

1 Fetal loss in pregnant rhesus macaques infected 2 with high-dose African-lineage Zika virus

3 Lauren E. Raasch^{1*}, Keisuke Yamamoto^{1,13†*}, Christina M. Newman^{1*}, Jenna R. Rosinski¹, Phoenix
4 M. Shepherd¹, Elaina Razo², Chelsea M. Crooks³, Mason I. Bliss⁴, Meghan E. Breitbach^{1,14†}, Emily L.
5 Sneed⁴, Andrea M. Weiler⁴, Xiankun Zeng⁵, Kevin K. Noguchi⁶, Terry K. Morgan^{7,8}, Nicole A. Fuhler⁶,
6 Ellie K. Bohm¹², Alexandra J. Alberts¹, Samantha J. Havlicek¹, Sabrina Kabakov¹⁵, Ann M. Mitzey⁹,
7 Kathleen M. Antony¹⁰, Karla K. Ausderau^{15,16}, Andres Mejia⁴, Puja Basu⁴, Heather A. Simmons⁴, Jens C.
8 Eickhoff¹¹, Matthew T. Aliota¹², Emma L. Mohr², Thomas C. Friedrich^{3,4}, Thaddeus G. Golos^{9,4,10}, David
9 H. O'Connor^{1,4‡Δ} and Dawn M. Dudley^{1†}.

10 *Co-first authors

11 †Current address

12 ‡Co-senior authors

13 ΔCorresponding author

14 ¹Department of Pathology and Laboratory Medicine, UW Madison, Wisconsin, USA, ²Department of
15 Pediatrics, UW Madison Wisconsin, USA, ³Department of Pathobiological Sciences, UW Madison,
16 Wisconsin, USA, ⁴Wisconsin National Primate Research Center, UW Madison Wisconsin, USA,
17 ⁵United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA,
18 ⁶Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA,
19 ⁷Department of Pathology, Oregon Health and Science University, Portland, Oregon, USA, ⁸Department
20 of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon, USA,
21 ⁹Department of Comparative Biosciences, UW Madison, Madison, Wisconsin, USA, ¹⁰Department of
22 Obstetrics and Gynecology, UW Madison, Madison, Wisconsin, USA, ¹¹Department of Biostatistics
23 and Medical Informatics, UW Madison, Madison, Wisconsin, USA, ¹²Department of Veterinary and
24 Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, Minnesota, USA, ¹³Touro College
25 of Osteopathic Medicine, New York, New York, USA, ¹⁴Alverno College of Nursing, Milwaukee,
26 Wisconsin, USA, ¹⁵Department of Kinesiology Occupational Therapy Program, University of Wisconsin
27 Madison, Wisconsin, USA, ¹⁶Waisman Center, UW Madison, Madison, Wisconsin, USA.

28 Abstract

29 Countermeasures against Zika virus (ZIKV), including vaccines, are frequently tested in nonhuman
30 primates (NHP). Macaque models are important for understanding how ZIKV infections impact human
31 pregnancy due to similarities in placental development. The lack of consistent adverse pregnancy
32 outcomes in ZIKV-affected pregnancies poses a challenge in macaque studies where group sizes are
33 often small (4-8 animals). Studies in small animal models suggest that African-lineage Zika viruses can
34 cause more frequent and severe fetal outcomes. No adverse outcomes were observed in macaques
35 inoculated with a low dose of African-lineage ZIKV at gestational day (GD) 45. Here, we inoculate eight
36 pregnant rhesus macaques with a higher dose of African-lineage ZIKV at GD 45 to test the hypothesis
37 that adverse pregnancy outcomes are dose-dependent. Three of eight pregnancies ended prematurely
38 with fetal death. ZIKV was detected in both fetal and placental tissues from all cases of early fetal loss.
39 Further refinements of this challenge system (e.g., varying the dose and timing of infection) could lead
40 to an even more consistent, unambiguous fetal loss phenotype for assessing ZIKV countermeasures
41 in pregnancy. These data demonstrate that high-dose inoculation with African-lineage ZIKV causes
42 pregnancy loss in macaques and also suggest that ZIKV-induced first trimester pregnancy could be
43 strain-specific.

44 Author summary

45 Although pregnant rhesus macaques are susceptible to infection with Zika virus (ZIKV), fetal phenotypes
46 can be subtle and variable. Most macaque studies of ZIKV have involved infection with Asian-lineage vi-
47 ruses because these viruses caused Western Hemisphere outbreaks beginning in 2015. African-lineage
48 ZIKV yields more severe adverse fetal outcomes in small animal models. Here, we provide evidence that
49 pregnant macaques infected late in the first trimester using a high dose of African-lineage ZIKV have fre-
50 quent ZIKV-associated pregnancy loss. This severe phenotype establishes a new model for evaluating
51 countermeasures and reinforces the idea that African-lineage ZIKV infection may be a frequent cause
52 of pregnancy loss in areas where it is endemic depending on the amount of transmitted virus during
53 infection.

54 Introduction

55 Zika virus (ZIKV) was first isolated in 1947 from the Zika forest in Uganda and was sporadically detect-
56 ed in Africa and Asia exclusively until two 21st-Century outbreaks: a 2007 outbreak in Micronesia and
57 a 2013 outbreak in French Polynesia (1–3). Eventually, ZIKV spread to the Americas, where a dramatic
58 increase in cases of microcephaly (fetal head size smaller than two standard deviations below average)
59 coincided with a ZIKV outbreak in Brazil in 2015 (4–8). ZIKV gained global attention when scientists
60 found many developmental abnormalities and neuropathological impacts causally associated with
61 ZIKV infection *in utero*. Collectively, these are referred to as ‘congenital Zika syndrome’ (CZS).

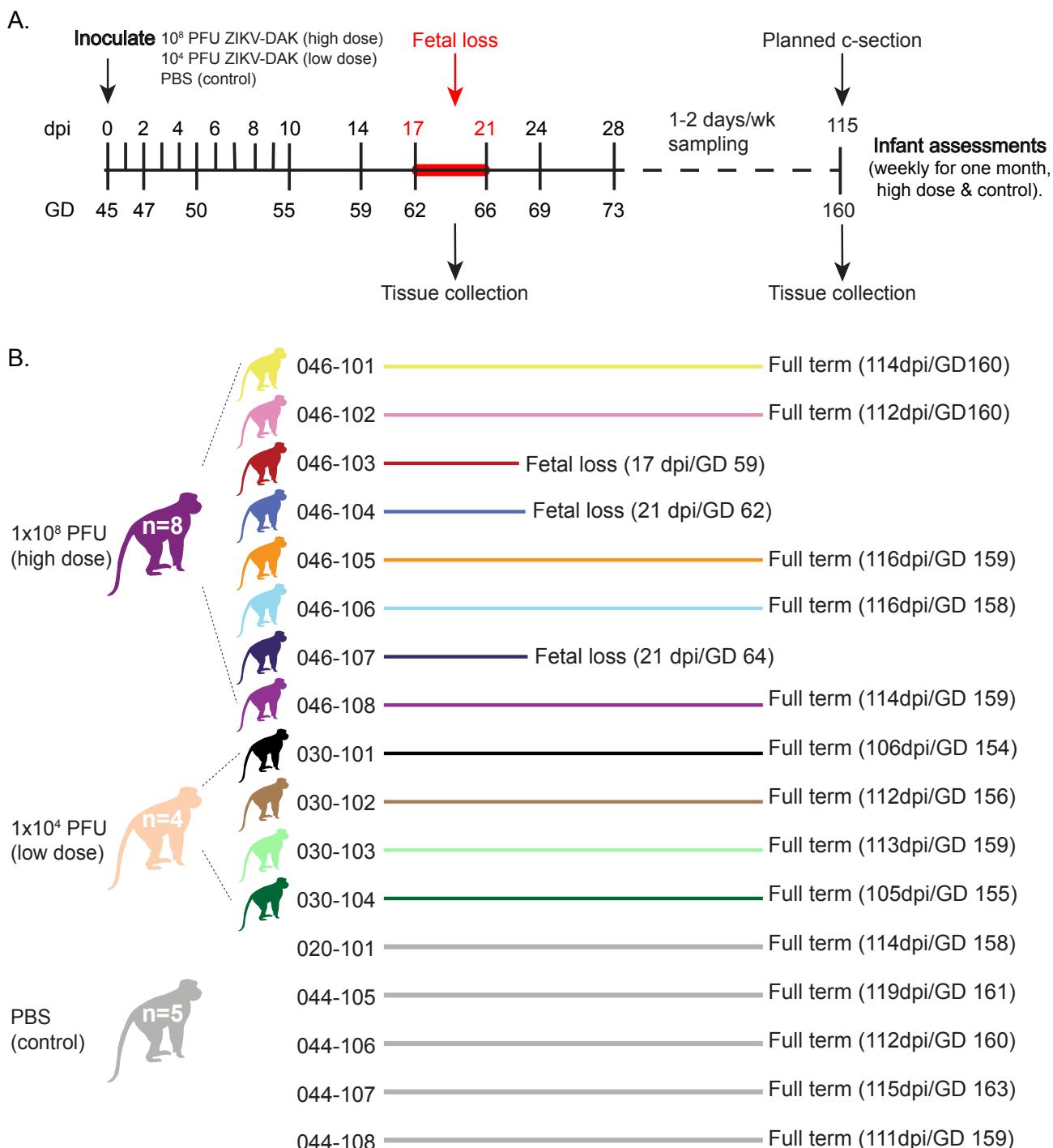
62 There are two genetic lineages of ZIKV, Asian and African, that differ by approximately 12% at the
63 nucleotide level and 3% at the amino acid level (9). Because ZIKV was neglected prior to the 2015
64 outbreak, most research has utilized Asian-lineage viruses that are representative of the outbreak in
65 the Americas (2,10–12). The use of multiple doses, strains, and routes to infect macaques at different
66 stages of pregnancy make it difficult to compare studies directly. Nonetheless, Asian-lineage viruses
67 from Puerto Rico (ZIKV-PR), Brazil (ZIKV-BR), and French Polynesia (ZIKV-FP) can all cause adverse
68 fetal outcomes, ranging from subtle to severe, with spontaneous fetal death occurring sporadically. In
69 a meta-analysis combining data from several studies in different research centers, 28.6% of macaques
70 infected with ZIKV-PR experienced pregnancy loss (13).

71 While this heterogeneity of outcomes is useful in dissecting the mechanisms of CZS, it is problematic
72 for evaluating medical countermeasures such as vaccines and antivirals. Unreasonably large numbers
73 of animals are needed to power experiments in which prevention of fetal loss is a primary outcome.
74 The supply of macaques for research is limited, and this is especially acute for Indian-origin rhesus
75 macaques which are the most widely captive-bred macaques in the United States. Several factors
76 that restrict the use of pregnant Indian-origin rhesus macaques in research include export restrictions,
77 low fecundity, and a small fertility window of four to five months per year (14). Furthermore, macaques
78 used for ZIKV studies must be naive for other arthropod-borne flaviviruses and facilities often have
79 limited infectious disease housing, a requirement for ZIKV-infected macaques.

80 Consequently, a pregnant macaque model where ZIKV causes consistent and severe adverse fetal
81 outcomes to test therapeutics or prophylaxis would be desirable, enabling appropriately powered
82 experiments with smaller group sizes. Mice infected with African-lineage ZIKV have increased feto-
83 toxicity compared to mice infected with the Asian-lineage strains. For example, Ifnar1^{-/-} C57BL/6 mice

84 infected with low-passage (five passages) African-lineage ZIKV strain ZIKV/Aedes africanus/SEN/
85 DAK-AR 41524/1984 (ZIKV-DAK) had more frequent fetal loss (100% vs. 53.2%) than mice infected
86 with ZIKV-PR (15). Additionally, African-lineage strains of ZIKV showed an increase in peak viremia in
87 both plasma and the brain that correlated with a decline in survival rates in adult immunocompromised
88 mice (16,17). This increased pathogenicity has been recapitulated in studies that used a low-passage,
89 African-lineage strain of ZIKV (ZIKV-DAK) and includes placental tissue damage *in vitro* (18) and more
90 virus present in fetal organs in a porcine model (19). This also raises the worrisome possibility that if
91 these results extend to primates, gestational African-lineage ZIKV could be a “silent” cause of preg-
92 nancy loss. In addition to posing a threat to human health, pregnancy loss could be especially conse-
93 quential to endangered Great Apes that live in areas where ZIKV is endemic.

