

1 ***Fusarium solani* species complex genomes reveal bases of**
2 **compartmentalisation and animal pathogenesis**

3

4 Daphne Z. Hoh^{1,2,3}, Hsin-Han Lee¹, Naohisa Wada¹, Wei-An Liu¹, Min R. Lu¹, Cheng-Kuo
5 Lai^{1,4}, Huei-Mien Ke¹, Pei-Feng Sun^{1,2,3}, Sen-Lin Tang^{1,2}, Wen-Hsin Chung⁵, Ying-Lien
6 Chen⁶, Chia-Lin Chung⁶ and Isheng Jason Tsai^{*1,2,4}

7

8 ¹ Biodiversity Research Center, Academia Sinica, 115 Nangang, Taipei, Taiwan.

9 ² Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and
10 National Taiwan Normal University, Taipei, Taiwan.

11 ³ Department of Life Science, National Taiwan Normal University, 116 Wenshan, Taipei,
12 Taiwan.

13 ⁴ Genome and Systems Biology Degree Program, National Taiwan University and Academia
14 Sinica, Taipei, Taiwan.

15 ⁵ Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan.

16 ⁶ Department of Plant Pathology and Microbiology, National Taiwan University, Taipei,
17 10617 Taiwan.

18

19 * Corresponding author: Isheng Jason Tsai

20 Tel: +886 2 2787 2230

21 E-mail address: ijtsai@gate.sinica.edu.tw

22 Abstract

23 The *Fusarium solani* species complex (FSSC) comprises fungal pathogens responsible for
24 mortality in a diverse range of animals and plants, but their genome diversity and
25 transcriptome responses in animal pathogenicity remain to be elucidated. We sequenced and
26 compared six chromosome-level FSSC clade 3 genomes of aquatic animal and plant host
27 origins and revealed a spectrum of conservation patterns in chromosomes categorised into
28 three compartments: core, fast-core (FC), and lineage-specific (LS). Each chromosome type
29 varied in structural architectures, with FC and LS chromosomes containing significantly
30 higher proportions of repetitive elements and methylation levels than core chromosomes,
31 with genes exhibiting higher d_N/d_S and enriched in functions related to pathogenicity and
32 niche expansion. Mesosynteny were detected between FC chromosomes of *Fusarium*
33 genomes, indicating that these chromosomes were present in a common ancestor that
34 predated FSSC species. These findings provide evidence that genome compartmentalisation
35 was the outcome of multi-speed evolution amongst FSSC chromosomes. We further
36 demonstrated that *F. falciforme* and *F. keratoplasticum* are opportunistic pathogens by
37 inoculating *Pelodiscus sinensis* eggs and identified differentially expressed genes also
38 associated with plant pathogenicity. These included the most upregulated genes encoding the
39 CFEM (Common in Fungal Extracellular Membrane) domain. The study establishes genomic
40 resources and an animal model for fungal pathogens of trans-kingdom hosts.

41 **Introduction**

42 The filamentous fungi in the genus *Fusarium* are among the most virulent pathogens
43 affecting multi-kingdom hosts (O'Donnell et al., 2016; Zhang et al., 2006), but can also exist
44 as saprophytes. The genus, commonly identified as plant pathogens, has caused devastating
45 losses in the global agricultural industry (Dean et al., 2012) and is recognized as one of the
46 most prevalent clinical pathogens causing superficial and invasive disease in
47 immunocompromised humans (Al-Hatmi et al., 2016; Walther et al., 2017). In recent
48 decades, an increasing number of fusariosis cases associated with various types of animals
49 have been reported worldwide (Brown et al., 2020; Cabañes et al., 1997; Fernando et al.,
50 2015; Hsu et al., 2021; Kano et al., 2002), but research on its virulence beyond plant hosts
51 remains limited (Coleman, 2016; Rep & Kistler, 2010). It is now considered as a serious
52 emerging fungal threat potentially inducing host population loss and extinction (Fisher et al.,
53 2012; O'Donnell et al., 2016).

54

55 The most prevalent *Fusarium* pathogens associated with veterinary infection are from
56 the species-rich clade three of *Fusarium solani* species complex (FSSC; O'Donnell et al.,
57 2008; O'Donnell et al., 2016; Schroers et al., 2016; Zhang et al., 2006), which are ubiquitous
58 in the environment (Zhang et al., 2006). Several FSSC species were reported to cause disease
59 in aquatic animals such as grey seals, shrimps, dolphins, and sharks (O'Donnell et al., 2016).
60 Two species from the FSSC clade 3—*F. falciforme* and *F. keratoplasticum*—were the
61 predominant species occurring in diseased sea turtle nests worldwide (Sarmiento-Ramírez et
62 al., 2014), and the latter was also recently reported to infect *Podocnemis unifilis*, an
63 endangered freshwater turtle species (García-Martín et al., 2021). Koch's postulates were
64 fulfilled for *F. keratoplasticum*, which can cause disease and high mortality rate (83.3 %) in
65 sea turtle *Caretta caretta* eggs (Sarmiento-Ramírez et al., 2010). The disease is now termed
66 sea turtle egg fusariosis (Smyth et al., 2019); it is responsible for low hatching success of
67 eggs from both natural nests (Phillott et al., 2004; Sarmiento-Ramírez et al., 2014) and man-
68 made hatcheries (Hoh et al., 2020; Sidique et al., 2017).

69

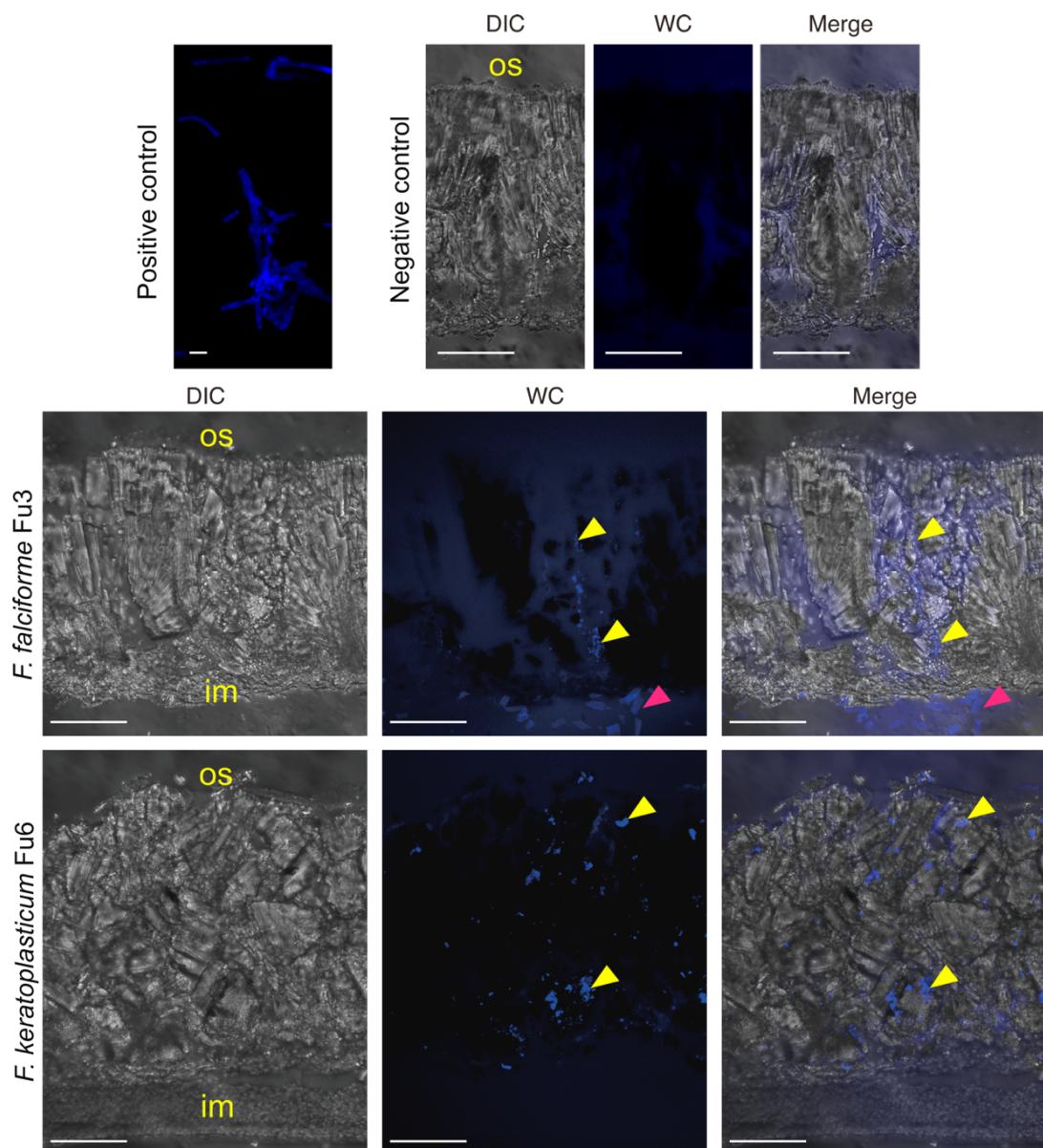
70 One particular genome characteristic in many pathogenic fungi are that their
71 chromosomes can be differentiated into two compartments: the core chromosome (CC),
72 which contain essential genes required for survival and reproduction, and lineage-specific
73 chromosome (LSC; also known as accessory chromosome), which is repeat-rich and contains

74 enriched genes mostly associated with niche adaptation and pathogenicity (Bertazzoni et al.,
75 2018; Möller & Stukenbrock, 2017). LSC can be dispensable and do not affect fungal growth
76 in several *Fusarium* species such as *F. oxysporum* f. sp. *lycopercisi* (Ma et al., 2010) and *F.*
77 *vanettenii* (previously *Nectria haematococca*; Wasmann & VanEtten, 1996). The LSC of *F.*
78 *vanettenii* harbours pea-specific pathogenic genes—the PEP cluster (Han et al., 2001;
79 Temporini & VanEtten, 2002; Wasmann & VanEtten, 1996), and the deletion of the entire
80 LSC reduced the pathogen's virulence towards pea plants (Coleman, 2016; Wasmann &
81 VanEtten, 1996). It is unclear whether any of these virulence genes are present in other FSSC
82 species, if they play a role in animal infection, and if they are enriched in LSCs.

83

84 Here, we show that *F. falciforme* and *F. keratoplasticum* can penetrate eggshells and
85 colonise egg inclusions. We produced six high-quality genome assemblies for species in the
86 FSSC clade 3 and divided the chromosomes into multiple compartments based on different
87 genome features and selection pressures. We developed the first study model for the infection
88 of animal pathogenic *Fusarium* employing the dual RNA-seq sequencing method to identify
89 regulated host and pathogen genes during the infection. Together the results provided a
90 clearer understanding of genomic bases of FSSC species and their virulence mechanisms on
91 animals.

92


93 **Results**

94

95 ***Fusarium falciforme* and *F. keratoplasticum* are opportunistic pathogens of turtle eggs**

96 We analysed the infection scenarios of *F. falciforme* Fu3 and *F. keratoplasticum* Fu6
97 inoculated in eggs of the animal host Chinese softshell turtle (*Pelodiscus sinensis*). Hyphal
98 growth in both species was observed on the eggshell surface after five days of inoculation
99 (**Figure 1**) with some occasionally growing into the cavity-like structures (**Supplementary**
100 **Figure 1**). Cryo-sectioning and histological observations of undecalcified eggshell cross-
101 sections revealed the presence of both *Fusarium* species on the outer, within the calcareous,
102 and inner layers of the eggshells (**Figure 1**), confirming that hyphae vertically penetrated the
103 eggshell. Degradations were sometimes observed on the eggshell membrane (**Figure 1**).
104 Attraction assays revealed no significant difference in hyphal growth rates with or without the
105 presence of turtle eggs in each *Fusarium* species ($p = 0.67$ in *F. falciforme* and $p = 0.86$ in *F.*
106 *keratoplasticum*; **Supplementary Figure 2**) or between species ($p = 0.86$ in control and $p =$

107 0.86 in treatment). We further examined the symptoms of *F. falciforme* and *F.*
108 *keratoplasticum* colonisation on eggs at three- and four-days post-inoculation (dpi)
109 (**Supplementary Figure 3**). Mycelial mass was observed growing on the membrane
110 (**Supplementary Figure 3a**) and embryo (**Supplementary Figure 3b and c**). Some
111 inoculated eggs exhibited reduced branching points and disrupted blood capillaries on the
112 microvascular system despite the embryo still being alive during the examination
113 (**Supplementary Figure 3c**). Together, these observations suggested that these two FSSC
114 species are opportunistic animal pathogens and, upon contact, their hyphae can penetrate
115 eggshells via natural openings and subsequently lyse and colonise egg inclusions.
116

117
118 **Figure 1.** Laser confocal microscopy images of undecalcified cross-section of *Pelodiscus*
119 *sinensis* eggshell acquired at 5-dpi of *Fusarium falciforme* Fu3 and *F. keratoplasticum* Fu6.

120 The text 'os' and 'im' indicate outer eggshell surface and inner eggshell membrane,
121 respectively. Fungal material was stained with Calcofluor White (blue signal). Yellow and
122 pink arrowheads denote fungal signal and degraded eggshell membrane, respectively. DIC =
123 differential interference contrast. WC = white contrast. Scale bar in figure is 50 μ m except
124 10 μ m in positive control.

