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SUMMARY 1 
 2 
Anti-PD-1/PD-L1 agents have transformed the treatment landscape of advanced non-3 
small cell lung cancer (NSCLC). While our understanding of the biology underlying 4 
immune checkpoint blockade in NSCLC is still incomplete, studies to date have 5 
established predictive roles for PD-L1 tumor expression and tumor mutational burden 6 
(TMB). To expand our understanding of the molecular features underlying response to 7 
checkpoint inhibitors in NSCLC, we describe here the first joint analysis of the Stand Up 8 
2 Cancer - Mark Foundation (SU2C-MARK) Cohort, a resource of whole exome and/or 9 
RNA sequencing from 393 patients with NSCLC treated with anti-PD-(L)1 therapy, 10 
along with matched clinical response annotation. We identify a number of associations 11 
between molecular features and outcome, including: 1) favorable (e.g., ATM altered), 12 
and unfavorable (e.g., TERT amplified) genomic subgroups, 2) distinct immune 13 
infiltration signatures associated with wound healing (unfavorable) and immune 14 
activation (favorable), and 3) a novel de-differentiated tumor-intrinsic subtype 15 
characterized by expression of endodermal lineage genes, immune activation, and 16 
enhanced response rate. Taken together, results from this cohort extend our 17 
understanding of NSCLC-specific predictors, providing a rich set of molecular and 18 
immunologic hypotheses with which to further our understanding of the biology of 19 
checkpoint blockade in NSCLC. 20 
 21 
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INTRODUCTION 1 
 2 
The introduction of PD-1/PD-L1 inhibitors in the management of advanced NSCLC has 3 
led to a major paradigm shift in treatment of the disease. Following multiple studies 4 
demonstrating improved overall survival, these agents have garnered approval either 5 
alone1–3 or in combination with chemotherapy4,5 or CTLA4 blockade6. However, with 6 
responses observed in only 1 in 5 unselected patients1–3, improved predictors of 7 
response are needed to identify patients most likely to benefit. 8 
 9 
Given the significant but sporadic benefit of these agents, extensive effort has been 10 
dedicated to identifying biomarkers of response and resistance. The dominant 11 
biomarkers to date are PD-L1 protein expression on tumor cell membranes7 and tumor 12 
mutational burden8–10, which may underlie the generation of neoantigens that can serve 13 
as targets for immune recognition and targeting. 14 
 15 
While additional features have begun to emerge including potential roles for mutation 16 
clonality11, an inflamed microenvironment12,13, and alterations in individual genes such 17 
as EGFR14 and STK1115, further identification and integration of relevant predictors has 18 
been hindered by the absence of large, multi-omic, NSCLC-specific patient cohorts. 19 
 20 
Here we describe findings from the first integrative analysis of the SU2C-MARK Non-21 
Small Cell Lung Cancer (NSCLC) cohort, a dataset of 393 patients treated with 22 
checkpoint blockade inhibitors in the advanced-stage setting. We performed Whole 23 
Exome Sequencing (WES) and RNA Sequencing (RNA-seq) along with detailed clinical 24 
response assessments, enabling the composite assessment of genomic and 25 
transcriptomic biomarkers of response and resistance. Collectively, these richly 26 
annotated data will be a resource to the field in furthering both basic and applied 27 
investigation into the role of PD-1/PD-L1 agents in advanced NSCLC. 28 
 29 
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RESULTS 1 
 2 
Cohort description and mutation summary 3 
 4 
We analyzed FFPE tumor samples collected prior to receipt of checkpoint blockade 5 
(defined as the first line of therapy in which a patient received a PD-1/PD-L1 agent) 6 
from a total of 393 patients with advanced NSCLC across 9 cancer centers (Table 1; 7 
Fig. 1a). Both tumor and matched normal specimens underwent whole exome 8 
sequencing (WES); for a subset of patients, tumor tissue was additionally profiled by 9 
whole transcriptome RNA Sequencing (RNA-seq). After stringent quality control 10 
(Methods), a total of 309 WES and 153 RNA-seq specimens were included for analysis. 11 
The primary outcome was best overall response (BOR) determined by dedicated review 12 
of clinical imaging and quantified using RECIST v1.1 criteria. 13 
