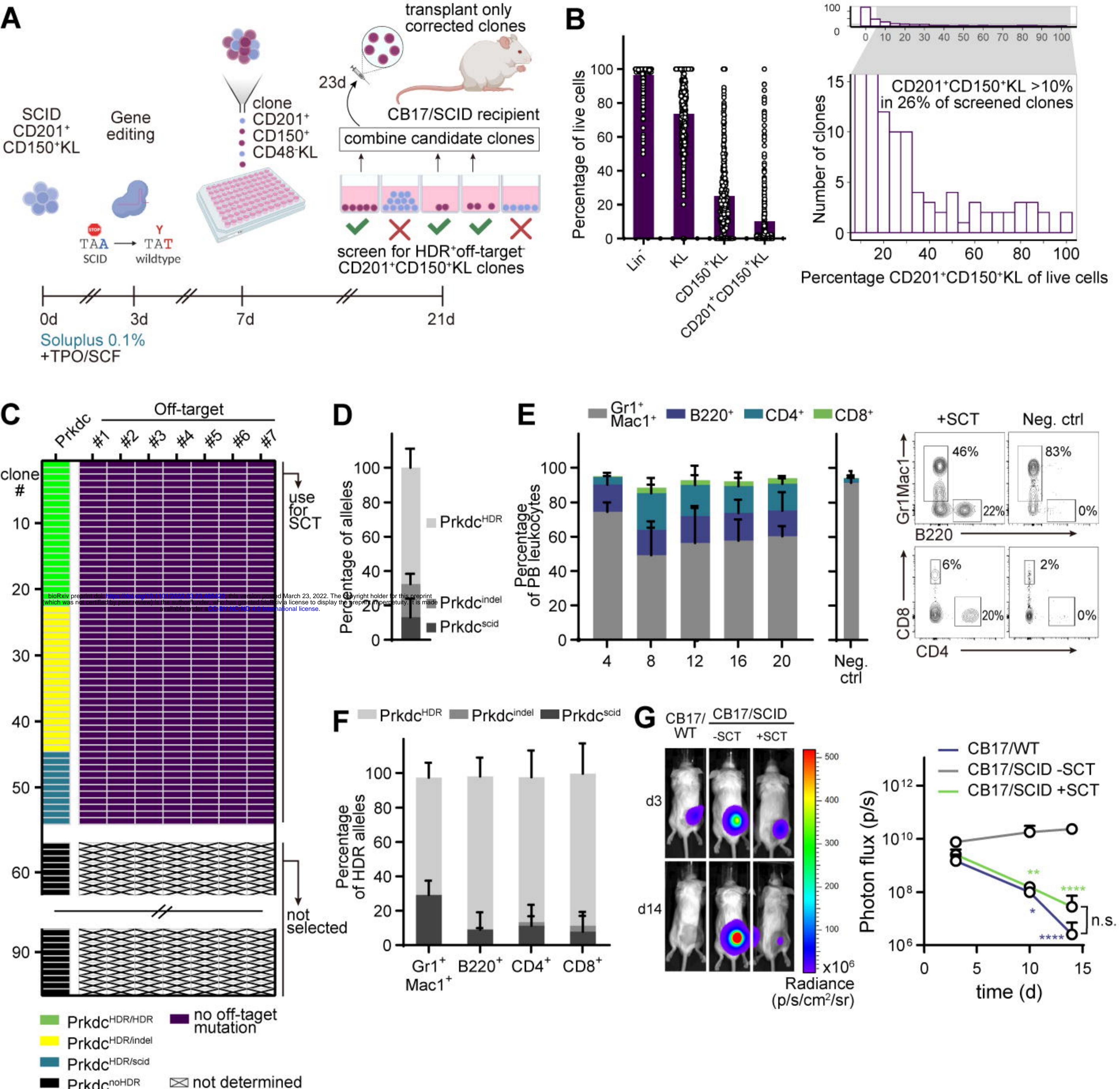

D

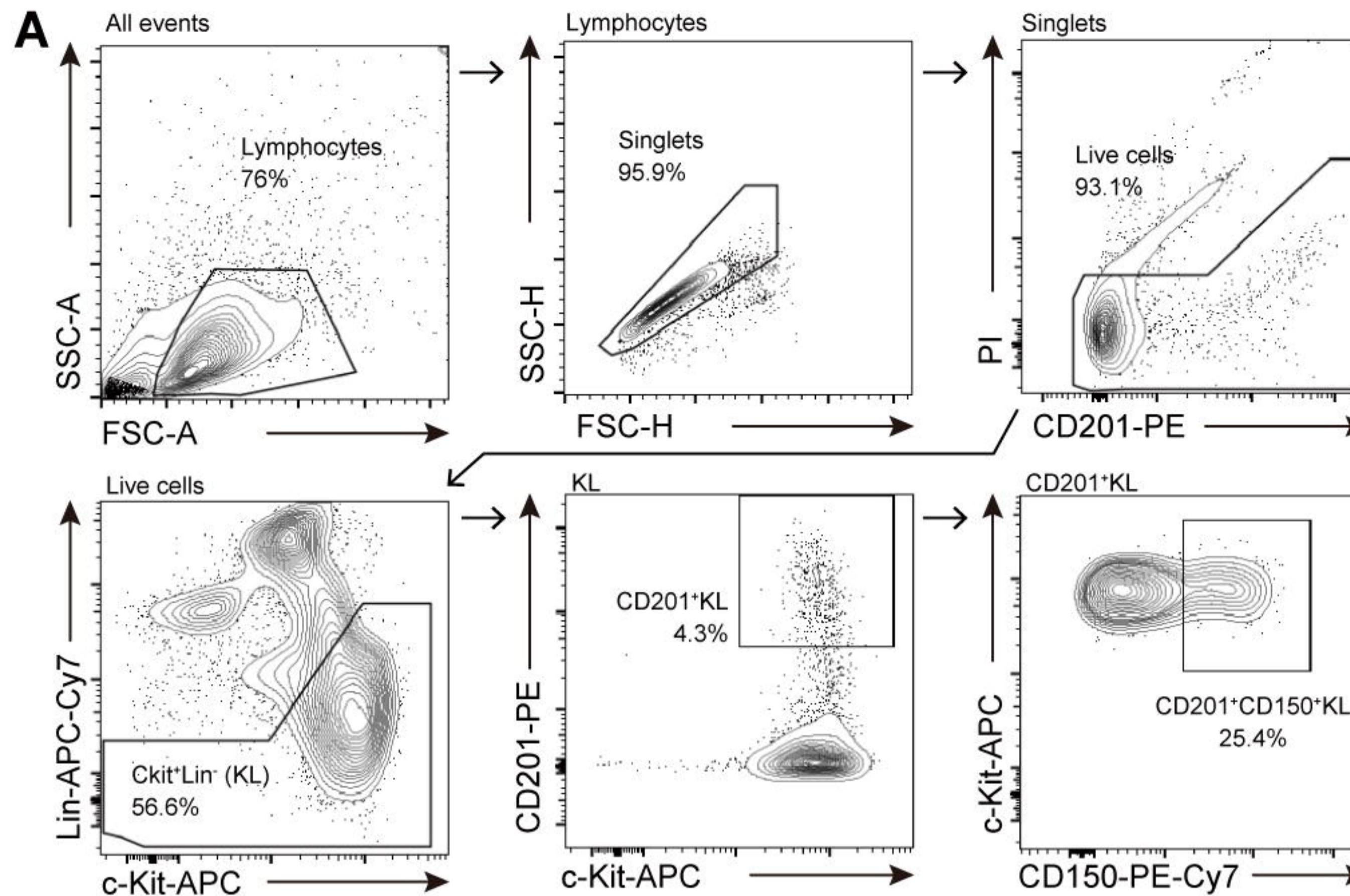
E

F

G


Fig. 2, Becker et al.


Fig. 3, Becker et al.