125

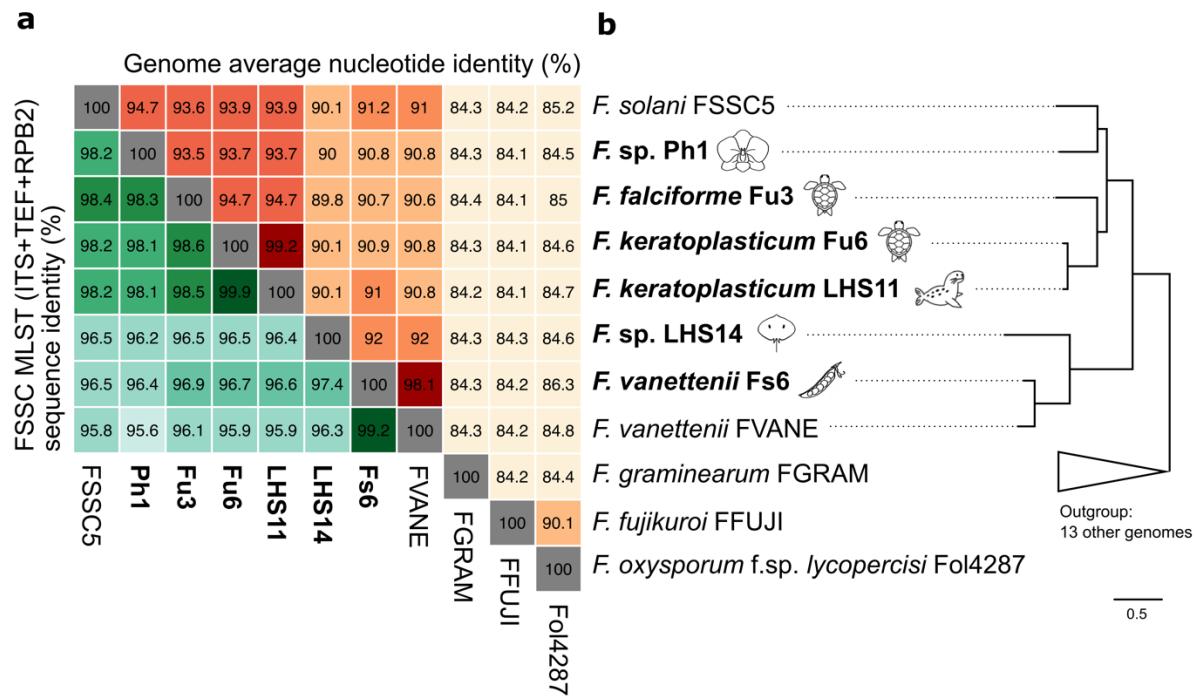
126 **Genome characteristics of six sequenced FSSC isolates**

127 We sequenced the genomes of five species within clade 3 of FSSC (**Table 1**). This
128 included *F. falciforme* (Fu3), *F. keratoplasticum* (Fu6 and LHS11), and *Fusarium* sp.
129 FSSC12 (LHS14) isolated from various aquatic animal hosts. Two species of plant host
130 origins—*Fusarium* sp. (Ph1) from orchid and *F. vanettenii* (Fs6) from pea—were also chosen
131 for comparative purposes. The initial assemblies were produced from averaging 121X of
132 Oxford Nanopore reads (sequence N50 = 14–23kb) using the Flye assembler (Kolmogorov et
133 al., 2019) and polished by Illumina reads (**Supplementary Table 1**). The final assemblies
134 were in 14 to 40 pieces with N50 3.2–4.2 Mb (**Table 1**) averaging 56 Mb, which is more
135 contiguated and larger than other representative *Fusarium* genomes (ranging 12–4,197
136 contigs averaging 47Mb; **Supplementary Table 2**). Interestingly, *F. vanettenii* Fs6 has an
137 assembly of 72.9 Mb, the largest *Fusarium* genome reported to date and larger than the
138 published *F. vanettenii* MPVI 77-13-4 genome of 51.2 Mb (Coleman et al., 2009), suggesting
139 high intraspecies variation. The *F. falciforme* Fu3 reference was amongst the most complete
140 genome, consisting of 14 contigs with six telomere-to-telomere gapless chromosomes
141 (**Supplementary Table 3**), and was on average 17 times more contiguated than the published
142 FSSC genomes (N90: 2.7 Mb vs. 0.4 kb–2.6 Mb, respectively; last
143 accessed date 18th January 2022; **Supplementary Table 4**).

Species	<i>F. falcifor me</i>	<i>F. keratoplas ticum</i>	<i>F. keratoplas ticum</i>	<i>Fusarium sp.</i>	<i>Fusarium sp.</i>	<i>F. vanettenii</i>
Strain ID	Fu3	Fu6	LHS11	LHS14	Ph1	Fs6
Genome size (Mb)	53.6	49.5	53.5	56.3	51.5	72.9
Number of sequences	14	25	26	35	24	40
Largest contig (Mb)	6.8	6.4	6.6	6.1	5.4	6.7
N50 Mb (L50)	3.8 (6)	4.2 (5)	3.4 (6)	3.8 (6)	3.2 (6)	3.3 (9)
N90 Mb (L90)	2.7 (12)	2.2 (11)	1.5 (13)	0.9 (14)	1.1 (17)	1.3 (23)
GC %	49.4	51.3	51.4	48.6	51.1	49.4
Number of protein coding genes	15,137	14,935	15,051	15,937	15,498	18,862
Protein BUSCO % (fungi)	99	98.4	98.4	98.3	100	98.6
Protein BUSCO % (ascomycota)	98.8	98.8	98.1	98.6	99.8	98.7

144 **Table 1.** Genome statistics of six sequenced isolates of *Fusarium solani* species complex.

145


146 We predicted 14,927 to 18,862 protein-encoding genes from these assemblies using
147 the MAKER2 (Holt & Yandell, 2011) pipeline based on evidence using proteomes from
148 closely related fungi and transcriptome reads generated from mycelium. Analysis of
149 Benchmarking Universal Single-Copy Orthologs (BUSCO; Manni et al., 2021) indicated that
150 the proteomes were 98.3 to 100% complete (**Table 1**) and 70–77.1% of these genes were
151 assigned to a protein family or domain (Pfam) via eggNOG-mapper (Cantalapiedra et al.,
152 2021), indicating high completeness of these assemblies. The orthology of the six sequenced
153 assemblies, 17 other *Fusarium* genomes, and an outgroup species *Beauveria bassiana*
154 (**Supplementary Table 2**) was inferred using OrthoFinder (Emms & Kelly, 2019). A total of
155 24,203 orthogroups (OGs) were inferred, of which 16,154 (66.7%) and 235 (1%) OGs were
156 *Fusarium* and FSSC-specific, respectively. All six genomes contained a predicted average of
157 420 (2.6% of total gene) and 487 genes encoded for effector and carbohydrate active enzyme,
158 respectively (**Supplementary Table 5 and 6**). In addition, an average of 44 secondary
159 metabolite biosynthetic gene clusters were detected in the six genomes; of which some

160 included fusarin were associated with plant pathogenicity (**Supplementary Table 7 and 8**;
161 Ma et al., 2013). All these additional gene annotations revealed a similar number of gene
162 features typically comparable to other *Fusarium* genomes (Ma et al., 2013; Niehaus et al.,
163 2016). The repeat proportion of FSSC genomes averaged 7.1% (ranged 4.2–9.4%), except for
164 *F. vanettenii* Fs6, which contained 18.8% repeats (**Supplementary Figure 4a**). The
165 unusually large repetitive DNA content and gene number possibly contribute to the large
166 genome size of *F. vanettenii* Fs6. DNA transposons constituted the largest proportion (2.1 to
167 6.0%) of FSSC genomes (**Supplementary Figure 4b**), followed by LTR retrotransposons
168 (0.9 to 5.5%). Examination of 5-methylcytosine (5mC) in DNA revealed that methylation
169 levels were similar between coding regions and repetitive elements (average 4.7 vs. 6.5%;
170 Wilcoxon rank-sum test, $p = 0.2$; **Supplementary Table 9**).

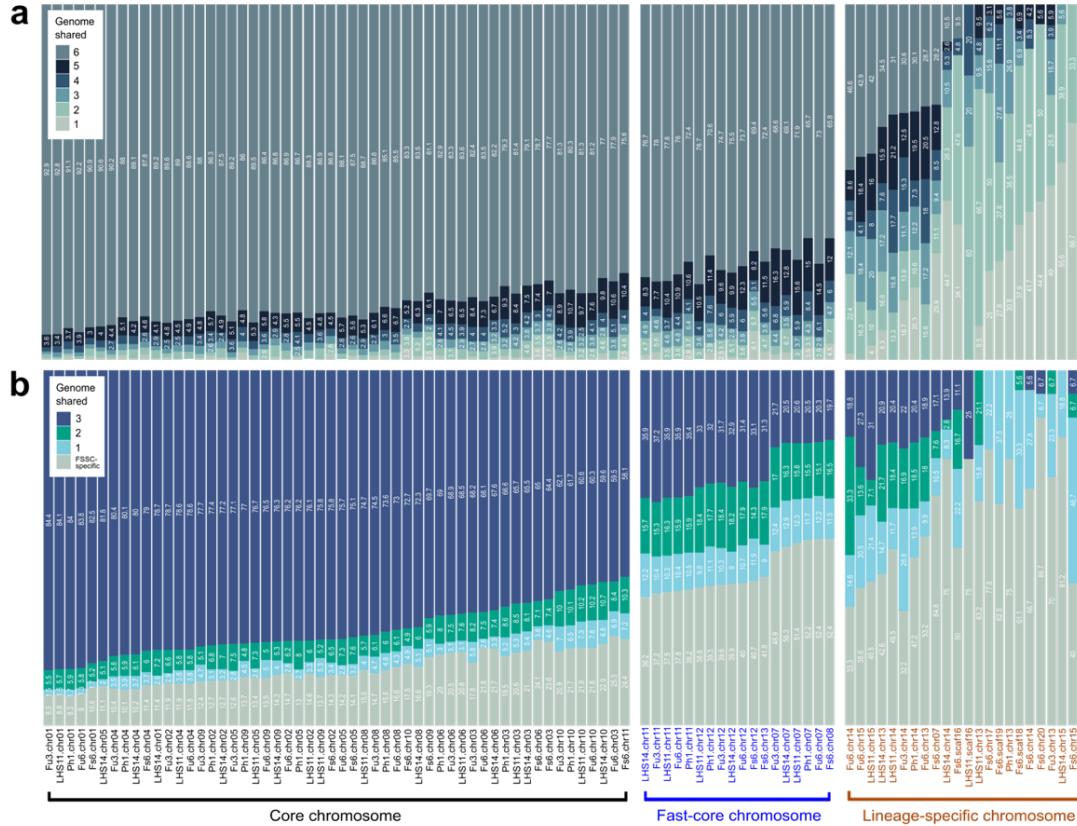
171

172 Species delimitation within FSSC is challenging because isolate morphologies are
173 almost indistinguishable and nucleotide identities of marker genes are highly similar
174 (O'Donnell et al., 2008). We compared the sequence identity and constructed a maximum
175 likelihood phylogeny based on 40 FSSC species using the commonly employed multi-locus
176 sequence typing (MLST) targeting internal transcribed region (ITS), translation elongation
177 factor (TEF), and RNA polymerase II (RPB2) (**Figure 2a; Supplementary Figure 5 and**
178 **Table 10**). Even though most of the species were resolved based on the MLST phylogeny,
179 pairwise comparison of sequence identity between some FSSC species was higher than 98%,
180 even between different species, consistent with the limitation of using only a few molecular
181 markers. We further determined the genome average nucleotide identity (ANI) and detected a
182 lower average of 94.5% among the FSSC species comparisons. For instance, *F. falciforme*
183 Fu3 and *F. keratoplasticum* Fu6 had a nucleotide similarity of 98.6% in the MLST sequence
184 but 94.7% in the genome; this better distinction allowed us to resolve FSSC species at the
185 genome level. Ph1 was most closely related to *F. solani* haplotype FSSC5 (MLST and
186 genome ANI: 98.2 and 94.7%). *Fusarium* sp. LHS14 was designated as haplotype FSSC12
187 and the first genome assembly of this species (**Supplementary Figure 5**). Finally, we
188 constructed a species phylogeny using 2,385 single-copy orthologs, which recapitulated the
189 relationship based on the MLST phylogeny, ANI and found that the species relationships
190 were not grouped by animal or plant hosts (**Figure 2b; Supplementary Figure 6 and Table**
191 **2**).

192

193

194 **Figure 2.** Average nucleotide similarities and species tree of *Fusarium solani* species
195 complex (FSSC). (a) Nucleotide identities determined by multi-locus sequences
196 (ITS+TEF+RPB2) commonly used for FSSC in the lower green-shaded triangular matrix and
197 genome average nucleotide identity in selected *Fusarium* species in the upper orange-shaded
198 triangular matrix. Darker shading indicates higher sequence similarity. (b) A simplified
199 *Fusarium* species tree with outgroup species collapsed. The full phylogeny is in
200 **Supplementary Figure 6** and was constructed using 2,385 single-copy orthogroup
201 sequences. Species name in bold represents the strains sequenced in the current study and
202 source origin (host) represented by icons.


