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SUMMARY

Anti-PD-1/PD-L1 agents have transformed the treatment landscape of advanced non-
small cell lung cancer (NSCLC). While our understanding of the biology underlying
immune checkpoint blockade in NSCLC is still incomplete, studies to date have
established predictive roles for PD-L1 tumor expression and tumor mutational burden
(TMB). To expand our understanding of the molecular features underlying response to
checkpoint inhibitors in NSCLC, we describe here the first joint analysis of the Stand Up
2 Cancer - Mark Foundation (SU2C-MARK) Cohort, a resource of whole exome and/or
RNA sequencing from 393 patients with NSCLC treated with anti-PD-(L)1 therapy,
along with matched clinical response annotation. We identify a number of associations
between molecular features and outcome, including: 1) favorable (e.g., ATM altered),
and unfavorable (e.g., TERT amplified) genomic subgroups, 2) distinct immune
infiltration signatures associated with wound healing (unfavorable) and immune
activation (favorable), and 3) a novel de-differentiated tumor-intrinsic subtype
characterized by expression of endodermal lineage genes, immune activation, and
enhanced response rate. Taken together, results from this cohort extend our
understanding of NSCLC-specific predictors, providing a rich set of molecular and
immunologic hypotheses with which to further our understanding of the biology of
checkpoint blockade in NSCLC.
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INTRODUCTION

The introduction of PD-1/PD-L1 inhibitors in the management of advanced NSCLC has
led to a major paradigm shift in treatment of the disease. Following multiple studies
demonstrating improved overall survival, these agents have garnered approval either
alone’3 or in combination with chemotherapy*° or CTLA4 blockade®. However, with
responses observed in only 1 in 5 unselected patients'3, improved predictors of
response are needed to identify patients most likely to benefit.

Given the significant but sporadic benefit of these agents, extensive effort has been
dedicated to identifying biomarkers of response and resistance. The dominant
biomarkers to date are PD-L1 protein expression on tumor cell membranes’ and tumor
mutational burden®-°, which may underlie the generation of neoantigens that can serve
as targets for immune recognition and targeting.

While additional features have begun to emerge including potential roles for mutation
clonality!', an inflamed microenvironment'?'3, and alterations in individual genes such
as EGFR' and STK11'5, further identification and integration of relevant predictors has
been hindered by the absence of large, multi-omic, NSCLC-specific patient cohorts.

Here we describe findings from the first integrative analysis of the SU2C-MARK Non-
Small Cell Lung Cancer (NSCLC) cohort, a dataset of 393 patients treated with
checkpoint blockade inhibitors in the advanced-stage setting. We performed Whole
Exome Sequencing (WES) and RNA Sequencing (RNA-seq) along with detailed clinical
response assessments, enabling the composite assessment of genomic and
transcriptomic biomarkers of response and resistance. Collectively, these richly
annotated data will be a resource to the field in furthering both basic and applied
investigation into the role of PD-1/PD-L1 agents in advanced NSCLC.
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RESULTS
Cohort description and mutation summary

We analyzed FFPE tumor samples collected prior to receipt of checkpoint blockade
(defined as the first line of therapy in which a patient received a PD-1/PD-L1 agent)
from a total of 393 patients with advanced NSCLC across 9 cancer centers (Table 1;
Fig. 1a). Both tumor and matched normal specimens underwent whole exome
sequencing (WES); for a subset of patients, tumor tissue was additionally profiled by
whole transcriptome RNA Sequencing (RNA-seq). After stringent quality control
(Methods), a total of 309 WES and 153 RNA-seq specimens were included for analysis.
The primary outcome was best overall response (BOR) determined by dedicated review
of clinical imaging and quantified using RECIST v1.1 criteria.

