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Abstract

We introduce a modelling and simulation framework for cell aggregates in three
dimensions based on interacting active surfaces. Cell mechanics is captured by a
physical description of the acto-myosin cortex that includes cortical flows, viscous forces,
active tensions, and bending moments. Cells interact with each other via short-range
forces capturing the effect of adhesion molecules. We discretise the model constitutive
equations using a finite element method, and provide a parallel implementation in C++.
We discuss examples of application of this framework to simulations involving small and
medium-sized aggregates: we consider the shape and dynamics of a cell doublet, a
planar cell sheet, and a growing cell aggregate. This framework opens the door to the
systematic exploration of the cell to tissue-scale mechanics of cell aggregates, which
plays a key role in the morphogenesis of embryos and organoids.

Author summary

Understanding how tissue-scale morphogenesis arises from cell mechanics and cell-cell
interactions is a fundamental question in developmental biology. Here we propose a
mathematical and numerical framework to address this question. In this framework,
each cell is described as an active surface representing the cell acto-myosin cortex,
subjected to flows and shape changes according to active tensions, and to interaction
with neighbouring cells in the tissue. Our method describes cellular processes such as
cortical flows, cell adhesion, and cell shape changes in a deforming three-dimensional
cellular aggregate. To solve the equations numerically, we employ a finite element
discretisation, which allows us to solve for flows and cell shape changes with arbitrary
resolution. We discuss applications of our framework to describe cell-cell adhesion in
doublets, three-dimensional cell shape in a simple epithelium, and three-dimensional
growth of a cell aggregate.

1 Introduction

Tissue morphogenesis relies on the controlled generation of the cellular forces that
collectively drive tissue-scale flows and deformation [1, 2]. The interplay between
cell-cell adhesion, cellular mechanics and the cytoskeleton plays a key role in
determining how biological tissues self-organise [3]. These ingredients are also crucial for
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the growth of in vitro organoids, organ-like structures derived from stem cells which can
self-organise into complex structures reminiscent of actual organs [4–6].

Several classes of models have been proposed to describe the mechanics of
multicellular aggregates, such as cellular Potts models [7–13], phase field models [14–18]
and vertex models [19]. Vertex models, and the closely related Voronoi vertex
models [20,21], describe cells in a tissue as polyhedra that share faces, edges and
vertices forming a three-dimensional junctional network [19,22–24]. Cell deformations
are encoded by the displacement of the vertices Xa of the network. These
displacements are dictated by vertex forces Fa stemming from cell pressures Pc, surface
tensions tf , and line tensions Γe that are coupled to virtual changes in cell volume δVc,
face area δAf , and edge length δle respectively in a work function

δW =
∑
c∈cells

−PcδVc +
∑

f∈faces

tfδAf +
∑

e∈edges

Γeδle =
∑
a

Fa · δXa , (1)

where to get to the last expression one needs to express δVc, δAf and δle in terms of a
virtual displacement of the vertices δXa. Two and three-dimensional versions of the
vertex model have been employed for many applications, for instance to study cell
packing [23, 25], cell sorting [26], wound closure [27], cyst formation [28], tumourigenesis
in tubular epithelia [29] among many other [19]. However because of their definition,
vertex models do not explicitly resolve cortical flows on the cell surface. The effect of
cell-cell adhesion is also implicitly introduced in the surface tension tf , which mix
together physical processes arising from molecular bonds between cells and surface forces
arising in the cell membrane and in the actomyosin cytoskeleton. In vertex models with
vertices positions as degrees of freedom, topological transitions leading to cell-neighbour
exchange are encoded explicitly by formulating rules to change edges in the network.

At the single cell scale, a number of studies have shown the relevance of
coarse-grained, continuum models to describe the mechanics of the cell surface. In this
approach, an active fluid theory taking into account cellular cortical flows, gradients of
active cytoskeletal tension and their regulation, and orientation and filament alignment
in the actin cortex, has proven successful to describe the mechanics of cell polarisation,
cell motility or cell division [30–39]. From a computational perspective, there has been a
growing attention to the simulation of the dynamics of fluid interfaces both with
prescribed [40–43] and with time-evolving shape [38,39,44–50]. However, to our
knowledge no computational framework has attempted to provide a physical description
of three-dimensional cellular aggregates taking into account explicitly the mechanics of
a single cell surface described as an active surface, as well as cell-cell adhesions.