203

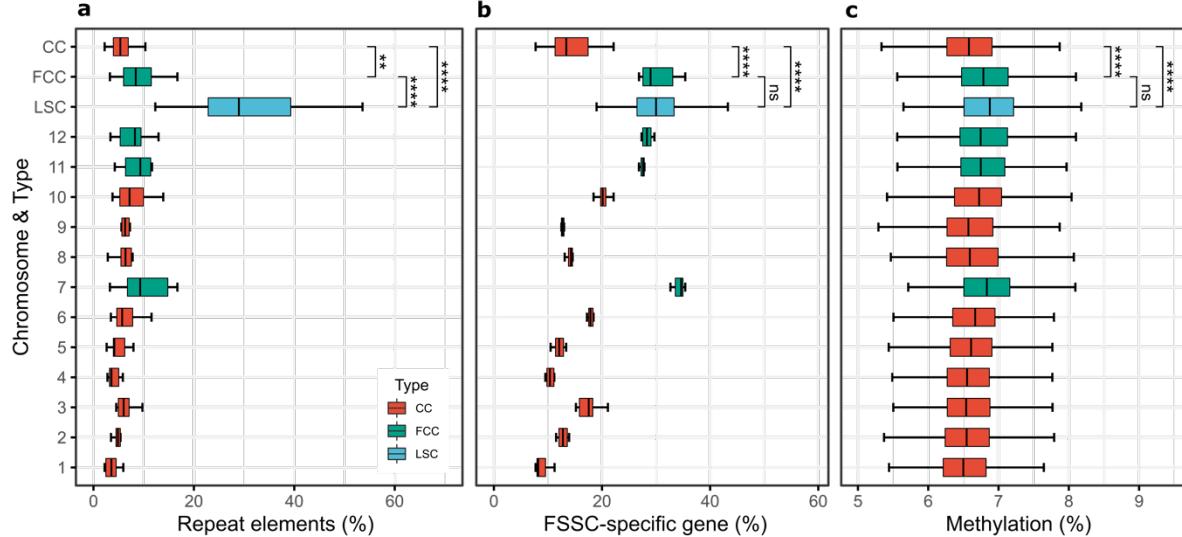
204 Evolutionary dynamics of FSSC chromosomes

205 To investigate whether lineage-specific chromosomes (LSCs) were present in each
206 *Fusarium* species, we assessed the extent of chromosome linkage between species via
207 pairwise single-copy orthologs, proportions of repetitive elements and FSSC-specific genes
208 in each chromosome. In addition to assigning the core and LSC as in previous *Fusarium*
209 studies (Coleman et al., 2009; Ma et al., 2010), FSSC chromosomes were categorised into
210 two compartments, revealing a spectrum of conservation (**Figure 3a**). The majority of
211 chromosomes were part of the linkage group that were shared by all six species; we
212 designated these the core chromosomes (CCs). On the other end of the conservation spectrum
213 were LSCs that contained single-copy orthologues shared by mostly two out of six genomes

214 and a lower proportion of shared genes. Further examination of linkage between FSSC
 215 chromosome with three other non-FSSC *Fusarium* species revealed an additional
 216 compartment within the FSSC, which had a lower proportion of genes with orthology
 217 detected beyond FSSC (**Figure 3b**). This additional compartment comprised three
 218 chromosomes (corresponding to chromosome seven, 11, and 12 in five strains and eight, 12
 219 and 13 in *F. vanettenii* Fs6) of FSSC genomes; these were designated as fast-core
 220 chromosomes (FCCs). Synteny analysis revealed that the CCs and FCCs were more syntenic
 221 than the LSCs between the FSSC species (**Supplementary Figure 7**) and harboured
 222 significantly fewer repeats (averaging 5.8, 9.4 vs. 31.3%, respectively; **Figure 4a**). We
 223 designated a total of 9 CCs, 3 FCCs and 2–11 LSCs in each FSSC genome. The CCs and
 224 FCCs constituted the majority (67.7–94.7%) of genomes, while the gapless LS chromosomes
 225 averaged 1.2 Mb, which is a similar mark up as the *F. oxysporum* genomes (Ma et al., 2010).
 226 However, large variations in telomere-to-telomere LSC length were observed in FSSCs,
 227 ranging from 0.8 Mb in chromosome 13 of *Fusarium* sp. Ph1 to 3.3 Mb in chromosome 14 of
 228 *F. vanettenii* Fs6, demonstrating the characteristic dynamics of non-CCs in *Fusarium*
 229 genomes (Fokkens et al., 2018; Zhang et al., 2020).

230

232 **Figure 3.** Orthologue sharing amongst *Fusarium* chromosomes. (a) Proportion of one-to-one
233 orthologue shared across each chromosome. (b) Proportion of one-to-one orthologues with
234 three additional *Fusarium* genomes outside of FSSC including *F. oxysporum*, *F.*
235 *graminearum*, and *F. fujikuroi*.


236

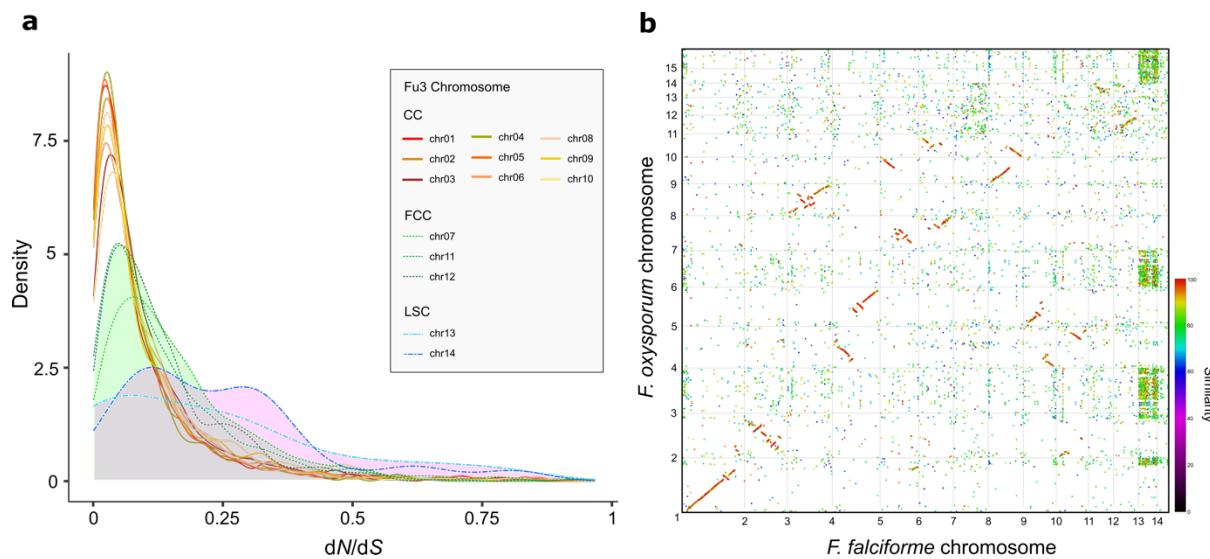
237 We observed consistent proportions of FSSC-specific genes across corresponding
238 chromosomes of each FSSC genome, with a significantly higher proportion of FSSC-specific
239 genes in FCCs than CCs (**Figure 4b**). The combined mean size of FCCs was approximately
240 2.8Mb, with FSSC-specific genes ranging from 26.8 to 35.4% of the total gene content (vs.
241 7.7 to 22.1% in CCs). A lower number of FSSC-specific genes were detected in LSCs
242 compared to CCs (averaging 59 vs. 272 genes), but the former constitutes at least one-fifth of
243 the total gene content (**Supplementary Table 11**). In terms of gene locality, sub-telomeric
244 bias was detected for these FSSC-specific genes, a similar trend as previously reported in *F.*
245 *graminearum* (Cuomo et al., 2007) and *Aspergillus* genomes (Fedorova et al., 2008), but not
246 in FCCs, where the genes were distributed across the entire chromosome (**Supplementary**
247 **Figure 8**). Gene Ontology (GO) enrichment analysis in each chromosome type revealed
248 FCCs and LSCs harbours genes that are feasibly linked to pathogenicity and expansion of
249 new niches such as environment or host, compared to CCs which mainly harbours genes for
250 essential biological functions such as growth and development (**Supplementary**
251 **Information**). FCCs had the highest mean proportion and number of effectors, carbohydrate
252 active enzymes and secondary metabolite biosynthetic genes clusters among the chromosome
253 types, suggesting these genes in FCCs play an important role in pathogenicity processes
254 during host colonisation and infection (**Supplementary Table 12 and 13**). We also observed
255 significantly higher methylation levels in FCCs and LSCs than CCs (**Figure 4c**;
256 **Supplementary Figure 9**).

257

258 To investigate the evolutionary differences of each chromosome type, we estimated
259 the ratio of non-synonymous substitutions to synonymous substitutions per gene (d_N/d_S)
260 across single-copy ortholog between *F. falciforme* Fu3 and *F. keratoplasticum* Fu6. Overall,
261 genes located in LSCs had the highest d_N/d_S than FCCs, followed by CCs (median $\omega = 0.24$,
262 0.10, and 0.06, respectively, Wilcoxon rank-sum test, $p < 0.05$ in all comparison pairs;
263 **Figure 5a**), indicating different levels of purifying selections amongst chromosome type. In
264 addition, genes that were translocated (**Supplementary Figure 7**) also comprised of higher
265 d_N/d_S (median $\omega = 0.09$, 0.08, and 0.05, in LSCs, FCCs, and CCs, respectively; Wilcoxon

266 rank-sum test, $p < 0.05$ in all comparison pairs; **Supplementary Figure 10**), suggesting
267 elevated capability of these translocated genes towards adaptation.
268

269
270 **Figure 4.** Structural features in *Fusarium solani* species complex (FSSC). Boxplots show the
271 proportions of (a) repeat elements and (b) FSSC-specific gene of each chromosome and
272 chromosome type of the six FSSC genomes. (c) DNA methylation levels of *F. falciforme* Fu3
273 chromosomes. Outliers lower than 5% and higher than 9% were excluded from the plot.
274 Statistical significance was calculated using Wilcoxon rank-sum test (**: $p < 0.01$; ****: $p <$
275 0.0001; ns: $p > 0.05$). CC, Core chromosome. FCC, Fast-core chromosome. LSC, Lineage-
276 specific chromosome.


277
278 Several distinctive differences in chromosome seven (chromosome eight of Fs6) of
279 FSSC genomes were observed when compared to the CCs. For instance, the former was
280 mostly located at the end of FCCs in the conservation spectrum (**Figure 3**); it had the highest
281 proportions of repeat and FSSC-specific genes (**Figure 4a and b**) and higher d_N/d_S ratio than
282 other FCCs and CCs (**Figure 5a**). Furthermore, frequent rearrangements were observed in
283 chromosome seven across FSSC genomes (**Supplementary Figure 7b**). Interestingly,
284 intraspecies chromosomal structural variations were observed between *F. keratoplasticum*
285 Fu6 and LHS11 in which translocations of *F. falciforme* Fu3 chromosome seven were
286 observed in chromosome three, thirteen and fourteen of *F. keratoplasticum* Fu6 but dissimilar
287 in LHS11 (**Supplementary Figure 7b**). Hence, the shorter length of chromosome seven of
288 Fu6 suggested that accessory regions were lost and translocated to other chromosomes in the
289 genome. In addition, synteny between *F. falciforme* Fu3 and outgroup *Fusarium* species were

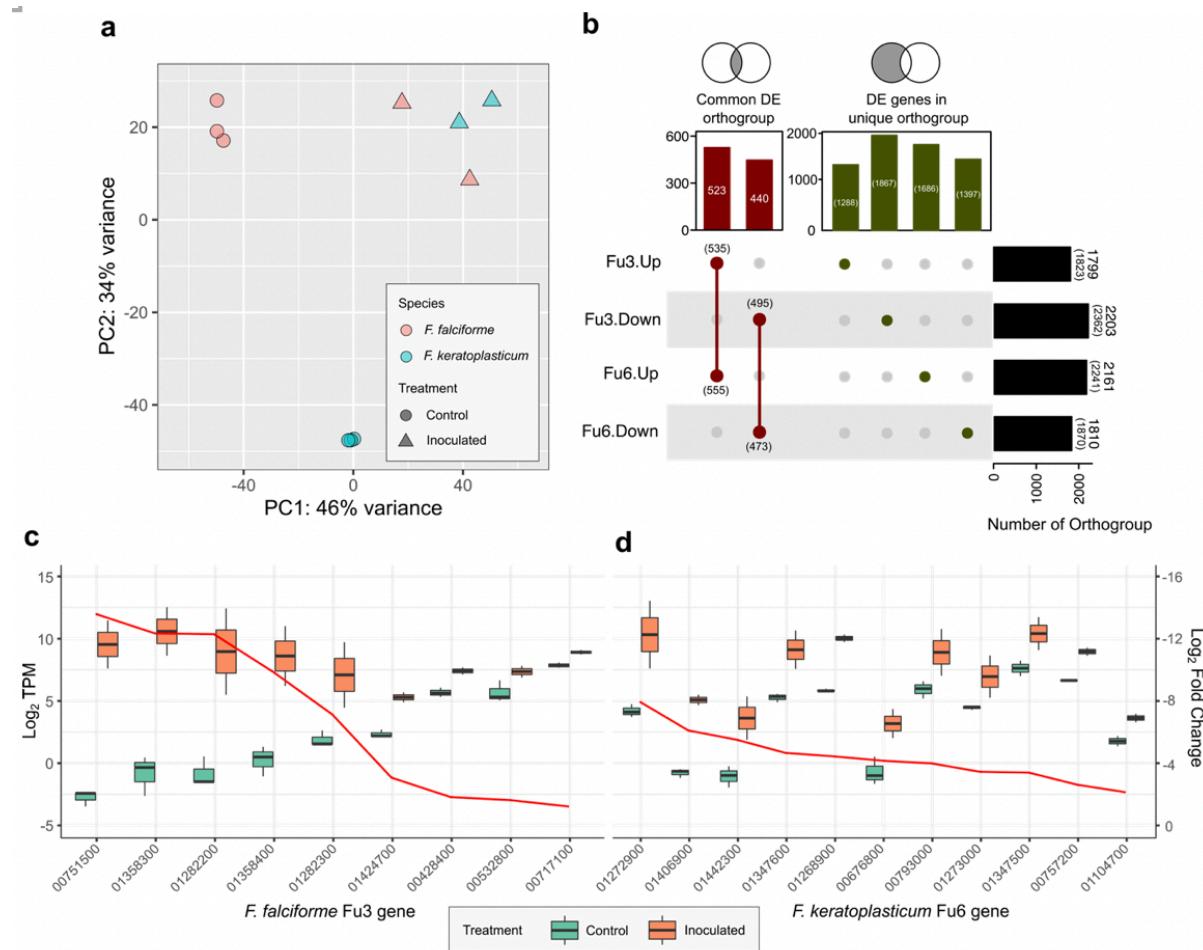
290 assessed to determine the origin of FSSC of FCCs. In the majority of cases, synteny was not
291 detected in all of the FCCs of *F. falciforme* Fu3 (**Supplementary Figure 11**), however,
292 mesosynteny and degraded synteny was found between FCCs of the *F. falciforme* Fu3 and *F.*
293 *oxysporum* f. sp. *lycopercisi* strain 4287 (Fokkens et al., 2018) genomes (**Figure 5b**;
294 **Supplementary Figure 12**), indicating a common origin of FCCs in the FSSCs and other
295 *Fusarium* species.

296

297

298

299 **Figure 5.** Evolutionary dynamics and origin of fast-core chromosomes. (a) The density of
300 d_N/d_S in *F. falciforme* Fu3 chromosomes for each single-copy ortholog gene paired with *F.*
301 *keratoplasticum* Fu6. (b) Syntenic dotplot produced via PROmer (v3.23; Kurtz et al., 2004)
302 comparing between *F. falciforme* Fu3 and *F. oxysporum* f. sp. *lycopercisi* 4287 genomes. CC
303 = Core chromosome, FCC = Fast-core chromosome, LSC = Lineage-specific chromosome.