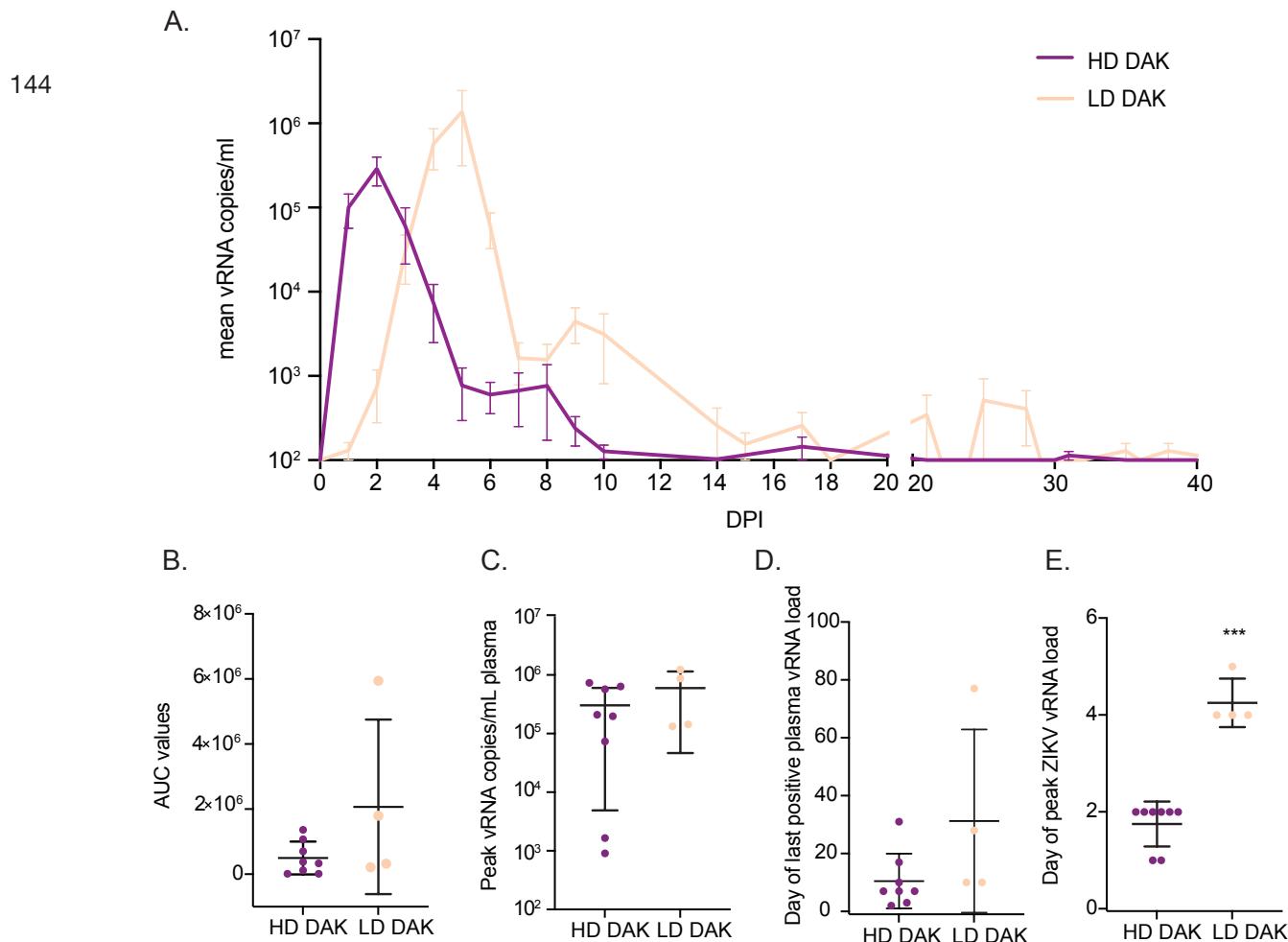
94 To determine if the high rate of early fetal loss associated with ZIKV-DAK in mice translates to pri-
95 mates, Crooks et al. inoculated four animals subcutaneously (SQ) with a low dose (1×10^4 PFU) of
96 ZIKV-DAK during the first trimester (gestational day 45). Given that first trimester ZIKV infections are
97 more frequently associated with adverse fetal outcomes and ZIKV was detected in the MFI of the four
98 low-dose ZIKV-DAK animals, it is surprising that all four animals had pregnancies proceed normally
99 to study endpoint (20). Two other n=1 studies using Asian-lineage ZIKV (ZIKV-PR, ZIKV-CAM) have
100 reported more frequent adverse pregnancy outcomes when macaques are infected SQ with approx-
101 imately 10,000 times more virus than typically transmitted by mosquito bite (21–23). This provides
102 some evidence that risk of fetal injury may be proportional to the amount of virus inoculated. While a
103 dose that reflects infection by mosquito bite (1×10^4 – 1×10^6 PFU) is important to study natural patho-
104 physiology of ZIKV infection, it is important to establish a model with higher reproducibility of signif-
105 icant adverse fetal outcomes to study countermeasures against the virus. Therefore, to further test
106 the hypothesis that a high-dose of virus would increase fetal loss rate, we inoculated eight pregnant
107 rhesus macaques SQ with 1×10^8 PFU ZIKV-DAK. Here we observed pregnancy loss in three of eight
108 pregnancies, establishing a macaque model for severe fetal outcomes following high-dose inoculation
109 with African-lineage ZIKV.


110

Results

111 **Pregnancy outcomes and maternal ZIKV infections**

112 Eight ZIKV-naive rhesus macaque dams (046-101, 046-102, 046-103, 046-104, 046-105, 046-106,
113 046-107, 046-108) were inoculated subcutaneously (SQ) with a high dose, 1×10^8 PFU/ml, of Zika
114 virus/A.africanus-tc/Senegal/1984/DAKAR 41524 (ZIKV-DAK; GenBank: KX601166) at approximately
115 GD 45 (range = GD 41-48) (Fig 1A and S1 Table). Data from these animals were compared to historical
116 data collected from four dams infected with a low dose (1×10^4 PFU/ml) of ZIKV-DAK and five dams
117 mock-inoculated with sterile phosphate-buffered saline (PBS) (24). Physical exams of infected dams
118 showed no ZIKV infection-associated symptoms such as rash or fever (S2A Fig). All animals had
119 steadily increasing weights throughout pregnancy with the exception of 046-107 who lost 10.6% of
120 her body weight between zero and 10 DPI (S2B Fig).



121

122 **Fig 1. Experimental timeline and pregnancy outcomes.** (A) Study timeline showing timing of infection and sampling.
 123 Samples were collected at each time point shown on the line. (B) Color representation and pregnancy outcomes of female
 124 rhesus macaques that were inoculated SC with either 1x10⁸ PFU ZIKV-DAK, 1x10⁴ PFU ZIKV-DAK, or PBS between GD 41
 125 and GD 50. Mock animals were not assigned individual colors. Colors are used throughout the manuscript when describing
 126 the results from these animals and cohorts. Note that fetuses or infants will be color-matched to the appropriate dams.

127 ZIKV vRNA was detected in the plasma of all ZIKV-inoculated dams regardless of infection dose (Fig
 128 2, S3 Fig). Peak plasma vRNA loads ranged from 9x10²-7x10⁵ copies/ml and were detected for all high
 129 dose dams between one and two DPI (Fig 2A, Fig 2C, Fig 2E, S3A Fig). Interestingly, two high dose
 130 dams (046-102 and 046-105) displayed qualitatively lower peak vRNA loads (approximately 1x10³

131 copies/ml) relative to the other dams that received a high dose of inoculum (S3A Fig). Viral RNA was
132 also detected in the urine of two dams (046-101 and 046-104) and in the saliva of three dams (046-
133 101, 046-107, and 046-108) during acute infection (S4 Fig). Dams inoculated with 1×10^4 PFU had peak
134 plasma vRNA loads that occurred later (between four and five DPI) and ranged from 1.33×10^5 - 1.24×10^6
135 copies/ml (Fig 2A, Fig 2C, Fig 2E, S3B Fig). Comparison of total plasma virus replication between
136 high-dose and low-dose dams by t-test on the area under the curve (AUC) showed no significant dif-
137 ference between groups ($t = -1.16$; $df = 3.11$; $p = 0.33$) (Fig 2B). Similarly, comparison of peak plasma
138 vRNA loads by t-test ($t = 0.99$; $df = 3.91$; $p = 0.38$) and plasma viral load duration by Wilcoxon rank-
139 sum tests with continuity correction ($W = 6$; $p = 0.10$) also showed no significant differences between
140 high-dose and low-dose dams (Fig 2C, Fig 2D). A linear mixed effects model used to examine the time
141 to peak plasma vRNA by group showed that dams that received a low dose of ZIKV-DAK had plasma
142 vRNA loads that peaked significantly later than dams that received a high dose of the same virus (esti-
143 mate = 2.50; std.error = 0.29; $df = 10$; $t = 8.61$; $p < 2.0 \times 10^{-16}$) (Fig 2E).

145 **Fig 2. Replication kinetics of ZIKV-DAK in dams receiving a high dose (1×10^8 PFU) or a low dose (1×10^4 PFU) of**

146 ZIKV. (A) Mean viral loads through 40 DPI measured in plasma samples by ZIKV-specific RT-qPCR. Error bars represent

147 the standard error of the mean (+/-SEM). (B) Comparison of plasma vRNA load area under the curve (AUC) for high-dose

148 and low-dose inoculation groups. (C) Comparison of peak plasma vRNA load in copies/ml plasma. (D) Comparison of days

149 post-infection (DPI) of the last positive plasma vRNA load. (E) Comparison of day post-infection (DPI) peak plasma vRNA

150 load occurred. For all graphs in parts B-E, the mean value is represented by the wider black bar with error bars representing

151 standard deviation (+/- SD). *** Represents a p-value of <0.001 , while no asterisks represent no statistical difference at the

152 5% level.

153 Three of the eight high-dose dams had early fetal loss identified by ultrasound between GD 59 and 64

154 (Fig 1). One of the five dams that carried to near full-term lost her infant at five days of life due to post-

155 natal complications not directly associated with ZIKV infection (failure to thrive). Because fetal demise

156 occurred in three of eight high-dose pregnancies, we also explored whether maternal vRNA kinetics

157 impacted pregnancy outcome by comparing overall maternal plasma vRNA load using AUC, peak

158 plasma vRNA load, and duration between high-dose dams with early fetal loss and high-dose dams

159 with fetuses that survived. We observed no significant differences between maternal plasma vRNA

160 kinetics for any of these measures when high-dose animals were grouped by pregnancy outcomes

161 (demise vs. survival) (S5 Fig).