 14 
As is typical for patients with NSCLC, the SU2C-MARK cohort consisted predominantly 15 
of adenocarcinoma (73%) and squamous cell carcinoma (20%), with smaller 16 
contributions from large cell neuroendocrine carcinoma (2%) and other histologies (4%; 17 
Supplementary Fig. 1a). Among patients with annotated PD-L1 staining (224/393 18 
available, 43% missing), 25% had a Tumor Proportion Score (TPS) of less than 1%, 19 
33% had PD-L1 TPS 1-49%, and 42% had PDL1 TPS ≥ 50%. As expected, higher PD-20 
L1 TPS was associated with an increased response rate to checkpoint blockade 21 
(Supplementary Fig. 1b). Thus, our dataset reflected the histologic and biomarker 22 
compositions typically observed in unselected, real world NSCLC cohorts16,17. 23 
 24 
Somatic alterations and response to PD-(L)1 blockade in NSCLC 25 
 26 
To better understand the relationship between mutational drivers and response, we 27 
assessed the prevalence of known drivers in lung cancer across our three response 28 
categories (Fig. 1b). Consistent with prior reports8–10, nonsynonymous Tumor Mutational 29 
Burden (TMB) associated with response category (p = 6x10-9, Kruskal-Wallis test), with 30 
median TMB 14.0 mut/MB among those with partial and complete responders (PR/CR), 31 
compared to 9.0 mut/MB for Stable Disease (SD), and 7.4 mut/MB for Progressive 32 
Disease (PD; Fig. 1c). Initial examination of the cohort was also consistent with 33 
previously observed driver associations18,19, such as alterations in EGFR being a 34 
negative predictor of checkpoint blockade response (Fig. 1d). 35 
 36 
To facilitate more comprehensive analysis, we performed logistic regression, testing the 37 
relationship between 49 known lung cancer drivers20,21 and response (i.e., CR/PR vs. 38 
SD/PD; Methods). In all, 6 genes achieved significance or near-significance, defined as 39 
a False Discovery Rate (FDR) threshold of 10% or 25%, respectively (Fig. 1e). In this 40 
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analysis, mutations in ATM appeared to be most favorable with respect to checkpoint 1 
blockade response (logistic regression FDR q = 0.04, OR = 3.5, CI95% [1.5, 8.0]), while 2 
EGFR alterations were least favorable (q = 0.11, OR = 0.29, CI95% [0.11, 0.79]). Given 3 
the strong association between ATM and response in our cohort, we tested this 4 
association in an independent cohort of patients with NSCLC treated with PD-(L)1 5 
blockade and profiled by MSK-IMPACT22 and validated the association between ATM 6 
alteration and improved overall survival (p = 0.03, logrank test; Supplementary Fig. 1c). 7 
 8 
We next explored relationships between copy number alterations and response in the 9 
cohort. Among focal events, only focal amplification of 5p15.33, the cytoband containing 10 
TERT, achieved significance, and was associated with decreased response to 11 
immunotherapy (q = 0.07, OR = 0.59, CI95% [0.40, 0.87]; Supplementary Fig. 1d,e). Of 12 
note, this association was not reproduced in the MSK-IMPACT cohort, which may be a 13 
function of the more limited sensitivity of amplifications in panel data (data not shown). 14 
Taken together, these results suggest that in addition to the aggregate metric of TMB, 15 
individual driver events may also define favorable and unfavorable NSCLC subsets for 16 
checkpoint blockade. 17 
 18 
Predicted neoantigens, antigen presentation, and response 19 
 20 
To better understand how the determinants of immune recognition in our cohort related 21 
to response, we calculated the neoantigen burden for each exome in the SU2C-MARK 22 
cohort (Methods). Total neoantigen burden was significantly associated with response 23 
(q = 4x10-5, OR = 8.8, CI95% [4.2, 19]; Fig. 1f). As clonal neoantigens have been 24 
suggested to be more effective targets of immune recognition11, we additionally 25 
examined the role of clonal and subclonal neoantigen burden, along with total subclone 26 
count (Methods). Indeed, clonal neoantigens were also significantly associated with 27 
response (q = 2x10-4, OR = 5.4, CI95% [2.7, 11]), whereas subclonal neoantigens and 28 
total subclones were not (q = 0.7 and q = 0.6, respectively; Fig. 1f). 29 
 30 
As different mutational processes may have different propensities for neoantigen 31 
generation, we also evaluated the mutation burden attributable to distinct mutational 32 