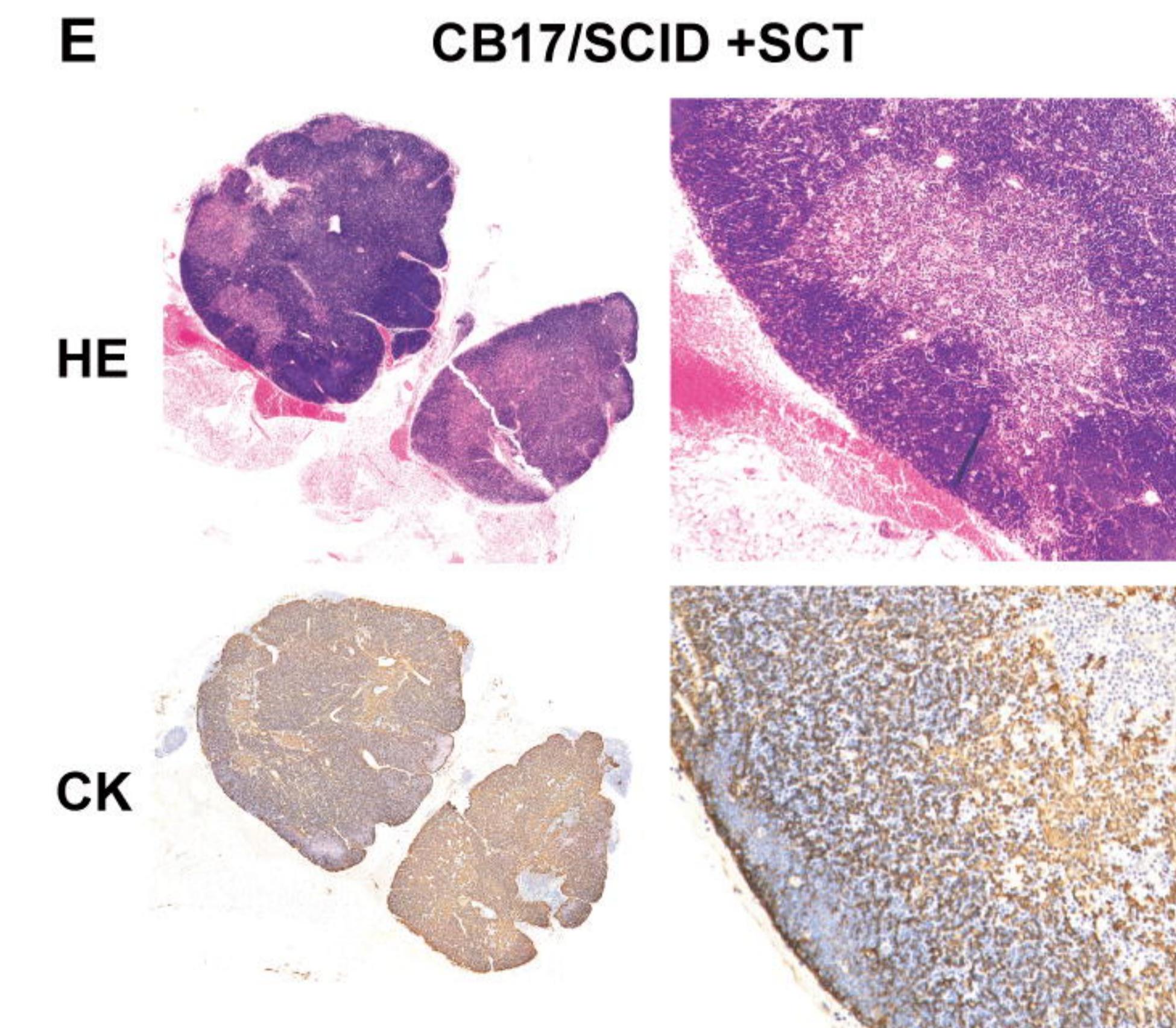
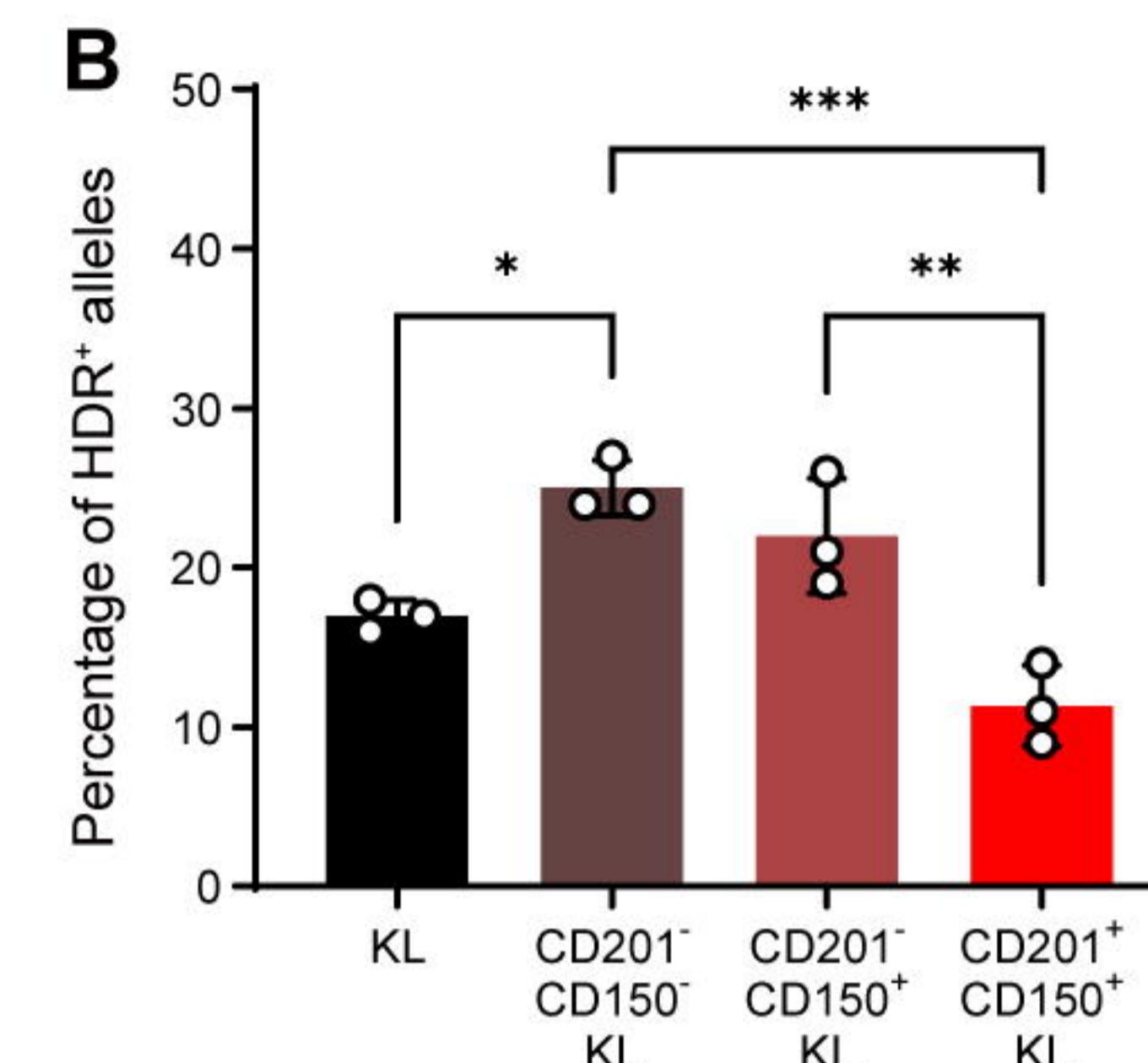