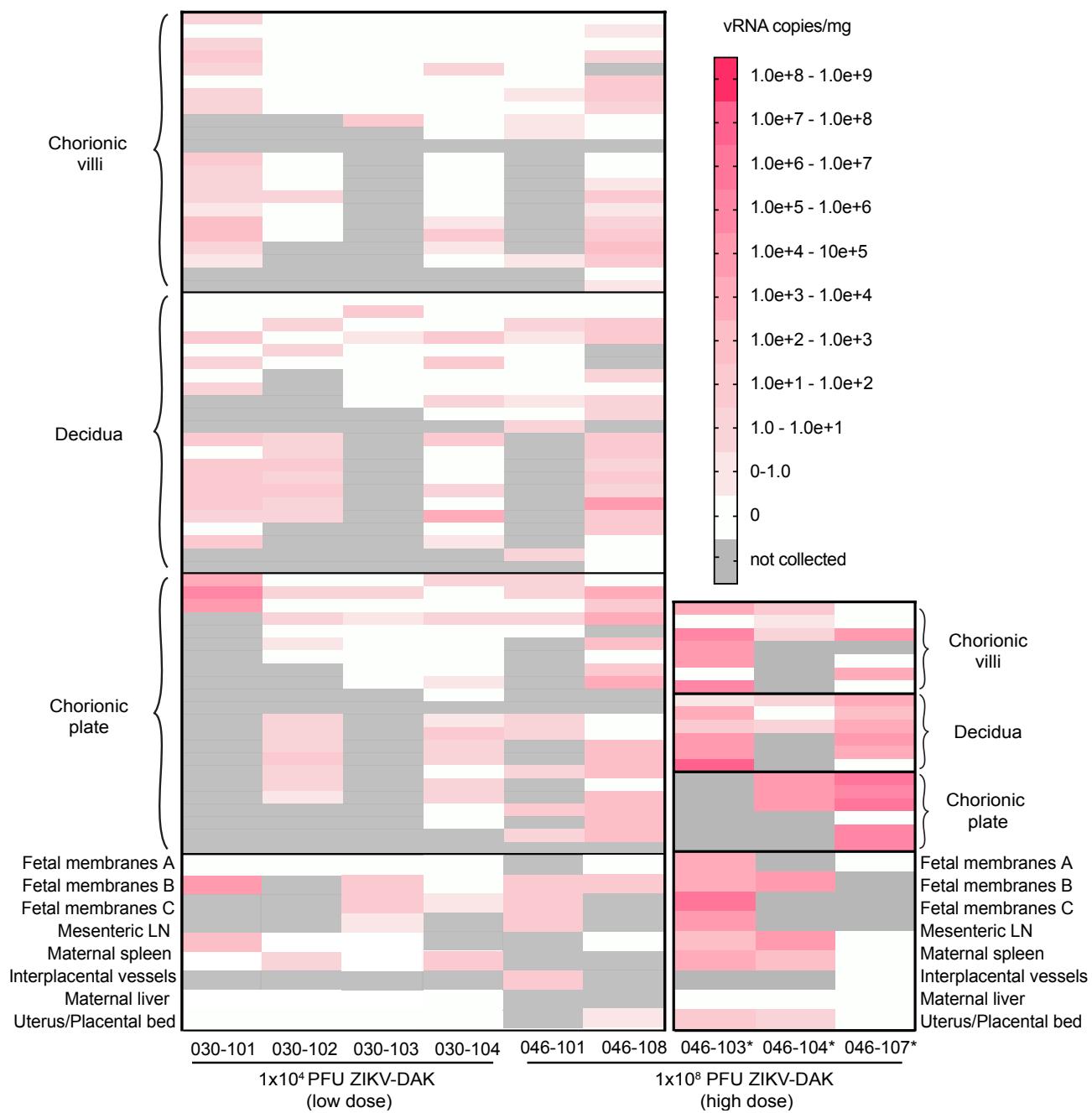
162 **Maternal antibody response**

163 Serum samples collected from all ZIKV-infected dams at zero, 21, and 28 DPI were assessed for
164 neutralization capacity by 90% plaque reduction neutralization tests (PRNT₉₀) on Vero cells. Results
165 indicate that all eight high-dose animals and all four low-dose animals developed robust neutralizing
166 antibody (nAb) responses following ZIKV-DAK infection (S6 Fig). Overall, PRNT₉₀ titers at 21 or 28 DPI
167 in dams with identified pregnancy loss and dams with viable pregnancies were not significantly differ-
168 ent. ZIKV-specific IgM levels were measured in maternal serum samples in the high-dose ZIKV-DAK
169 cohort by ELISA at zero, seven, 14, 17, and 21 or 24 DPI (S7 Fig). IgM levels peaked on days 14 or 17
170 post-infection for all eight dams. After 17 DPI, IgM levels began to decrease for all dams except 046-
171 106.

172 **In-utero and at-birth measurements and observations**

173 In-utero

174 Comprehensive ultrasounds were performed weekly to monitor growth, fetal heart rate, and observe
175 changes in the fetus and placenta throughout pregnancy. As noted above, fetal death was determined
176 in three of eight pregnancies by absent fetal heartbeat between 59 and 64 GD (046-503, 046-504, and
177 046-507) (S8 Fig). These three fetuses were found by ultrasound to have thick edematous skin which
178 was attributed to fetal death in utero and subsequent autolysis (S9 Table). Other than possible early
179 hydrops in one of the three fetuses, there were no abnormalities noted by ultrasound in the fetuses
180 preceding demise. Fetal growth measurements of head circumference (HC), biparietal diameter (BPD),
181 abdominal circumference, HC-femur length ratios, and BPD-femur length ratios, were also taken
182 weekly or biweekly during routine ultrasounds. Neither ZIKV-DAK experimental group showed signifi-
183 cant differences when compared to fetal measurements from mock-inoculated fetuses (S10 Fig, S11
184 Table, S12 Table).


185 At-birth

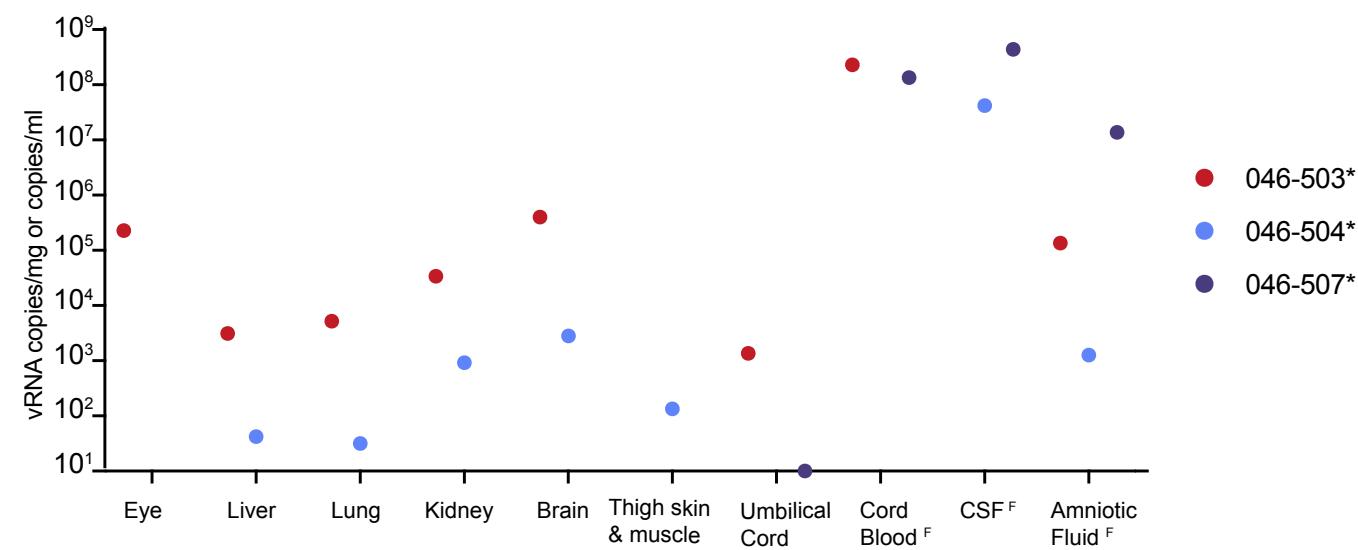
186 Measurements were taken at the time of birth for each infant. HC (p=0.5437), BPD (p=0.2506), and
187 body weight (p=0.0849) of live born infants from high-dose dams were not significantly different when
188 compared to infants from mock-inoculated dams (S13 Table). APGAR scores taken at one, five, and
189 10 minutes after birth were also not significantly different between infants from high-dose dams and
190 mock-inoculated dams (S14 Table). Demographic characteristics at the time of birth such as gesta-

191 tional age, dam weight, dam age, and gender were compared between groups, and there were no
192 significant differences (S15 Table).

193 **MFI tissue and maternal tissue vRNA loads**

194 ZIKV RNA was detected by RT-qPCR in maternal/fetal interface (MFI) tissues from five of eight dams
195 that received a high-dose infection with ZIKV-DAK and in all four dams receiving low-dose ZIKV-DAK
196 (Fig 3). Two of the three dams with undetectable virus in the MFI (046-102, 046-105) also had reduced
197 plasma viremia (Fig 3, S3A Fig). All three dams with early fetal loss, plus two others, had ZIKV RNA
198 in the MFI. Viral RNA was found in all three layers of the placenta (decidua, chorionic villi, chorion-
199 ic plate). Placentas from dams with early fetal loss had consistently higher viral loads than placen-
200 tas from dams with viable pregnancies, and viral burden was similar across all three layers (Fig 3).
201 Although ZIKV RNA is broadly detected in all three layers of the placenta, it is not uniformly detected
202 throughout each cotyledon. Other MFI tissues analyzed by RT-qPCR included fetal membranes and
203 interplacental collateral vessels. Although fetal membranes were positive for dams with and without
204 fetal losses, more virus was detected in cases of fetal loss (Fig 3).

205


206 **Fig 3. ZIKV RNA levels in maternal/fetal interface (MFI) tissues from high-dose and low-dose dams. Viral RNA was**
 207 **detected by ZIKV-specific RT-qPCR.** Only animals with detectable virus in at least one tissue are shown on the plot. Dams
 208 with early fetal loss are marked with an asterisk.

209 Maternal tissues tested by RT-qPCR included mesenteric lymph node (LN), spleen, liver, and uterus
 210 at the placental bed (Fig 3). Mesenteric LN, maternal spleen, and the uterus/placental bed were all
 211 positive for ZIKV RNA in two of three dams with early fetal loss (046-103, 046-104). The only maternal
 212 tissues collected to test positive (10^0 - 10^3 copies/mg tissue) from dams with viable pregnancies were

213 the uterus/placental bed (046-108), the mesenteric lymph node (030-101), and the spleen (030-102
214 and 030-104).

215 **Fetal viral loads**

216 Viral RNA was detected by RT-qPCR in the fluids and/or tissues of all three fetuses following in ute-
217 ro death (Fig 4). Due to the early gestational time frame and small fetal size when demise occurred,
218 organ and tissue samples were limited. Brain and eye from fetus 046-503 had the highest tissue vRNA
219 burden observed. However, the highest overall vRNA loads were observed for the amniotic fluid and
220 cerebrospinal fluid of fetus 046-507 ($>1.00 \times 10^7$ copies/mL) (Fig 4). Together, these results strongly
221 suggest that vertical transmission occurred in all three instances of early fetal loss.

