

Genetic background and mistranslation frequency determine the impact of mistranslating tRNA^{Ser}_{UGG}

Matthew D. Berg^{1,†,‡}, Yanrui Zhu¹, Raphaël Loll-Krippleber^{2,3}, Bryan-Joseph San Luis², Julie Genereaux¹, Charles Boone², Judit Villen⁴, Grant W. Brown^{2,3} and Christopher J. Brandl^{1,†}

¹Department of Biochemistry, The University of Western Ontario, London, Canada

²Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada

³Department of Biochemistry, University of Toronto, Toronto, Canada

⁴Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA

[†]**Co-corresponding author:** Matthew Berg and Christopher Brandl, Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada, Email: mberg2@uwo.ca; cbrandl@uwo.ca

†Present address: Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA

Running title: Mistranslation and genetic background

Keywords: mistranslation, tRNA, genetic interactions, *Saccharomyces cerevisiae*, amino acid substitution

ABSTRACT

Transfer RNA variants increase the frequency of mistranslation, the mis-incorporation of an amino acid not specified by the “standard” genetic code, to frequencies approaching 10% in yeast and bacteria. Cells cope with these variants by having multiple copies of each tRNA isodecoder and through pathways that deal with proteotoxic stress. In this study, we define the genetic interactions of the gene encoding tRNA^{Ser}_{UGG,G26A}, which mistranslates serine at proline codons. Using a collection of yeast temperature sensitive alleles, we identify negative synthetic genetic interactions between the mistranslating tRNA and 109 alleles representing 91 genes, with nearly half of the genes having roles in RNA processing or protein folding and turnover. By regulating tRNA expression, we then compare the strength of the negative genetic interaction for a subset of identified alleles under differing amounts of mistranslation. The frequency of mistranslation correlated with impact on cell growth for all strains analyzed; however, there were notable differences in the extent of the synthetic interaction at different frequencies of mistranslation depending on the genetic background. For many of the strains the extent of the negative interaction with tRNA^{Ser}_{UGG,G26A} was proportional to the frequency of mistranslation or only observed at intermediate or high frequencies. For others the synthetic interaction was approximately equivalent at all frequencies of mistranslation. As humans contain similar mistranslating tRNAs these results are important when analyzing the impact of tRNA variants on disease, where both the individual’s genetic background and the expression of the mistranslating tRNA variant need to be considered.

48 **INTRODUCTION**

49
50 Mistranslation occurs when an amino acid that differs from what is specified by the standard
51 genetic code is incorporated into a growing polypeptide chain during translation.
52 Mistranslation occurs in all cells but can be enhanced by environmental conditions or
53 mutations in the translational machinery (Lee *et al.* 2006; Netzer *et al.* 2009; Ling and Söll
54 2010; Jones *et al.* 2011; Wiltrot *et al.* 2012; Reverendo *et al.* 2014; Lant *et al.* 2017;
55 Schwartz and Pan 2017). Mutations in tRNAs that cause mistranslation were initially identified
56 as intergenic suppressors that change the meaning of the genetic code (Stadler and Yanofsky
57 1959; Yanofsky and Crawford 1959; Crawford and Yanofsky 1959; Benzer and Champe
58 1962; Gorini and Beckwith 1966). tRNA^{Ser} variants are particularly prone to mistranslate
59 because the anticodon is not a major identity element for aminoacylation by the cognate
60 serine aminoacyl-tRNA synthetase (Giegé *et al.* 1998). Rather, specificity for aminoacylation
61 comes from the long variable arm positioned 3' of the anticodon stem (Asahara *et al.* 1994;
62 Biou *et al.* 1994; Himeno *et al.* 1997). Therefore, anticodon mutations in tRNA^{Ser} encoding
63 genes lead to mis-incorporation of serine at non-serine codons (Geslain *et al.* 2010; Berg *et
64 al.* 2017, 2019b; Zimmerman *et al.* 2018). Interestingly, human genomes contain similar
65 tRNA^{Ser} variants and other variant tRNAs with the potential to mistranslate (Berg *et al.* 2019a;
66 Lant *et al.* 2019). In zebrafish and flies, mistranslating tRNA variants reduce viability and
67 increase the frequency of deformities (Reverendo *et al.* 2014; Isaacson *et al.* 2022).
68

69 The toxic effects of mistranslating tRNAs are buffered through multiple copies of each tRNA
70 isodecoder (for example, there are 275 tRNA-encoding genes in *Saccharomyces cerevisiae*;
71 Chan and Lowe 2016) and through protein quality control mechanisms that deal with
72 misfolded protein and protein aggregates (reviewed in Hoffman *et al.* 2017). When
73 mistranslation reaches a threshold, protein quality control mechanisms no longer protect the
74 cell and growth is impaired (Berg *et al.* 2019b). The extent of growth impairment is inversely
75 related to the frequency of mistranslation in a linear fashion with yeast growth being arrested
76 when mistranslation approaches approximately 12% (Berg *et al.* 2021a).
77

78 We previously demonstrated that the negative genetic interactions with mistranslating tRNAs
79 depend on the amino acid substitution (Berg *et al.* 2021b). At similar frequencies of
80 mistranslation, a tRNA variant substituting serine at arginine codons has more genetic
81 interactions than one substituting alanine at proline codons. In this report we identify the
82 genetic interactions of a mistranslating serine tRNA variant that incorporates serine at proline
83 codons. Using a regulated tRNA expression system, we show that although there is a general
84 correlation between the frequency of mistranslation and impact on growth, the impact of
85 different mistranslation frequencies depends on a strain's specific genetic background. As
86 similar mistranslating tRNAs are found in the human population, these results suggest that
87 genetic background contributes to the impact of tRNA variants on health and disease.
88

89 **MATERIALS AND METHODS**

90

91 **Yeast strains and growth**

92 BY4742 (*MAT α his3Δ0 leu2Δ0 lys2Δ0 ura3Δ0*; Brachmann *et al.* 1998) and Y7092 (*MAT α can1Δ::STE2pr-SpHIS5 lyp1Δ his3Δ1 leu2Δ0 ura3Δ0 met15Δ0*) strains are derivatives of
93 S288c. Y7092 was a kind gift from Dr. Brenda Andrews (University of Toronto). Strains from
94 the temperature sensitive collection are derived from the wild-type *MAT α* haploid yeast strain
95 BY4741 and described in Costanzo *et al.* (2016). The strains containing the gene expressing
96 tRNA^{Ser}_{UGG, G26A} (CY8613) were made by integrating modified *SUP17* and flanking sequence
97 into Y7092 at the *HO* locus and selecting for the *natMX* marker, as previously described in
98 Zhu *et al.* (2020), using the construct described below. The control strain (CY8611) was made
99 by integrating only the *natNT2* marker at the *HO* locus. Transformants were selected on 100
100 μ g/mL nourseothricin-dihydrogen sulfate (clonNAT) and integration was verified by PCR.
101

102

103 Yeast strains were grown at 30° in yeast peptone media containing 2% glucose (YPD) or
104 synthetic media supplemented with nitrogen base and amino acids, unless otherwise
105 indicated. Growth curves were generated by diluting saturated cultures to $OD_{600} = 0.1$ in
106 synthetic complete media and incubating at 30°. OD_{600} was measured every 15 minutes for
107 24 hr using a BioTek Epoch 2 microplate spectrophotometer. Doubling time was calculated
108 using the R package “growthcurver” (Sprouffske and Wagner 2016).
109

110 **DNA constructs**

111 The construct to integrate the gene encoding tRNA^{Ser}_{UGG, G26A} at the *HO* locus was created
112 using a synthetic DNA containing 200 bp up and downstream of the *HO* translational start,
113 previously described in Zhu *et al.* (2020). The construct was cloned into pGEM®-T Easy
114 (Promega Corp.) as a *NotI* fragment to create pCB4386. The *natNT2* marker from pFA6-
115 *natNT2* was PCR amplified using primers UK9789/UK9790 (Table S1) and cloned into
116 pCB4386 as an *EcoRI* fragment to generate the control SGA integrating vector (pCB4394).
117 The gene encoding tRNA^{Ser}_{UGG, G26A} was PCR amplified from pCB4023 (Berg *et al.* 2017)
118 using primers UG5953/VB2609 and cloned as *HindIII* fragments into pCB4394 to create
119 pCB4397.
120