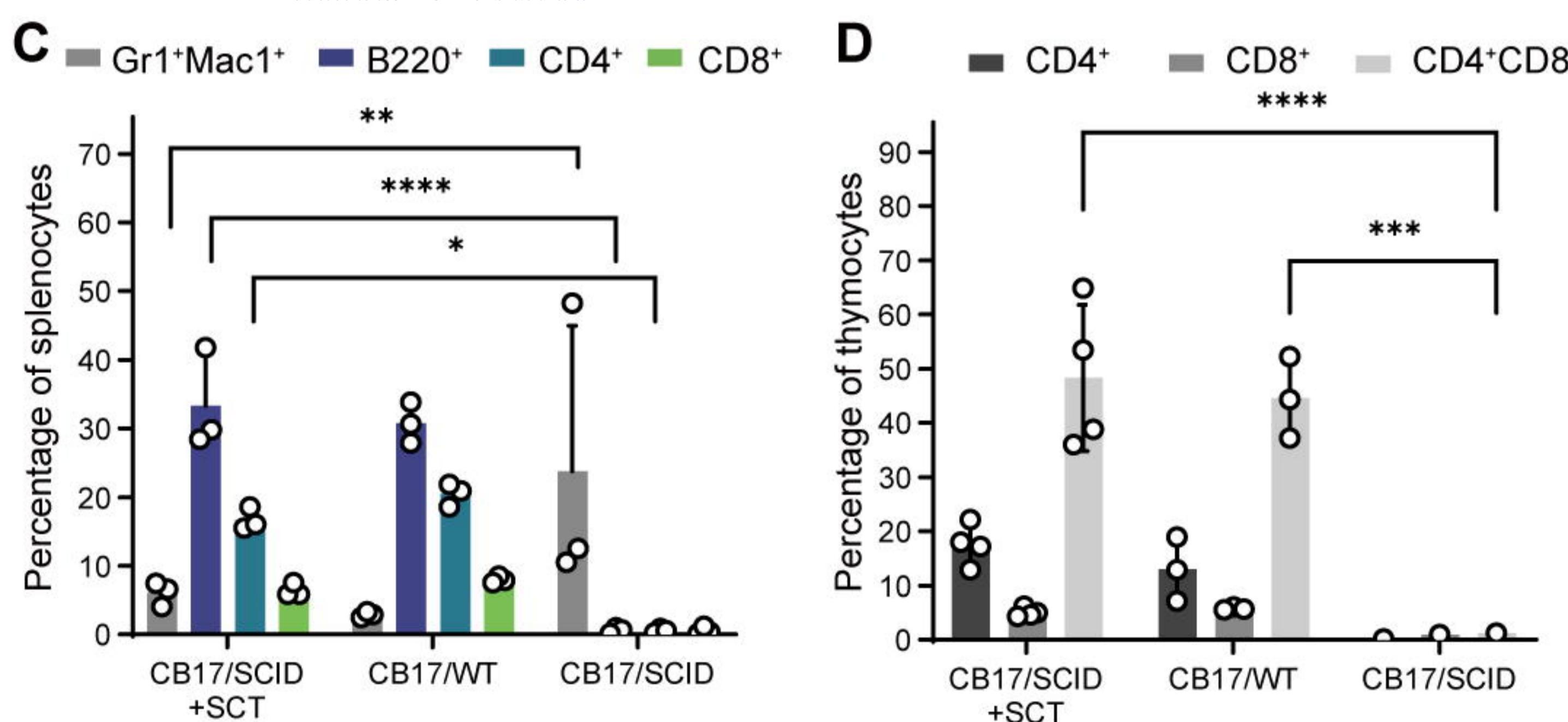