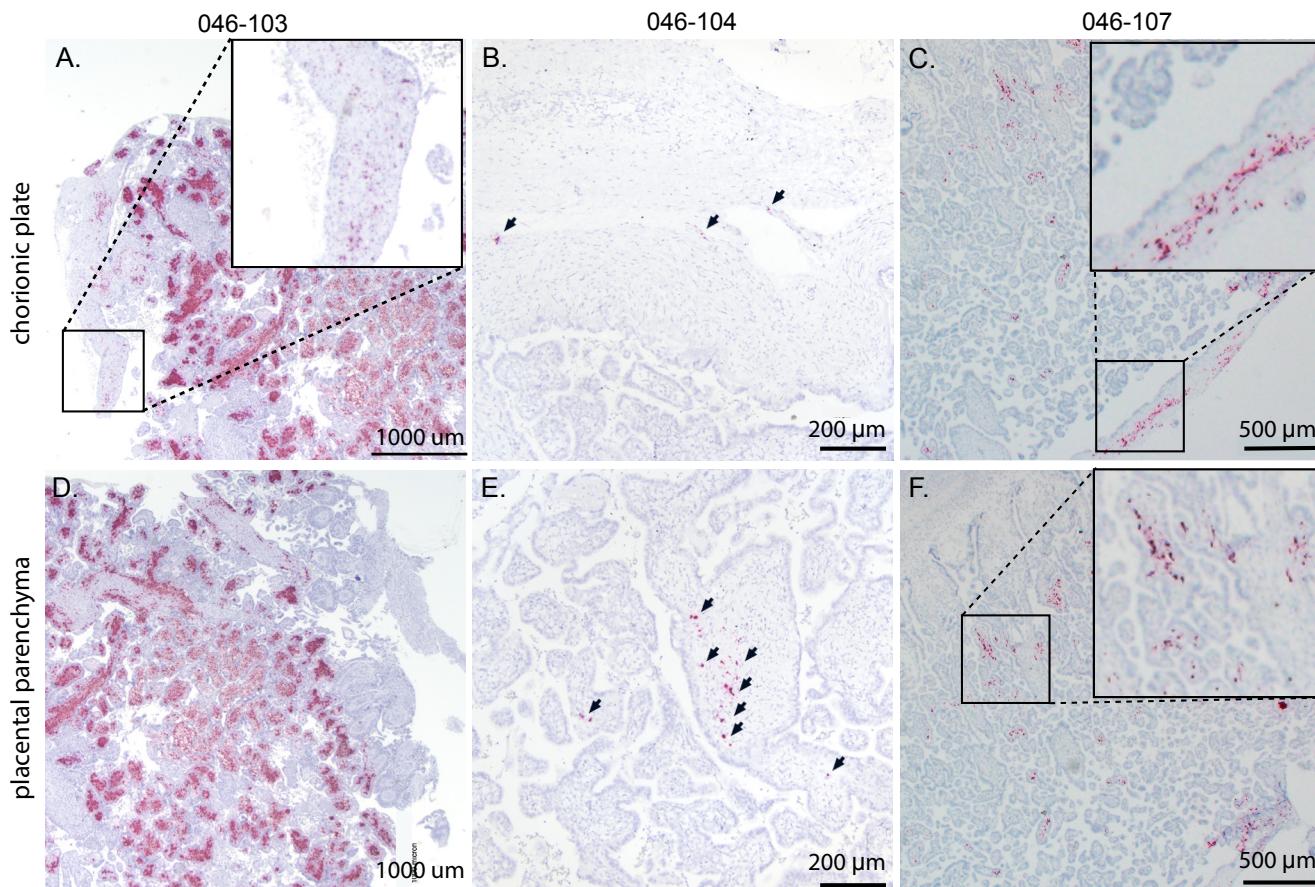
224 **Fig 4. ZIKV RNA in fetal tissues and fluids detected by RT-qPCR from early fetal demise cases.** Tissue samples were
225 not available from 046-507. Fluid samples are distinguished from tissue samples with a superscript F and are measured in
226 vRNA copies/ml.

227 **Fetal and placental pathology**

228 For each of the three fetuses that died prior to planned c-section, significant tissue autolysis was iden-
229 tified which indicated that fetal death occurred at some point within the prior week. Unfortunately, fetal
230 tissue autolysis made it difficult to determine whether pathological changes were specifically related to
231 ZIKV infection.

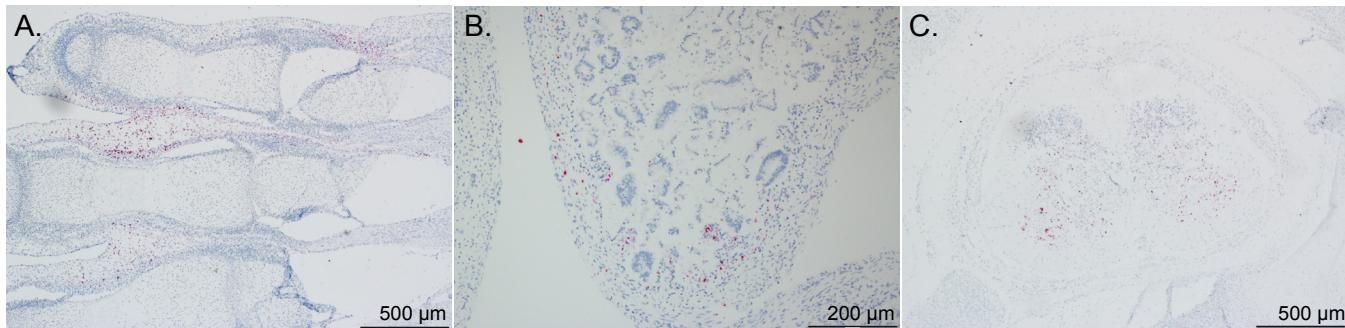
232 Center cuts of all 12 placentas and cross-sections of individual cotyledons recovered from ZIKV-DAK
233 infected dams (both high- and low-dose) showed increased evidence of pathology when compared
234 to the four placentas recovered from uninfected dams, such as: chronic plasmacytic deciduitis, trans-
235 mural placental infarction, and chronic histiocytic intervillitis (CHIV) (Table 1, S16 Fig, S17 Table).

236 Overall, dams that received a high-dose infection with ZIKV-DAK had more pathological changes with-
237 in the placenta than dams that received a low-dose infection with ZIKV-DAK, but comparisons to the
238 low-dose animals were limited due to the smaller group size. Although both ZIKV-infected groups had
239 more pathological changes identified in MFI tissues compared to mock-infected dams, the only finding
240 unique to high-dose infection was CHIV identified in a case of fetal demise (046-107)(Table 1).

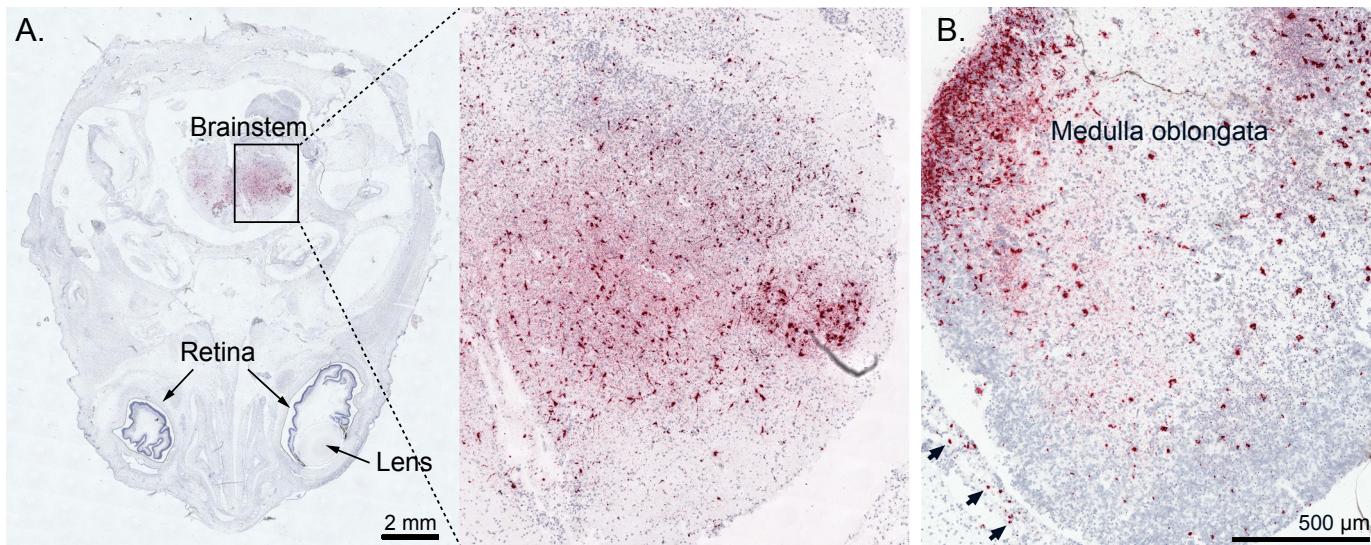

241 **Table 1. Histopathological analysis of maternal-fetal interface tissues.** Animals are grouped in columns based on
242 inoculation received and/or pregnancy outcome.

243	Finding	High dose % (n)	High dose - fetal loss % (n)	High dose - infant survival % (n)	Low dose - infant survival % (n)	ZIKV-DAK all % (n)	Control - infant survival % (n)
244	Funisitis	25 (2)	66.7 (2)	0	25 (1)	25 (3)	0
245	Plasmacytic infiltration	50 (4)	0	80 (4)	25 (1)	41.7 (5)	0
247	Transmural infarction	75 (6)	66.7 (2)	80 (4)	100 (4)	83.3 (10)	50 (2)
249	Vasculopathy	25 (2)	33.3 (1)	20 (1)	50 (2)	33.3 (4)	25 (1)
250	Villous stromal calcifications	37.5 (3)	0	60 (3)	25 (1)	33.3 (4)	100 (4)
252	CHIV	12.5 (1)	33.3 (1)	0	0	8.3 (1)	0
253	SCT knots	37.5 (3)	0	60 (3)	50 (2)	41.7 (5)	0

254 **Fetal and placental *in situ* hybridization (ISH):**


255 To determine ZIKV RNA distribution in fetal and placental tissues from dams with early fetal loss (046-
256 103, 046-104, 046-107), cross-sections from each placental cotyledon and multiple cross-sections
257 from each fetus were analyzed by ZIKV RNA *in situ* hybridization (ISH). ISH revealed focal ZIKV infec-
258 tion in the placentas and fetuses in all three cases (Table 2)(Fig 5, Fig 6, Fig 7). Overall ZIKV detection
259 was multifocal ZIKV RNA was detected throughout placental chorionic villi but restricted to the villous
260 mesenchyme and absent from the syncytiotrophoblasts or basal plate (Fig 5). Multiple tissues of each
261 fetus from fetal demise cases had vRNA detectable throughout the body. Tissues in all three fetus-
262 es with detectable vRNA included spinal cord and cerebral neuropil (Table 2, Fig 6, Fig 7, S18A-C,
263 S18D-F). Viral RNA was also detected in the muscle, connective tissues, and periosteum (Table 2, Fig
264 6B, Fig 6C, S18J Fig, S18K Fig), muscle and mucosa of the intestines (Fig 6C, S18G Fig, S18I Fig),
265 and the brainstem (Fig 7).

266



267 **Fig 5. Detection of ZIKV RNA by in situ hybridization in MFI tissues of dams with early fetal loss.** Representative images
268 of ZIKV RNA distribution in MFI tissues from the three cases of early fetal loss. Numerous foci of ZIKV RNA were detected in
269 the chorionic plate of (A) 046-103 (boxed), (B) 046-104 (arrows), and (C) 046-107 (boxed) as well as the placental parenchyma
270 (villi) of (D) 046-103, (E) 046-104 (arrows), and 046-107 (boxed). ZIKV RNA is shown in red.

271

272 **Fig 6. Detection of ZIKV RNA by in situ hybridization in fetal body tissues.** Representative images of ZIKV RNA
273 distribution in MFI and fetal tissues from the three cases of early fetal loss (excluding the head). Foci of ZIKV RNA were
274 detected in (A) muscle and connective tissue of lower digits (046-503) and (B) of the intestines (046-507) as well as (C) the
275 spinal cord (046-504). ZIKV RNA is shown in red.

276
277 **Fig 7.** Detection of ZIKV RNA in fetal brainstem and head tissues from cases with fetal loss. ZIKV RNA was detected by in
278 situ hybridization and is shown in red. (A) Foci of ZIKV RNA in the brainstem of fetus 046-504 and (B) foci of ZIKV RNA in the
279 medulla oblongata region of the brainstem and the meninges (arrows) of fetus 046-507.

280 **Table 2. Localization of ZIKV RNA throughout fetal tissues by ISH.** Tissues and organs with positive ZIKV RNA are listed
281 for each section. Tissues listed as 'NC' were not collected. Heart, lung, liver, and adrenal glands were either not collected or
282 negative across all fetuses and are listed in this table.