305

306 Transcriptome profiles of FSSC pathogens during egg infection

307 To better understand how FSSC pathogens infect aquatic animals, we inoculated *F.*
308 *falciforme* Fu3 and *F. keratoplasticum* Fu6 on *Pelodiscus sinensis* eggs and compared
309 transcriptome-wide gene expression data of both species. Globally, both species adopted
310 similar colonisation and infection strategy at a transcriptome level while contacting eggs
311 (**Figure 6a, Supplementary Figure 13 and 14; Supplementary Information**) and we
312 determined a total of 4,111 (1,823 up- and 2,362 down-regulated) and 4,185 (2,241 up- and
313 1,870 down-regulated) genes that were differentially expressed (DE; adjusted p value < 0.05)

314 in *F. falciforme* Fu3 and *F. keratoplasticum* Fu6 (**Figure 6b**), respectively. When considering
315 these genes regardless of expression level, each pathogen underwent differential responses
316 during egg infection – GO enrichment revealed that *F. keratoplasticum* Fu6 exhibited
317 reactions more related to pathogenicity such as responses to host, stimulus, and toxic
318 substances, cell adhesion, and regulation of immune system whereas *F. falciforme* Fu3 was
319 mostly ribosome-associated processes such as biogenesis, maturation, and transport
320 (**Supplementary Table 14**). We speculated a larger proportion of genes to be differentially
321 expressed in FCCs and LSCs but observed a reverse pattern where the majority of such genes
322 were located in CCs (Chi-square test: Fu3: $\chi^2_1 = 10.7, p = 0.005$; Fu6: $\chi^2_1 = 205.84, p < 0.001$).
323 For instance, only 114 and no genes were DE in LSCs of *F. falciforme* Fu3 and *F.*
324 *keratoplasticum* Fu6, respectively (**Supplementary Figure 15**), indicating genes in FCCs
325 and LSCs were not necessarily enriched in animal pathogenesis.
326

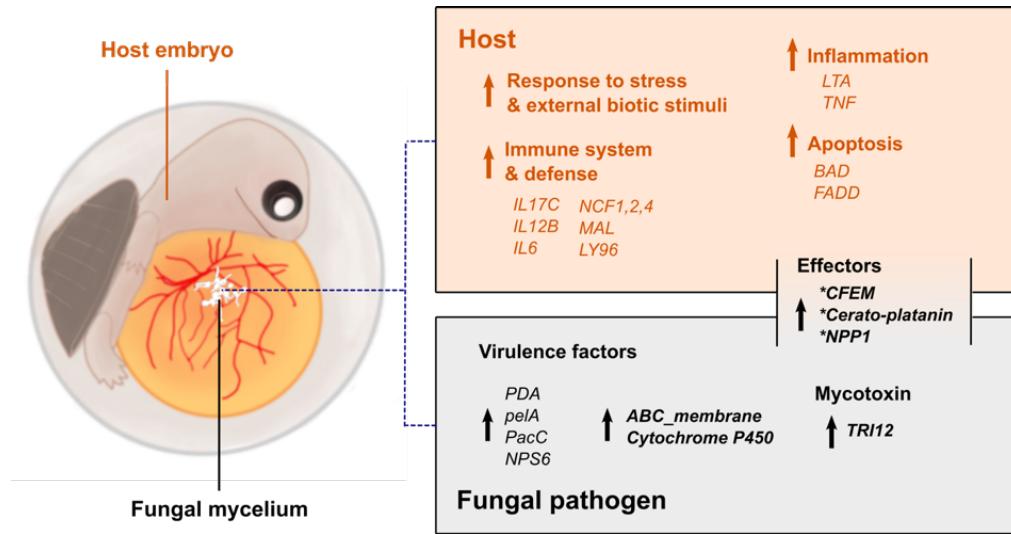
327 Several genes that have been previously identified to involve in *Fusarium*-plant
328 infection were upregulated in the egg-inoculated samples (**Supplementary Table 15 and**
329 **16**). The majority of these genes were predicted as effectors or contained a signal peptide. Of
330 particular interest, genes annotated to contain CFEM (Common in Fungal Extracellular
331 Membrane) domain, a cysteine-rich protein domain found in diverse phytopathogenic fungal
332 species, comprised some of the most DE genes upregulated in both *F. falciforme* Fu3 and *F.*
333 *keratoplasticum* Fu6 treatments (11 and 15 genes, respectively; **Figure 6c and d**;
334 **Supplementary Table 17**). Other examples included the effectors necrosis-inducing proteins
335 (NPP1) and cerato-platanin (CP), which were required for virulence of *F. oxysporum* (Gijzen
336 & Nürnberg, 2006; Liu et al., 2019); ABC membrane and transporter, cytochrome P450 or
337 termed pisatin demethylase (PDA), pelA pectate lyases, whose removal or inactivation
338 reduced the virulence of *F. vanettenii* FSSC11 on pea (Coleman et al., 2011; Rogers et al.,
339 2000; Wasmann & VanEtten, 1996). The results suggested that a similar repertoire of genes
340 were utilised during infection regardless of host types by *F. falciforme* and *F.*
341 *keratoplasticum*.
342

343

344 **Figure 6.** Transcriptomes of *Fusarium solani* species complex pathogens inoculated on
 345 animal host *Pelodiscus sinensis* at three- or four-dpi. (a) Principal component analysis (PCA)
 346 of gene expression patterns in *F. falciforme* Fu3 and *F. keratoplasticum* Fu6 samples. (b)
 347 Number of differentially expressed (DE) orthogroup among the two pathogens. Numbers in
 348 the bracket represents number of genes in the orthogroup. (c-d) Expression levels in Log₂
 349 transcript per million (TPM; left y-axis) and Log₂ fold change (right y-axis) of genes
 350 containing CFEM domain in *F. falciforme* Fu3 (c) and *F. keratoplasticum* Fu6 (d) comparing
 351 between control (mycelium grown on PDA) and inoculated samples.

352

353 In addition, a total of 535 and 555 genes from *F. falciforme* Fu3 and *F.*
 354 *keratoplasticum* Fu6 treatment, respectively belonging 523 OGs were co-upregulated (Figure
 355 6b). GO analysis and functional annotations of these genes revealed that both pathogens
 356 interacted with the host by positive regulations of their immune systems processes and
 357 defence responses (Supplementary Table 17). These genes include a TRI12 encoding a
 358 major facilitator superfamily protein (MFS_1) involved in the export of mycotoxin
 359 trichothecene (Alexander et al., 1999), a nonribosomal peptide synthetase (NPS6), a fungal


360 effector involved in secondary metabolite biosynthesis producing AM-toxin, and PacC, a
361 transcription factor-dependent of pH during pathogenesis (**Figure 7; Supplementary Table**
362 **18 and 19**; Caracuel et al., 2003; Lee et al., 2005). In contrast, 440 OGs down-regulated in
363 pathogens during egg infection were involved in transmembrane transports of metal ions,
364 spore development and growth (**Supplementary Table 20**). Furthermore, GO enriched
365 biological processes of species-specific upregulated genes were similar to GO enrichment of
366 all upregulated DE genes in each pathogen species. Upon examination of these upregulated
367 species-specific genes, it was found that 25.7 and 50.4% of the protein domains in genes of
368 *F. falciforme* Fu3 and *F. keratoplasticum* Fu6 respectively, were present in the co-
369 upregulated DE genes of both species (**Supplementary Table 21 and 22**), suggesting similar
370 infective mechanism were adopted by both pathogen species in animal pathogenicity despite
371 diverged gene sequences.

372

373 **Gene expression profile of FSSC-infected animal host**

374 Combined with transcriptome data of various development stages in the *P. sinensis*
375 embryos (Wang et al., 2013), the presence (75.0–81.5%) of *F. falciforme*- and *F.*
376 *keratoplasticum*-inoculated turtle RNA-seq reads in samples allowed us to determine host
377 responses to the two pathogens (**Supplementary Table 23**). A large difference can be seen
378 between the gene expression pattern of the host inoculated by FSSC and the natural
379 developing host embryo on similar egg incubation days (PC1: 95% variance; **Supplementary**
380 **Figure 16a**), signifying host responded distinctly to FSSC infection. Besides, gene
381 expression in host inoculated with either *F. falciforme* Fu3 and *F. keratoplasticum* Fu6 were
382 highly correlated ($R^2 = 0.98$, $p < 0.001$; **Supplementary Figure 16b**), suggesting the turtle
383 host responded similarly to FSSC pathogens. In addition to genes that were related to embryo
384 development, other upregulated genes were enriched in biological processes involving host
385 immunity, response, and defence to another organism (**Supplementary Table 24**).
386 Specifically, positive regulations of the immune response towards stress and external biotic
387 stimulus were detected. These regulations included leukocytes activation, cytokines
388 production, apoptotic process, and defence response (**Figure 7**).
389

390

391

Figure 7: Schematic diagram summarizing genes and functions involved in *Fusarium solani* species complex-*Pelodiscus sinensis* egg infection. The colour-coded text represents turtle host (brown) and pathogens (grey). Up arrow denotes up-regulated genes and enriched functions. Asterisk denotes the presence of signal peptide.

395

396

397 Discussion

398

399 Understanding the genetic diversity within FSSC and their ability to infect cross-
400 kingdoms is of fundamental evolutionary interest and essential for the management of
401 emerging wildlife diseases. Here, we produced highly contiguated assemblies for five FSSC
402 species, established the first *Fusarium*-aquatic animal infection model which utilised high-
403 throughput sequencing technology on Chinese softshell turtle (*Pelodiscus sinensis*) egg, and
404 examined gene expression patterns of *F. falciforme* and *F. keratoplasticum* during infection
405 on the animal host. We uncovered diverse evolutionary dynamics of FSSC chromosomes,
406 and these variations were not associated with egg infection. The resources and results of this
407 study allow gained in insights regarding opportunistic infection of FSSC pathogen on animal
408 hosts.

409

410 Some FSSC species are model systems for cell biology (Aist & Bayles, 1991),
411 biocatalytic applications (Winkler et al., 2009), and the most extensively studied plant
412 pathosystem that involves *F. vanettenii* on pea (Hadwiger, 2008). Our attraction assays
413 indicated no signs of egg attraction suggesting chance-encounter of FSSC pathogens on eggs,

414 unlike some pathogens that seek hosts actively in the environment (Ruiz et al., 2017; Van
415 Rooij et al., 2015). During plant infection, hyphae of fungal pathogens penetrate host tissue
416 through natural openings such as stomata or lenticels (Ikeda et al., 2019). We observed the
417 initial stage of disease development which include spore germination, hyphal extension and
418 colonisation of *F. falciforme* and *F. keratoplasticum* on turtle eggs, both on the eggshell and
419 internal embryo. While eggshell serves as a protection for the developing embryos, we
420 observed both FSSC pathogens were capable of invading egg inclusions through the eggshell
421 and caused tissue degradation of egg membrane. Previous study had also shown calcium
422 depletion of sea turtle eggshell post-infection by *F. solani* (Phillott et al., 2006), suggesting
423 lytic activity of FSSC pathogens. Nevertheless, the eggshell of *P. sinensis* is thicker than sea
424 turtle eggshell with an expanded calcareous layer (Kusuda et al., 2013), emphasising that egg
425 penetration may have played a more primary role in establishing infection at least for the *P.*
426 *sinensis* host.

427

428 Comparative analyses of the six chromosome-level FSSC assemblies allows the
429 distinction of multiple chromosome compartments based on various structural features.
430 Regions of CCs were highly conserved among the FSSC genomes and macrosynteny were
431 also detected in other non-FSSC species such as *F. oxysporum*, *F. graminearum* and *F.*
432 *fujikuroi*, indicating these are the CCs across *Fusarium* genera. FCCs harbour several
433 distinctive features compared to CCs which was also described in *F. oxysporum* (Fokkens et
434 al., 2018). We hereby verify multi-compartmentalisation in FSSC genomes in addition to the
435 more commonly discussed “two-speed genome” concept in fungal pathogens (Bertazzoni et
436 al., 2018; Möller & Stukenbrock, 2017; Sperschneider & Dodds, 2022). The mesosynteny
437 detected between FCCs of *F. falciforme* Fu3 and *F. oxysporum* but not in other *Fusarium*
438 species further suggested that such compartmentalisation was ancient and predated the
439 speciation of *Fusarium* species. Additional sequencing of different *Fusarium* strains and
440 species may elucidate the ancestral chromosome feature of FCCs as they displayed
441 differential evolutionary dynamics in each species.

442

443 Conserved pathogenicity traits such as effectors in pathogen of different strains might
444 play a role in infecting the same host (Williams et al., 2016). In our egg infection experiment,
445 only a few differences were found between gene expression and overall regulated biological
446 processes of both FSSC pathogens. Interestingly, we detected that plant pathogenicity-related
447 genes were also upregulated in animal infection. These include carbohydrate active enzymes

448 such as cellulase which functions to degrade plant cell wall materials, and pathogenicity
449 genes containing CFEM domain, which were few of the top most expressed genes in both
450 pathogens. CFEM is found in diverse phytopathogenic fungal species with various virulent
451 roles such as appressoria formation in *Pyricularia oryzae* (syn. *Magnaporthe oryzae*; Kou et
452 al., 2017) and root colonisation in *F. oxysporum* (Ling et al., 2015). The most possible
453 explanation for its role in animal infection is biofilm formation, as seen in *Candida albicans*
454 (Pérez et al., 2006) and white blotches surrounding the embryo. Nevertheless, the role of
455 CFEM domain and plant virulence genes in animal infection remained to be elucidated. This
456 combined evidence suggested that FSSC species may adopt a similar repertoire of genes in
457 establishing infection across kingdoms. Interestingly, genes involved in pathogenesis are
458 usually enriched in the LSCs of *Fusarium* species (Coleman, 2016; Dong et al., 2015; H.
459 Yang et al., 2020) but we found no association of differentially expressed genes during egg
460 infection enriched in FCCs and LSCs.

461

462 To conclude, the combined results provided new insights into the genomic
463 characteristics of animal-infecting FSSC species and their disease development, particularly
464 on turtle eggs. This research represents the beginning of critical steps to understanding FSSC
465 infection on turtles towards data-informed decision making and management of disease
466 epidemics to reduce disease occurrences in the wild and man-managed settings. Our
467 comparative analyses enabled us to determine multiple compartments in the FSSC genomes
468 indicative of independent evolutionary dynamics across the chromosomes drive for adaptive
469 evolution. Moreover, the reference quality FSSC genomes offer prospects for future research
470 in pathogenesis regardless of the host species.