Fig. 4, Becker et al.

Fig. 5, Becker et al.

bioRxiv preprint doi: <https://doi.org/10.1101/2022.03.23.485423>; this version posted March 23, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Fig. S1, Becker et al.

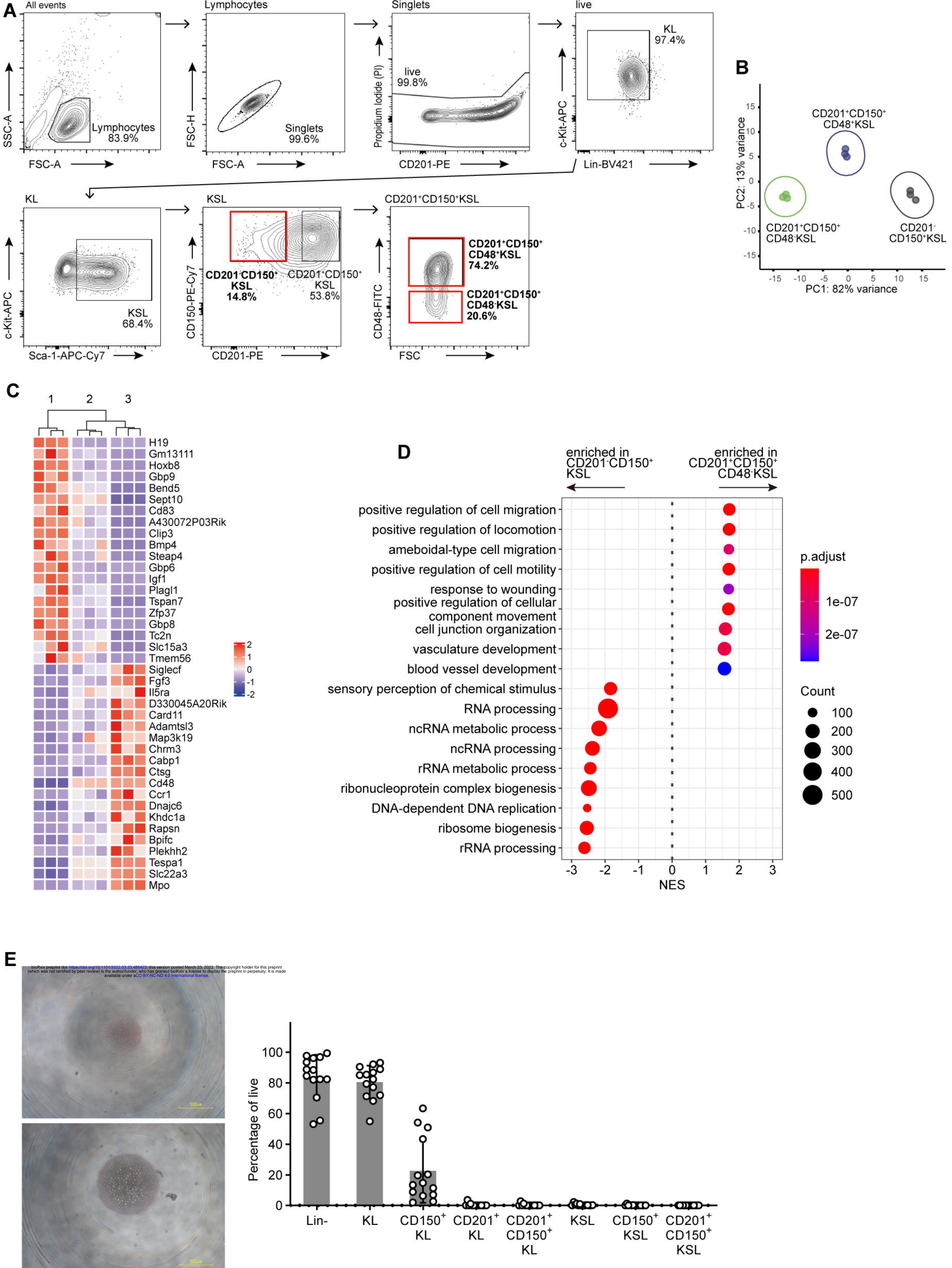


Fig. S2, Becker et al.