As is typical for patients with NSCLC, the SU2C-MARK cohort consisted predominantly
of adenocarcinoma (73%) and squamous cell carcinoma (20%), with smaller
contributions from large cell neuroendocrine carcinoma (2%) and other histologies (4%;
Supplementary Fig. 1a). Among patients with annotated PD-L1 staining (224/393
available, 43% missing), 25% had a Tumor Proportion Score (TPS) of less than 1%,
33% had PD-L1 TPS 1-49%, and 42% had PDL1 TPS = 50%. As expected, higher PD-
L1 TPS was associated with an increased response rate to checkpoint blockade
(Supplementary Fig. 1b). Thus, our dataset reflected the histologic and biomarker
compositions typically observed in unselected, real world NSCLC cohorts'6:17.

Somatic alterations and response to PD-(L)1 blockade in NSCLC

To better understand the relationship between mutational drivers and response, we
assessed the prevalence of known drivers in lung cancer across our three response
categories (Fig. 1b). Consistent with prior reports®-'°, nonsynonymous Tumor Mutational
Burden (TMB) associated with response category (p = 6x10-°, Kruskal-Wallis test), with
median TMB 14.0 mut/MB among those with partial and complete responders (PR/CR),
compared to 9.0 mut/MB for Stable Disease (SD), and 7.4 mut/MB for Progressive
Disease (PD; Fig. 1c). Initial examination of the cohort was also consistent with
previously observed driver associations'®9, such as alterations in EGFR being a
negative predictor of checkpoint blockade response (Fig. 1d).

To facilitate more comprehensive analysis, we performed logistic regression, testing the
relationship between 49 known lung cancer drivers?>2" and response (i.e., CR/PR vs.
SD/PD; Methods). In all, 6 genes achieved significance or near-significance, defined as
a False Discovery Rate (FDR) threshold of 10% or 25%, respectively (Fig. 1e). In this
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analysis, mutations in ATM appeared to be most favorable with respect to checkpoint
blockade response (logistic regression FDR g = 0.04, OR = 3.5, Clgse [1.5, 8.0]), while
EGFR alterations were least favorable (g = 0.11, OR = 0.29, Clgs% [0.11, 0.79]). Given
the strong association between ATM and response in our cohort, we tested this
association in an independent cohort of patients with NSCLC treated with PD-(L)1
blockade and profiled by MSK-IMPACT?? and validated the association between ATM
alteration and improved overall survival (p = 0.03, logrank test; Supplementary Fig. 1c).

We next explored relationships between copy number alterations and response in the
cohort. Among focal events, only focal amplification of 5p15.33, the cytoband containing
TERT, achieved significance, and was associated with decreased response to
immunotherapy (q = 0.07, OR = 0.59, Closs [0.40, 0.87]; Supplementary Fig. 1d,e). Of
note, this association was not reproduced in the MSK-IMPACT cohort, which may be a
function of the more limited sensitivity of amplifications in panel data (data not shown).
Taken together, these results suggest that in addition to the aggregate metric of TMB,
individual driver events may also define favorable and unfavorable NSCLC subsets for
checkpoint blockade.

Predicted neoantigens, antigen presentation, and response

To better understand how the determinants of immune recognition in our cohort related
to response, we calculated the neoantigen burden for each exome in the SU2C-MARK
cohort (Methods). Total neoantigen burden was significantly associated with response
(g =4x10°, OR = 8.8, Clgsy [4.2, 19]; Fig. 1f). As clonal neoantigens have been
suggested to be more effective targets of immune recognition'!, we additionally
examined the role of clonal and subclonal neoantigen burden, along with total subclone
count (Methods). Indeed, clonal neoantigens were also significantly associated with
response (q = 2x10*, OR = 5.4, Clgsy [2.7, 11]), whereas subclonal neoantigens and
total subclones were not (g = 0.7 and g = 0.6, respectively; Fig. 1f).