471 **Materials and Methods**

472

473 **Fungal culturing conditions**

474 Six isolates from *Fusarium solani* species complex (FSSC) clade 3 of this study –
475 *Fusarium falciforme* (Fu3), *F. keratoplasticum* (Fu6), *F. keratoplasticum* (LHS11), *Fusarium*
476 sp. haplotype FSSC12 (LHS14), *Fusarium* sp. (Ph1), and *F. vanettenii* (Fs6) underwent the
477 same culture conditions for gDNA and RNA extractions. The isolates were cultured on 1/2
478 potato dextrose agar (PDA) at 28°C in dark for seven days. *F. falciforme* Fu3 and *F.*
479 *keratoplasticum* Fu6, which were previously isolated from dead sea turtle eggs, were used to
480 conduct additional pathological experiments that include host attraction assay, animal
481 inoculations and histological observations during disease establishment. For host attraction
482 assay, *F. falciforme* Fu3 and *F. keratoplasticum* Fu6 were cultured on 1.5% water agar at
483 28°C in dark for five days. *F. falciforme* Fu3 and *F. keratoplasticum* Fu6 cultures prepared
484 for animal inoculations and histological observations experiments were cultured on 1/2 PDA
485 at 28°C in dark for seven days.

486

487 **Species identification of isolates**

488 DNA isolation of FSSC mycelium cultures was carried out using ZYMO Quick-DNA
489 Fungal/Bacterial Miniprep Kit (ZYMO Research, Irvine, USA, Cat. #D6005). The identity of
490 these isolates was determined via multi-locus sequence typing (MLST) of ITS rDNA (ITS5),
491 RPB2 (7cF/11aR), and TEF1 (EF1/EF2) regions (O'Donnell et al., 2008), incorporating other
492 FSSC sequences which species identity were determined (**Supplementary Table 10**). PCR
493 conditions for all primers followed Liu et al. (1999) and phylogenetic analysis was performed
494 as described in Hoh et al. (2020).

495

496 **Animal sample preparation**

497 Animal experiments were evaluated and approved by the Institutional Animal Care
498 and Use Committee (IACUC) of Academia Sinica, Taiwan under protocol ID 18-05-1214.
499 Freshly laid and fertilized soft-shelled turtle (*Pelodiscus sinensis*) eggs were purchased from
500 a local farm in Pingtung, Taiwan. The eggs were embedded in styrene foam to avoid
501 movement-induced mortality during transportation. The top of the egg surface was marked
502 with a pencil to ensure eggs were not rotated during the following process: egg surface was
503 cleaned with a brush to remove dirt and surface-sterilized by immersing in 75% EtOH for 1

504 min, 1% bleach + Tween 20 solution for 1 min, and autoclaved distilled water for 1 min. Egg
505 surface was wiped dry using clean tissue paper and half-buried in sterilized and moist
506 vermiculite (1g water/1g vermiculite) in a plastic container covered with cling film. Each
507 container contained ten eggs and was incubated in a climate chamber (Panasonic MLR-352H,
508 Gunma, Japan) at 28°C and 60% relative humidity in the dark until the 30th day. On day 30,
509 the eggs were observed using the candling technique to check for embryo viability. These
510 embryos were estimated to be developed to stage TK21 to 22 (Tokita & Kuratani, 2001).
511 Dead eggs were removed and alive eggs were kept for the following experiments which
512 included pathogen inoculation, host attraction assay and eggshell observations. Any alive
513 embryos remaining after all experiments were humanely euthanized following the
514 standardized procedures approved by IACUC.

515

516 **Attraction assays**

517 To determine if the pathogens *F. falciforme* Fu3 and *F. keratoplasticum* Fu6 can be
518 attracted to the egg host, an attraction assay experiment was performed in glass tubes (10cm
519 tube length and 2cm diameter) placed horizontally and filled with approximately 15mL of
520 1.5% water agar. An approximately 0.5cm³ mycelial block was cut from the margin of a
521 1.5% water agar and carefully transferred to the end of the glass tube without touching the
522 tube surface and bottom agar. At the opening of the glass tube, the egg was fixed using cling
523 film and rubber band in the experimental group while a stopper was used in the control group
524 (**Supplementary Figure 2a**). The horizontally placed tubes were incubated at 28°C in dark
525 and hyphal growth was recorded every day for nine days. The experiment was repeated twice
526 with a total of 38 samples (tubes) assessed.

527

528 **Histology during initial disease establishment**

529 *P. sinensis* eggs were inoculated by placing an approximately 1cm³ mycelial block
530 (cut from the margin of the colony) on the shell surface and incubated at 28°C in the dark.
531 After five days, the mycelial block was removed and eggshell fragments surrounding the
532 mycelial block were cut and collected for scanning electron microscopy (SEM) and laser
533 scanning confocal microscopy (LSCM) observations. For SEM, eggshell fragments were first
534 fixed with 4% paraformaldehyde and 2.5% glutaraldehyde in 1x PBS buffer for 1 hour at
535 4°C. Samples were then washed with 1x PBS buffer thrice for 10 min each, followed by
536 second fixation using 1% osmium tetroxide-buffered solution for 1 hour in the dark at room
537 temperature. Fixed samples were washed again as previously described and went through a

538 serial dehydration step using EtOH at 30, 50, 70, 80, 90, 95, and 100% concentration for 10
539 minutes at each step. Dehydration using 100% EtOH was repeated twice and samples were
540 then dried in Pelco CPD#2400 CO₂ critical point dryer (Ted Pella Inc., Redding, USA).
541 Finally, samples were coated with a layer of gold with Sputter Coater 108 auto (Cressington
542 Scientific Instruments, Watford, UK) and examined using Quanta 200 ESEM (FEI Company,
543 Hillsboro, USA). For LSCM, eggshells fragments were placed into warm 1.5% agarose and
544 waited until solidified. Each solidified sample embedded in agarose was transferred to a
545 50mL Falcon tube and fixed with 10% formalin overnight at room temperature. Fixed
546 samples were washed with PBS buffer thrice and then kept in PBS buffer for storage at 4°C
547 until further processing. Sample embedding and undecalcified sectioning procedures
548 followed Wada et al. (2016). Each section was cut into 8µm thickness using an adhesive film
549 and a tungsten carbide blade (SL-T25, Section-Lab Co. Ltd, Japan) on Leica CM3050
550 cryostat (Leica Microsystems, Nussloch, Germany). The sections on the adhesive film were
551 directly stained with Calcofluor White Stain (Sigma-Aldrich, #18909) for a few minutes,
552 washed with water to remove excess stain, and mounted with ProLong™ Gold Antifade
553 Mountant (Thermo Fisher Scientific, Waltham, MA, USA, #P36930), followed by removing
554 excess mounting solution and covered with a coverslip. Slides were kept at 4°C in the dark
555 until LSM observation. Samples were examined using LSM880 (ZEISS, Germany) and
556 visualized with Zen2.3 software black edition (ZEISS, Germany). Signals of Calcofluor
557 White were excited with 405nm laser and detected in range 410–523nm. DIC (differential
558 interference contrast) images were also acquisted. All image acquisitions were scanned with a
559 40x objective lens in z-stack mode (0.391µm). The z-stack images were prepared with a
560 maximum intensity projection through Zen2.3 software lite edition (ZEISS, Germany).
561

562 **Nucleic acids isolation, genome and transcriptome sequencing**

563 Six isolates from FSSC clade 3 were chosen for genome sequencing and comparative
564 analyses. Fresh mycelium from the cultures was scraped off from the culture media for
565 gDNA and RNA isolation. Genomic DNA was extracted following protocols designed for
566 high-molecular-weight gDNA sequencing (Mayjonade et al., 2016) and size selection and
567 purification of isolated gDNA was performed following (Chouikh et al., 1979). The integrity
568 of gDNA was evaluated using Fragment Analyzer 5200 (Advanced Analytic Technologies,
569 Inc., Ankeny, USA) and the fragment lengths were determined using PROsize 2 software
570 (Advanced Analytic Technologies, Inc., Ankeny, USA). Genomes were sequenced using both
571 Illumina and Oxford Nanopore platforms. Detailed information such as sequencing

572 platforms, library kits used and sequence accession number for each sample can be found in
573 **Supplementary Table 25**. The summary of DNA sequencing data is shown in
574 **Supplementary Table 1**. For gene model prediction and annotation, RNA of the six isolates
575 were extracted following the TRIzol reagent protocol (Thermo Fisher Scientific, Waltham,
576 MA, USA, Cat. #15596026). The integrity of the isolated RNA was checked using 1.5%
577 agarose gel and quantity was determined using Invitrogen Qubit® 4 Fluorometer (Thermo
578 Fisher Scientific, Waltham, MA, USA) before library preparation and sequencing
579 (**Supplementary Table 25**).

580

581 **Genome assembly and annotations**

582 Guppy (v3.2.4 and v4.0.11; Oxford Nanopore Technology) or albacore (for 1D²
583 reads; v2.2.7; Oxford Nanopore Technology) were used to perform basecalling of Nanopore
584 raw signals (see **Supplementary Table 1**) and assembled using Flye (v2.5; Kolmogorov et
585 al., 2019) and further polish and correct the assembled sequences with consensus mapped
586 reads from Illumina using Pilon (v1.22; Walker et al., 2014). Haplotypes were collapsed with
587 Haplomerger2 (ver. 20180603; Huang et al., 2017). Annotation of repeat elements of the
588 genomes was performed following Berriman et al. (2018) except described otherwise in the
589 following: a consensus repeat library was created using repeat elements identified via
590 RepeatModeler (v.open-1.0.8) and TransposonPSI (release 08222010;
591 <http://transposonpsi.sourceforge.net/>) and merged using usearch (v8.1.1861; Edgar, 2010).
592 RepeatMasker (v.open-4.0.7; option -s; <https://www.repeatmasker.org>) was used to mask the
593 predicted repeat regions in each genome. Telomeric repeats of each scaffold were determined
594 using Tandem Repeat Finder (v4.09; default parameters; Benson, 1999). Enriched hexamers
595 were identified (TTAGGG) manually using Python script on the terminal 5 kb regions of
596 each scaffold to confirm the presence of telomeres. Genes of the assemblies were predicted
597 using AUGUSTUS (v3.3.3; Hoff & Stanke, 2018) and trained with BRAKER2 (option fungi
598 and softmasked; v2.1.4; Brúna et al., 2021). MAKER2 (v2.31.9; Holt & Yandell, 2011) was
599 then used to combine evidence from the assembled transcripts, reference proteomes, and
600 transcript evidence obtained from RNA-seq of the mycelium to produce a final gene
601 annotation set. Completeness of each genome was accessed by BUSCO (v5.2.2; Manni et al.,
602 2021; **Table 1**). Functional annotations of the amino acid sequences were carried out using
603 eggNOG-mapper v2 (<http://eggnog-mapper.embl.de>; default parameters; Cantalapiedra et al.,
604 2021) on eggNOG v5 database (Huerta-Cepas et al., 2019). Protein domains and families
605 were identified using pfam_scan.pl (v1.6; <http://ftp.ebi.ac.uk/pub/databases/Pfam/Tools/>) on

606 Pfam database (release 34.0; Mistry et al., 2021). Additional annotations were carried out as
607 follows: carbohydrates active enzymes were determined using dbCAN2 (v2.0.11; Zhang et
608 al., 2018); secondary metabolites detection via antiSMASH (v6.0; Blin et al., 2021); fungal
609 effectors were predicted using EffectorP (v3.0; Sperschneider & Dodds, 2022) on amino acid
610 sequences which passed the signal peptide prediction via signalP (v6.0; Teufel et al., 2021);
611 and genes related to pathogen-host interaction were determined via PHI-base (v4.11; Urban
612 et al., 2020).

613

614 **Comparative genomic analyses**

615 Orthology was assigned using OrthoFinder (v2.3.8; Emms & Kelly, 2019) with
616 proteomes of six species from this study, 17 other *Fusarium* published assemblies from and
617 an outgroup species *Beauveria bassiana* (**Supplementary Table 2**). A total of 2,385 single-
618 copy orthogroups were determined from protomes of 24 species and were aligned using
619 MAFFT (v7.487; option -maxiterate 1000; Katoh & Standley, 2013). The alignments from
620 each of the orthogroup were sent to RAxML-NG for maximum likelihood phylogeny
621 inference (v0.9.0; option --model LG+I+F+G4, --bs-trees 100; Kozlov et al., 2019). The
622 maximum likelihood trees and bootstraps-supported replicates generated from the previous
623 step were combined for the construction of consensus species tree using ASTRAL-III
624 (v5.7.7; option -r 100; Zhang et al., 2018). Lastly, a maximum likelihood phylogeny from
625 concatenated amino acid alignments of single-copy orthogroup was built using RAxML-NG
626 (v0.9.0; option --model LG+I+F+G4, --bs-trees 100; Kozlov et al., 2019) with 100 bootstrap
627 replicates. Codon alignments of one-to-one orthologs between *F. falciforme* Fu3 and *F.*
628 *keratoplasticum* Fu6 were produced using TranslatorX (v1.1; Abascal et al., 2010). Ratio of
629 d_N/d_S were calculated for each ortholog alignment using PAML² of CODEML program
630 (v4.9e; option runmode=-2, seqtype=1, CondonFreq=3, and fix_omega=0; Yang, 2007)

631

632 **Core, fast-core and lineage-specific chromosomes assignment**

633 Scaffold sequences shorter than 450kb were not included in this assignment. Lineage-
634 specific chromosomes (LSCs) were assigned based on: (1) reduced number or no synteny
635 regions linked by single-copy orthologous genes between chromosomes of the six FSSC
636 species (**Supplementary Figure 7**), (2) higher repeat proportion (**Figure 3a**), and (3) lower
637 GC content compared to the core chromosomes (**Supplementary Table 11**). The designated
638 LSCs include chromosome 13, 14 of Fu3, chromosome 13, 14, 15 of Fu6 and Ph1,
639 chromosome 13, 14, 15 and 16 of LHS11, chromosome 13 to 19 of LHS14 and chromosome

640 7, 14 to 23 of Fs6. Chromosomal syntenic regions were determined by linking 9,101 single-
641 copy orthologous genes shared among the FSSC genomes. For this analysis, OGs were
642 determined via OrthoFinder (v2.3.8; Emms & Kelly, 2019) using 11 *Fusarium* genomes (six
643 genome assemblies created from this study, *F. vanettenii* 77-13-4, *F. solani* FSSC5, *F.*
644 *oxysporum* 4287, *F. graminearum* Ph-1, and *F. fujikuroi* IMI58289). Fast-core chromosomes
645 were determined by comparing proportion of FSSC-specific gene in all FSSC chromosomes
646 (**Figure 3b**). FSSC-specific gene were referred to as orthologous genes not found in *F.*
647 *fujikuroi* IMI58289, *F. graminearum* PH-1, and *F. oxysporum* f. sp. *lycopercisi* 4287
648 genomes (Cuomo et al., 2007; Ma et al., 2010; Wiemann et al., 2013).