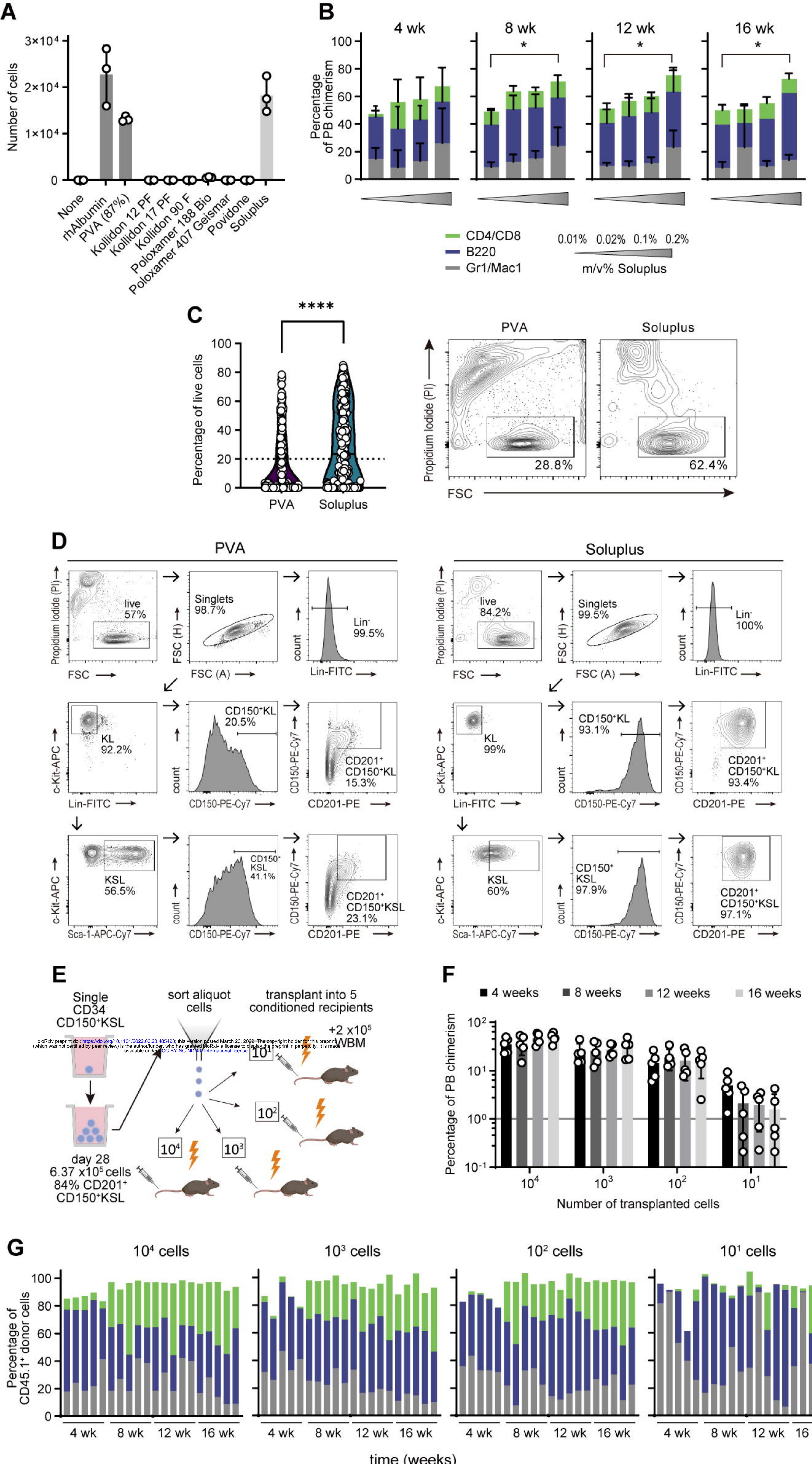
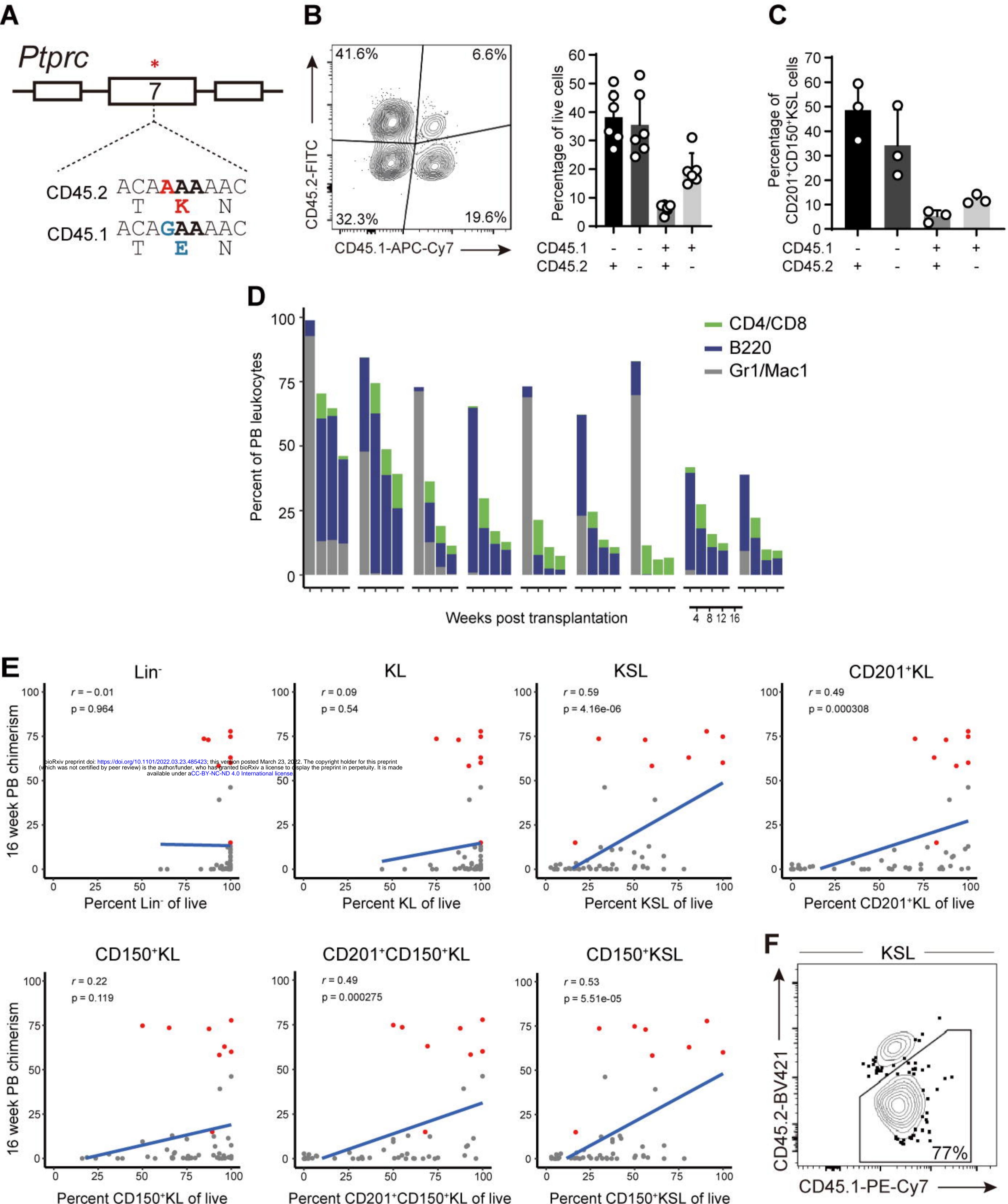