283	Tissue	046-503	046-504	046-507
284	Stomach	NC	NC	Positive
285	Intestines	Positive	Negative	Positive
286	Periosteum	Positive	Positive	Negative
287	Brainstem	Negative	Positive	Positive
288	Neuropil	Positive	Positive	Positive
289	Spinal cord	Positive	Positive	Positive

290 **Neonatal neurodevelopmental assessments and locomotion in the 291 first month of life.**

292 Infants were monitored weekly during the first month of life using the Schneider Neonatal Assessment
293 for Primates (SNAP) and Nodulus CatWalk. The four liveborn infants in the high-dose ZIKV-DAK group
294 and the four infants in the control group scored similarly in the orientation construct at seven, 17, and
295 21 days of life (DOL), but at 28 DOL infants in the ZIKV-DAK group began to score worse (S19A Fig).
296 The rate of motor development was also found to be slower for infants in the ZIKV-DAK group as
297 compared to controls (S19B Fig). Although interesting, the differences in the orientation and motor de-
298 velopment constructs are not significant (S21 Table). Assessment of motor coordination, balance, and
299 gait patterns using the Noldus CatWalk revealed ZIKV-DAK infant walking patterns were more hetero-

300 geneous than control infants at 14 and 21 DOL (S20C Fig, S22 Table). Specifically, ZIKV-DAK infants
301 had a transitional gait pattern, or limb dragging (S20C Fig). This transitional, limb-dragging pattern,
302 is distinct from the diagonal walking pattern seen in the Control group that is standard for developing
303 infant macaques.

304 **Discussion**

305 We found that increasing the dose of ZIKV-DAK increased the adverse fetal outcome rate to three in
306 eight pregnancies, up from zero of four low-dose infections with ZIKV-DAK and two of 18 low-dose
307 infections with ZIKV-PR. The primary adverse outcome we observed was fetal demise between 17
308 and 21 DPI. The consistent timing of fetal demise relative to ZIKV-DAK infection suggests a common
309 cascade of pathologic events that culminate in fetal death. This consistent timing has two important
310 implications. First, it creates a tractable system for evaluating therapeutics. Pregnancies that survive
311 beyond this window are likely to survive to full term, or approximately 165 gestational days. So, less
312 than half of a typical macaque pregnancy (45 GD inoculation plus approximately 30 days to assess
313 fetal loss) is necessary to ascertain this outcome. Second, this rapid pregnancy loss, if extrapolated to
314 higher-order primates including humans, would coincide with miscarriage in late first or early second
315 trimester, a time when many pregnancies are spontaneously lost. This could explain why the impact of
316 African-lineage ZIKV on pregnancies was not identified in the decades since the original discovery of
317 this virus (25).

318 A key limitation to extrapolating these results to humans and other primates is that the subcutaneous
319 (SQ) inoculation dose of 1×10^8 PFU is higher than typically delivered by an infected mosquito, which
320 is estimated to be 1×10^4 to 1×10^6 PFU (22,23,26). The unusually short time to peak viremia (approx-
321 imately 2 days) observed following our high-dose SQ inoculations artificially shortens therapeutic
322 window, which is typically 5 days for mosquito to macaque ZIKV transmission (26). However, use of
323 therapeutics after 30 days can improve infection outcomes in unique cases of prolonged viremia (27).
324 It should be noted that even if this model is not ideal for testing post-exposure therapeutics, it may still
325 be valuable for unpacking mechanisms of fetal demise and understanding the neurologic impact of
326 ZIKV-DAK on surviving infants with in utero exposure. It is also highly valuable for testing prophylaxis
327 options.

328 The detailed examination of the three fetal losses could provide early clues to the mechanism(s) of
329 fetal death. Detection of relatively high vRNA loads by RT-qPCR in fetal neural tissue and widespread
330 presence of ZIKV RNA throughout the neural parenchyma (neuropil) by ISH in all three cases of early
331 fetal loss suggest neurotropism for ZIKV-DAK (Fig 4, Fig 7, Table 2, S18A-C). Additionally, the pres-
332 ence of ZIKV RNA in the brainstem and spinal cord is consistent with human case studies that have
333 identified spinal cord damage in cases of CZS with and without fetal loss, as well as brainstem hy-
334 poplasia (Fig 6D, Fig 7, Table 2, S18D-F Fig)(28–30). Given the evidence that ZIKV infiltrated the fetal
335 CNS in all cases of early fetal loss, we anticipated that surviving ZIKV-DAK exposed macaque infants
336 (046-501, 046-502, 046-505, 046-506) would display early neurodevelopmental deficits consistent
337 with CZS. However, data collected from weekly neurodevelopmental assessments of surviving infants
338 during the first month of life suggested no significant differences between groups (S19 Fig, S20 Fig,
339 S21 Table, S22 Table). Future studies will need to explore emerging developmental trends beyond the
340 first month of life to determine long-term impacts in infants prenatally exposed to ZIKV-DAK.

341 Collectively, these results suggest that infection with low-passage African-lineage ZIKV late in the
342 first trimester is associated with fetal demise, but only when a higher dose of virus is administered.
343 This particular model is useful for asking questions about the overall pathogenesis of infection and
344 mechanisms of demise, as it yielded two different pregnancy outcomes across animals that received
345 the same high-dose inoculations. Furthermore, because fetal loss does not occur in all cases using
346 this model, we are able to begin to study the developmental impact of in-utero ZIKV-DAK exposure.
347 Although an increased rate of adverse fetal outcome is useful for future intervention studies where
348 cohort sizes are limited by constraints on pregnant rhesus macaques, a frequency of 37.5% may still
349 not be sufficient to power studies of countermeasures adequately. Future intervention models must
350 therefore build off of this model to further increase rates of adverse fetal outcomes, perhaps by infect-
351 ing earlier in the first trimester when the fetus could be more vulnerable to viral infection.

352 Materials and methods

353 Study design

354 Eight rhesus macaques (*Macaca mulatta*) were identified, confirmed pregnant by ultrasound, and
355 challenged during the first trimester at approximately GD 45 (term 165 ± 10 days) with 1×10^8 PFU of
356 an African-lineage ZIKV (ZIKV-DAK) administered subcutaneously (SQ). Macaque dams utilized in the

357 study were free of Macacine herpesvirus 1, Simian Retrovirus Type D (SRV), Simian T-lymphotropic
358 virus Type 1 (STLV), and Simian Immunodeficiency Virus as part of the Specific Pathogen Free (SPF)
359 colony at WNNPRC. Maternal health and pregnancies were monitored throughout the infection. Blood
360 samples were collected for isolation of plasma and peripheral blood mononuclear cells (PBMC) from
361 all dams prior to ZIKV challenge on days -4 and zero, daily post-challenge from days one to seven,
362 then twice weekly until resolution of maternal plasma vRNA load, and once weekly until study comple-
363 tion (Fig 1A). Serum was collected on days -4 and zero pre-challenge, then on days two, four, seven,
364 10, 14, 24, 28, and 30 post-challenge, and then weekly thereafter. Urine was passively collected from
365 the removable cage bottom pans below the animals' cages at available time points. Saliva swabs were
366 collected from dams on days zero to four and seven to 10 post-challenge, and then at all blood col-
367 lection time points thereafter. Data collected from these eight dams were compared to data from dams
368 previously infected with a low dose (1×10^4 PFU) of ZIKV-DAK, as well as dams mock-inoculated with
369 1X phosphate-buffered saline (1X PBS) comparably sampled as controls (24).

370 **Care and use of macaques**

371 The macaques used in this study were cared for by the staff at the Wisconsin National Primate
372 Research Center (WNNPRC) in accordance with recommendations of the Weatherall report and the prin-
373 ciples described in the National Research Council's Guide for the Care and Use of Laboratory Animals
374 (31). The University of Wisconsin - Madison, College of Letters and Science and Vice Chancellor for
375 Research and Graduate Education Centers Institutional Animal Care and Use Committee approved the
376 nonhuman primate research covered under protocol number G006139. The University of Wisconsin
377 - Madison Institutional Biosafety Committee approved this work under protocol number B00000117.
378 All animals were housed in enclosures with required floor space and fed using a nutritional plan based
379 on recommendations published by the National Research Council. Animals were fed a fixed formula,
380 extruded dry diet with adequate carbohydrate, energy, fat, fiber, mineral, protein, and vitamin content.
381 Macaque dry diets were supplemented with fruits, vegetables, and other edible objects (e.g., nuts,
382 cereals, seed mixtures, yogurt, peanut butter, popcorn, marshmallows, etc.) to provide variety to the
383 diet and to inspire species-specific behaviors such as foraging. To further promote psychological
384 well-being, animals were provided with food enrichment, structural enrichment, and/or manipulanda.
385 Environmental enrichment objects were selected to minimize chances of pathogen transmission from
386 one animal to another and from animals to care staff. While on study, all animals were evaluated by
387 trained animal care staff at least twice each day for signs of pain, distress, and illness by observing

388 appetite, stool quality, activity level, and physical condition. Animals exhibiting abnormal presenta-
389 tion for any of these clinical parameters were provided appropriate care by attending veterinarians.
390 Prior to initial viral infection and comprehensive ultrasounds, macaques were sedated using ketamine
391 anesthesia and monitored regularly until fully recovered from anesthesia. Animals were not sedated for
392 regular blood draws and fetal heart rate checks. When not sedated, animals were placed in a table-top
393 restraint device to allow for sample collection.

394 **Viral Infection**

395 Zika virus strain Zika virus/A.africanus-tc/Senegal/1984/DAKAR 41524 (ZIKV-DAK; GenBank:
396 KX601166) was originally isolated from *Aedes africanus* mosquitoes in Senegal in 1984. One round
397 of amplification on *Aedes pseudocutellaris* cells, followed by amplification on C6/36 cells, followed
398 by two rounds of amplification on Vero cells, was performed by BEI Resources (Manassas, VA) to
399 create the stock (five total passages) (15). Raw FASTQ reads (BioProject: PRJNA673500) and a
400 FASTA consensus sequence (BioProject: PRJNA476611) of the challenge stock of ZIKV/*Aedes afri-*
401 *canus/SEN/DAK-AR-41524/1984* are available at the Sequence Read Archive. For virus inocula-
402 tions, ZIKV-DAK stock was diluted to 1×10^8 PFU in 1ml of 1X phosphate buffered saline (PBS) and
403 delivered to each dam subcutaneously (SQ) over the cranial dorsum via a 1ml luer lock syringe.

404 **Ultrasonography and fetal monitoring**

405 Fetal growth and viability were monitored every seven to ten days by ultrasound and doppler.
406 Measurements such as heart rate (HR), biparietal diameter (BPD), head circumference (HC), femur
407 length, and abdominal circumference (AC) were obtained. Fetal heart rates were monitored twice
408 weekly throughout gestation to confirm viability. Mean growth measurements were plotted against
409 mean growth measurements and standard deviations from rhesus macaques at specific gestational
410 ages, collected by Tarantal et al. (32). To contextualize measurements collected before GD 50, the
411 standard growth curve was extrapolated. Ultrasound interpretations were provided by a maternal-fetal
412 medicine specialist.

413 **Temperature and body weight measurement**

414 Rectal temperatures and body weights of the dams were collected throughout the study. WNPRC
415 veterinary staff were consulted in determining whether elevation of an individual animal's body
416 temperature beyond reference ranges was clinically significant.

417 **ZIKV RNA isolation from plasma, urine, and saliva**

418 Plasma and PBMCs were isolated from EDTA-treated whole blood by layering blood on top of ficoll
419 in a 1:1 ratio and performing centrifugation at 1860 x rcf for 30 minutes with brake set at one. Plasma
420 and PBMCs were extracted and transferred into separate sterile tubes. R10 medium was added to
421 PBMCs before a second centrifugation of both tubes at 670 x rcf for eight minutes. Media was re-
422 moved from PBMCs before treatment with 1X Ammonium-Chloride-Potassium (ACK) lysing buffer for
423 five minutes to remove red blood cells. An equal amount of R10 medium was added to quench the
424 reaction before another centrifugation at 670 x rcf for eight minutes. Supernatant was removed be-
425 fore freezing down of cells in CryoStor CS5 medium (BioLife Solutions) for long term storage in liquid
426 nitrogen freezers. Serum was obtained from clot activator tubes by centrifugation at 670 x rcf for eight
427 minutes or from serum separation tubes (SST) at 1400 x rcf for 15 minutes. Urine was passively col-
428 lected from the bottom of animals' housing, centrifuged for five minutes at 500 x rcf to pellet debris,
429 and 270 ul was added into 30 ul DMSO followed by slow freezing. Saliva swabs were obtained and
430 put into 500 ul viral transport media (VTM) consisting of tissue culture medium 199 supplemented with
431 0.5% FBS and 1% antibiotic/antimycotic. Tubes with swabs were vortexed and centrifuged at 500 x
432 rcf for five minutes. Viral RNA (vRNA) was extracted from 300 uL plasma, 300 uL saliva+VTM, or 300
433 uL urine+DMSO using the Maxwell RSC Viral Total Nucleic Acid Purification Kit on the Maxwell 48 RSC
434 instrument (Promega, Madison, WI).