signatures (Methods). Of the three dominant signatures, smoking was most strongly 33 
associated with response (q = 5x10-5), consistent with its association with clonal 34 
neoantigens, while aging (q = 0.05) and APOBEC (q = 0.01) were more weakly 35 
associated with response (Fig. 1f). We additionally observed a significant response 36 
association for indels (q = 2x10-5), which are suspected to be particularly immunogenic 37 
given their potential to generate novel reading frames11,23. 38 
 39 
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Previous studies have suggested that compromised antigen presentation, via either loss 1 
of heterozygosity (LOH) in HLA loci24, decreased total unique HLA alleles25, or loss of 2 
B2M26 may enable immune evasion, though none of these were significantly associated 3 
with non-response in our cohort, potentially suggesting disease-specific variation in 4 
mechanisms of resistance. 5 
 6 
To further assess for variation in immune infiltrate, we used MiXCR27 to identify B and T 7 
cell clonotypes from rearranged VDJ reads in our WES data (Methods). Of these 8 
subsets, TCR burden was more strongly associated with response but did not reach 9 
significance (q = 0.3). Thus, among our expanded set of exome-derived features, tumor-10 
intrinsic markers reflective of TMB as well as clonal mutation burden emerged as top 11 
predictors of response. 12 
 13 
Transcriptional correlates of response 14 
 15 
We next turned our attention to the RNA-Seq data to identify transcriptional predictors of 16 
response. Using Limma-Voom28 we performed genome-wide analysis of differentially 17 
expressed genes between responders (PR/CR) and non-responders (SD/PD; Fig. 2a; 18 
Methods). As relatively few genes were significant following p-value adjustment (only 19 
PSME1, PSME2, and PSMB9), we examined genes at the more liberal nominal p-value 20 
cutoff of 0.05 (corresponding to an FDR of 0.3). Manual inspection of the top response 21 
associated genes identified several interferon gamma induced transcripts including 22 
PSMB9 and CD274, inflammatory chemokines such as CXCL9 and CXCL11, and 23 
lymphocyte receptor genes, potentially surrogates for immune infiltration 24 
(Supplementary Fig. 2a). Top genes associated with nonresponse include NR4A1, a 25 
master regulator of myeloid cells that has been shown to favor an M2 or 26 
immunosuppressive macrophage phenotype, as opposed to an M1 or pro-inflammatory 27 
state29, and LGR5, a Wnt/β-catenin family member that may reflect an 28 
immunosuppressive environment upstream of TGF-β130 (Supplementary Fig. 2a). 29 
 30 
To systematically identify differentially expressed pathways, we performed Gene Set 31 
Enrichment Analysis (GSEA) using the Hallmark Gene Sets31 (Fig. 2b). Top response 32 
associated pathways included Interferon Gamma Response as well as DNA Repair, 33 
which has previously been observed as a predictor of checkpoint blockade response in 34 
urothelial carcinoma30,32. Pathways associated with resistance were diverse, with 35 
Epithelial Mesenchymal Transition, NF-κB Signaling, and Hypoxia gene sets all 36 
significantly associated with non-response (Fig. 2b). Taken together, these top genes 37 
and gene sets from bulk RNA-seq suggest the relevance of both immune and non-38 
immune components to the biology of checkpoint blockade. 39 
 40 
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Immune subset signatures 1 
 2 
Given the prominence of immune signaling in our analysis, we aimed to better delineate 3 
the immune subsets in our bulk transcriptome data using previously identified immune 4 
cell type signatures derived from single cell RNA data33 (Methods). Of the 11 signatures 5 
we evaluated, exhausted CD8+ T-cells showed the strongest association with response, 6 
while the monocyte/macrophage and dendritic cell signatures were most strongly 7 
associated with resistance (Fig. 2c). 8 
 9 
As the monocyte/macrophage signature showed the strongest predictive value in our 10 
cohort, we investigated more fine-grained signatures related to these cell types. Using a 11 
marker list derived from a comprehensive single cell RNA-seq study of infiltrating 12 
myeloid cells in human and mouse lung cancers34, we identified the hMono3 and hN3 13 
subtypes as being particularly associated with resistance to checkpoint blockade 14 
(Supplementary Fig. 2b). Notably, the hMono3 subtype is characterized by high 15 