121

122 *URA3*-containing centromeric plasmids expressing tRNA^{Ser} (pCB3076), tRNA^{Ser}_{UGG, G26A}
123 (pCB4023), tRNA^{Ser}_{UGG, G26A} with 5' *GAL1pr* (pCB4568), tRNA^{Ser}_{UGG, G26A} with 3' *GAL1pr*
(pCB4566) are described in Berg *et al.* (2017, 2021a).
124

125

126 **Synthetic genetic array analysis and validation**

127 The SGA assay was performed as described by Tong *et al.* (2001) with minor modifications.
128 Strains CY8611 (*HO::natMX*) and CY8613 (*HO:: tRNA^{Ser}_{UGG, G26A}-natMX*) were crossed to a
129 yeast temperature sensitive collection (Ben-Aroya *et al.* 2008; Li *et al.* 2011; Kofoed *et al.*
130 2015; Costanzo *et al.* 2016) in quadruplicate 1536 colony array format using a BioMatrix (S&P
131 Robotics Inc.) automated pinning system. In this format, each allele of the temperature
132 sensitive collection is present in technical quadruplicate on the plate. Double mutants were
133 selected on YPD plates containing 200 mg/L G418 and 100 mg/L clonNAT. Diploids were
134 sporulated on enriched sporulation media and *MAT α* haploid double-mutants selected using
135 standard SGA media. The entire SGA procedure was carried out at room temperature, except
136 for the colony scoring in order to minimize growth defect of the temperature sensitive strains.
To identify genetic interactions, double mutants were pinned onto double mutant selection

137 SGA medium and grown at 30° for 5 days. Images were taken every 24 hours to determine
138 colony size computationally. SGATools (Wagih *et al.* 2013) was used to determine genetic
139 interaction scores using a multiplicative model ($\varepsilon = W_{AB} - W_A * W_B$; where ε is the interaction
140 score, W_{AB} is the fitness of the double mutant and W_A and W_B are the fitness values of each
141 single mutant). Double mutant strains with an average interaction score less than -0.2 and
142 Benjamini-Hochberg corrected *p*-value less than 0.05 were considered as potential negative
143 genetic interactions.

144
145 Double mutants that were identified as negative genetic interactions from the screen were
146 validated by re-creating the double mutant strain, starting from the single mutant haploid
147 strains, using the SGA approach. Double mutant strains were grown in liquid media to
148 saturation, cell densities were normalized, and cultures were spotted on SGA media. The
149 temperature sensitive mutant crossed with the control strain CY8611 and the mistranslating
150 tRNA strain crossed with a control *his3Δ* strain were also spotted to determine fitness of the
151 single mutants. Intensity of each spot was measured with ImageJ (Schneider *et al.* 2012).
152 Expected double mutant growth was calculated based on the growth of the single mutants
153 and compared to the experimental growth of the double mutant. Double mutants that grew
154 more slowly than expected were considered validated negative genetic interactions. Raw and
155 validated data can be found in supplemental file S2.

156
157 Synthetic interactions with various frequencies of mistranslation were assessed by
158 transforming the relevant temperature sensitive strains with *URA3*-containing centromeric
159 plasmids expressing tRNA^{Ser} (pCB3076), tRNA^{Ser}_{UGG,G26A} (pCB4023), tRNA^{Ser}_{UGG,G26A} with 5'
160 *GAL1pr* (pCB4568) or tRNA^{Ser}_{UGG,G26A} with 3' *GAL1pr* (pCB4566). At least three individual
161 transformants for each plasmid and strain were grown in synthetic complete medium lacking
162 uracil and containing 2% galactose as the carbon source. Cells were grown to confluence,
163 diluted 33-fold in 1x yeast nitrogen base and 5 μ L was spotted onto solid media lacking uracil
164 and containing 2% galactose. Cells were grown at 30° for 32-56 hours, depending on the
165 strain, to achieve a level of growth (for the strain without mistranslation) consistent with the
166 wild-type. Mean density of growth was determined with ImageJ (Schneider *et al.* 2012) and
167 normalized growth for each mistranslating tRNA was calculated as a percent of the wild-type
168 tRNA^{Ser} containing strain.

169 170 **SAFE analysis**

171 Spatial analysis of functional enrichment (SAFE; Baryshnikova 2016) analysis was performed
172 through TheCellMap (<http://thecellmap.org>; Usaj *et al.* 2017).

173

174 **Heat shock assay**

175 Yeast strains containing the *HSE-GFP* reporter and a mistranslating tRNA variant were grown
176 to stationary phase in medium lacking uracil and containing 0.6% casamino acids, diluted
177 1:100 in the same medium and grown for 18 hr at 30°. Cell densities were normalized to
178 OD₆₀₀ before measuring fluorescence with a BioTek Synergy H1 microplate reader at an
179 excitation wavelength of 488 nm and emission wavelength of 528 nm. The mean relative
180 fluorescence units were calculated from three technical replicates for each biological
181 replicate.

182

183

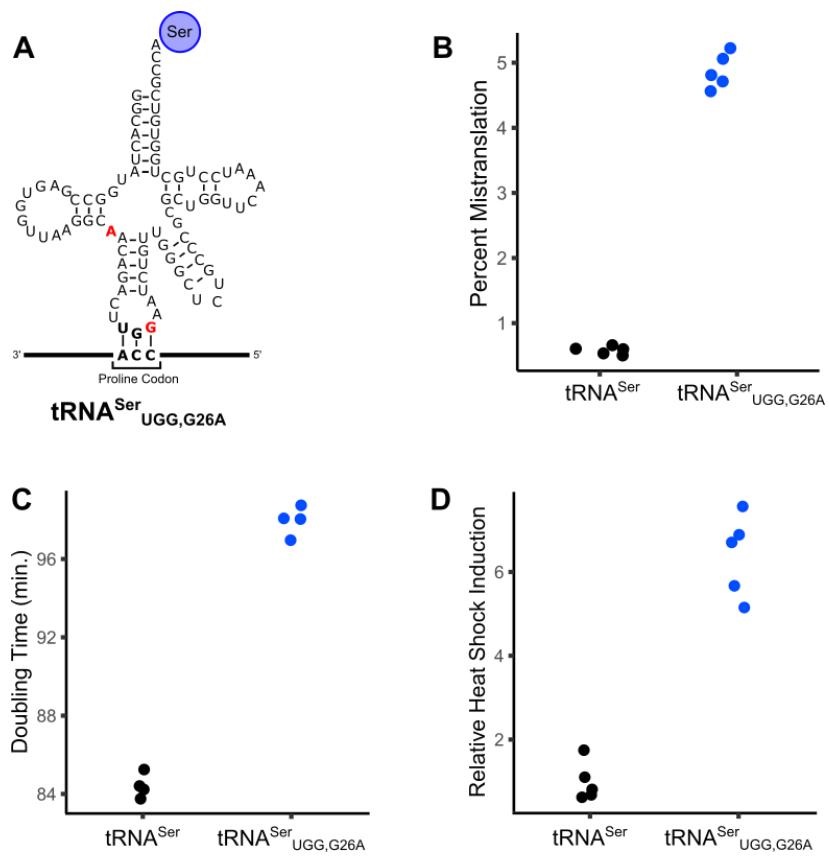
184

185 **Mass spectrometry**

186 Liquid chromatography tandem mass spectrometry to identify mistranslation was performed
187 on five biological replicates of each strain. Starter cultures of each strain were grown
188 overnight in YPD before being diluted to an OD₆₀₀ of 0.1 in the same media and grown to an
189 OD₆₀₀ of ~ 1.0. Cells were lysed in a urea lysis buffer (8 M Urea, 50 mM Tris pH 8.2, 75 mM
190 NaCl) and proteins were reduced with dithiothreitol and alkylated with iodoacetamide. Robotic
191 purification and digestion of proteins into peptides was performed on the KingFisher™ Flex
192 using LysC and the R2-P1 method described in Leutert *et al.* (2019).