435 **Maternal-fetal interface (MFI) collection and dissection from near 436 full term pregnancies**

437 Cesarean sections were performed to deliver full term infants. The placenta and associated mem-
438 branes were harvested and immediately placed in sterile petri-dishes. Each placental disc was
439 weighed and measured and then maintained on wet ice prior to same-day dissection. A full-thickness
440 center-cut was collected from each placental disc and fixed with 4% PFA for histologic evaluation. The
441 remainder of each placental disc was washed with 1X PBS and separated into cotyledons. A cen-

442 ter-cut was taken from each cotyledon and placed into a biopsy cassette. Biopsy cassettes were fixed
443 with 4% PFA for future analysis. Each cotyledon was divided into three layers: decidua, parenchyma,
444 and chorionic plate. Two samples from each layer were collected and stored in either 750ul VTM or
445 1mL RNAlater. Tissues in VTM were frozen immediately after collection and stored at -80°C. Tissues in
446 RNA later were left to sit in solution for 24 hours at 4°C, after which RNAlater was aspirated off and the
447 tissues were stored at -80°C prior to vRNA isolation.

448 **Maternal-fetal interface (MFI) collection and dissection from first 449 trimester fetal loss**

450 Following early fetal demise a cesarean section was performed and the conceptus was immediate-
451 ly placed in a sterile petri dish. Fetal and maternal-fetal interface (MFI) tissues were evaluated by
452 WNPRC veterinary pathologists and the tissues collected included full thickness center sections from
453 each placental disc, three sections of amniotic/chorionic membrane from each placental disc, three
454 sections of decidua from each placental disc, and one section of each of the following: fetal mem-
455 branes, umbilical cord, maternal liver, maternal spleen, mesenteric lymph node (LN), uterus/placental
456 bed, fetal liver, fetal lung, fetal kidney, fetal brain, fetal skin/muscle from thigh, fetal eye, fetal spleen,
457 fetal upper limb, fetal chest, and fetal skull with brain. Two samples from each tissue section were also
458 collected and stored in either 750ul VTM or 1mL RNAlater for vRNA assessment and future analysis.
459 Tissues in VTM and RNAlater were stored respectively as described above.

460 **ZIKV RNA isolation from tissue samples**

461 RNA was recovered from RNAlater-treated tissue samples using a modification of the method de-
462 scribed by Hansen et al. (33). Briefly, up to 200 mg of tissue was disrupted in TRIzol Reagent (Thermo
463 Fisher Scientific, Waltham, MA) with stainless steel beads (2x5 mm) using a TissueLyser (Qiagen,
464 Germantown, MD) for three minutes at 25 r/s twice. Following homogenization, samples in TRIzol were
465 separated using bromo-chloro-propane (Sigma, St. Louis, MO). The aqueous phase was collected into
466 a new tube and glycogen was added as a carrier. The samples were washed in isopropanol and etha-
467 nol-precipitated overnight at -20°C. RNA was then fully re-suspended in 5 mM Tris pH 8.0.

468 **Viral RNA quantification by RT-qPCR**

469 Viral RNA was quantified using a highly sensitive RT-qPCR assay based on the one developed by
470 Lanciotti et al. (2008) (34), though the primers were modified to accommodate both Asian and African-
471 lineage ZIKV. RNA was reverse transcribed and amplified using the TaqMan Fast Virus 1-Step Master

472 Mix RT-qPCR kit (Invitrogen) on the LightCycler 480 or LC96 instrument (Roche, Indianapolis, IN) and
473 quantified by interpolation onto a standard curve made up of serial tenfold dilutions of in vitro tran-
474 scribed RNA. RNA for this standard curve was transcribed from a plasmid containing an 800 bp region
475 of the ZIKV genome that is targeted by the RT-qPCR assay. The final reaction mixtures contained
476 150 ng random primers (Promega, Madison, WI), 600 nM each primer and 100 nM probe. Primer and
477 probe sequences are as follows: forward primer: 5'- CGYTGCCAACACAAGG-3', reverse primer:
478 5'-CCACYAAYGTTCTTTGCABACAT-3' and probe: 5'-6-carboxyfluorescein-AGCCTACCTTGAYAAG-
479 CARTCAGACACACYCAA
480 -BHQ1-3'. The reactions cycled with the following conditions: 50°C for five minutes, 95°C for 20 sec-
481 onds followed by 50 cycles of 95°C for 15 seconds and 60°C for one minute. The limit of quantification
482 of this assay is 100 copies/ml.

483 **Histology**

484 Tissues collected for histology were fixed in 4% paraformaldehyde for one to four days depending
485 on size and degree of autolysis prior to sectioning, processing, and embedding in paraffin. Paraffin
486 sections were stained with hematoxylin and eosin (HE). Photomicrographs were taken using Olympus
487 BX46 Bright field microscope (Olympus Inc.,Center Valley, PA) with an attached Spot flex 15.2 64Mp
488 camera (Spot Imaging) and were captured using Spot Advance 5.6.3 software.

489 **IgM ELISA**

490 Serum samples from zero, seven, 14, and 21 DPI were thawed at room temperature and added to an
491 IgM fc-capture antibody conjugated plate (AbCam ab213327). HRP-conjugated ZIKV antigen (NS1)
492 was added after the addition of serum, followed by addition of TMB and stop solution. The plate
493 absorbance was read at dual wavelengths of 450nm and 600nm, IgM concentration is measured in
494 AbCam units relative to the kit cut-off control (sample absorbance multiplied by 10, then divided by
495 the absorbance of the cut-off control to yield AbCam Units).

496 **PRNT**

497 Titers of ZIKV neutralizing antibodies (nAb) were determined for days zero, 21, and 28 post-infection
498 using plaque reduction neutralization tests (PRNT) on Vero cells (ATCC #CCL-81) with a cutoff value of
499 90% (PRNT₉₀) (35). Briefly, ZIKV-DAK was mixed with serial two-fold dilutions of serum for one hour at
500 37°C prior to being added to Vero cells. Neutralization curves were generated in GraphPad Prism (San

501 Diego, CA) and the resulting data were analyzed by nonlinear regression to estimate the dilution of
502 serum required to inhibit 90% Vero cell culture infection (35,36).

503 ***In situ* hybridization (ISH)**

504 ISH probes against the ZIKV genome were commercially purchased (cat# 468361, Advanced Cell
505 Diagnostics, Newark, CA). ISH was performed using the RNAscope® Red 2.5 kit (cat# 322350,
506 Advanced Cell Diagnostics, Newark, CA) according to the manufacturer's protocol. After deparaffin-
507 ization with xylene, a series of ethanol washes, and peroxidase blocking, sections were heated with
508 the antigen retrieval buffer and then digested by proteinase. Sections were then exposed to the ISH
509 target probe and incubated at 40°C in a hybridization oven for two-hours. After rinsing, ISH signal was
510 amplified using the provided pre-amplifier followed by the amplifier conjugated to alkaline phospha-
511 tase I, and developed with a Fast Red chromogenic substrate for 10 minutes at room temperature.
512 Sections were then stained with hematoxylin, air-dried, and mounted prior to imaging using a Leica
513 DM 4000B microscope equipped with a Leica DFC310FC camera and Surveyor software (Version
514 9.0.2.5, Objective Imaging, Kansasville, WI).

515 **Neurodevelopmental assessments**

516 The neurodevelopmental assessments were administered between approximately 1300 and 1500
517 hours at seven, 14, 21, 28 (+/- 2) DOL, with the day of birth considered DOL one. Testing occurred in
518 rooms with decreased sensory stimuli to support infant regulation. Throughout the assessment and
519 analysis, the testers were blinded to the infant's exposure to prevent any bias during collection and
520 analysis.

521 We evaluated neonatal macaque neurobehavior with a well-validated assessment developed for
522 infant rhesus macaques, termed the Schneider Neonatal Assessment for Primates (SNAP) (37–41),
523 which we have previously used to define neonatal development in prenatally ZIKV-exposed infants
524 (42). The SNAP comprises 29 test items in the neurodevelopmental areas of interest and is made up
525 of the Orientation, Motor maturity and activity, Sensory responsiveness, and State control develop-
526 mental constructs. Two trained examiners were present for all neurobehavioral testing and scoring to
527 ensure test administration reliability (>95% agreement between examiners). Items were administered
528 in a consistent sequence across all animals to optimize performance and decrease handling time.
529 Assessments were hand-scored during administration and forms were transferred to electronic ver-
530 sions by Qualtrics Survey Software (Qualtrics, Provo, UT). The ratings were based on a five point Likert

531 scale ranging from zero to two. Higher scores reflect optimal scores; variables in which higher num-
532 bers do not reflect optimal scores were reverse coded. Test items which represent repetitions of the
533 same skill, such as right, left, up, and down orientation, were averaged together before calculating the
534 average of all the test items within a construct, as described previously (42).

535 **Locomotion assessments**

536 Immediately following the SNAP assessment, the infant was transported to a new testing room for
537 a quantitative measurement of the animals locomotion using the CatWalk XT version 10.6 (Noldus
538 Information Technology, Wageningen, The Netherlands). Human testers placed the infant into the
539 opening of the CatWalk to walk through a 130 cm long walkway. As the animal walked across and ap-
540 plied pressure on the walkway the green LEDs were refracted on the red background to capture steps.
541 A high-speed digital camera recorded the infant as they moved across the walkway into a nesting box
542 or was picked up by a human tester. The human tester placed the infant back into the opening of the
543 CatWalk until at least three usable runs were collected or the infant was determined to be unable to
544 complete or refused the task. A usable run was defined as having at least two consecutive footfalls per
545 limb on the walkway without stopping. If the infant was unable to walk through, the tester attempted
546 to train the infant by putting them partially through the CatWalk system or placing their blanket in the
547 system as a reinforcer. Data was saved to a USB drive and then immediately transferred to a secure
548 shared research folder.

549 A group mean and standard deviation for the three runs for each locomotion parameter with Noldus
550 software (Noldus Information Technology, Wageningen, The Netherlands). We evaluated the animals
551 for interlimb coordination and for temporal gait parameters using duty cycle, balance using base of
552 support, and gait maturity categorizing by a diagonal walking pattern. Duty cycle (stand/stand+swing)
553 is the percentage of time the infant had their limb on the walkway (stand) during a step cycle. Base
554 of support includes both the distance between front right and left limb placements and the distance
555 between left and right hind limb placement. The diagonal walking pattern is defined by when a hind-
556 limb paw touches the ground and is closely followed by or occurs simultaneously with the contralat-
557 eral limb paw (43,44). The speed (distance/time) in which the infant traversed the CatWalk was also
558 measured. All temporal gait parameters were reported as percentages of the step cycle to control for
559 variance in animal velocity, limb length, and body weight.

560 Statistical analyses

561 Overall plasma vRNA loads were calculated for dams receiving a high dose of ZIKV-DAK (1×10^8
562 PFU/ml) and historical controls that received a lower dose (1×10^4 PFU/ml) (24) using the trapezoidal
563 method to calculate the area under the curve (AUC) in R Studio v. 1.4.1717. AUC values were then
564 compared between groups (high-dose versus low-dose) using a t-test. Peak plasma vRNA loads, as
565 well as the duration of positive vRNA detection as defined previously, were also compared between
566 dams receiving either a high dose or low dose of virus inoculum using Wilcoxon rank sum tests with
567 continuity correction using R Studio v. 1.4.1717. The time to peak plasma vRNA load was also com-
568 pared between dams. Time to peak was analyzed using a linear mixed effects model with the day of
569 peak plasma vRNA load and group (high-dose or low-dose) as the fixed effects and animal ID as the
570 random effect to account for variability by individual within each group using the [nlme package in R](#)
571 [Studio v. 1.4.1717](#). The distribution of model residuals was approximately normal. For all analyses of
572 plasma vRNA loads, reported p-values are two-sided and $P < 0.05$ was used to define statistical signifi-
573 cance.