expression of S100A8, a cytokine-like protein that can drive the accumulation of 16 
myeloid-derived suppressor cells35. The neutrophil hN3 subtype is defined by high 17 
expression of CXCR2, which has been shown to inhibit CD8 T-cell activation within the 18 
lung cancer microenvironment36. Thus, our focused analysis of immune subsets 19 
identified plausible mechanistic connections between myeloid infiltration and decreased 20 
response to checkpoint blockade. 21 
 22 
Integrative expression signatures 23 
 24 
To identify microenvironmental signatures relevant to immunotherapy response beyond 25 
individual cell types, we applied Bayesian Non-Negative Matrix Factorization (B-NMF) to 26 
our top 770 differentially expressed genes, yielding 3 distinct Tissue Micro-27 
Environmental (TME) signatures: TME-1, TME-2, and TME-3 (Fig. 2d; Supplementary 28 
Fig. 2c; Methods). Because these signatures were derived from bulk sequencing, they 29 
are expected to reflect both tumor as well as non-tumor (i.e., immune, stromal) sources. 30 
GSEA of these signatures revealed TME-1 to be associated with Epithelial 31 
Mesenchymal Transition (a gene set that includes wound healing and fibrosis) and 32 
TME-2 to be associated with Allograft Rejection/Interferon Gamma Response, 33 
consistent with an inflamed immune environment (Fig. 2e). TME-3 had a weak 34 
association with cell cycle related E2F Targets, potentially reflecting a proliferative 35 
tumor signature, which in conjunction with relative depletion of infiltrating myeloid and 36 
lymphoid cells, most resembles the previously reported immune desert phenotype37 37 
(Fig. 2e,f; Supplementary Fig. 2d). Importantly, the response rate to checkpoint 38 
blockade varied across these subtypes, with increased response rates observed in 39 
TME-2 relative to TME-1 and TME-3 (p = 0.049, Fisher's exact test; Fig. 2g). Overall, 40 
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these results suggest that there may be at least two distinct transcriptional states 1 
associated with checkpoint blockade resistance in NSCLC. 2 
 3 
Tumor intrinsic subtyping 4 
 5 
Having explored aggregate microenvironmental states, we next turned our attention to 6 
tumor-intrinsic expression factors that may have a relationship with response. To define 7 
relevant tumor-intrinsic lung cancer subtypes, we assembled a large reference 8 
collection of over 1000 transcriptomes (TCGA-LCNE) representing the three 9 
predominant NSCLC histologies, namely adenocarcinoma, squamous cell carcinoma, 10 
and large cell neuroendocrine carcinoma (Fig 3a; Methods). To define signatures of 11 
individual subtypes in this collection, we first performed B-NMF across this cohort, 12 
converging on a robust 4-cluster solution (Fig. 3b, Supplementary Fig. 3a). Of these 13 
Tumor-Intrinsic (TI) clusters, TI-1 and TI-2 contained predominantly adenocarcinomas, 14 
TI-3 was composed largely of squamous cell carcinomas, and TI-4 was primarily large 15 
cell neuroendocrine carcinomas (Supplementary Fig. 3b). 16 
 17 
To better understand the distinctions between these signatures, we explored the 18 
expression of canonical markers of adenocarcinoma and squamous differentiation, 19 
namely NAPSA (Napsin A) and TP63 (which encodes both p63 and p40), respectively 20 
(Supplementary Fig. 3c). While TI-2 and TI-3 showed the expected lineage marker 21 
preferences, TI-1 samples showed weak expression of both markers. Decreased 22 
expression of lung lineage markers has previously been described in a subtype of 23 
poorly differentiated adenocarcinomas in which markers for adjacent gut lineages 24 
(neighboring endodermal territories during development) can become activated38. 25 
Indeed, comparison of these subtypes to immunohistochemical markers of various 26 
endodermal lineages revealed an enrichment in foregut, midgut, and hindgut genes in 27 
TI-1 samples, such as TTF1, FGA, and CPS1 (Supplementary Fig. 3d). TI-1 samples 28 
were also notable for an elevated TMB relative to the well differentiated TI-2 29 
adenocarcinoma subtype and the TI-3 squamous subtype (Supplementary Fig. 3e). 30 
 31 
Having established a reference collection of tumor-intrinsic expression signatures, we 32 
applied these signatures to RNA-Seq data from the SU2C-MARK Cohort and assessed 33 
their association with response to checkpoint inhibitors. Notably, the de-differentiated 34 