As different mutational processes may have different propensities for neoantigen
generation, we also evaluated the mutation burden attributable to distinct mutational
signatures (Methods). Of the three dominant signatures, smoking was most strongly
associated with response (g = 5x10-°), consistent with its association with clonal
neoantigens, while aging (q = 0.05) and APOBEC (g = 0.01) were more weakly
associated with response (Fig. 1f). We additionally observed a significant response
association for indels (g = 2x10°°), which are suspected to be particularly immunogenic
given their potential to generate novel reading frames'"-23,
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Previous studies have suggested that compromised antigen presentation, via either loss
of heterozygosity (LOH) in HLA loci?*, decreased total unique HLA alleles?®, or loss of
B2M?¢ may enable immune evasion, though none of these were significantly associated
with non-response in our cohort, potentially suggesting disease-specific variation in
mechanisms of resistance.

To further assess for variation in immune infiltrate, we used MiXCR?” to identify B and T
cell clonotypes from rearranged VDJ reads in our WES data (Methods). Of these
subsets, TCR burden was more strongly associated with response but did not reach
significance (q = 0.3). Thus, among our expanded set of exome-derived features, tumor-
intrinsic markers reflective of TMB as well as clonal mutation burden emerged as top
predictors of response.

Transcriptional correlates of response

We next turned our attention to the RNA-Seq data to identify transcriptional predictors of
response. Using Limma-Voom?® we performed genome-wide analysis of differentially
expressed genes between responders (PR/CR) and non-responders (SD/PD; Fig. 2a;
Methods). As relatively few genes were significant following p-value adjustment (only
PSME1, PSME2, and PSMB9), we examined genes at the more liberal nominal p-value
cutoff of 0.05 (corresponding to an FDR of 0.3). Manual inspection of the top response
associated genes identified several interferon gamma induced transcripts including
PSMB9 and CD274, inflammatory chemokines such as CXCL9 and CXCL11, and
lymphocyte receptor genes, potentially surrogates for immune infiltration
(Supplementary Fig. 2a). Top genes associated with nonresponse include NR4A1, a
master regulator of myeloid cells that has been shown to favor an M2 or
immunosuppressive macrophage phenotype, as opposed to an M1 or pro-inflammatory
state??, and LGR5, a Wnt/B-catenin family member that may reflect an
immunosuppressive environment upstream of TGF-B13° (Supplementary Fig. 2a).

To systematically identify differentially expressed pathways, we performed Gene Set
Enrichment Analysis (GSEA) using the Hallmark Gene Sets®' (Fig. 2b). Top response
associated pathways included Interferon Gamma Response as well as DNA Repair,
which has previously been observed as a predictor of checkpoint blockade response in
urothelial carcinoma3%-32, Pathways associated with resistance were diverse, with
Epithelial Mesenchymal Transition, NF-kB Signaling, and Hypoxia gene sets all
significantly associated with non-response (Fig. 2b). Taken together, these top genes
and gene sets from bulk RNA-seq suggest the relevance of both immune and non-
immune components to the biology of checkpoint blockade.
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Immune subset signatures

Given the prominence of immune signaling in our analysis, we aimed to better delineate
the immune subsets in our bulk transcriptome data using previously identified immune
cell type signatures derived from single cell RNA data®® (Methods). Of the 11 signatures
we evaluated, exhausted CD8+ T-cells showed the strongest association with response,
while the monocyte/macrophage and dendritic cell signatures were most strongly
associated with resistance (Fig. 2c).

As the monocyte/macrophage signature showed the strongest predictive value in our
cohort, we investigated more fine-grained signatures related to these cell types. Using a
marker list derived from a comprehensive single cell RNA-seq study of infiltrating
myeloid cells in human and mouse lung cancers34, we identified the hMono3 and hN3
subtypes as being particularly associated with resistance to checkpoint blockade
(Supplementary Fig. 2b). Notably, the hMono3 subtype is characterized by high
expression of S100A8, a cytokine-like protein that can drive the accumulation of
myeloid-derived suppressor cells®. The neutrophil hN3 subtype is defined by high
expression of CXCR2, which has been shown to inhibit CD8 T-cell activation within the
lung cancer microenvironment?®. Thus, our focused analysis of immune subsets
identified plausible mechanistic connections between myeloid infiltration and decreased
response to checkpoint blockade.