649

650 **Methylation analysis**

651 To examine 5-methylcytosine (5mC) in DNA sequences, Nanopore raw FAST5 files
652 of *F. falciforme* Fu3, *F. keratoplasticum* LHS11, *Fusarium* sp. Ph1, and *F. vanettenii* Fs6
653 were used to run Megalodon (v2.3.3; Oxford Nanopore Technologies) and Guppy (v5.0.11;
654 Oxford Nanopore Technologies) using the default parameters. To determine the methylation
655 level of each CpG site, we calculated the ratio of methylated reads including both strands.

656

657 **Animal inoculation with FSSC for transcriptome profiling**

658 During candling observation, the location of the embryo and directly opposite to the
659 embryo (upper pole) were marked. The observed and alive eggs were half-buried on fresh
660 sterilized and moist vermiculite with embryos placed at the lower pole (buried). A tiny hole
661 was carefully made on top of the eggshell and this created a small air space under the hole
662 and above the egg content. Spore suspension of the cultures was prepared by washing the
663 mycelium with 1x PBS solution and filtered through 40 μ m cell strainer. Haemocytometer-
664 estimated 10⁷ spores/mL suspension was injected into the egg's air space through the tiny
665 hole without poking the egg content. The inoculated eggs were incubated at 28°C and 60%
666 relative humidity in the dark for another three to four days. The mycelium of *F. falciforme*
667 Fu3 and *F. keratoplasticum* Fu6 collected from 4-day-old colony grown on 1/2 PDA were
668 used as the control. After 3 to 4 dpi, eggs were made broken to check the embryo's vitality
669 (**Supplementary Table 26**). Samples collected for RNA isolation are of two types depending
670 on the fungal growth during collection: (1) the presence of mycelium mass as white blotches
671 on the egg content (such as embryo and yolk) and (2) cotton-wool-like growth on the opaque
672 eggshell membrane (**Supplementary Figure 3**). Since this experiment focused on the
673 pathogen, we tried to collect only the white substances and the shell membrane with obvious

674 fungal growth. Each sample type was considered one sample. Samples were collected using
675 sterilized forceps and kept immediately in Trizol reagent (Thermo Fisher Scientific,
676 Waltham, MA, USA, Cat. #15596026) and -80°C until further processing.

677

678 **Total RNA isolation, library preparation and sequencing**

679 RNA isolation of the animal inoculation experiment was carried out according to the
680 TRIzol reagent protocol. At the cell lysis step, each sample in 2mL screw-cap tube was
681 mixed with six to eight 0.8mm stainless steel beads, flash-freezing the tubes in liquid
682 nitrogen, and homogenized using PowerLyzer24 homogenizer (MoBio Laboratories,
683 Carlsbad, USA, Cat. #13155) set to 3000 x g for 20 sec and repeated at least twice to ensure
684 the sample was homogenized. Isolated RNA was quantified using Invitrogen Qubit® 4
685 Fluorometer (Thermo Fisher Scientific, Waltham, USA) and checked for integrity in 1.5%
686 agarose gel. Samples with adequate concentration and show no degradation was chosen for
687 RNA sequencing. In total, 20 samples were sequenced, which include three *F. falciforme* Fu3
688 and three *F. keratoplasticum* Fu6 positive controls (mycelium from PDA media), seven *F.*
689 *falciforme* Fu3 and seven *F. keratoplasticum* Fu6 infected samples (**Supplementary Table**
690 **26**). Paired-end library was prepared for the RNA samples using NED Next® Ultra™ RNA
691 Library Prep Kit and sequenced on Illumina NovaSeq 6000 instrument with 150 bp paired-
692 end reads.

693

694 **Analysis of RNA-seq reads**

695 Raw RNA reads were trimmed to remove adaptor sequences and poor-quality reads
696 using fastp (option -l 30; v0.20.1; Chen et al., 2018). Trimmed reads of each sample were
697 mapped to their respective genome (*F. falciforme* Fu3 or *F. keratoplasticum* Fu6) according
698 to the inoculation treatment and the host *P. sinensis* genome (GCF_000230535.1_PelSin_1.0;
699 Wang et al., 2013) using STAR (v2.7.7a; Dobin et al., 2013). To ensure RNA reads which
700 mapped on the *Fusarium* genomes were not from the host, reads mapped onto both *Fusarium*
701 and host genome and had lower CIGAR scores in *Fusarium* were excluded from further
702 analyses. Raw read count of each gene was calculated using featureCounts (-p -s 2; v2.0.1;
703 Liao et al., 2014). Differentially expressed genes (DEGs) between infected and control
704 samples in *F. falciforme* Fu3 and *F. keratoplasticum* Fu6 were inferred using DESeq2 (*padj*
705 < 0.05; v1.24; Love et al., 2014). Functional enrichment of the DEGs was identified using the
706 ‘topGO’ (v2.36.0; Alexa & Rahnenführer, 2019) package. We used the same pipeline as

707 described for the analysis of the host's RNA reads to determine the DEGs of the infected host
708 using the *P. sinensis* genome (Wang et al., 2013) as reference. For comparison, the RNA-seq
709 dataset of *P. sinensis* embryos from different embryo developmental stages (TK19 and TK23
710 defined by Tokita & Kuratani, 2001) generated by Wang et al. (2013) was chosen as the
711 control because our samples were collected between TK21 to 22. Of those, 12,419 genes
712 were differentially expressed (adjusted *p* value < 0.05), with 5,815 up- and 6,604 down-
713 regulated genes during the infection experiment.

714

715 **Data availability**

716 All sequences generated from this study were deposited on NCBI under BioProject
717 PRJNA782245 and accession number of gene sequences from MLST of isolates can be found
718 in **Supplementary Table 10**.

719

720

721 **Supplemental materials**

722 Supplementary Text
723 Supplementary Figure 1 to 16
724 Supplementary Table 1 to 26

725

726 **Authors contributions**

727 IJT conceived and led the study; DZH conducted the experiments; DZH, WAL,
728 HMK, and PFS isolated samples' nucleic acids; DZH, NW and SLT conducted the laser
729 confocal microscopy experiments; HHL and IJT performed assemblies and annotations of
730 FSSC genomes; DZH and IJT carried out comparative genomic analyses; HHL carried out
731 the methylation analyses; CKL carried out the *d_N/d_S* analyses; DZH designed and conducted
732 the inoculation experiments; DZH and MRL analysed the RNA-seq data; WHC and YLC
733 provided FSSC strains. DZH and IJT wrote the manuscript with input from CLC and others.
734 All authors read and approved the final manuscript.

735

736 **Acknowledgements**

737 We thank the Department of Fisheries Malaysia, World Wide Fund for Nature
738 Malaysia for sampling permission in Padang Kemunting Turtle Hatchery, Melaka, and
739 Maximus Cheing YC for collecting Fu3 and Fu6 strains. We are grateful to Dr Stéphane

740 Hacquard, Dr Francis Martin, and the ‘1000 Fungal Genomes–Deep Sequencing of
741 Ecologically-relevant Dikarya’ project for access to unpublished genome data. The genome
742 sequence data were produced by the US Department of Energy Joint Genome Institute in
743 collaboration with the user community. We thank the National Center for High-performance
744 Computing (NCHC) for providing computational and storage resources. We thank High
745 Throughput Genomics Core, Biodiversity Research Center Academia Sinica for the
746 sequencing service; Division of Core Facilities Imaging, Institute of Cellular and Organismic
747 Biology, Academia Sinica for SEM sample preparation service; Dr. Po-Yang Chen and
748 Division of Electron Microscope, Cell Biology Core Lab, Institute of Plant and Microbial
749 Biology, Academia Sinica for assistance in using SEM; Dr. Yoko Nozawa for providing
750 histological materials and Neuro-imaging Core, Neuroscience Program of Academia Sinica
751 for LSM imaging service. This work was supported by AS-CDA-107-L01 to IJT. DZH, HHL
752 and PFS are supported by the doctorate fellowship of the Taiwan International Graduate
753 Program, Academia Sinica of Taiwan.

754 **References**

755 Abascal, F., Zardoya, R., & Telford, M. J. (2010). TranslatorX: Multiple alignment of
756 nucleotide sequences guided by amino acid translations. *Nucleic Acids Research*, 38,
757 W7–W13. <https://doi.org/10.1093/nar/gkq291>

758 Aist, J. R., & Bayles, C. J. (1991). Ultrastructural basis of mitosis in the fungus *Nectria*
759 *haematococca* (sexual stage of *Fusarium solani*). *Protoplasma*, 161, 111–122.

760 Alexa, A., & Rahnenführer, J. (2019). *TopGO: Enrichment Analysis for Gene Ontology*.
761 (2.36.0) [R Package].

762 Alexander, N. J., McCormick, S. P., & Hohn, T. M. (1999). TRI12, a trichothecene efflux
763 pump from *Fusarium sporotrichioides*: Gene isolation and expression in yeast.
764 *Molecular and General Genetics MGG*, 261(6), 977–984.

765 Al-Hatmi, A. M. S., Meis, J. F., & de Hoog, G. S. (2016). *Fusarium: Molecular Diversity and*
766 *Intrinsic Drug Resistance*. *PLOS Pathogens*, 12(4), e1005464.
767 <https://doi.org/10.1371/journal.ppat.1005464>

768 Benson, G. (1999). Tandem repeats finder: A program to analyze DNA sequences. *Nucleic*
769 *Acids Research*, 27(2), 573–580. <https://doi.org/10.1093/nar/27.2.573>

770 Beriman, M., Coghlan, A., & Tsai, I. J. (2018). Creation of a comprehensive repeat library
771 for a newly sequenced parasitic worm genome. *Protocol Exchange*.
772 <https://doi.org/10.1038/protex.2018.054>

773 Bertazzoni, S., Williams, A. H., Jones, D. A., Syme, R. A., Tan, K.-C., & Hane, J. K. (2018).
774 Accessories Make the Outfit: Accessory Chromosomes and Other Dispensable DNA
775 Regions in Plant-Pathogenic Fungi. *Molecular Plant-Microbe Interactions*, 31(8),
776 779–788. <https://doi.org/10.1094/MPMI-06-17-0135-FI>

777 Blin, K., Shaw, S., Kloosterman, A. M., Charlop-Powers, Z., van Wezel, G. P., Medema, M.
778 H., & Weber, T. (2021). antiSMASH 6.0: Improving cluster detection and comparison
779 capabilities. *Nucleic Acids Research*, 49(W1), W29–W35.
780 <https://doi.org/10.1093/nar/gkab335>

781 Brown, T., Millar, Z., Evans, D., Pham, P. H., LePage, V., & Lumsden, J. S. (2020).
782 *Fusarium solani* haplotype 12-b and aortic and branchial arteritis in *Hippocampus*
783 *erectus* Perry. *Journal of Fish Diseases*, 43(2), 301–304.
784 <https://doi.org/10.1111/jfd.13099>

785 Brůna, T., Hoff, K. J., Lomsadze, A., Stanke, M., & Borodovsky, M. (2021). BRAKER2:
786 Automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS
787 supported by a protein database. *NAR Genomics and Bioinformatics*, 3(1), 1–11.
788 <https://doi.org/10.1093/nargab/lqaa108>

789 Cabañes, F. J., Alonso, J. M., Castellá, G., Alegre, F., Domingo, M., & Pont, S. (1997).
790 Cutaneous hyalohyphomycosis caused by *Fusarium solani* in a loggerhead sea turtle
791 (*Caretta caretta* L.). *Journal of Clinical Microbiology*, 35(12), 3343–3345.

792 Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P., & Huerta-Cepas, J. (2021).
793 eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain
794 Prediction at the Metagenomic Scale. *Molecular Biology and Evolution*, 38(12),
795 5825–5829. <https://doi.org/10.1093/molbev/msab293>

796 Caracuel, Z., Roncero, M. I. G., Espeso, E. A., González-Verdejo, C. I., García-Maceira, F.
797 I., & Di Pietro, A. (2003). The pH signalling transcription factor PacC controls
798 virulence in the plant pathogen *Fusarium oxysporum*: PacC controls virulence in
799 *Fusarium*. *Molecular Microbiology*, 48(3), 765–779. <https://doi.org/10.1046/j.1365-2958.2003.03465.x>

800 Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: An ultra-fast all-in-one FASTQ
801 preprocessor. *Bioinformatics*, 34(17), i884–i890.
802 <https://doi.org/10.1093/bioinformatics/bty560>

803 Chouikh, Y., Volovitch, M., & Yot, P. (1979). A simple and fast electrophoretic method for
804 elution of nucleic acids from gels. *Mol Biol Rep.*, 5(4), 237–239.