TI-1 cluster was most closely associated with response (Fig. 3c), consistent with the 35 
elevated mutational burden in this subtype as well as its stronger association with the 36 
TME-2 “immune activated” micro-environmental subtype (Fig. 3d; Supplementary Fig. 37 
3f). Indeed, patients with both Immune Activated (TME-2) and De-differentiation (TI-1) 38 
signatures had the highest response rates to checkpoint blockade (67% ORR; Fig. 3e). 39 
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Thus, tumor-intrinsic states and immune microenvironmental signaling may 1 
independently and additively govern responses in NSCLC. 2 
 3 
Integrative cohort analysis 4 
 5 
Having evaluated a broad set of clinical, genomic, and transcriptomic features relevant 6 
to checkpoint blockade response in NSCLC, we set out to better understand the 7 
relationships between these predictors. Combining the top predictive features from each 8 
analysis, we generated a cross-correlation matrix to better understand how they relate 9 
to each other as well as to previously published signatures relevant to tumor biology 10 
and immune response (Fig. 4a; Methods)29,32,39–44. Notably, 3 strong correlation blocks 11 
could be observed, with consistent response associations within each subset. The first 12 
correlation block (C1) appeared to reflect a canonical “Wound Healing” 13 
microenvironment, including immunosuppressive myeloid and stromal signatures. The 14 
second correlation block (C2) reflected the more classic cytokine and immune milieu 15 
associated with “Immune Activation/Exhaustion,” including both infiltrating immune 16 
signatures as well as the De-differentiated (TI-1) tumor-intrinsic signature. The third 17 
correlation block (C3) consisted of features related to mutational burden, presumably all 18 
proxies for neoantigen abundance and consequent enhanced immune recognition. 19 
 20 
The remaining 10 features were somewhat loosely correlated as a fourth cluster (C4) 21 
enriched for single-gene alterations with potentially distinct immunobiologies. Notably 22 
this cluster included EGFR mutations, which interestingly showed minimal association 23 
with the immune signatures but a moderate anticorrelation with mutational burden 24 
features, suggesting the intrinsic resistance of this subtype may predominantly be 25 
driven by insufficient neoantigens18 (Fig. 4a). 26 
 27 
To evaluate whether the additional genomic predictors identified in this study could 28 
augment existing biomarker-defined subsets of NSCLC, we selected the top 2 29 
significant predictors from each cluster and evaluated their potential to further stratify 30 
PFS in 3 clinically relevant subgroups: TMB > 10 mut/MB (favorable; N=27), PDL1 TPS 31 
≥ 50% (favorable; N=34), and PDL1 TPS ≤ 1% (unfavorable; N=18). Following FDR 32 
correction, we identified multiple near-significant and significant associations (q < 0.25 33 
and 0.1, respectively, logrank test; Fig. 4b; Supplementary Fig. 4a; Methods), 34 
particularly when evaluating features from the Immune Activation/Exhaustion and 35 
Wound Healing clusters. 36 
 37 
Notably, unlike the mutational cluster which was exclusively tumor-intrinsic, features 38 
associated with Wound Healing (C1) and Immune Activation/Exhaustion (C2) appeared 39 
to span many potential cellular sources. To better dissect these immunologic 40 
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“neighborhoods” we examined the cell types most strongly associated with each gene 1 
or gene signature in these clusters using published single cell sequencing data45 (Fig. 2 
4c; Supplementary Fig. 4b). Deconvolution of the Wound Healing cluster suggested that 3 
the EMT and TGF-β1 signatures predominantly reflected fibroblasts and endothelial 4 
cells as opposed to a mesenchymal epigenetic state per se within the tumor cells. 5 
Similarly, analysis of the Immune Activation/Exhaustion cluster revealed that while 6 
many cell types demonstrate upregulated IFN-γ signaling, myeloid cells may be 7 
dominant sources of CXCL9, and CXCL11 may be largely derived from endothelial 8 
cells. Taken together, these findings suggest the presence of rich, interacting 9 
ecosystems that may broadly underlie response and resistance to checkpoint blockade, 10 
and provide a collection of specific signaling pathways and cell types that may be 11 
promising targets for future intervention.  12 