193
194 Peptides were analyzed on a hybrid quadrupole orbitrap mass spectrometry (Orbitrap
195 Exploris 480; Thermo Fisher Scientific) equipped with an Easy1200 nanoLC system (Thermo
196 Fisher Scientific) as previously described in Berg *et al.* (2021b).

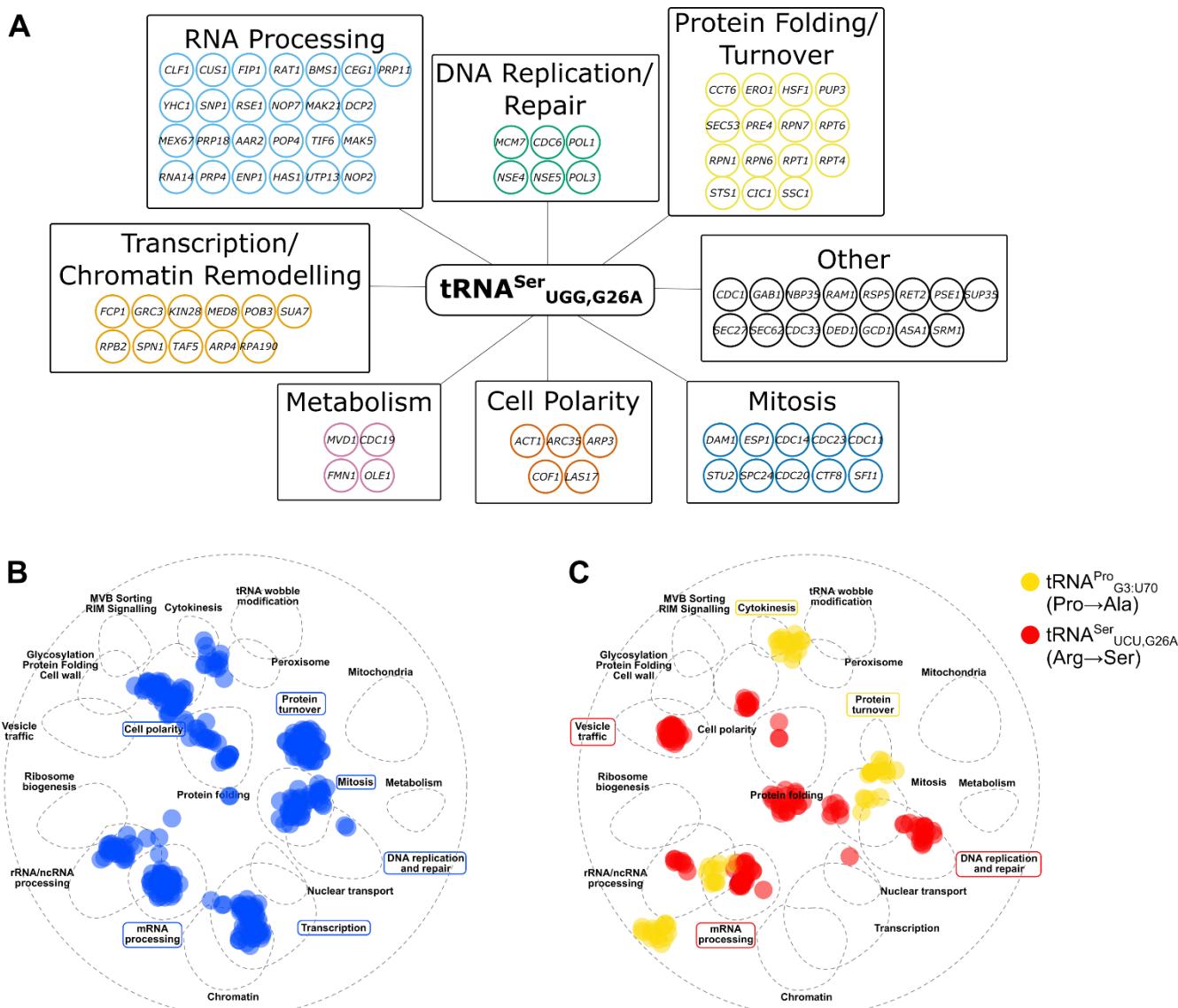
197
198 MS/MS spectra were searched against the *S. cerevisiae* protein sequence database
199 (downloaded from the Saccharomyces Genome Database resource in 2014) using Comet
200 (release 2015.01; Eng *et al.* 2013). The precursor mass tolerance was set to 50 ppm.
201 Constant modification of cysteine carbamidomethylation (57.0215 Da) and variable
202 modification of methionine oxidation (15.9949 Da) and proline to serine substitution (-10.0207
203 Da) were used for all searches. A maximum of two of each variable modification were allowed
204 per peptide. Search results were filtered to a 1% false discovery rate at the peptide spectrum
205 match level using Percolator (Käll *et al.* 2007). The mistranslation frequency was calculated
206 using the unique mistranslated peptides for which the non-mistranslated sibling peptide was
207 also observed. The frequency is defined as the counts of mistranslated peptides, where
208 serine was inserted for proline, divided by the counts of all peptides containing proline and
209 expressed as a percentage.


210
211 **Data availability**

212 Strains and plasmids are available upon request. The authors affirm that all data necessary
213 for confirming the conclusions of the article are present within the article, figures, and
214 supplemental material. Supplemental File S1 contains all supplemental figures. Supplemental
215 File S2 contains raw and validated SGA data. The mass spectrometry proteomics data have
216 been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol *et al.*
217 2019) partner repository with the dataset identifiers PDX025934 and PXD032063.

221 **RESULTS AND DISCUSSION**

222 **Synthetic genetic interactions with tRNA^{Ser}_{UGG,G26A}**


223 Yeast cells expressing tRNA^{Ser}_{UGG,G26A}, which contains a proline anticodon, mistranslate
224 serine at proline codons (Berg *et al.* 2019b, 2021a). The G26A mutation is required in
225 combination with the anticodon change to dampen otherwise lethal levels of mistranslation
226 (Berg *et al.* 2017). To perform the SGA analysis, the gene encoding tRNA^{Ser}_{UGG,G26A} (Figure
227 1A), including approximately 300 base pairs of 5' and 3' flanking sequence and a clonNAT
228 resistance marker, was integrated at the *HO* locus. A control strain was created with only the
229 clonNAT resistance marker integrated at the *HO* locus. Mass spectrometry-based analysis of
230 the cellular proteome identified 4.9% proline to serine substitution in the strain expressing
231 tRNA^{Ser}_{UGG,G26A} compared to only 0.6% substitution in the control strain (Figure 1B). As shown
232 in Figures 1C and 1D, tRNA^{Ser}_{UGG,G26A} reduces cell growth (doubling time of 98 minutes
233 versus 84 for the control strain) and results in a heat shock response (6.4-fold greater than
234 the control strain).
235

237
238

239 **Figure 1. Phenotypic characterization of mistranslating tRNA^{Ser}_{UGG,G26A}.** **A.** Cloverleaf
240 representation of tRNA^{Ser}_{UGG,G26A}. The anticodon and G26 substitutions from the wild-type
241 tRNA^{Ser} are shown in red. **B.** Mass spectrometry based analysis of the cellular proteome was
242 performed on the control strain with no additional tRNA (CY8611) and the strain expressing
243 mistranslating tRNA^{Ser}_{UGG,G26A} (CY8613). Mistranslation frequency was calculated from the
244 number of unique mistranslated peptides for which the non-mistranslated sibling peptide was
245 also observed. Frequency is defined as the counts of peptides with serine substituted for
246 proline divided by all peptides containing proline and expressed as a percentage. Each point
247 represents one biological replicate (n = 5). Mistranslation frequency in the strain expressing