Integrative expression signatures

To identify microenvironmental signatures relevant to immunotherapy response beyond
individual cell types, we applied Bayesian Non-Negative Matrix Factorization (B-NMF) to
our top 770 differentially expressed genes, yielding 3 distinct Tissue Micro-
Environmental (TME) signatures: TME-1, TME-2, and TME-3 (Fig. 2d; Supplementary
Fig. 2c; Methods). Because these signatures were derived from bulk sequencing, they
are expected to reflect both tumor as well as non-tumor (i.e., immune, stromal) sources.
GSEA of these signatures revealed TME-1 to be associated with Epithelial
Mesenchymal Transition (a gene set that includes wound healing and fibrosis) and
TME-2 to be associated with Allograft Rejection/Interferon Gamma Response,
consistent with an inflamed immune environment (Fig. 2e). TME-3 had a weak
association with cell cycle related E2F Targets, potentially reflecting a proliferative
tumor signature, which in conjunction with relative depletion of infiltrating myeloid and
lymphoid cells, most resembles the previously reported immune desert phenotype®’
(Fig. 2e,f; Supplementary Fig. 2d). Importantly, the response rate to checkpoint
blockade varied across these subtypes, with increased response rates observed in
TME-2 relative to TME-1 and TME-3 (p = 0.049, Fisher's exact test; Fig. 2g). Overall,
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these results suggest that there may be at least two distinct transcriptional states
associated with checkpoint blockade resistance in NSCLC.

Tumor intrinsic subtyping

Having explored aggregate microenvironmental states, we next turned our attention to
tumor-intrinsic expression factors that may have a relationship with response. To define
relevant tumor-intrinsic lung cancer subtypes, we assembled a large reference
collection of over 1000 transcriptomes (TCGA-LCNE) representing the three
predominant NSCLC histologies, namely adenocarcinoma, squamous cell carcinoma,
and large cell neuroendocrine carcinoma (Fig 3a; Methods). To define signatures of
individual subtypes in this collection, we first performed B-NMF across this cohort,
converging on a robust 4-cluster solution (Fig. 3b, Supplementary Fig. 3a). Of these
Tumor-Intrinsic (TI) clusters, TI-1 and TI-2 contained predominantly adenocarcinomas,
TI-3 was composed largely of squamous cell carcinomas, and Tl-4 was primarily large
cell neuroendocrine carcinomas (Supplementary Fig. 3b).

To better understand the distinctions between these signatures, we explored the
expression of canonical markers of adenocarcinoma and squamous differentiation,
namely NAPSA (Napsin A) and TP63 (which encodes both p63 and p40), respectively
(Supplementary Fig. 3c). While Tl-2 and TI-3 showed the expected lineage marker
preferences, TI-1 samples showed weak expression of both markers. Decreased
expression of lung lineage markers has previously been described in a subtype of
poorly differentiated adenocarcinomas in which markers for adjacent gut lineages
(neighboring endodermal territories during development) can become activated=e.
Indeed, comparison of these subtypes to immunohistochemical markers of various
endodermal lineages revealed an enrichment in foregut, midgut, and hindgut genes in
TI-1 samples, such as TTF1, FGA, and CPS1 (Supplementary Fig. 3d). TI-1 samples
were also notable for an elevated TMB relative to the well differentiated TI-2
adenocarcinoma subtype and the TI-3 squamous subtype (Supplementary Fig. 3e).

Having established a reference collection of tumor-intrinsic expression signatures, we
applied these signatures to RNA-Seq data from the SU2C-MARK Cohort and assessed
their association with response to checkpoint inhibitors. Notably, the de-differentiated
TI-1 cluster was most closely associated with response (Fig. 3c), consistent with the
elevated mutational burden in this subtype as well as its stronger association with the
TME-2 “immune activated” micro-environmental subtype (Fig. 3d; Supplementary Fig.
3f). Indeed, patients with both Immune Activated (TME-2) and De-differentiation (TI-1)
signatures had the highest response rates to checkpoint blockade (67% ORR; Fig. 3e).
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Thus, tumor-intrinsic states and immune microenvironmental signaling may
independently and additively govern responses in NSCLC.