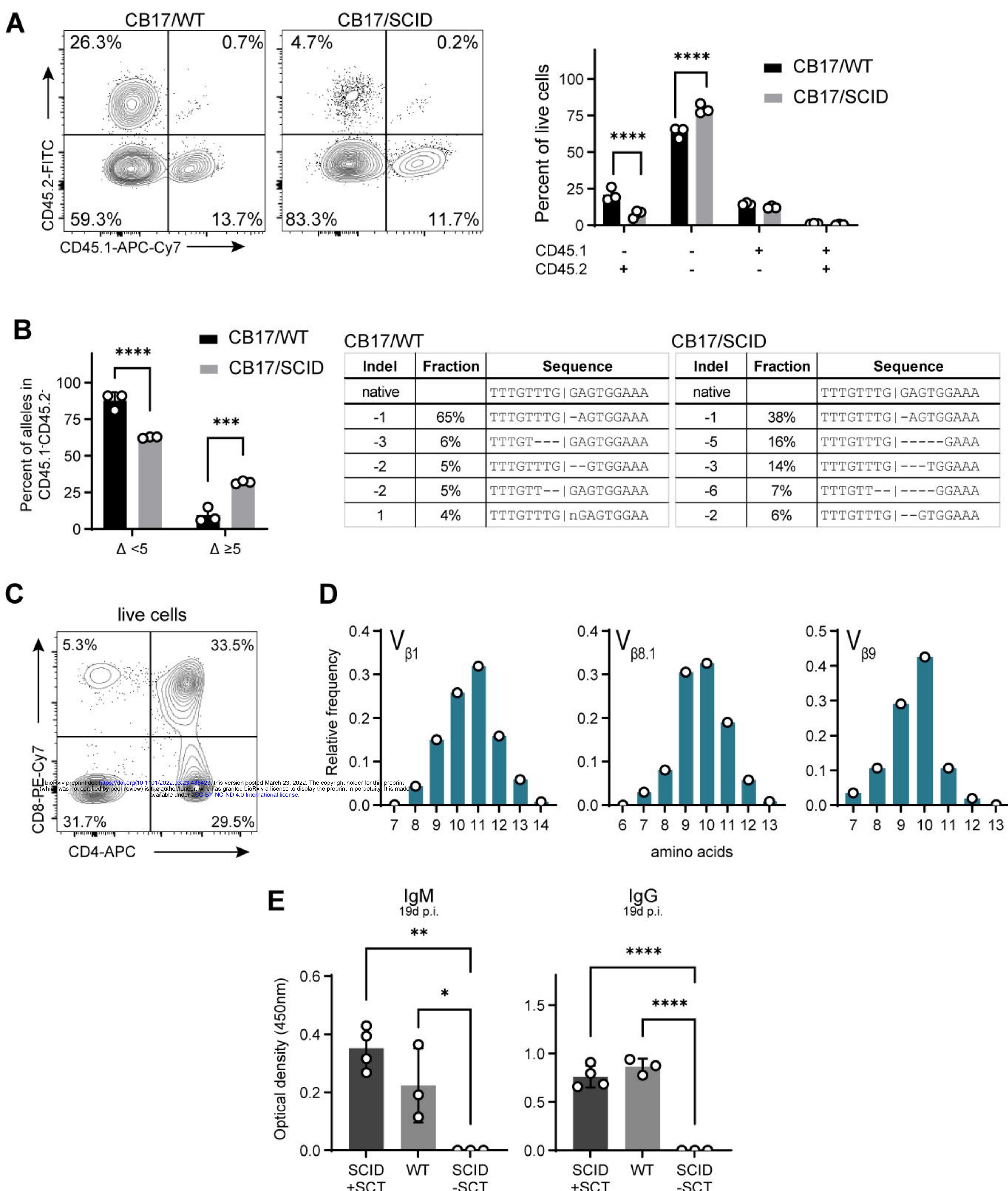




Fig. S3, Becker et al.

Fig. S4, Becker et al.

Fig. S5, Becker et al.