248 tRNA^{Ser}_{UGG,G26A} is statistically different compared to the control strain (Welch's *t*-test;
249 Bonferroni corrected *p*-value < 0.05). **C.** Doubling times for the strains described in B were
250 determined from growth curves of the strains diluted to an OD₆₀₀ ~ 0.1 in synthetic complete
251 media containing clonNAT and grown for 24 hr. Doubling time was calculated with the R
252 package "growthcurver" (Sprouffske and Wagner 2016). Each point represents one biological
253 replicate (n = 4). Doubling time is statistically different between the strain expressing
254 tRNA^{Ser}_{UGG,G26A} and the control strain (Welch's *t*-test; Bonferroni corrected *p*-value < 0.05). **D.**
255 Strains described in B were transformed with a GFP reporter transcribed from a promoter
256 containing heat shock response elements, grown to saturation in media lacking uracil, diluted
257 1:100 in the same media and grown for 18 hours at 30°. Cell densities were normalized and
258 fluorescence measured. Each point represents one biological replicate (n = 5). Relative heat
259 shock induction is statistically different in the strain expressing tRNA^{Ser}_{UGG,G26A} compared to
260 the control strain (Welch's *t*-test; Bonferroni corrected *p*-value < 0.05).
261
262
263 We then performed an SGA analysis to identify genetic interactions with tRNA^{Ser}_{UGG,G26A} using
264 a collection of 1016 temperature sensitive alleles. The robotic screen identified 125 alleles
265 with negative genetic interactions with tRNA^{Ser}_{UGG,G26A}. Genetic interactions were validated by
266 remaking the double mutant strains, spotting normalized densities of the double mutants and
267 their control strain on selective plates and measuring growth after two days (Supplemental
268 File S2). After validation, 109 alleles representing 91 genes were classified as having a
269 negative genetic interaction with tRNA^{Ser}_{UGG,G26A} (Figure 2A).
270

Figure 2. Negative genetic interaction network of the mistranslating tRNA^{Ser}_{UGG,G26A}. A. Genes validated as having a negative genetic interactions with tRNA^{Ser}_{UGG,G26A} are arranged according to their predicted function based on gene descriptions in the yeast genome database (www.yeastgenome.org). **B.** SAFE analysis of genes that have a negative genetic interaction with tRNA^{Ser}_{UGG,G26A} were mapped onto the yeast genetic interaction profile map (Costanzo *et al.* 2016) using TheCellMap (Usaj *et al.* 2017). Blue dots represent genes within the local neighborhood of genes validated to have negative genetic interactions with tRNA^{Ser}_{UGG,G26A}. Terms in blue boxes are network regions that are significantly enriched (Bonferroni corrected *p*-value < 0.05). **C.** SAFE analysis as performed in B with genetic interactions for tRNA^{Pro}_{G3:U70} (yellow) and tRNA^{Ser}_{UCU,G26A} (red) from Berg *et al.* (2021b). Terms in boxes represent network regions that are significantly enriched for the respectively mistranslating tRNA (Bonferroni corrected *p*-value < 0.05).

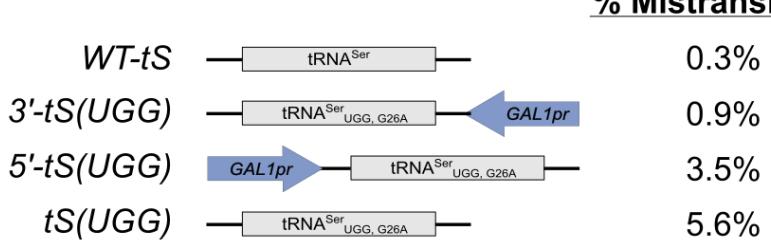
271
272

273
274
275
276
277
278
279
280
281
282
283
284
285
286

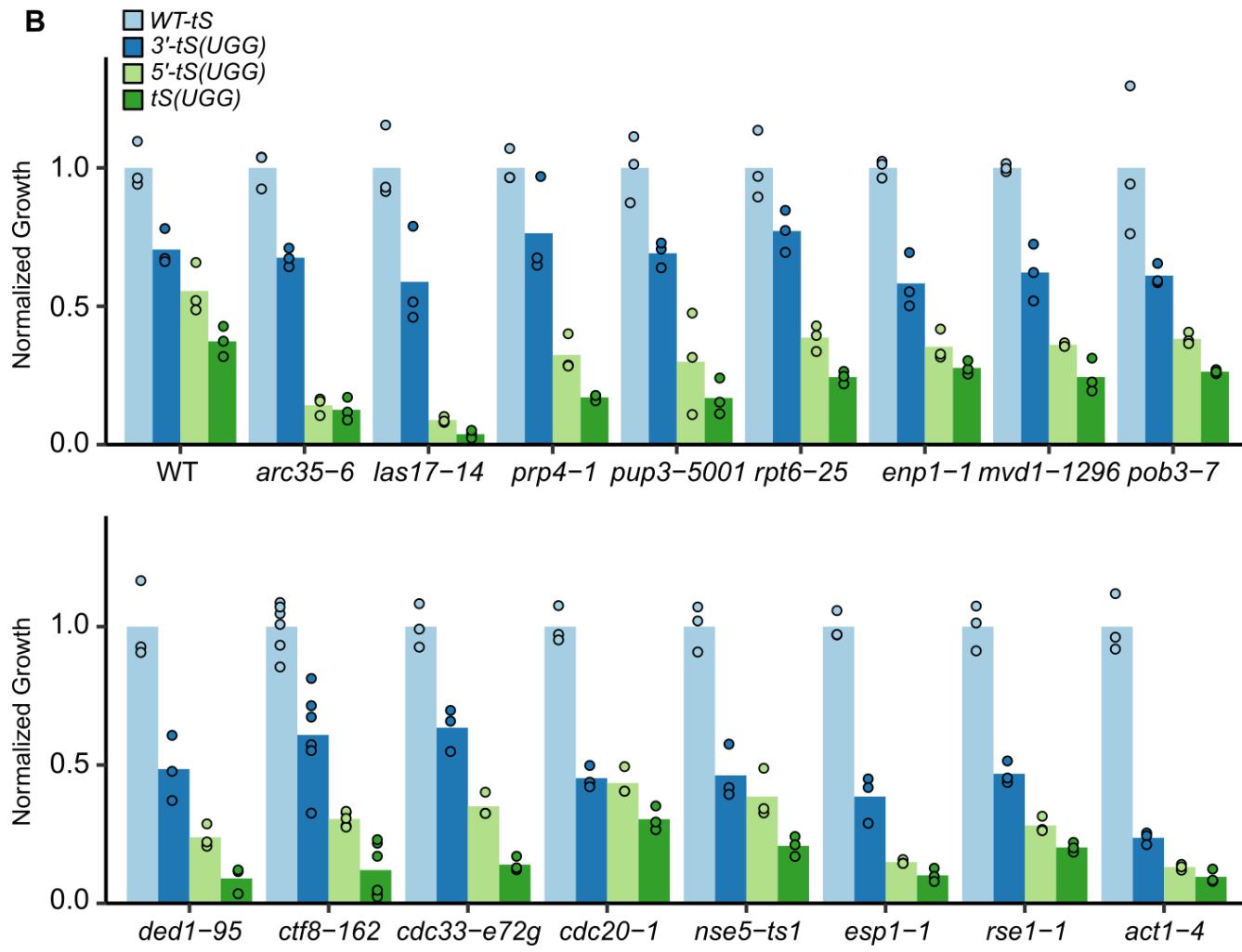
287 To further analyze the network of genes associated with the mistranslating tRNAs, we
288 identified areas of the yeast genetic interaction map (Costanzo *et al.* 2016) that were enriched
289 for negative genetic interactions with the mistranslating tRNA^{Ser}_{UGG,G26A} using spatial analysis
290 of functional enrichment (SAFE; Baryshnikova 2016; Figure 2B). Areas of the yeast genetic
291 interaction network annotated with roles in protein turnover, cell polarity, mitosis, DNA
292 replication and repair, transcription and mRNA processing were significantly enriched.
293