805 Coleman, J. J. (2016). The *Fusarium solani* species complex: Ubiquitous pathogens of
806 agricultural importance. *Molecular Plant Pathology*, 17(2), 146–158.
807 <https://doi.org/10.1111/mpp.12289>

808 Coleman, J. J., Rounsley, S. D., Rodriguez-Carres, M., Kuo, A., Wasmann, C. C., Grimwood,
809 J., Schmutz, J., Taga, M., White, G. J., Zhou, S., Schwartz, D. C., Freitag, M., Ma, L.,
810 Danchin, E. G. J., Henrissat, B., Coutinho, P. M., Nelson, D. R., Straney, D., Napoli,
811 C. A., ... VanEtten, H. D. (2009). The Genome of *Nectria haematococca*:
812 Contribution of Supernumerary Chromosomes to Gene Expansion. *PLoS Genetics*,
813 5(8), e1000618. <https://doi.org/10.1371/journal.pgen.1000618>

814 Coleman, J. J., White, G. J., Rodriguez-Carres, M., & VanEtten, H. D. (2011). An ABC
815 Transporter and a Cytochrome P450 of *Nectria haematococca* MPVI Are Virulence
816 Factors on Pea and Are the Major Tolerance Mechanisms to the Phytoalexin Pisatin.
817 *Molecular Plant-Microbe Interactions*, 24(3), 368–376.
818 <https://doi.org/10.1094/MPMI-09-10-0198>

819 Cuomo, C. A., Güldener, U., Xu, J.-R., Trail, F., Turgeon, B. G., Di Pietro, A., Walton, J. D.,
820 Ma, L.-J., Baker, S. E., Rep, M., Adam, G., Antoniw, J., Baldwin, T., Calvo, S.,
821 Chang, Y.-L., DeCaprio, D., Gale, L. R., Gnerre, S., Goswami, R. S., ... Kistler, H. C.
822 (2007). The *Fusarium graminearum* Genome Reveals a Link Between Localized
823 Polymorphism and Pathogen Specialization. *Science*, 317(5843), 1400–1402.
824 <https://doi.org/10.1126/science.1143708>

825 Dean, R., Van Kan, J. a. L., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu,
826 P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., & Foster, G. D. (2012). The
827 Top 10 fungal pathogens in molecular plant pathology. *Molecular Plant Pathology*,
828 13(4), 414–430. <https://doi.org/10.1111/j.1364-3703.2011.00783.x>

829 Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P.,
830 Chaisson, M., & Gingeras, T. R. (2013). STAR: Ultrafast universal RNA-seq aligner.
831 *Bioinformatics*, 29(1), 15–21. <https://doi.org/10.1093/bioinformatics/bts635>

832 Dong, S., Raffaele, S., & Kamoun, S. (2015). The two-speed genomes of filamentous
833 pathogens: Waltz with plants. *Current Opinion in Genetics & Development*, 35, 57–
834 65. <https://doi.org/10.1016/j.gde.2015.09.001>

835 Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST.
836 *Bioinformatics*, 26(19), 2460–2461. <https://doi.org/10.1093/bioinformatics/btq461>

837

838 Emms, D. M., & Kelly, S. (2019). OrthoFinder: Phylogenetic orthology inference for
839 comparative genomics. *Genome Biology*, 20(1), 238. <https://doi.org/10.1186/s13059-019-1832-y>

840 Fedorova, N. D., Khaldi, N., Joardar, V. S., Maiti, R., Amedeo, P., Anderson, M. J., Crabtree,
841 J., Silva, J. C., Badger, J. H., Albarraq, A., Angiuoli, S., Bussey, H., Bowyer, P.,
842 Cotty, P. J., Dyer, P. S., Egan, A., Galens, K., Fraser-Liggett, C. M., Haas, B. J., ...
843 Nierman, W. C. (2008). Genomic Islands in the Pathogenic Filamentous Fungus
844 *Aspergillus fumigatus*. *PLOS Genetics*, 4(4), e1000046.
845 <https://doi.org/10.1371/journal.pgen.1000046>

846 Fernando, N., Hui, S.-W., Tsang, C.-C., Leung, S.-Y., Ngan, A. H. Y., Leung, R. W. W.,
847 Groff, J. M., Lau, S. K. P., & Woo, P. C. Y. (2015). Fatal *Fusarium solani* species
848 complex infections in elasmobranchs: The first case report for black spotted stingray
849 (*Taeniura melanopsila*) and a literature review. *Mycoses*, 58(7), 422–431.
850 <https://doi.org/10.1111/myc.12342>

851 Fisher, M. C., Henk, Daniel. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S.
852 L., & Gurr, S. J. (2012). Emerging fungal threats to animal, plant and ecosystem
853 health. *Nature*, 484(7393), 186–194. <https://doi.org/10.1038/nature10947>

854 Fokkens, L., Shahi, S., Connolly, L. R., Stam, R., Schmidt, S. M., Smith, K. M., Freitag, M.,
855 & Rep, M. (2018). *The multi-speed genome of Fusarium oxysporum reveals*
856 *association of histone modifications with sequence divergence and footprints of past*
857 *horizontal chromosome transfer events*. bioRxiv. <https://doi.org/10.1101/465070>

858 García-Martín, J. M., Sarmiento-Ramírez, J. M., & Diéguez-Uribeondo, J. (2021). Beyond
859 Sea Turtles: *Fusarium keratoplasticum* in Eggshells of *Podocnemis unifilis*, a
860 Threatened Amazonian Freshwater Turtle. *Journal of Fungi*, 7(9), 742.
861 <https://doi.org/10.3390/jof7090742>

862 Gijzen, M., & Nürnberg, T. (2006). Nep1-like proteins from plant pathogens: Recruitment
863 and diversification of the NPP1 domain across taxa. *Phytochemistry*, 67(16), 1800–
864 1807. <https://doi.org/10.1016/j.phytochem.2005.12.008>

865 Hadwiger, L. A. (2008). Pea–*Fusarium solani* Interactions Contributions of a System
866 Toward Understanding Disease Resistance. *Phytopathology*, 98(4), 372–379.
867 <https://doi.org/10.1094/PHYTO-98-4-0372>

868 Han, Y., Liu, X., Benny, U., Kistler, H. C., & VanEtten, H. D. (2001). Genes determining
869 pathogenicity to pea are clustered on a supernumerary chromosome in the fungal
870 plant pathogen *Nectria haematococca*. *The Plant Journal*, 25(3), 305–314.
871 <https://doi.org/10.1046/j.1365-313x.2001.00969.x>

872 Hoff, K. J., & Stanke, M. (2018). Predicting Genes in Single Genomes with AUGUSTUS.
873 *Current Protocols in Bioinformatics*, e57. <https://doi.org/10.1002/cpbi.57>

874 Hoh, D. Z., Lin, Y. F., Liu, W. A., Sidique, S. N. M., & Tsai, I. J. (2020). Nest microbiota
875 and pathogen abundance in sea turtle hatcheries. *Fungal Ecology*, 47, 100964.
876 <https://doi.org/10.1016/j.funeco.2020.100964>

877 Holt, C., & Yandell, M. (2011). MAKER2: An annotation pipeline and genome-database
878 management tool for second-generation genome projects. *BMC Bioinformatics*, 12(1),
879 491. <https://doi.org/10.1186/1471-2105-12-491>

880

881 Hsu, L. H., Su, C. Y., Sun, P. L., & Chen, Y. L. (2021). *Fusarium solani* species complex
882 infection in elasmobranchs: A case report for rough-tail stingray with valid antifungal
883 therapy. *Medical Mycology Case Reports*, 32, 34–38.
884 <https://doi.org/10.1016/j.mmc.2021.02.002>

885 Huang, S., Kang, M., & Xu, A. (2017). HaploMerger2: Rebuilding both haploid sub-
886 assemblies from high-heterozygosity diploid genome assembly. *Bioinformatics*,
887 33(16), 2577–2579. <https://doi.org/10.1093/bioinformatics/btx220>

888 Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund, S. K., Cook, H.,
889 Mende, D. R., Letunic, I., Rattei, T., Jensen, L. J., von Mering, C., & Bork, P. (2019).
890 eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology
891 resource based on 5090 organisms and 2502 viruses. *Nucleic Acids Research*, 47(D1),
892 D309–D314. <https://doi.org/10.1093/nar/gky1085>

893 Ikeda, K., Park, P., & Nakayashiki, H. (2019). Cell biology in phytopathogenic fungi during
894 host infection: Commonalities and differences. *Journal of General Plant Pathology*,
895 85(3), 163–173. <https://doi.org/10.1007/s10327-019-00846-w>

896 Kano, R., Okayama, T., Hamamoto, M., Nagata, T., Ohno, K., Tsujimoto, H., Nakayama, H.,
897 Doi, K., Fujiwara, K., & Hasegawa, A. (2002). Isolation of *Fusarium solani* from a
898 dog: Identification by molecular analysis. *Medical Mycology*, 40, 435–437.

899 Katoh, K., & Standley, D. M. (2013). MAFFT Multiple Sequence Alignment Software
900 Version 7: Improvements in Performance and Usability. *Molecular Biology and*
901 *Evolution*, 30(4), 772–780. <https://doi.org/10.1093/molbev/mst010>

902 Kolmogorov, M., Yuan, J., Lin, Y., & Pevzner, P. A. (2019). Assembly of long, error-prone
903 reads using repeat graphs. *Nature Biotechnology*, 37(5), 540–546.
904 <https://doi.org/10.1038/s41587-019-0072-8>

905 Kou, Y., Tan, Y. H., Ramanujam, R., & Naqvi, N. I. (2017). Structure–function analyses of
906 the Pth11 receptor reveal an important role for CFEM motif and redox regulation in
907 rice blast. *New Phytologist*, 214(1), 330–342. <https://doi.org/10.1111/nph.14347>

908 Kozlov, A. M., Darriba, D., Flouri, T., Morel, B., & Stamatakis, A. (2019). RAxML-NG: A
909 fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference.
910 *Bioinformatics*, 35(21), 4453–4455. <https://doi.org/10.1093/bioinformatics/btz305>

911 Kurtz, S., Phillippy, A., Delcher, A. L., Smoot, M., Shumway, M., Antonescu, C., &
912 Salzberg, S. L. (2004). Versatile and open software for comparing large genomes.
913 *Genome Biology*, 5(2), R12.

914 Kusuda, S., Yasukawa, Y., Shibata, H., Saito, T., Doi, O., Ohya, Y., & Yoshizaki, N. (2013).
915 Diversity in the Matrix Structure of Eggshells in the Testudines (Reptilia). *Zoological*
916 *Science*, 30(5), 366–374. <https://doi.org/10.2108/zsj.30.366>

917 Lee, B. N., Kroken, S., Chou, D. Y. T., Robbertse, B., Yoder, O. C., & Turgeon, B. G.
918 (2005). Functional Analysis of All Nonribosomal Peptide Synthetases in
919 *Cochliobolus heterostrophus* Reveals a Factor, NPS6, Involved in Virulence and
920 Resistance to Oxidative Stress. *Eukaryotic Cell*, 4(3), 545–555.
921 <https://doi.org/10.1128/EC.4.3.545-555.2005>

922 Liao, Y., Smyth, G. K., & Shi, W. (2014). featureCounts: An efficient general purpose
923 program for assigning sequence reads to genomic features. *Bioinformatics*, 30(7),
924 923–930. <https://doi.org/10.1093/bioinformatics/btt656>

925 Ling, J., Zeng, F., Cao, Y., Zhang, J., Chen, G., Mao, Z., Yang, Y., & Xie, B. (2015).
926 Identification of a class of CFEM proteins containing a new conserved motif in
927 *Fusarium oxysporum*. *Physiological and Molecular Plant Pathology*, 89, 41–48.
928 <https://doi.org/10.1016/j.pmpp.2014.12.001>

929 Liu, S., Wu, B., Yang, J., Bi, F., Dong, T., Yang, Q., Hu, C., Xiang, D., Chen, H., Huang, H.,
930 Shao, C., Chen, Y., Yi, G., Li, C., & Guo, X. (2019). A Cerato-Platanin Family
931 Protein FocCP1 Is Essential for the Penetration and Virulence of *Fusarium*
932 *oxysporum* f. sp. *cubense* Tropical Race 4. *International Journal of Molecular*
933 *Sciences*, 20(15), 3785. <https://doi.org/10.3390/ijms20153785>

934 Liu, Y. J., Whelen, S., & Hall, B. D. (1999). Phylogenetic relationships among ascomycetes:
935 Evidence from an RNA polymerase II subunit. *Molecular Biology and Evolution*,
936 16(12), 1799–1808. <https://doi.org/10.1093/oxfordjournals.molbev.a026092>

937 Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and
938 dispersion for RNA-seq data with DESeq2. *Genome Biology*, 15(12), 550.
939 <https://doi.org/10.1186/s13059-014-0550-8>

940 Ma, L.-J., Geiser, D. M., Proctor, R. H., Rooney, A. P., O'Donnell, K., Trail, F., Gardiner, D.
941 Manners, J. M., & Kazan, K. (2013). *Fusarium* Pathogenomics. *Annual Review of*
942 *Microbiology*, 67(1), 399–416. <https://doi.org/10.1146/annurev-micro-092412-155650>

943 Ma, L.-J., van der Does, H. C., Borkovich, K. A., Coleman, J. J., Daboussi, M.-J., Di Pietro,
944 A., Dufresne, M., Freitag, M., Grabherr, M., Henrissat, B., Houterman, P. M., Kang,
945 S., Shim, W.-B., Woloshuk, C., Xie, X., Xu, J.-R., Antoniw, J., Baker, S. E., Bluhm,
946 B. H., ... Rep, M. (2010). Comparative genomics reveals mobile pathogenicity
947 chromosomes in *Fusarium*. *Nature*, 464(7287), 367–373.
948 <https://doi.org/10.1038/nature08850>

949 Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A., & Zdobnov, E. M. (2021). BUSCO
950 Update: Novel and Streamlined Workflows along with Broader and Deeper
951 Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes.
952 *Molecular Biology and Evolution*, 38(10), 4647–4654.
953 <https://doi.org/10.1093/molbev/msab199>

954 Mayjonade, B., Gouzy, J., Donnadieu, C., Pouilly, N., Marande, W., Callot, C., Langlade, N.,
955 & Muños, S. (2016). Extraction of high-molecular-weight genomic DNA for long-
956 read sequencing of single molecules. *BioTechniques*, 61(4), 203–205.
957 <https://doi.org/10.2144/000114460>

958 Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L. L.,
959 Tosatto, S. C. E., Paladin, L., Raj, S., Richardson, L. J., Finn, R. D., & Bateman, A.
960 (2021). Pfam: The protein families database in 2021. *Nucleic Acids Research*, 49(D1),
961 D412–D419. <https://doi.org/10.1093/nar/gkaa913>

962 Möller, M., & Stukenbrock, E. H. (2017). Evolution and genome architecture in fungal plant
963 pathogens. *Nature Reviews Microbiology*, 15(12), 756–771.
964 <https://doi.org/10.1038/nrmicro.2017.76>