Integrative cohort analysis

Having evaluated a broad set of clinical, genomic, and transcriptomic features relevant
to checkpoint blockade response in NSCLC, we set out to better understand the
relationships between these predictors. Combining the top predictive features from each
analysis, we generated a cross-correlation matrix to better understand how they relate
to each other as well as to previously published signatures relevant to tumor biology
and immune response (Fig. 4a; Methods)?®:32:3944_ Notably, 3 strong correlation blocks
could be observed, with consistent response associations within each subset. The first
correlation block (C1) appeared to reflect a canonical “Wound Healing”
microenvironment, including immunosuppressive myeloid and stromal signatures. The
second correlation block (C2) reflected the more classic cytokine and immune milieu
associated with “Immune Activation/Exhaustion,” including both infiltrating immune
signatures as well as the De-differentiated (TI-1) tumor-intrinsic signature. The third
correlation block (C3) consisted of features related to mutational burden, presumably all
proxies for neoantigen abundance and consequent enhanced immune recognition.

The remaining 10 features were somewhat loosely correlated as a fourth cluster (C4)
enriched for single-gene alterations with potentially distinct immunobiologies. Notably
this cluster included EGFR mutations, which interestingly showed minimal association
with the immune signatures but a moderate anticorrelation with mutational burden
features, suggesting the intrinsic resistance of this subtype may predominantly be
driven by insufficient neoantigens18 (Fig. 4a).

To evaluate whether the additional genomic predictors identified in this study could
augment existing biomarker-defined subsets of NSCLC, we selected the top 2
significant predictors from each cluster and evaluated their potential to further stratify
PFS in 3 clinically relevant subgroups: TMB > 10 mut/MB (favorable; N=27), PDL1 TPS
= 50% (favorable; N=34), and PDL1 TPS < 1% (unfavorable; N=18). Following FDR
correction, we identified multiple near-significant and significant associations (q < 0.25
and 0.1, respectively, logrank test; Fig. 4b; Supplementary Fig. 4a; Methods),
particularly when evaluating features from the Immune Activation/Exhaustion and
Wound Healing clusters.

Notably, unlike the mutational cluster which was exclusively tumor-intrinsic, features

associated with Wound Healing (C1) and Immune Activation/Exhaustion (C2) appeared
to span many potential cellular sources. To better dissect these immunologic

10
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“neighborhoods” we examined the cell types most strongly associated with each gene
or gene signature in these clusters using published single cell sequencing data*® (Fig.
4c; Supplementary Fig. 4b). Deconvolution of the Wound Healing cluster suggested that
the EMT and TGF-B1 signatures predominantly reflected fibroblasts and endothelial
cells as opposed to a mesenchymal epigenetic state per se within the tumor cells.
Similarly, analysis of the Immune Activation/Exhaustion cluster revealed that while
many cell types demonstrate upregulated IFN-y signaling, myeloid cells may be
dominant sources of CXCL9, and CXCL11 may be largely derived from endothelial
cells. Taken together, these findings suggest the presence of rich, interacting
ecosystems that may broadly underlie response and resistance to checkpoint blockade,
and provide a collection of specific signaling pathways and cell types that may be
promising targets for future intervention.

DISCUSSION

Comprehensive identification of predictors of checkpoint blockade response has been
limited by the availability of large, well annotated patient cohorts with matched genomic
data, particularly within individual cancer types. Here, we present the first joint analysis
of the SU2C-MARK cohort, a collection of nearly 400 patients with NSCLC, enabling the
identification of diverse molecular predictors of immunotherapy response. Although this
study is intended to be hypothesis generating, a number of the features described
already have plausible connections to immune recognition and clearance.