294 In a previous screen looking at negative synthetic genetic interactions with tRNA variants that
295 mistranslate alanine at proline codons (tRNA^{Pro}_{G3:U70}; Hoffman *et al.* 2017a) and serine at
296 arginine codons (tRNA^{Ser}_{UCU,G26A}; Berg *et al.* 2021b), we identified 10 and 47 negative genetic
297 interactions, respectively. While these tRNA variants mistranslated at lower frequency (~ 3%)
298 than tRNA^{Ser}_{UGG,G26A} making specific comparison of genetic interactions difficult, it is possible
299 to compare enriched pathways with a SAFE analysis (Figure 2C). tRNA^{Ser}_{UGG,G26A} (Pro→Ser)
300 and tRNA^{Pro}_{G3:U70} (Pro→Ala) share negative genetic interactions enriched in the protein
301 turnover area of the genetic network. tRNA^{Ser}_{UCU,G26A} (Arg→Ser) and tRNA^{Ser}_{UGG,G26A}
302 (Pro→Ser) interactions are enriched in DNA replication and repair and mRNA processing.
303 Enrichment in cell polarity, mitosis and transcription were unique for genetic interactions with
304 tRNA^{Ser}_{UGG,G26A} (Pro→Ser) while enrichment in cytokinesis and vesicle trafficking were unique
305 for tRNA^{Pro}_{G3:U70} (Pro→Ala) and tRNA^{Ser}_{UCU,G26A} (Arg→Ser), respectively.
306

307 Only one strain had a positive genetic interaction with tRNA^{Ser}_{UGG,G26A}. The strain contains a
308 temperature sensitive allele of *eco1*, an acetyltransferase required in sister chromatid
309 cohesion. As we demonstrated previously (Zhu *et al.* 2020), the positive interaction results
310 from tRNA^{Ser}_{UGG,G26A} restoring serine at the S213P mutation of *eco1-1*.
311


312 **The frequency of mistranslation impacts the genetic interactions of tRNA^{Ser}_{UGG,G26A}**
313 tRNA variants with the potential to mistranslate are found at numerous different loci in the
314 human population (Berg *et al.* 2019a; Lant *et al.* 2019). Due to their ability to generate
315 proteotoxic stress, we and others have suggested that these variants may be genetic
316 modifiers of disease (Reverendo *et al.* 2014; Berg *et al.* 2017). In a previous analysis we
317 demonstrated that, when comparing the same amino acid substitution, there is a near linear
318 negative correlation between mistranslation frequency and cell growth in a wild-type *S.*
319 *cerevisiae* background (Berg *et al.* 2019b). Our goal was to determine if the genetic
320 background of strains having a synthetic interaction with tRNA^{Ser}_{UGG,G26A} changes the impact
321 of different mistranslation frequencies.
322

323 To regulate the frequency of mistranslation, we took advantage of our finding that placing a
324 *GAL1* promoter (*GAL1pr*) sequence up or downstream of a tRNA gene represses tRNA
325 expression when cells are grown in galactose (Berg *et al.* 2021a). Previously, using mass
326 spectrometry, we determined the frequency of proline to serine mistranslation in strains
327 containing centromeric plasmids expressing wild-type tRNA^{Ser}, tRNA^{Ser}_{UGG,G26A},
328 tRNA^{Ser}_{UGG,G26A} with 5' *GAL1pr* and tRNA^{Ser}_{UGG,G26A} with 3' *GAL1pr* in galactose containing
329 medium to be 0.3%, 5.6%, 3.5% and 0.9%, respectively (Figure 3A; Berg *et al.* 2021a). Three
330 frequencies of mistranslation above background are thus achieved: the greatest
331 mistranslation with no flanking *GAL1pr*, intermediate mistranslation with the *GAL1pr* upstream
332 of the tRNA and the least mistranslation with the *GAL1pr* downstream of the tRNA.
333


334 To determine the impact of mistranslation frequency, we selected 16 of the strains identified
335 in the SGA analysis. These and the control strain were transformed with centromeric plasmids
336 containing wild-type tRNA^{Ser}, tRNA^{Ser}_{UGG, G26A}, 5' GAL1pr-tRNA^{Ser}_{UGG, G26A} and 3' tRNA^{Ser}_{UGG,}
337 G26A-GAL1pr. Triplicate cultures of independent transformants for each strain were grown to
338 confluence, diluted 33-fold, spotted onto minimal medium with galactose as the carbon source
339 and grown at 30°. Spot plates are shown in Figure S1. The density of the spotted cultures
340 was measured and then expressed as a percentage of the spot density for the same strain
341 background containing wild-type tRNA^{Ser}. For example, tRNA^{Ser}_{UGG, G26A} reduces growth of
342 the wild-type BY4742 strain to 37 ± 5% of growth seen in BY4742 containing wild-type
343 tRNA^{Ser}. The 5' GAL1pr-tRNA^{Ser}_{UGG, G26A} and 3' tRNA^{Ser}_{UGG, G26A-GAL1pr} reduce growth to 55
344 ± 9% and 71 ± 7% respectively.
345

346

A

B

347

348

349

350

351

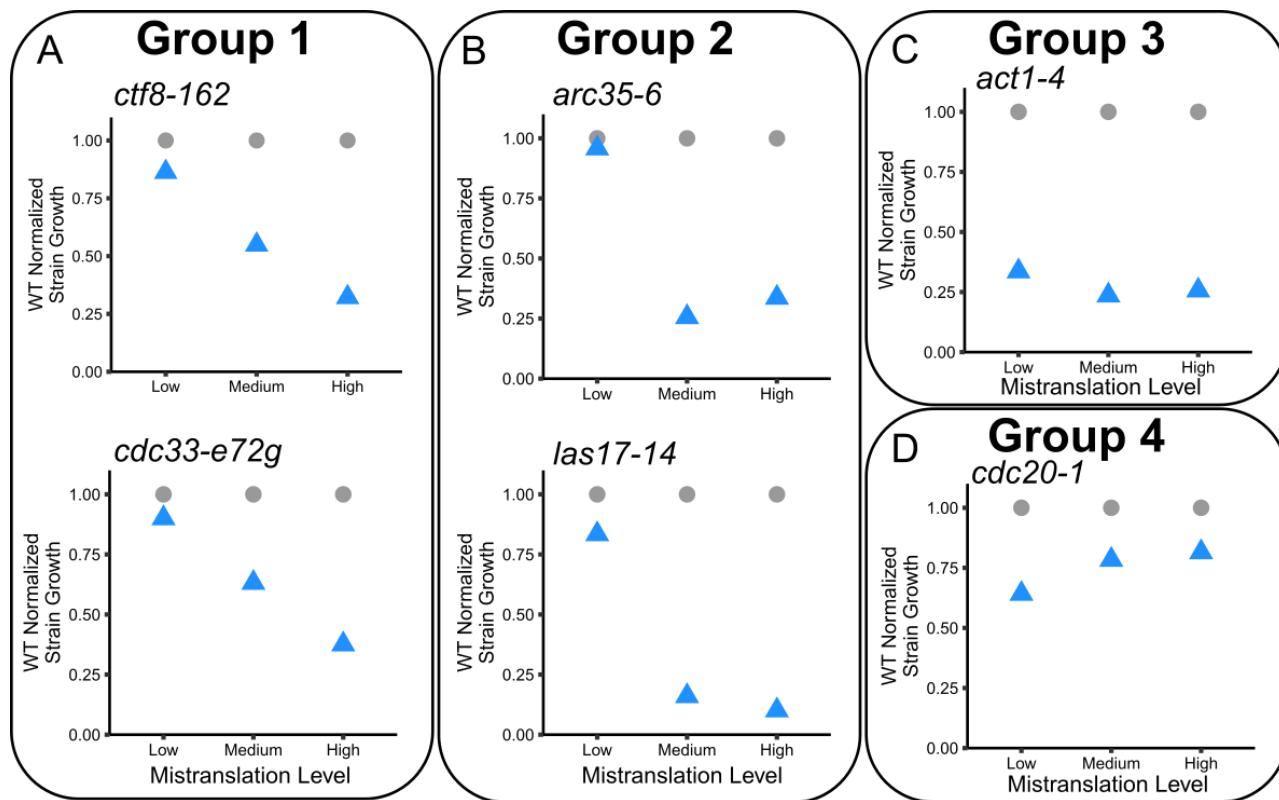
352

353

354

355

356


357

358

359

Figure 3. Effect of different mistranslation frequencies on growth differs depending on strain background. A. Schematic of the constructs containing wild-type tRNA^{Ser} [*WT-tS*], tRNA^{Ser}_{UGG, G26A}-*GAL1pr* [*3'-tS(UGG)*], *GAL1pr-tRNA*^{Ser}_{UGG, G26A} [*5'-tS(UGG)*] and tRNA^{Ser}_{UGG, G26A} [*tS(UGG)*] used to regulate proline to serine mistranslation frequency. Mistranslation frequencies were measured by mass spectrometry in Berg *et al.* (2021a). B. Wild-type BY4742 or the indicated strains from the temperature sensitive collection were transformed with the constructs described in A. Strains were grown to confluence in media lacking uracil and diluted 33-fold and spotted on media lacking uracil with galactose as the carbon source. The spot intensity of the strain containing the mistranslating tRNA was divided by the intensity of the strain containing the wild-type tRNA^{Ser} to determine normalized growth. Each point represents one biological replicate.