574 In-utero growth data were analyzed by calculating Z-scores which were derived from fitting a spline
575 regression for each outcome (HC, BPD, femur length, abdominal circumference) using the normative
576 reference data described by Tarantal et al. (32). The first available measurement for each outcome was
577 taken as baseline and changes in Z-scores from baseline were calculated for each fetus and ana-
578 lyzed using a linear mixed effects model with animal-specific random effects and an autoregressive
579 correlation structure of order one. Slope parameters for changes in Z-score were calculated for each
580 group (high-dose, low-dose, and mock) and reported with corresponding two-sided 95% confidence
581 intervals (CI) (S10 Fig, S11 Table, S12 Table). Z-scores were not constructed for ratio outcomes (HC-
582 femur length ratio, BPD-femur length ratio) instead, the raw values were log-transformed and analyzed
583 directly.

584 Quantitative infant variables measured at birth were summarized as means and standard deviations
585 and compared between experimental groups (high dose, low dose, and mock-inoculated) using one-
586 way analysis of variance (ANOVA) with post-hoc pairwise comparisons. Infant gender distribution was
587 compared between experimental groups using Fisher's exact test. Birth measurements were com-
588 pared between experimental conditions using analysis of covariance (ANCOVA) with gestational day,

589 dam age, and weight as covariates. Residual and normal probability plots were examined to verify the
590 model assumptions. The results were reported in terms of model-adjusted means along with the corre-
591 sponding 95% confidence intervals (95%CI) (S13 Table, S14 Table, S15 Table).

592 Longitudinal changes in infant SNAP parameters were analyzed using a linear mixed effects model
593 with animal specific random effects and an autoregressive correlation structure was used to compare
594 subscale scores between groups each week. Group, week and the interaction effect between group
595 and week were included as factors in the linear mixed effects model. Days before placement with a
596 female and birth weight were included as covariates. Residual plots and histograms were examined to
597 verify the distribution assumptions. All reported P-values are two-sided and P<0.05 was used to define
598 statistical significance. Statistical analyses were conducted using SAS software (SAS Institute, Cary
599 NC), version 9.4 (S19 Fig, S21 Table).

600 Longitudinal changes in infant gait parameters were analyzed using a linear mixed-effects model with
601 animal-specific random effects and an autoregressive correlation structure of order one to account for
602 the repeated measures from week two to week four. Group, week and the two-way interaction ef-
603 fect between group and week were included as the factors. Number of days before placement with a
604 female, gestational age, and birth weight and speed were included as covariates (speed was excluded
605 when comparing speed between groups). Sex was not included as a covariate because the control
606 group was all female and it was not possible to compare groups with this covariate. Model assump-
607 tions were validated by examining residual plots. The results are reported in terms of adjusted means
608 and the corresponding 95% confidence intervals. Success rates were compared each week between
609 groups using Fisher's exact test. Diagonal walking pattern comparisons were adjusted by the number
610 of days before placement with a female using an exact, simulation based, logistic regression approach
611 with binomial outcomes (it was not computationally possible to adjust the analysis by birth weight or
612 gestational age). The Wilson score method was used to construct 95% confidence intervals for the
613 success rates (S20 Fig, S22 Table).

614 **Data availability**

615 All of the data used in this study can also be found at <https://github.com/jrrosinski/High-dose-african->
616 [lineage-zikv-in-pregnant-rhesus-macaques](#). In the future, primary data that support this study will also
617 be available at the Zika Open Research Portal (<https://openresearch.labkey.com/project/ZEST/begin>.

618 [view](#)). Data for the high-dose ZIKV-DAK-infected cohort can be found under study ZIKV-046; data for
619 the low-dose ZIKV-DAK infected cohort can be found under study ZIKV-030, ZIKV-PR and mock-inoc-
620 ulated cohorts can be found under ZIKV-044.

621 **Bibliography**

- 622 1. Duffy MR, Chen T-H, Hancock WT, Powers AM, Kool JL, Lanciotti RS, et al. Zika virus outbreak on
623 Yap Island, Federated States of Micronesia. *N Engl J Med.* 2009 Jun 11;360(24):2536–43.
- 624 2. Lanciotti RS, Lambert AJ, Holodniy M, Saavedra S, Signor LDCC. Phylogeny of Zika Virus in
625 Western Hemisphere, 2015. *Emerg Infect Dis.* 2016 May;22(5):933–5.
- 626 3. Zhang Q, Sun K, Chinazzi M, Pastore Y, Piontti A, Dean NE, Rojas DP, et al. Spread of Zika virus in
627 the Americas. *Proc Natl Acad Sci U S A.* 2017 May 30;114(22):E4334–43.
- 628 4. Passemard S, Kaindl AM, Verloes A. Microcephaly. *Handb Clin Neurol.* 2013;111:129–41.
- 629 5. Rasmussen SA, Jamieson DJ, Honein MA, Petersen LR. Zika Virus and Birth Defects — Reviewing
630 the Evidence for Causality [Internet]. Vol. 374, New England Journal of Medicine. 2016. p. 1981–7.
631 Available from: <http://dx.doi.org/10.1056/nejmsr1604338>
- 632 6. Schuler-Faccini L, Ribeiro EM, Feitosa IML, Horovitz DDG, Cavalcanti DP, Pessoa A, et al. Pos-
633 sible Association Between Zika Virus Infection and Microcephaly - Brazil, 2015. *MMWR Morb
634 Mortal Wkly Rep.* 2016 Jan 29;65(3):59–62.
- 635 7. Victoria CG, Schuler-Faccini L, Matijasevich A, Ribeiro E, Pessoa A, Barros FC. Microcephaly in
636 Brazil: how to interpret reported numbers? *Lancet.* 2016 Feb 13;387(10019):621–4.
- 637 8. Moore CA, Staples JE, Dobyns WB, Pessoa A, Ventura CV, Fonseca EB da, et al. Characterizing
638 the Pattern of Anomalies in Congenital Zika Syndrome for Pediatric Clinicians. *JAMA Pediatr.*
639 2017 Mar 1;171(3):288–95.
- 640 9. Esser-Nobis K, Aarreberg LD, Roby JA, Fairgrieve MR, Green R, Gale M Jr. Comparative Analysis
641 of African and Asian Lineage-Derived Zika Virus Strains Reveals Differences in Activation of and
642 Sensitivity to Antiviral Innate Immunity. *J Virol* [Internet]. 2019 Jul 1;93(13). Available from: <http://dx.doi.org/10.1128/JVI.00640-19>
- 644 10. Haddow AD, Schuh AJ, Yasuda CY, Kasper MR, Heang V, Huy R, et al. Genetic characterization
645 of Zika virus strains: geographic expansion of the Asian lineage. *PLoS Negl Trop Dis.* 2012 Feb
646 28;6(2):e1477.
- 647 11. Faye O, Freire CCM, Iamarino A, Faye O, de Oliveira JVC, Diallo M, et al. Molecular evolution of
648 Zika virus during its emergence in the 20(th) century. *PLoS Negl Trop Dis.* 2014 Jan 9;8(1):e2636.
- 649 12. Beaver JT, Lelutiu N, Habib R, Skountzou I. Evolution of Two Major Zika Virus Lineages: Impli-
650 cations for Pathology, Immune Response, and Vaccine Development. *Front Immunol.* 2018 Jul
651 18;9:1640.
- 652 13. Dudley DM, Van Rompay KK, Coffey LL, Ardestir A, Keesler RI, Bliss-Moreau E, et al. Miscar-
653 riage and stillbirth following maternal Zika virus infection in nonhuman primates. *Nat Med.* 2018
654 Aug;24(8):1104–7.
- 655 14. Cauvin AJ, Peters C, Brennan F. Chapter 19 - Advantages and Limitations of Commonly Used
656 Nonhuman Primate Species in Research and Development of Biopharmaceuticals. In: Bluemel J,
657 Korte S, Schenck E, Weinbauer GF, editors. *The Nonhuman Primate in Nonclinical Drug Develop-
658 ment and Safety Assessment.* San Diego: Academic Press; 2015. p. 379–95.
- 659 15. Jaeger AS, Murrieta RA, Goren LR, Crooks CM, Moriarty RV, Weiler AM, et al. Zika viruses of
660 African and Asian lineages cause fetal harm in a mouse model of vertical transmission. *PLoS Negl
661 Trop Dis.* 2019 Apr;13(4):e0007343.
- 662 16. Duggal NK, Ritter JM, McDonald EM, Romo H, Guirakhoo F, Davis BS, et al. Differential neuroviru-
663 lence of African and Asian genotype Zika virus isolates in outbred immunocompetent mice. *Am J
664 Trop Med Hyg.* 2017 Nov;97(5):1410–7.
- 665 17. Aubry F, Jacobs S, Darmuzey M, Lequime S, Delang L, Fontaine A, et al. Recent African strains of
666 Zika virus display higher transmissibility and fetal pathogenicity than Asian strains. *Nat Commun.*
667 2021 Feb 10;12(1):916.
- 668 18. Sheridan MA, Balaraman V, Schust DJ, Ezashi T, Roberts RM, Franz AWE. African and Asian
669 strains of Zika virus differ in their ability to infect and lyse primitive human placental trophoblast.
670 *PLoS One.* 2018 Jul 9;13(7):e0200086.
- 671 19. Udenze D, Trus I, Berube N, Gerdts V, Karniychuk U. The African strain of Zika virus causes more
672 severe in utero infection than Asian strain in a porcine fetal transmission model. *Emerg Microbes
673 Infect.* 2019;8(1):1098–107.

674 20. Crooks CM, Weiler AM, Rybarchyk SL, Bliss M, Jaeger AS, Murphy ME, et al. African-lineage Zika
675 virus replication dynamics and maternal-fetal interface infection in pregnant rhesus macaques
676 [Internet]. bioRxiv. 2020 [cited 2021 Jun 10]. p. 2020.11.30.405670. Available from: <https://www.biorxiv.org/content/10.1101/2020.11.30.405670v1>

677 21. Adams Waldorf KM, Stencel-Baerenwald JE, Kapur RP, Studholme C, Boldenow E, Vornhagen
678 J, et al. Fetal brain lesions after subcutaneous inoculation of Zika virus in a pregnant nonhuman
679 primate. *Nat Med*. 2016 Nov;22(11):1256–9.

680 22. Styler LM, Kent KA, Albright RG, Bennett CJ, Kramer LD, Bernard KA. Mosquitoes inoculate
681 high doses of West Nile virus as they probe and feed on live hosts. *PLoS Pathog*. 2007 Sep
682 14;3(9):1262–70.

683 23. Gubler DJ, Rosen L. A simple technique for demonstrating transmission of dengue virus by mos-
684 quitoes without the use of vertebrate hosts. *Am J Trop Med Hyg*. 1976 Jan;25(1):146–50.

685 24. Crooks CM, Weiler AM, Rybarchyk SL, Bliss M, Jaeger AS, Murphy ME, et al. African-Lineage Zika
686 Virus Replication Dynamics and Maternal-Fetal Interface Infection in Pregnant Rhesus Macaques.
687 *J Virol*. 2021 Jul 26;95(16):e0222020.

688 25. Nutt C, Adams P. Zika in Africa—the invisible epidemic? *Lancet*. 2017 Apr 22;389(10079):1595–6.

689 26. Dudley DM, Newman CM, Lalli J, Stewart LM, Koenig MR, Weiler AM, et al. Infection via mosquito
690 bite alters Zika virus tissue tropism and replication kinetics in rhesus macaques [Internet]. Vol. 8,
691 *Nature Communications*. 2017. Available from: <http://dx.doi.org/10.1038/s41467-017-02222-8>

692 27. Pomar L, Lambert V, Matheus S, Pomar C, Hcini N, Carles G, et al. Prolonged maternal Zika vire-
693 mia as a marker of adverse perinatal outcomes. *Emerg Infect Dis*. 2021 Feb;27(2):490–8.