Among the top genomic features identified were ATM mutation and TERT amplification.
Given emerging literature associating ATM loss with the release of cytosolic DNA and
activation of the cGAS/STING pathway in other cancer types*®-42, it is conceivable that
a similar mechanism underlies the association observed in our cohort between ATM
loss and response. Although less well characterized in the context of immunotherapy,
TERT amplification may serve a protective function against telomere crisis, thereby
forestalling a parallel mechanism which has been linked to cGAS/STING activation and
subsequent sensitization to checkpoint blockade in mouse models*°.

Transcriptomic analysis in the SU2C-MARK cohort re-identified microenvironmental
signatures previously associated with relevant immune states such as the Immune
Activated (TME-2) signature and Immune Desert (TME-3) signature. The Wound
Healing (TME-1) signature, though less well described in the context of lung cancer,
does match the TGF-B1 transcriptional signature thought to drive T cell exclusion in
bladder cancer®?.
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In addition to features such as these global immune states that may have pan-cancer
relevance, we also identified a novel De-differentiated (T1-1) NSCLC specific subtype,
reminiscent of a similar subtype in mouse lung cancer models featuring decreased
expression of classic lung lineage markers as well as enhanced expression of
developmentally adjacent endodermal lineages®. The correlation between this tumor-
intrinsic state and our Immune Activated (TME-2) signature could represent an
underlying differentiation state more susceptible to immune recognition (e.g., via
presentation of oncofetal antigens), or conversely, a cell state change in response to an
inflammatory cytokine milieu®. Establishing the direction of causality between these
signatures may have important implications for further therapeutic intervention.

Finally, integrative analysis of our genomic features along with previously reported
signatures relevant to immune and tumor biology supported the notion of a complex
interplay between distinct signaling pathways (e.g., NR4A1 and TGF-31 signaling), and
distinct cell types (e.g., myeloid cells and fibroblasts), shedding light on some of the
multifaceted interactions underlying checkpoint blockade responsiveness. It is our hope
that the SU2C-MARK cohort continues to serve as a rich resource for further unraveling
the complex architecture of relevant genomic predictors, and for generating deeper
insights into the biology of anti-tumor immunity.
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Table 1. Baseline Clinical Characteristics

Patient Characteristics (n=393) All Patients
No. (%)
Age (years), median (range) 64 (29-90)
Gender
Male 182 (46)
Female 207 (53)
Not Available 4 (1)
Smoking Status
Never 46 (12)
Former 283 (72)
Current 60 (15)
Not Available 4 (1)
Histology
Adenocarcinoma 286 (73)
Squamous 77 (20)
LC-NE 9(2)
Other 17 (4)
Not Available 4 (1)
PD-L1 expression
<1% 56 (14)
1-49% 75 (19)
=50% 93 (24)
Not Available 169 (43)
Line of Therapy
1 143 (36)
2 150 (38)
=3 96 (24)
Not Available 4 (1)
Therapy
PD-(L)1 only 317 (81)
PD-(L)1 + CTLA4 65 (17)
Other 7(2)
Not Available 4 (1)
Best Overall Response
CR/PR 142 (36)
SD 110 (28)
PD 132 (33)
Not Available 9(2)
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Fig. 1: Overview of the SU2C-MARK cohort and initial genomic characterization.

a, Overview of clinical and genomic data collected across the SU2C-MARK cohort (N =
393). b, CoMut plot of SU2C-MARK cohort organized by response category. ¢, Log of
the Tumor Mutation Burden (TMB) as a function of response category. Significance was