360 As shown in Figure 3B and Figure S2, the wild type strain displays a near linear decrease
361 with increasing mistranslation, consistent with our previous observations that increasing
362 mistranslation frequency is negatively correlated with effects on growth for the same amino
363 acid substitution (Berg *et al.* 2019b). All the synthetic strains showed a graded response
364 where increased mistranslation results in more severe loss of growth, but interestingly, the
365 pattern of decreased growth in response to changing the frequency of mistranslation differed
366 amongst the strains. This difference suggests that the genetic background influences the
367 impact of mistranslation.
368
369 To look at the patterns in more detail, we plotted the normalized growth of each temperature
370 sensitive strain as a percentage of the growth of the wild-type strain (BY4742) for each of the
371 three tRNA constructs that result in low, medium and high mistranslation frequency (Figure
372 S3). We note that in these plots 100% indicates a lack of a negative synthetic effect, not the
373 absence of an impact of mistranslation. Although the patterns appear to represent a
374 continuum, we will focus the analysis on representative examples of four categories (Figure
375 4). In the first category are strains where the synthetic interaction with tRNA^{Ser}_{UGG,G26A}
376 increases proportionately with the frequency of mistranslation. In the representative examples
377 *ctf8-62* and *cdc32-e72g* (Figure 4A), little synthetic interaction is seen at the lowest frequency
378 of mistranslation. Many of the strains, including *arc35-6* and *las17-14* (Figure 4B) are in the
379 second category. These show a modest synthetic effect at a low mistranslation frequency, but
380 have a strong negative synthetic interaction at both moderate and high frequencies of
381 mistranslation. The third category, represented best by *act1-4*, have a nearly equivalent
382 synthetic effect at all three levels of mistranslation (Figure 4C). The last group includes *cdc20-1*
383 and is related to group 3 but appears relatively more impacted by the lowest frequency of
384 mistranslation (Figure 4D).
385

386
387

Figure 4. Genetic background alters the impact of different frequencies of proline to serine 388 mistranslation. The average normalized growth calculated as in Figure 3 expressed as a 389 percentage of the growth of the wild-type strain (BY4742) is shown in blue for the three 390 different mistranslating constructs (Low: tRNA^{Ser}_{UGG,G26A}-GAL1pr [3'-tS(UGG)], Medium: 391 GAL1pr-tRNA^{Ser}_{UGG,G26A} [5'-tS(UGG)] and High: tRNA^{Ser}_{UGG,G26A} [tS(UGG)]) for temperature 392 sensitive strains expressing *ctf8-162* or *cdc33-e72g* (A), *arc35-6* or *las17-14* (B), *act1-4* (C), 393 and *cdc20-1* (D). The growth of the wild-type strain, 100%, is plotted as grey dots. Each point 394 is the average of at least three biological replicates as in Figure 3.

395
396
397

Many factors determine the impact of a mistranslating tRNA. Factors intrinsic to the tRNA 398 include the anticodon sequence and its resulting amino acid substitution (Berg *et al.* 2021b), 399 the level of tRNA expression (Berg *et al.* 2021a) and the presence of secondary mutations 400 that alter the stability of the tRNA (Berg *et al.* 2017, 2019b). Other factors are extrinsic to the 401 tRNA. These include the number of competing tRNAs that buffer the mistranslating tRNA 402 (Zimmerman *et al.* 2018), the environment in which cells expressing the mistranslating tRNA 403 (Berg *et al.* 2021b) are found and the genetic background of the organism.

404
405

Genetic background contributes to the impact of a mistranslating tRNA in numerous ways. In 406 yeast (this work and Hoffman *et al.* 2017a) and *Escherichia coli* (Ruan *et al.* 2008), loss of 407 genes that regulate proteotoxic stress increase the severity of mistranslating tRNA variants, 408 most likely because the tRNA variants increase the load of mis-made proteins. The impact of 409 an extragenic mutation will depend on the extent to which it disrupts protein quality control or 410 otherwise contributes to proteotoxic stress (Redler *et al.* 2016). Complexities arise since there 411 are multiple quality control pathways that act independently but ultimately overlap to regulate 412 proteostasis (reviewed in Chen *et al.* 2011). As such, impairing each pathway has the 413

414 potential to show a different response to both changing levels of mistranslation and type of
415 amino acid substitution. The nonlinear nature of the response likely arises because growth
416 effects are not observed until a threshold of proteotoxicity is reached; different mutations will
417 approach or exceed this threshold to different extents.

418
419 Other genetic mutations may exacerbate mistranslation if they occur in hypomorphic genes.
420 Decreased protein level or function caused by mutation will be compounded by the reduced
421 level of functional protein caused by mistranslation. The closer a genetic mutation brings the
422 protein to the critical level of expression, the more impact the mistranslating tRNA will show
423 when combined with that genetic mutant. Similar to the example above, until a critical
424 threshold is exceeded, mistranslation may have little effect. At a more global level, genes that
425 impact translation or mRNA processing can further limit expression of proteins already
426 reduced by mistranslation.

427
428 Factors that alter the gene expression profile will also influence the impact of a mistranslating
429 tRNA. Synonymous codon usage varies across the open reading frames in a genome
430 (reviewed in Liu *et al.* 2021). Specific tRNA variants will mistranslate at a subset of these
431 synonymous codons as determined by wobble rules and base modifications. tRNA variants
432 only affect genes that are translated, and those that are more highly expressed will lead to
433 greater proteotoxic stress when mistranslated. For yeast we have shown that one such factor
434 is the environment in which the cells are grown (Berg *et al.* 2021b). As cell type determines
435 gene expression profile in multicellular eukaryotes, different cell types are expected to be
436 impacted differently by a tRNA variant. This argument is relevant to genetic background
437 because mutations alter the internal and potentially external environment of the cell and often
438 invoke a transcriptomic response (Hughes *et al.* 2000). The altered gene expression will in
439 part determine the impact of a mistranslating tRNA.

440
441 The genetic background could also directly or indirectly alter expression of the mistranslating
442 tRNA or that of competing endogenous tRNAs, altering the frequency of mistranslation.
443 Genetic mutations that alter tRNA expression could occur in genes involved in regulating
444 tRNA transcription (for example, by altering chromatin structure) or in genes with roles in
445 tRNA processing, modification, nuclear import or stability. In our experiments, changes in
446 expression of the mistranslating tRNA could occur if a secondary mutation occurs in a gene
447 regulating transcription from the *GAL* promoter, though we note that none of the 16
448 temperature sensitive alleles we analyzed were in genes with annotated *GAL* regulatory roles.

449 CONCLUSION

450
451 The impact of a mistranslating tRNA depends on a cell's genetic background and the expression
452 of the variant as it relates to the frequency of mistranslation. Approximately 20% of individuals
453 contain a tRNA variant that potentially mistranslates (Berg *et al.* 2019a). The variants are found
454 within different tRNA isodecoders at different loci, which is highly relevant since tRNA genes in
455 the human genome are expressed at different levels (Torres *et al.* 2019). Our findings that
456 genetic background influences the impact of different tRNA variants demonstrates that this must
457 be taken into account when determining the contribution of tRNA variants to disease. Indeed,
458 due to genetic or epigenetic differences, some individuals may be particularly sensitive to even
459 low levels of mistranslation.

460
461

462 **ACKNOWLEDGMENTS**

463 We would like to thank Onn Brandman for the GFP-Hsf1 reporter plasmid, Ricard Rodriguez-
464 Mias for assisting with the mass spectrometry and maintaining the instruments and Ecaterina
465 Cozma and Josh Isaacson for critically reading the manuscript.