965 Niehaus, E.-M., Münsterkötter, M., Proctor, R. H., Brown, D. W., Sharon, A., Idan, Y., Oren-
966 Young, L., Sieber, C. M., Novák, O., Pěnčík, A., Tarkowská, D., Hromadová, K.,
967 Freeman, S., Maymon, M., Elazar, M., Youssef, S. A., El-Shabrawy, E. S. M.,
968

969 Shalaby, A. B. A., Houterman, P., ... Tudzynski, B. (2016). Comparative “Omics” of
970 the *Fusarium fujikuroi* Species Complex Highlights Differences in Genetic Potential
971 and Metabolite Synthesis. *Genome Biology and Evolution*, 8(11), 3574–3599.
972 <https://doi.org/10.1093/gbe/evw259>

973 O'Donnell, K., Sutton, D. A., Fothergill, A., McCarthy, D., Rinaldi, M. G., Brandt, M. E.,
974 Zhang, N., & Geiser, D. M. (2008). Molecular Phylogenetic Diversity, Multilocus
975 Haplotype Nomenclature, and In Vitro Antifungal Resistance within the *Fusarium*
976 *solani* Species Complex. *Journal of Clinical Microbiology*, 46(8), 2477–2490.
977 <https://doi.org/10.1128/JCM.02371-07>

978 O'Donnell, K., Sutton, D. A., Wiederhold, N., Robert, V. A. R. G., Crous, P. W., & Geiser,
979 D. M. (2016). Veterinary Fusariooses within the United States. *Journal of Clinical*
980 *Microbiology*, 54(11), 2813–2819. <https://doi.org/10.1128/JCM.01607-16>

981 *Oxford Nanopore Technologies*. <https://github.com/nanoporetech>

982 Pérez, A., Pedrós, B., Murgui, A., Casanova, M., López-Ribot, J. L., & Martínez, J. P.
983 (2006). Biofilm formation by *Candida albicans* mutants for genes coding fungal
984 proteins exhibiting the eight-cysteine-containing CFEM domain. *FEMS Yeast*
985 *Research*, 6(7), 1074–1084. <https://doi.org/10.1111/j.1567-1364.2006.00131.x>

986 Phillott, A. D., Parmenter, C. J., & Limpus, C. J. (2004). Occurrence of mycobiota in eastern
987 Australian sea turtle nests. *Memoirs of the Queensland Museum*, 49, 701–703.

988 Phillott, A. D., Parmenter, C. J., & McKillup, S. C. (2006). Calcium Depletion of Eggshell
989 After Fungal Invasion of Sea Turtle Eggs. *Chelonian Conservation and Biology*, 5(1),
990 146. [https://doi.org/10.2744/1071-8443\(2006\)5\[146:CDOEAF\]2.0.CO;2](https://doi.org/10.2744/1071-8443(2006)5[146:CDOEAF]2.0.CO;2)

991 Rep, M., & Kistler, H. C. (2010). The genomic organization of plant pathogenicity in
992 *Fusarium* species. *Current Opinion in Plant Biology*, 13(4), 420–426.
993 <https://doi.org/10.1016/j.pbi.2010.04.004>

994 Rogers, L. M., Kim, Y. K., Guo, W., Gonzalez-Candelas, L., Li, D., & Kolattukudy, P. E.
995 (2000). Requirement for either a host- or pectin-induced pectate lyase for infection of
996 *Pisum sativum* by *Nectria haematococca*. *Proceedings of the National Academy of*
997 *Sciences*, 97(17), 9813–9818. <https://doi.org/10.1073/pnas.160271497>

998 Ruiz, F., Castelletto, M. L., Gang, S. S., & Hallem, E. A. (2017). Experience-dependent
999 olfactory behaviors of the parasitic nematode *Heligmosomoides polygyrus*. *PLOS*
1000 *Pathogens*, 13(11), e1006709. <https://doi.org/10.1371/journal.ppat.1006709>

1001 Sarmiento-Ramírez, J. M., Abella, E., Martín, M. P., Tellería, M. T., López-Jurado, L. F.,
1002 Marco, A., & Diéguez-Uribeondo, J. (2010). *Fusarium solani* is responsible for mass
1003 mortalities in nests of loggerhead sea turtle, *Caretta caretta*, in Boavista, Cape Verde.
1004 *FEMS Microbiology Letters*, 312(2), 192–200. <https://doi.org/10.1111/j.1574-6968.2010.02116.x>

1005 Sarmiento-Ramírez, J. M., Abella-Pérez, E., Phillott, A. D., Sim, J., van West, P., Martín, M.
1006 P., Marco, A., & Diéguez-Uribeondo, J. (2014). Global Distribution of Two Fungal
1007 Pathogens Threatening Endangered Sea Turtles. *PLoS ONE*, 9(1), e85853.
1008 <https://doi.org/10.1371/journal.pone.0085853>

1009 Schroers, H.-J., Samuels, G. J., Zhang, N., Short, D. P. G., Juba, J., & Geiser, D. M. (2016).
1010 Epitypification of *Fusisporium* (*Fusarium*) *solani* and its assignment to a common

1012 phylogenetic species in the *Fusarium solani* species complex. *Mycologia*, 108(4),
1013 806–819. <https://doi.org/10.3852/15-255>

1014 Sidiqe, S. N. M., Azuddin, N. F., & Joseph, J. (2017). First report of *Fusarium* species at
1015 nesting sites of endangered sea turtle in Terengganu and Melaka, Malaysia.
1016 *Malaysian Applied Biology*, 46(3), 195–205.

1017 Smyth, C. W., Sarmiento-Ramírez, J. M., Short, D. P. G., Diéguez-Uribeondo, J., O'Donnell,
1018 K., & Geiser, D. M. (2019). Unraveling the ecology and epidemiology of an emerging
1019 fungal disease, sea turtle egg fusariosis (STEF). *PLOS Pathogens*, 15(5), e1007682.
1020 <https://doi.org/10.1371/journal.ppat.1007682>

1021 Sperschneider, J., & Dodds, P. N. (2022). EffectorP 3.0: Prediction of Apoplastic and
1022 Cytoplasmic Effectors in Fungi and Oomycetes. *Molecular Plant-Microbe
1023 Interactions*, 35(2), 146–156. <https://doi.org/10.1094/MPMI-08-21-0201-R>

1024 Temporini, E., & VanEtten, H. (2002). Distribution of the pea pathogenicity (PEP) genes in
1025 the fungus *Nectria haematococca* mating population VI. *Current Genetics*, 41(2),
1026 107–114. <https://doi.org/10.1007/s00294-002-0279-x>

1027 Teufel, F., Armenteros, J. J. A., Johansen, A. R., Gíslason, M. H., Pihl, S. I., Tsirigos, K. D.,
1028 Winther, O., Brunak, S., Heijne, G. von, & Nielsen, H. (2021). *SignalP 6.0 achieves
1029 signal peptide prediction across all types using protein language models*. bioRxiv.
1030 <https://doi.org/10.1101/2021.06.09.447770>

1031 Tokita, M., & Kuratani, S. (2001). Normal Embryonic Stages of the Chinese Softshelled
1032 Turtle *Pelodiscus sinensis* (Trionychidae). *Zoological Science*, 18(5), 705–715.
1033 <https://doi.org/10.2108/zsj.18.705>

1034 Urban, M., Cuzick, A., Seager, J., Wood, V., Rutherford, K., Venkatesh, S. Y., De Silva, N.,
1035 Martinez, M. C., Pedro, H., Yates, A. D., Hassani-Pak, K., & Hammond-Kosack, K.
1036 E. (2020). PHI-base: The pathogen–host interactions database. *Nucleic Acids
1037 Research*, 48(D1), D613–D620. <https://doi.org/10.1093/nar/gkz904>

1038 Van Rooij, P., Martel, A., Haesebrouck, F., & Pasmans, F. (2015). Amphibian
1039 chytridiomycosis: A review with focus on fungus-host interactions. *Veterinary
1040 Research*, 46(1), 137. <https://doi.org/10.1186/s13567-015-0266-0>

1041 Wada, N., Kawamoto, T., Sato, Y., & Mano, N. (2016). A novel application of a
1042 cryosectioning technique to undecalcified coral specimens. *Marine Biology*, 163, 117.
1043 <https://doi.org/10.1007/s00227-016-2895-x>

1044 Walker, B. J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C. A.,
1045 Zeng, Q., Wortman, J., Young, S. K., & Earl, A. M. (2014). Pilon: An Integrated Tool
1046 for Comprehensive Microbial Variant Detection and Genome Assembly
1047 Improvement. *PLoS ONE*, 9(11), e112963.
1048 <https://doi.org/10.1371/journal.pone.0112963>

1049 Walther, G., Stasch, S., Kaerger, K., Hamprecht, A., Roth, M., Cornely, O. A., Geerling, G.,
1050 Mackenzie, C. R., Kurzai, O., & von Lilienfeld-Toal, M. (2017). *Fusarium* Keratitis
1051 in Germany. *Journal of Clinical Microbiology*, 55(10), 2983–2995.
1052 <https://doi.org/10.1128/JCM.00649-17>

1053 Wang, Z., Pascual-Anaya, J., Zadissa, A., Li, W., Niimura, Y., Huang, Z., Li, C., White, S.,
1054 Xiong, Z., Fang, D., Wang, B., Ming, Y., Chen, Y., Zheng, Y., Kuraku, S., Pignatelli,
1055 M., Herrero, J., Beal, K., Nozawa, M., ... Irie, N. (2013). The draft genomes of soft-

1056 shell turtle and green sea turtle yield insights into the development and evolution of
1057 the turtle-specific body plan. *Nature Genetics*, 45(6), 701–706.
1058 <https://doi.org/10.1038/ng.2615>

1059 Wasmann, C. C., & VanEtten, H. D. (1996). Transformation-mediated chromosome loss and
1060 disruption of a gene for pisatin demethylase decrease the virulence of *Nectria*
1061 *haematococca* on pea. *Molecular Plant-Microbe Interactions*, 9(9), 793–803.
1062 <https://doi.org/10.1094/MPMI-9-0793>

1063 Wiemann, P., Sieber, C. M. K., von Bargen, K. W., Studt, L., Niehaus, E.-M., Espino, J. J.,
1064 Huß, K., Michielse, C. B., Albermann, S., Wagner, D., Bergner, S. V., Connolly, L.
1065 R., Fischer, A., Reuter, G., Kleigrewe, K., Bald, T., Wingfield, B. D., Ophir, R.,
1066 Freeman, S., ... Tudzynski, B. (2013). Deciphering the Cryptic Genome: Genome-
1067 wide Analyses of the Rice Pathogen *Fusarium fujikuroi* Reveal Complex Regulation
1068 of Secondary Metabolism and Novel Metabolites. *PLoS Pathogens*, 9(6), e1003475.
1069 <https://doi.org/10.1371/journal.ppat.1003475>

1070 Williams, A. H., Sharma, M., Thatcher, L. F., Azam, S., Hane, J. K., Sperschneider, J., Kidd,
1071 B. N., Anderson, J. P., Ghosh, R., Garg, G., Lichtenzveig, J., Kistler, H. C., Shea, T.,
1072 Young, S., Buck, S.-A. G., Kamphuis, L. G., Saxena, R., Pande, S., Ma, L.-J., ...
1073 Singh, K. B. (2016). Comparative genomics and prediction of conditionally
1074 dispensable sequences in legume-infecting *Fusarium oxysporum* formae speciales
1075 facilitates identification of candidate effectors. *BMC Genomics*, 17(1), 191.
1076 <https://doi.org/10.1186/s12864-016-2486-8>

1077 Winkler, M., Kaplan, O., Vejvoda, V., Klempier, N., & Martíková, L. (2009). Biocatalytic
1078 application of nitrilases from *Fusarium solani* O1 and *Aspergillus niger* K10. *Journal*
1079 *of Molecular Catalysis B: Enzymatic*, 59(4), 243–247.
1080 <https://doi.org/10.1016/j.molcatb.2008.06.012>

1081 Yang, H., Yu, H., & Ma, L. J. (2020). Accessory Chromosomes in *Fusarium oxysporum*.
1082 *Phytopathology*, 110(9), 1488–1496. <https://doi.org/10.1094/PHYTO-03-20-0069-IA>

1083 Yang, Z. (2007). PAML 4: Phylogenetic Analysis by Maximum Likelihood. *Molecular*
1084 *Biology and Evolution*, 24(8), 1586–1591. <https://doi.org/10.1093/molbev/msm088>

1085 Zhang, C., Rabiee, M., Sayyari, E., & Mirarab, S. (2018). ASTRAL-III: Polynomial time
1086 species tree reconstruction from partially resolved gene trees. *BMC Bioinformatics*,
1087 19(6), 153. <https://doi.org/10.1186/s12859-018-2129-y>

1088 Zhang, H., Yohe, T., Huang, L., Entwistle, S., Wu, P., Yang, Z., Busk, P. K., Xu, Y., & Yin,
1089 Y. (2018). dbCAN2: A meta server for automated carbohydrate-active enzyme
1090 annotation. *Nucleic Acids Research*, 46(W1), W95–W101.
1091 <https://doi.org/10.1093/nar/gky418>

1092 Zhang, N., O'Donnell, K., Sutton, D. A., Nalim, F. A., Summerbell, R. C., Padhye, A. A., &
1093 Geiser, D. M. (2006). Members of the *Fusarium solani* Species Complex That Cause
1094 Infections in Both Humans and Plants Are Common in the Environment. *Journal of*
1095 *Clinical Microbiology*, 44(6), 2186–2190. <https://doi.org/10.1128/JCM.00120-06>

1096 Zhang, Y., Yang, H., Turra, D., Zhou, S., Ayhan, D. H., DeJulio, G. A., Guo, L., Broz, K.,
1097 Wiederhold, N., Coleman, J. J., Donnell, K. O., Youngster, I., McAdam, A. J.,
1098 Savinov, S., Shea, T., Young, S., Zeng, Q., Rep, M., Pearlman, E., ... Ma, L. J.
1099 (2020). The genome of opportunistic fungal pathogen *Fusarium oxysporum* carries a

1100 unique set of lineage-specific chromosomes. *Communications Biology*, 3(1), 50.
1101 <https://doi.org/10.1038/s42003-020-0770-2>
1102