 13 
DISCUSSION 14 
 15 
Comprehensive identification of predictors of checkpoint blockade response has been 16 
limited by the availability of large, well annotated patient cohorts with matched genomic 17 
data, particularly within individual cancer types. Here, we present the first joint analysis 18 
of the SU2C-MARK cohort, a collection of nearly 400 patients with NSCLC, enabling the 19 
identification of diverse molecular predictors of immunotherapy response. Although this 20 
study is intended to be hypothesis generating, a number of the features described 21 
already have plausible connections to immune recognition and clearance. 22 
 23 
Among the top genomic features identified were ATM mutation and TERT amplification. 24 
Given emerging literature associating ATM loss with the release of cytosolic DNA and 25 
activation of the cGAS/STING pathway in other cancer types46–48, it is conceivable that 26 
a similar mechanism underlies the association observed in our cohort between ATM 27 
loss and response. Although less well characterized in the context of immunotherapy, 28 
TERT amplification may serve a protective function against telomere crisis, thereby 29 
forestalling a parallel mechanism which has been linked to cGAS/STING activation and 30 
subsequent sensitization to checkpoint blockade in mouse models49. 31 
 32 
Transcriptomic analysis in the SU2C-MARK cohort re-identified microenvironmental 33 
signatures previously associated with relevant immune states such as the Immune 34 
Activated (TME-2) signature and Immune Desert (TME-3) signature. The Wound 35 
Healing (TME-1) signature, though less well described in the context of lung cancer, 36 
does match the TGF-β1 transcriptional signature thought to drive T cell exclusion in 37 
bladder cancer32. 38 
 39 
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 12 

In addition to features such as these global immune states that may have pan-cancer 1 
relevance, we also identified a novel De-differentiated (TI-1) NSCLC specific subtype, 2 
reminiscent of a similar subtype in mouse lung cancer models featuring decreased 3 
expression of classic lung lineage markers as well as enhanced expression of 4 
developmentally adjacent endodermal lineages38. The correlation between this tumor-5 
intrinsic state and our Immune Activated (TME-2) signature could represent an 6 
underlying differentiation state more susceptible to immune recognition (e.g., via 7 
presentation of oncofetal antigens), or conversely, a cell state change in response to an 8 
inflammatory cytokine milieu50. Establishing the direction of causality between these 9 
signatures may have important implications for further therapeutic intervention. 10 
 11 
Finally, integrative analysis of our genomic features along with previously reported 12 
signatures relevant to immune and tumor biology supported the notion of a complex 13 
interplay between distinct signaling pathways (e.g., NR4A1 and TGF-β1 signaling), and 14 
distinct cell types (e.g., myeloid cells and fibroblasts), shedding light on some of the 15 
multifaceted interactions underlying checkpoint blockade responsiveness.  It is our hope 16 
that the SU2C-MARK cohort continues to serve as a rich resource for further unraveling 17 
the complex architecture of relevant genomic predictors, and for generating deeper 18 
insights into the biology of anti-tumor immunity. 19 
 20 
 21 

22 
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 1 
 2 
Fig. 1: Overview of the SU2C-MARK cohort and initial genomic characterization. 3 
 4 
a, Overview of clinical and genomic data collected across the SU2C-MARK cohort (N = 5 
393). b, CoMut plot of SU2C-MARK cohort organized by response category. c, Log of 6 
the Tumor Mutation Burden (TMB) as a function of response category. Significance was 7 
assessed via Mann-Whitney U test. d, Kaplan-Meier curves for Progression Free 8 
Survival (PFS) in EGFR mutated and unmutated patients. EGFR mutated patients had 9 
decreased progression-free survival compared to unmutated patients (logrank test). e, 10 
Volcano plot of logistic regression results for oncogenic mutations in known lung cancer 11 
drivers and binned response category (PR/CR vs. SD/PD). ATM alterations reached 12 
significance (q < 0.1, Benjamini-Hochberg) while EGFR, RBM10, ARID1A, KEAP1, and 13 