466

467 **FUNDING**

468 This work was supported from the Natural Sciences and Engineering Research Council of
469 Canada [RGPIN-2015-04394 to C.J.B.], the Canadian Institutes of Health Research [FDN-
470 159913 to G.W.B] and generous donations from Graham Wright and James Robertson to
471 M.D.B. Mass spectrometry work was supported by a research grant from the Keck
472 Foundation, NIH grant R35 GM119536 and associated instrumentation supplement (to J.V.).
473 M.D.B. was supported by an NSERC Alexander Graham Bell Canada Graduate Scholarship
474 (CGS-D).

475

476 **REFERENCES**

477 Asahara H., H. Himeno, K. Tamura, N. Nameki, T. Hasegawa, *et al.*, 1994 *Escherichia coli*
478 seryl-tRNA synthetase recognizes tRNA^{Ser} by its characteristics tertiary structure. *J. Mol.*
479 *Biol.* 236: 738–748. <https://doi.org/10.1006/jmbi.1994.1186>

480 Baryshnikova A., 2016 Systematic functional annotation and visualization of biological
481 networks. *Cell Syst.* 2: 412–421. <https://doi.org/10.1016/j.cels.2016.04.014>

482 Ben-Aroya S., C. Coombes, T. Kwok, K. A. O'Donnell, J. D. Boeke, *et al.*, 2008 Toward a
483 comprehensive temperature-sensitive mutant repository of the essential genes of
484 *Saccharomyces cerevisiae*. *Mol. Cell* 30: 248–58.
<https://doi.org/10.1016/j.molcel.2008.02.021>

485 Benzer S., and S. P. Champe, 1962 A change from nonsense to sense in the genetic code.
Proc. Natl. Acad. Sci. 48: 1114–1121. <https://doi.org/10.1073/pnas.48.7.1114>

486 Berg M. D., K. S. Hoffman, J. Genereaux, S. Mian, R. S. Trussler, *et al.*, 2017 Evolving
487 mistranslating tRNAs through a phenotypically ambivalent intermediate in
488 *Saccharomyces cerevisiae*. *Genetics* 206: 1865–1879.
<https://doi.org/10.1534/genetics.117.203232>

489 Berg M. D., D. J. Giguere, J. S. Dron, J. T. Lant, J. Genereaux, *et al.*, 2019a Targeted
490 sequencing reveals expanded genetic diversity of human transfer RNAs. *RNA Biol.* 16:
491 1574–1585. <https://doi.org/10.1080/15476286.2019.1646079>

492 Berg M. D., Y. Zhu, J. Genereaux, B. Y. Ruiz, R. A. Rodriguez-Mias, *et al.*, 2019b Modulating
493 mistranslation potential of tRNA^{Ser} in *Saccharomyces cerevisiae*. *Genetics* 213: 849–863.
<https://doi.org/10.1534/genetics.119.302525>

494 Berg M. D., J. R. Isaacson, E. Cozma, J. Genereaux, P. Lajoie, *et al.*, 2021a Regulating
495 Expression of Mistranslating tRNAs by Readthrough RNA Polymerase II Transcription.
500 *ACS Synth. Biol.* <https://doi.org/10.1021/acssynbio.1c00461>

501 Berg M. D., Y. Zhu, B. Y. Ruiz, R. Loll-Krippleber, J. Isaacson, *et al.*, 2021b The amino acid
502 substitution affects cellular response to mistranslation. *G3 Genes, Genomes, Genet.* 11.
503 <https://doi.org/10.1093/g3journal/jkab218>

504 Biou V., A. Yaremchuk, M. Tukalo, and S. Cusack, 1994 The 2.9 Å crystal structure of *T.*
505 *thermophilus* seryl-tRNA synthetase complexed with tRNA^{Ser}. *Science* 263: 1404–1410.
506 <https://doi.org/10.1126/science.8128220>

507 Brachmann C. B., A. Davies, G. J. Cost, E. Caputo, J. Li, *et al.*, 1998 Designer deletion
508 strains derived from *Saccharomyces cerevisiae* S288C: A useful set of strains and
509 plasmids for PCR-mediated gene disruption and other applications. *Yeast* 14: 115–132.

510 [https://doi.org/10.1002/\(SICI\)1097-0061\(19980130\)14:2<115::AID-YEA204>3.0.CO;2-2](https://doi.org/10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2)
511 Chan P. P., and T. M. Lowe, 2016 GtRNAdb 2.0: an expanded database of transfer RNA
512 genes identified in complete and draft genomes. *Nucleic Acids Res.* 44: D184-9.
513 <https://doi.org/10.1093/nar/gkv1309>
514 Chen B., M. Retzlaff, T. Roos, and J. Frydman, 2011 Cellular strategies of protein quality
515 control. *Cold Spring Harb. Perspect. Biol.* 3: 1-14.
516 <https://doi.org/10.1101/cshperspect.a004374>
517 Costanzo M., B. VanderSluis, E. N. Koch, A. Baryshnikova, C. Pons, *et al.*, 2016 A global
518 genetic interaction network maps a wiring diagram of cellular function. *Science* 353:
519 aaf1429-1-aaf1420-14. <https://doi.org/10.1126/science.aaf1420>
520 Crawford I. P., and C. Yanofsky, 1959 The formation of a new enzymatically active protein as
521 a result of suppression. *Proc. Natl. Acad. Sci.* 45: 1280-1287.
522 <https://doi.org/10.1073/pnas.45.8.1280>
523 Eng J. K., T. A. Jahan, and M. R. Hoopmann, 2013 Comet: an open-source MS/MS sequence
524 database search tool. *Proteomics* 13: 22-4. <https://doi.org/10.1002/pmic.201200439>
525 Geslain R., L. Cubells, T. Bori-Sanz, R. Álvarez-Medina, D. Rossell, *et al.*, 2010 Chimeric
526 tRNAs as tools to induce proteome damage and identify components of stress
527 responses. *Nucleic Acids Res.* 38: e30-e30. <https://doi.org/10.1093/nar/gkp1083>
528 Giegé R., M. Sissler, and C. Florentz, 1998 Universal rules and idiosyncratic features in tRNA
529 identity. *Nucleic Acids Res.* 26: 5017-35. <https://doi.org/10.1093/nar/26.22.5017>
530 Gorini L., and J. R. Beckwith, 1966 Suppression. *Annu. Rev. Microbiol.* 20: 401-22.
531 <https://doi.org/10.1146/annurev.mi.20.100166.002153>
532 Himeno H., S. Yoshida, A. Soma, and K. Nishikawa, 1997 Only one nucleotide insertion to the
533 long variable arm confers an efficient serine acceptor activity upon *Saccharomyces*
534 *cerevisiae* tRNA^{Leu} *in vitro*. *J. Mol. Biol.* 268: 704-11.
535 <https://doi.org/10.1006/jmbi.1997.0991>
536 Hoffman K. S., M. D. Berg, B. H. Shilton, C. J. Brandl, and P. O'Donoghue, 2017a Genetic
537 selection for mistranslation rescues a defective co-chaperone in yeast. *Nucleic Acids*
538 *Res.* 45: 3407-3421. <https://doi.org/10.1093/nar/gkw1021>
539 Hoffman K. S., P. O'Donoghue, and C. J. Brandl, 2017b Mistranslation: from adaptations to
540 applications. *Biochim. Biophys. Acta*. <https://doi.org/10.1016/j.bbagen.2017.01.031>
541 Hughes T. R., M. J. Marton, A. R. Jones, C. J. Roberts, R. Stoughton, *et al.*, 2000 Functional
542 discovery via a compendium of expression profiles. *Cell* 102: 109-26.
543 [https://doi.org/10.1016/s0092-8674\(00\)00015-5](https://doi.org/10.1016/s0092-8674(00)00015-5)
544 Isaacson J. R., M. D. Berg, J. Jagiello, J. Villén, and C. J. Brandl, 2022 A Novel Mistranslating
545 tRNA Model in *Drosophila melanogaster* has Diverse, Sexually Dimorphic Effects. *G3*
546 *Genes, Genomes, Genet.* In press.
547 Jones T. E., R. W. Alexander, and T. Pan, 2011 Misacylation of specific nonmethionyl tRNAs
548 by a bacterial methionyl-tRNA synthetase. *Proc. Natl. Acad. Sci.* 108: 6933-8.
549 <https://doi.org/10.1073/pnas.1019033108>
550 Käll L., J. D. Canterbury, J. Weston, W. S. Noble, and M. J. MacCoss, 2007 Semi-supervised
551 learning for peptide identification from shotgun proteomics datasets. *Nat. Methods* 4:
552 923-925. <https://doi.org/10.1038/nmeth1113>
553 Kofoed M., K. L. Milbury, J. H. Chiang, S. Sinha, S. Ben-Aroya, *et al.*, 2015 An updated
554 collection of sequence barcoded temperature-sensitive alleles of yeast essential genes.
555 *G3 Genes, Genomes, Genet.* 5: 1879-1887. <https://doi.org/10.1534/g3.115.019174>
556 Lant J. T., M. D. Berg, D. H. Sze, K. S. Hoffman, I. C. Akinpelu, *et al.*, 2017 Visualizing tRNA-
557 dependent mistranslation in human cells. *RNA Biol.* 15: 567-575.