0o NOoO O~ WODN-

—_ A
w N -~ O ©

assessed via Mann-Whitney U test. d, Kaplan-Meier curves for Progression Free
Survival (PFS) in EGFR mutated and unmutated patients. EGFR mutated patients had
decreased progression-free survival compared to unmutated patients (logrank test). e,
Volcano plot of logistic regression results for oncogenic mutations in known lung cancer
drivers and binned response category (PR/CR vs. SD/PD). ATM alterations reached
significance (q < 0.1, Benjamini-Hochberg) while EGFR, RBM10, ARID1A, KEAP1, and
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SMARCA4 were all near-significant (q < 0.25). f, Summary of exome-derived genomic
features and logistic regression with response. Neoantigens were estimated using
NetMHCpan-4.0%" following HLA allele identification with POLYSOLVER?®2. Subclone
count was assessed via Phylogic-NDT®3. B- and T-cell rearranged receptor abundance
was estimated via MiXCR?’.
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Fig. 2: Transcriptomic features associated with response and resistance in the SU2C-
MARK cohort.

a, Volcano plot of Limma-Voom results for top response associated genes from RNA-
Seq samples in SU2C-MARK cohort (N = 153). Cutoffs of absolute log> fold change >
0.5 and p-value < 0.05 were used to identify significantly differentially expressed genes
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(red). b, Hallmark Gene Set Enrichment Analysis (GSEA) of response and resistance
associated pathways from Limma-Voom. ¢, Logistic regression summary results for
tumor associated immune cell signatures derived from single cell sequencing®. d,
Overview of Tissue Micro-Environment (TME) signature generation using Bayesian
Non-negative Matrix Factorization (B-NMF). e, Dot plot of hallmark GSEA results for B-
NMF derived TME signatures. f, Swarmplots of selected tumor associated immune cell
signatures by TME clusters. Myeloid cells were generally enriched in the Wound
Healing (TME-1) subtype, while most immune cell types were depleted in the Immune
Desert (TME-3) subtype (p < 0.001 for all signatures, Kruskal-Wallis test). g, Response
rate by TME subtype. The Immune Activated (TME-2) subtype was enriched for
responders compared to the Wound Healing (TME-1) and Immune Desert (TME-3)
subtypes (p < 0.05, Fisher’'s exact test).
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Fig. 3: Tumor-intrinsic subtypes and association with checkpoint blockade response.

a, Overview of Bayesian Non-negative Matrix Factorization (B-NMF) approach to

generation of Tumor Intrinsic (T1) subtype signatures. A total of 1082 RNA-Seq samples
spanning the three dominant NSCLC histologies were used as input for signature
identification. b, H-matrix of TCGA-LCNE samples and normalized Tl signature activity.

¢, Logistic regression analysis summary in the SU2C-MARK cohort between TI

signatures and binned response category (PR/CR vs SD/PD). The De-differentiated (TI-
1) signature showed a significant association with response (q < 0.1). d, Kernel density

estimate plot of association between the activities of the De-differentiated (TI-1)
signature and the previously identified Immune Activated (TME-2) signature. e,

Response rate in the SU2C-MARK cohort binned by expression of TI-1 and TME-2
signatures. Patients with both high TI-1 and high TME-2 show the highest response

rate.
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Fig. 4: Clinical, genomic, and transcriptomic feature integration across the SU2C-MARK
cohort

a, Cross-correlation heatmap of the top response and resistance associated features in
the SU2C-MARK cohort along with a selection of signatures previously described as
relevant to tumor and immune biology. The three strongest correlation blocks are
outlined, and roughly correspond to Wound Healing (C1), Immune
Activation/Exhaustion (C2), and Neoantigens (C3). Of note, the direction of association
(i.e., positive or negative) with immune checkpoint blockade response was consistent
for predictors within each of these highlighted correlation blocks. b, Contribution of
SU2C-MARK predictors to clinically relevant biomarker subsets. The addition of
features from the Wound Healing (C1) and Immune Activation/Exhaustion (C2) clusters
meaningfully stratify traditionally favorable (e.g., PDL1 high) and unfavorable (e.g.,
PDL1 low) clinical subgroups (q = 0.03, g = 0.11, respectively, Benjamini-Hochberg
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corrected logrank test). ¢, Association between gene and metagene predictors from the
Wound Healing and Immune Activation/Exhaustion clusters in the SU2C-MARK cohort
and cell types derived from Leiden clustering of single cell sequencing data from
NSCLC*.
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