694 28. Aragao MFVV, Brainer-Lima AM, Holanda AC, van der Linden V, Vasco Aragão L, Silva Júnior
695 MLM, et al. Spectrum of Spinal Cord, Spinal Root, and Brain MRI Abnormalities in Congenital Zika
696 Syndrome with and without Arthrogryposis. *AJNR Am J Neuroradiol*. 2017 May;38(5):1045–53.

697 29. Ramalho FS, Yamamoto AY, da Silva LL, Figueiredo LTM, Rocha LB, Neder L, et al. Congenital
698 Zika Virus Infection Induces Severe Spinal Cord Injury. *Clin Infect Dis*. 2017 Aug 15;65(4):687–90.

700 30. de Fatima Vasco Aragao M, van der Linden V, Brainer-Lima AM, Coeli RR, Rocha MA, Sobral da
701 Silva P, et al. Clinical features and neuroimaging (CT and MRI) findings in presumed Zika virus
702 related congenital infection and microcephaly: retrospective case series study. *BMJ*. 2016 Apr
703 13;353:i1901.

704 31. National Research Council, Division on Earth and Life Studies, Institute for Laboratory Animal
705 Research, Committee for the Update of the Guide for the Care and Use of Laboratory Animals.
706 Guide for the Care and Use of Laboratory Animals: Eighth Edition. National Academies Press;
707 2011. 246 p.

708 32. Tarantal AF. Ultrasound Imaging in Rhesus (*Macaca mulatta*) and Long-tailed (*Macaca fascicularis*)
709 Macaques: Reproductive and Research Applications [Internet]. The Laboratory Primate. 2005. p.
710 317–52. Available from: <http://dx.doi.org/10.1016/b978-012080261-6/50020-9>

711 33. Hansen SG, Piatak M Jr, Ventura AB, Hughes CM, Gilbride RM, Ford JC, et al. Immune clearance
712 of highly pathogenic SIV infection. *Nature*. 2013 Oct 3;502(7469):100–4.

713 34. Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, et al. Genetic and serologic
714 properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. *Emerg Infect
715 Dis*. 2008 Aug;14(8):1232–9.

716 35. Breitbach ME, Newman CM, Dudley DM, Stewart LM, Aliota MT, Koenig MR, et al. Primary infec-
717 tion with dengue or Zika virus does not affect the severity of heterologous secondary infection in
718 macaques. *PLoS Pathog*. 2019 Aug;15(8):e1007766.

719 36. Lindsey HS, Calisher CH, Mathews JH. Serum dilution neutralization test for California group virus
720 identification and serology. *J Clin Microbiol*. 1976 Dec;4(6):503–10.

721 37. Laughlin NK, Lasky RE, Giles NL, Luck ML. Lead effects on neurobehavioral development in the
722 neonatal rhesus monkey (*Macaca mulatta*). *Neurotoxicol Teratol*. 1999 Nov;21(6):627–38.

723 38. Schneider ML, Moore CF, Kraemer GW, Roberts AD, DeJesus OT. The impact of prenatal stress,
724 fetal alcohol exposure, or both on development: perspectives from a primate model. *Psychoneu-
725 roendocrinology*. 2002 Jan;27(1-2):285–98.

726 39. Schneider ML, Roughton EC, Koehler AJ, Lubach GR. Growth and development following pre-
727 natal stress exposure in primates: an examination of ontogenetic vulnerability. *Child Dev*. 1999
728 Mar;70(2):263–74.

729 40. Levin ED, Schneider ML, Ferguson SA, Schantz SL, Bowman RE. Behavioral effects of develop-
730 mental lead exposure in rhesus monkeys. *Dev Psychobiol*. 1988 May;21(4):371–82.

731 41. Coe CL, Lubach GR, Crispen HR, Shirtcliff EA, Schneider ML. Challenges to maternal wellbeing
732 during pregnancy impact temperament, attention, and neuromotor responses in the infant rhesus
733 monkey. *Dev Psychobiol*. 2010 Nov;52(7):625–37.

734 42. Koenig MR, Razo E, Mitzey A, Newman CM, Dudley DM, Breitbach ME, et al. Quantitative defi-
735 nition of neurobehavior, vision, hearing and brain volumes in macaques congenitally exposed to

736 Zika virus. PLoS One. 2020 Oct 22;15(10):e0235877.

737 43. Dunbar DC. Locomotor behavior of rhesus macaques (*Macaca mulatta*) on Cayo Santiago. P R
738 Health Sci J. 1989 Apr;8(1):79–85.

739 44. Shapiro LJ, Cole WG, Young JW, Raichlen DA, Robinson SR, Adolph KE. Human quadrupeds,
740 primate quadrupedalism, and Uner Tan Syndrome. PLoS One. 2014 Jul 16;9(7):e101758.

741 **S1 Fig. Demographic characteristics of the 17 pregnant rhesus macaques in this study.** Animals were inoculated subcu-
742 taneously (SQ) with either 1×10^8 PFU ZIKV-DAK, 1×10^4 PFU ZIKV-DAK, or PBS between GD 41 and GD 50.

743 **S2 Fig. Maternal temperature and weight of dams receiving high-dose (1×10^8 PFU) ZIKV-DAK.** (A) Maternal tempera-
744 tures over time. (B) Maternal weights over time. Dams with early fetal loss are marked with an asterisk and were not moni-
745 tored after cesarean section.

746 **S3 Fig. Viral loads in plasma samples detected by ZIKV-specific RT-qPCR.** (A) Viral loads through 60 DPI in high-dose
747 dams. Dams with early fetal loss are marked with a single asterisk. (B) Viral loads through 60 DPI in low-dose dams.

748 **S4 Fig. Replication of ZIKV-DAK in (A) urine and (B) saliva of dams receiving 1×10^8 PFU ZIKV-DAK.** Viral loads were
749 measured by ZIKV-specific RT-qPCR.

750 **S5. Replication kinetics of ZIKV-DAK in high-dose dams, grouped by birth outcome.** Viral loads were measured in plas-
751 ma samples by ZIKV-specific qRT-PCR. (A) Comparison of area under the curve (AUC). For all graphs in parts B-E, the mean
752 value is shown with error bars representing standard deviation. (B) Days post-infection of the last positive plasma vRNA load.
753 (C) Peak plasma viral load in copies/ml plasma. (D) Day post-infection of peak plasma viral load. *** Represents a p-value of
754 <0.001, while no asterisk represents no statistical difference.

755 **S6 Fig. All animals developed robust neutralizing antibody titers after inoculation.** Plaque reduction neutralization tests
756 were performed on serum samples collected zero days post infection (DPI) and between 21 and 28 DPI from animals infected
757 with high-dose (1×10^8 PFU) or a low dose (10^4 PFU) of ZIKV-DAK. Dams with early fetal loss are marked with an asterisk.

758 **S7 Fig. Maternal serum IgM titers measured by ELISA in high-dose animals.** Levels of IgM antibodies were measured in
759 maternal serum samples at zero, seven, 14, 17 and 21 or 24 DPI. Values are normalized to AbCam units for comparison based
760 on the manufacturer's recommendation (see materials and methods).

761 **S8 Table. In utero imaging observations and interpretations from dams that received high-dose ZIKV-DAK.**

762 **S9 Fig. Fetal heart rate throughout gestation.** Fetal heart rate was monitored biweekly by ultrasound on high-dose (1×10^8
763 PFU ZIKV-DAK) dams to confirm fetal viability. The horizontal, dotted lines on the graph represent the range of normal heart
764 rates for fetuses at WNPRC. Cases of early fetal loss are marked with an asterisk.

765 **S10 Fig. In-utero fetal growth from weekly sonographic imaging.** Normative data generated by Tarantal at CNPRC were
766 used to calculate Z-scores for each animal. Open circles represent the change in Z-score from baseline for each animal. Solid
767 lines show the growth trajectories for each group and were quantified by calculating regression slope parameters from baseline
768 using a linear mixed-effects model with animal-specific random effects and an autoregressive correlation structure.

769 **S11 Table. Slope parameters for changes in z-scores for in-utero measurements across gestation, stratified by group.**
770 Z-scores are log-transformed ratios. Animals in high-dose ZIKV-DAK, low-dose ZIKV-DAK, and mock groups were com-
771 pared.

772 **S12 Table. Pairwise comparisons between groups of slopes for z-scores of in-utero measurements.** Animals in high-
773 dose ZIKV-DAK, low-dose ZIKV-DAK, and mock groups were compared.

774 **S13 Table. Statistical analyses comparing weights, head circumference (HC), biparietal diameter (BPD) and weight.**
775 Analysis was performed between infants in high-dose ZIKV-DAK and mock groups. Because gender was confounded with
776 group it was not included as a covariate in this analysis.

777 **S14 Table. Statistical analyses comparing APGAR scores at one, five, and 10 minutes of life.** Comparisons of APGAR
778 scores were made between infants in high-dose, low-dose, and mock groups. Because gender was confounded with group it
779 was not included as a covariate in this analysis.

780 **S15 Table. Statistical analysis comparing at-birth demographic characteristics.** Characteristics of gestational day (GD),
781 dam weight, dam age, and fetal gender were compared between mock (n=4), high-dose (n=5), and low-dose (n=4) groups.

782 **S16 Fig. Transmural infarcts in the placentas of dams with early fetal loss.** (A) Placental infarction in 046-103 and (B)
783 046-107. Placental tissues were stained with H&E and are imaged at 4X magnification. Black boxes denote areas of infarct.

784 **S17 Table. Morphological diagnoses of MFI and fetal tissue from animals in high-dose, low-dose, and control groups.**

785 **S18 Fig. Detection of ZIKV RNA by in situ hybridization in fetal body tissues.** Representative images of ZIKV RNA dis-
786 tribution in fetal tissues from the three cases of early fetal loss (excluding the head). Foci of ZIKV RNA were detected in the
787 neuropil of (A) 046-503 (boxed), (B) 046-504 (arrows), and (C) 046-507; the spinal cord of (D) 046-503 (arrows), (E) 046-504
788 (boxed), and (F) 046-507 (arrows); the intestines of (G) 046-503 (boxed, arrows) and (H) 046-507 (boxed, arrows); and the peri-
789 osteum of (I) 046-503 (boxed, arrows) and (J) 046-507 (arrows). ZIKV RNA is shown in red.

790 **S19 Fig. Neonatal neurodevelopment measured by SNAP in the first month of life.** Neurodevelopment was measured by

791 SNAP at seven, 14, 21, and 28 days of life for high-dose ZIKV-DAK exposed (ZIKV-HD) and control infants. Scores in the (A)
792 Orientation, (B) Motor Maturity and Activity, (C) Sensory Responsiveness, and (D) State control constructs are illustrated while
793 controlling for birth weight and days reared in nursery conditions. Animals were rated on a five point Likert scale ranging from
794 zero to two with higher scores reflecting optimal scores. For all graphs shown the results are reported in terms of model-adjusted
795 means along with the corresponding 95% confidence intervals (95% CI).

796 **S20 Fig. Locomotion in the first month of life measured by the CatWalk.** (A) Screenshot of the infant completing a run in
797 the CatWalk Noldus XT measuring footfalls on a pressure plate that are labeled showing bilateral front (RF, LF) and hind (RH,
798 LH) limbs. For all graphs shown in C-F, the results are reported in terms of model-adjusted means along with the corresponding
799 95% confidence intervals (95% CI). (B) Visual representation of gait variables including duty cycle (stand/stand + swing), base
800 of support, and speed (cm/s), (C) % of runs in mature locomotion pattern, (D) Average speed across runs, (E) Base of support
801 defined between the left and right foot/hand prints, and F) Duty cycle defined as the % time spent on each limb.

802 **S21 Table. Comparison of neonatal development with the Schneider Neonatal Assessment Protocol (SNAP).** Infants
803 exposed to high-dose ZIKV-DAK are compared to control infants.

804 **S22 Table. Comparison of gait development with the Noldus CatWalk.** Infants exposed to high-dose ZIKV-DAK are
805 compared to control infants.