558 <https://doi.org/10.1080/15476286.2017.1379645>

559 Lant J. T., M. D. Berg, I. U. Heinemann, C. J. Brandl, and P. O'Donoghue, 2019 Pathways to
560 disease from natural variations in human cytoplasmic tRNAs. *J. Biol. Chem.* 294: 5294–
561 5308. <https://doi.org/10.1074/jbc.rev118.002982>

562 Lee J. W., K. Beebe, L. A. Nangle, J. Jang, C. M. Longo-Guess, *et al.*, 2006 Editing-defective
563 tRNA synthetase causes protein misfolding and neurodegeneration. *Nature* 443: 50–5.
564 <https://doi.org/10.1038/nature05096>

565 Leutert M., R. A. Rodríguez-Mias, N. K. Fukuda, and J. Villén, 2019 R2-P2 rapid-robotic
566 phosphoproteomics enables multidimensional cell signaling studies. *Mol. Syst. Biol.* 15:
567 1–20. <https://doi.org/10.15252/msb.20199021>

568 Li Z., F. J. Vizeacoumar, S. Bahr, J. Li, J. Warringer, *et al.*, 2011 Systematic exploration of
569 essential yeast gene function with temperature-sensitive mutants. *Nat. Biotechnol.* 29:
570 361–7. <https://doi.org/10.1038/nbt.1832>

571 Ling J., and D. Söll, 2010 Severe oxidative stress induces protein mistranslation through
572 impairment of an aminoacyl-tRNA synthetase editing site. *Proc. Natl. Acad. Sci.* 107:
573 4028–4033. <https://doi.org/10.1073/pnas.1000315107>

574 Liu Y., Q. Yang, and F. Zhao, 2021 Synonymous but Not Silent: The Codon Usage Code for
575 Gene Expression and Protein Folding. *Annu. Rev. Biochem.* 90: 375–401.
576 <https://doi.org/10.1146/annurev-biochem-071320-112701>

577 Netzer N., J. M. Goodenbour, A. David, K. a Dittmar, R. B. Jones, *et al.*, 2009 Innate immune
578 and chemically triggered oxidative stress modifies translational fidelity. *Nature* 462: 522–
579 6. <https://doi.org/10.1038/nature08576>

580 Perez-Riverol Y., A. Csordas, J. Bai, M. Bernal-Llinares, S. Hewapathirana, *et al.*, 2019 The
581 PRIDE database and related tools and resources in 2019: Improving support for
582 quantification data. *Nucleic Acids Res.* 47: D442–D450.
583 <https://doi.org/10.1093/nar/gky1106>

584 Redler R. L., J. Das, J. R. Diaz, and N. V. Dokholyan, 2016 Protein Destabilization as a
585 Common Factor in Diverse Inherited Disorders. *J. Mol. Evol.* 82: 11–16.
586 <https://doi.org/10.1007/s00239-015-9717-5>

587 Reverendo M., A. R. Soares, P. M. Pereira, L. Carreto, V. Ferreira, *et al.*, 2014 tRNA
588 mutations that affect decoding fidelity deregulate development and the proteostasis
589 network in zebrafish. *RNA Biol* 11: 1199–1213. <https://doi.org/10.4161/rna.32199>

590 Ruan B., S. Palioura, J. Sabina, L. Marvin-Guy, S. Kochhar, *et al.*, 2008 Quality control
591 despite mistranslation caused by an ambiguous genetic code. *Proc. Natl. Acad. Sci.* 105:
592 16502–16507. <https://doi.org/10.1073/pnas.0809179105>

593 Schneider C. A., W. S. Rasband, and K. W. Eliceiri, 2012 NIH Image to ImageJ: 25 years of
594 image analysis. *Nat. Methods* 9: 671–5. <https://doi.org/10.1038/nmeth.2089>

595 Schwartz M. H., and T. Pan, 2017 tRNA misacylation with methionine in the mouse gut
596 microbiome *in situ*. *Microb. Ecol.* <https://doi.org/10.1007/s00248-016-0928-0>

597 Sprouffske K., and A. Wagner, 2016 Growthcurver: An R package for obtaining interpretable
598 metrics from microbial growth curves. *BMC Bioinformatics* 17: 17–20.
599 <https://doi.org/10.1186/s12859-016-1016-7>

600 Stadler J., and C. Yanofsky, 1959 Studies on a series of tryptophan-independent strains
601 derived from a tryptophan-requiring mutant of *Escherichia coli*. *Genetics* 44: 105–23.

602 Tong A. H., M. Evangelista, A. B. Parsons, H. Xu, G. D. Bader, *et al.*, 2001 Systematic
603 genetic analysis with ordered arrays of yeast deletion mutants. *Science* 294: 2364–8.
604 <https://doi.org/10.1126/science.1065810>

605 Torres A. G., O. Reina, C. Stephan-Otto Attolini, and L. Ribas de Pouplana, 2019 Differential

606 expression of human tRNA genes drives the abundance of tRNA-derived fragments.
607 *Proc. Natl. Acad. Sci.* 2018;112(10). <https://doi.org/10.1073/pnas.1821120116>

608 Usaj M., Y. Tan, W. Wang, B. VanderSluis, A. Zou, *et al.*, 2017 TheCellMap.org: A web-
609 accessible database for visualizing and mining the global yeast genetic interaction
610 network. *G3 Genes, Genomes, Genet.* 7: 1539–1549.
611 <https://doi.org/10.1534/g3.117.040220>

612 Wagih O., M. Usaj, A. Baryshnikova, B. VanderSluis, E. Kuzmin, *et al.*, 2013 SGAtools: One-
613 stop analysis and visualization of array-based genetic interaction screens. *Nucleic Acids
614 Res.* 41: 591–596. <https://doi.org/10.1109/ICCSE.2016.7581644>

615 Wiltrot E., J. M. Goodenbour, M. Fréchin, and T. Pan, 2012 Misacylation of tRNA with
616 methionine in *Saccharomyces cerevisiae*. *Nucleic Acids Res.* 40: 10494–506.
617 <https://doi.org/10.1093/nar/gks805>

618 Yanofsky C., and I. P. Crawford, 1959 The effects of deletions, point mutations, reversion and
619 suppressor mutations on the two components of the tryptophan synthetase of
620 *Escherichia coli*. *Proc. Natl. Acad. Sci.* 45: 1016–26.
621 <https://doi.org/10.1073/pnas.45.7.1016>

622 Zhu Y., M. D. Berg, P. Yang, R. Loll-Krippleber, G. W. Brown, *et al.*, 2020 Mistranslating tRNA
623 identifies a deleterious S213P mutation in the *Saccharomyces cerevisiae* *eco1-1* allele.
624 *Biochem. Cell Biol.* bcb-2020-0151. <https://doi.org/10.1139/bcb-2020-0151>

625 Zimmerman S. M., Y. Kon, A. C. Hauke, B. Y. Ruiz, S. Fields, *et al.*, 2018 Conditional
626 accumulation of toxic tRNAs to cause amino acid misincorporation. *Nucleic Acids Res.*
627 46: 7831–7843. <https://doi.org/10.1093/nar/gky623>

628

629