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SMARCA4 were all near-significant (q < 0.25). f, Summary of exome-derived genomic 1 
features and logistic regression with response. Neoantigens were estimated using 2 
NetMHCpan-4.051 following HLA allele identification with POLYSOLVER52. Subclone 3 
count was assessed via Phylogic-NDT53. B- and T-cell rearranged receptor abundance 4 
was estimated via MiXCR27. 5 
 6 
  7 
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 1 
 2 
Fig. 2: Transcriptomic features associated with response and resistance in the SU2C-3 
MARK cohort. 4 
 5 
a, Volcano plot of Limma-Voom results for top response associated genes from RNA-6 
Seq samples in SU2C-MARK cohort (N = 153). Cutoffs of absolute log2 fold change > 7 
0.5 and p-value < 0.05 were used to identify significantly differentially expressed genes 8 
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(red). b, Hallmark Gene Set Enrichment Analysis (GSEA) of response and resistance 1 
associated pathways from Limma-Voom. c, Logistic regression summary results for 2 
tumor associated immune cell signatures derived from single cell sequencing33. d, 3 
Overview of Tissue Micro-Environment (TME) signature generation using Bayesian 4 
Non-negative Matrix Factorization (B-NMF). e, Dot plot of hallmark GSEA results for B-5 
NMF derived TME signatures. f, Swarmplots of selected tumor associated immune cell 6 
signatures by TME clusters. Myeloid cells were generally enriched in the Wound 7 
Healing (TME-1) subtype, while most immune cell types were depleted in the Immune 8 
Desert (TME-3) subtype (p < 0.001 for all signatures, Kruskal-Wallis test). g, Response 9 
rate by TME subtype. The Immune Activated (TME-2) subtype was enriched for 10 
responders compared to the Wound Healing (TME-1) and Immune Desert (TME-3) 11 
subtypes (p < 0.05, Fisher’s exact test). 12 
 13 
  14 
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 1 
 2 
Fig. 3: Tumor-intrinsic subtypes and association with checkpoint blockade response. 3 
 4 
a, Overview of Bayesian Non-negative Matrix Factorization (B-NMF) approach to 5 
generation of Tumor Intrinsic (TI) subtype signatures. A total of 1082 RNA-Seq samples 6 
spanning the three dominant NSCLC histologies were used as input for signature 7 
identification. b, H-matrix of TCGA-LCNE samples and normalized TI signature activity. 8 
c, Logistic regression analysis summary in the SU2C-MARK cohort between TI 9 
signatures and binned response category (PR/CR vs SD/PD). The De-differentiated (TI-10 
1) signature showed a significant association with response (q < 0.1). d, Kernel density 11 
estimate plot of association between the activities of the De-differentiated (TI-1) 12 
signature and the previously identified Immune Activated (TME-2) signature. e, 13 
Response rate in the SU2C-MARK cohort binned by expression of TI-1 and TME-2 14 
signatures. Patients with both high TI-1 and high TME-2 show the highest response 15 
rate. 16 
 17 
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 1 
 2 
Fig. 4: Clinical, genomic, and transcriptomic feature integration across the SU2C-MARK 3 
cohort 4 
 5 
a, Cross-correlation heatmap of the top response and resistance associated features in 6 
the SU2C-MARK cohort along with a selection of signatures previously described as 7 
relevant to tumor and immune biology. The three strongest correlation blocks are 8 
outlined, and roughly correspond to Wound Healing (C1), Immune 9 
Activation/Exhaustion (C2), and Neoantigens (C3). Of note, the direction of association 10 
(i.e., positive or negative) with immune checkpoint blockade response was consistent 11 
for predictors within each of these highlighted correlation blocks. b, Contribution of 12 
SU2C-MARK predictors to clinically relevant biomarker subsets. The addition of 13 
features from the Wound Healing (C1) and Immune Activation/Exhaustion (C2) clusters 14 
meaningfully stratify traditionally favorable (e.g., PDL1 high) and unfavorable (e.g., 15 
PDL1 low) clinical subgroups (q = 0.03, q = 0.11, respectively, Benjamini-Hochberg 16 
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corrected logrank test). c, Association between gene and metagene predictors from the 1 
Wound Healing and Immune Activation/Exhaustion clusters in the SU2C-MARK cohort 2 
and cell types derived from Leiden clustering of single cell sequencing data from 3 
NSCLC45. 4 
  5 
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