Here we bridge this gap and introduce a new modelling and simulation framework,
and a freely available code [51], for the mechanics of cell aggregates in three dimensions
(Fig. 1). We describe cells as interacting active surfaces [52]. The governing equations
for the cell surface mechanics are discretised using a finite element method. In this
method, each cell is represented by a three-dimensional mesh with vertices positions Xa.
In analogy with Eq. (1) in vertex models, we start from the virtual work theorem for
interfaces (Eq. (2)) and find the net forces at the vertices Fa (Eq. (11)), which vanish in
the absence of inertia. This condition imposes cortical flows and cell shape changes. In
this framework, topological transitions appear as a natural output of the remodelling of
cell-cell interactions and are not treated explicitely.

The main benefits of our method are that it (1) can incorporate complex descriptions
of the physics of the cell surface, including sources of tension, in-plane and normal
moments [52], (2) accounts for cell-cell adhesion explicitly through constitutive laws
that can be adapted to represent different biological scenarios, (3) resolves cell shape
with arbitrary resolution given by the mesh size of the finite element discretisation.

The nonlinear equations of the model are treated computationally with the use of
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Fig 1. Schematic of the interacting active surface framework. A tissue is described by a
collection of triangular meshes representing each cell. The dynamics of the tissue is
described by the dynamics of the vertices making the cellular meshes, similar to how the
movement of the vertices of a vertex model describe the deformation of a tissue. The
motion of the cell mesh is obtained by coarse-graining continuum mechanics equations
of a theory of active surfaces via the finite element method. In this theory, cortical
flows, cortical tensions, intracellular pressures, bending moments and forces arising from
cell-cell interactions are taken into account.
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nonlinear solvers. Since we consider only the discretisation of the cell surface, the
number of degrees of freedom is considerably smaller than in 3D Cellular Potts or
phase-field models, both of which require a 3D discretisation. On the other hand, to
capture cell shape, cortical flows and cell-cell interactions accurately, we need to use
many more vertices per cell than in a vertex model, which leads to a greater
computational cost. To limit computational time, the code is parallelised to allow each
cell to be stored on a different partition, each possibly using a pool of cores (hybrid
MPI-OpenMP method). As such, it is possible to simulate several tens of cells on a
computing cluster.

We now turn to the description of our framework. In Section 2 we describe the
mathematical formulation and the discretisation of our method. We show some
examples of application in Section 3 and end in Section 4 with conclusions, summary
and ideas for future work.

2 Materials and methods

In this section we describe the main elements of our framework. We start by
introducing the governing equations for a single, isolated cell described as a fluid active
surface. We use a virtual work formulation for the mechanics of a surface, together with
a finite element discretisation, to obtain the equations that dictate the movement of the
vertices of the mesh. We introduce cell-cell interactions, represented by an interaction
potential between pairs of surfaces, that result in a force density and a tension acting on
each cell. Finally, we describe a mesh reparametrisation method that allows simulations
to handle large tangential deformations of the surface which can arise for continuously
flowing fluid interfaces such as the cell cortex.

2.1 Governing equations and discretisation for a single surface

2.1.1 Virtual work for interfaces

Our starting point is the statement of virtual work for a closed interface S representing
a single cell. We describe S with a parametrisation X

(
s1, s2

)
where s1, s2 are two

surface coordinates and X a point in the 3D space in which the surface is embedded.
We denote the coordinates of the 3D cartesian basis by greek indices α, β, ..., and the
coordinates on the surface by latin indices i, j.... Here and elsewhere in the manuscript
we use Einstein summation convention for repeated indices. Given the tangent vectors
ei = ∂iX one can compute the metric tensor gij = ei · ej and the curvature tensor
Cij = −n · ∂iej , where n = (e1 × e2)/|e1 × e2| is the outer normal to the surface.
Other notations of differential geometry are given in S1 Appendix 1. Here and in the
following, we consider the limit of low Reynolds number where inertial terms are
negligible, a limit relevant to the physics at the cell scale which is of interest here [53].
The mechanics of a single surface can then be described by the following statement of
the principle of virtual work for S [52]:

δW =

∫
S
dS

{
1

2
t̂ijδgij + m̄ijδCij − fαδXα

}
= 0 , (2)

where δX is an infinitesimal displacement of the surface, and δgij and δCij the
associated infinitesimal variation of the metric and curvature tensors. Expressions for
δgij and δCij in terms of δXα are given in S1 Appendix 2. Eq. (2) relates infinitesimal
variations of geometric quantities of the interface to their work conjugates: the external
force density fα coupled to the surface displacement, the tension tensor t̂ij related to
metric variations, and the bending moment tensor m̄ij coupled to variations of the
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curvature tensor. Eq. (2) is equivalent to the statement of balance of linear and angular
momentum at low Reynolds number (S1 Appendix 3). We have neglected external and
internal normal moments for simplicity, which lead to extra terms in Eq. (2) (S1
Appendix 3).

2.1.2 Constitutive laws

To describe the mechanics of a single surface, we need to specify constitutive equations
for the mechanical tensors t̂ij and m̄ij . We denote by v the velocity field on the cell
surface. Here, we assume that the cell surface can be represented as an active viscous
layer, with a bending rigidity and a spontaneous curvature. As a result, we use the
following constitutive equations:

t̂ij =t̂ijd + t̂ija + t̂ije ,

t̂ijd =2ηvij , t̂ija = γgij , t̂ije = κ
(
Ckk − C0

) [1

2

(
Ckk − C0

)
gij − 2Cij

]
,

m̄ij =m̄ij
e = κ

(
Ckk − C0

)
gij ,

(3)

where vij is the strain-rate tensor on the surface:

vij =
1

2
[∇ivj +∇jvi + 2Cijvn] , (4)

with ∇i the covariant derivative operator defined in S1 Appendix 1. Here, η is the
surface viscosity; for simplicity we do not explicitly distinguish between the shear and
bulk viscosity of the surface. γ is the surface tension of the cell, which is not necessarily
homogeneous on the cell surface. As we expect this contribution to largely arise from
active forces generated in the actomyosin cortex [54], we later refer to it as the active
tension. The contributions t̂ije and m̄ij

e arise from an effective Helfrich free energy
penalising the membrane curvature with bending modulus κ and spontaneous curvature
C0 (S1 Appendix 4).

The external force density acting on a single cell is split into two contributions

f = fe + fd , (5)

arising respectively from the action of the pressure difference across the surface

fαe = Pnα , (6)

and from an effective external friction force density

fαd = −ξvα , (7)

where ξ is a friction coefficient. In the following, the pressure P is adjusted to impose a
value of the cell volume. Eq. (2), together with the constitutive equations (3)-(7), leads
to a complete set of equations to determine the velocity field v on the cell surface.

The constitutive laws Eqs. (3)-(7) are a simple choice of physical description of the
surface. Other terms, for instance additional viscous or active bending moments, could
be introduced: linear irreversible thermodynamics provides with a set of additional
possible terms that could play a role in the dynamics of isotropic, polar or nematic
active surfaces and could be added to the framework described here [52,55].
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Fig 2. A smooth surface S representing a cell is obtained based on a triangular control
mesh with vertex positions Xa (A) and a set of basis functions per vertex a (B). (A) To
define the mapping between the control mesh and the cell surface, the barycentric
coordinates of points in a triangular element e in the control mesh s1e, s

2
e, which span a

reference triangle, are used to define a point on the cell surface S, X(s1e, s
2
e) (Eq. (9)).

Points X(s1e, s
2
e) are obtained by summing basis functions Ba(s1e, s

2
e), weighted by Xa,

over vertices a whose basis functions have a non-zero contribution to this element, an
ensemble denoted 〈e〉. (B) Example of the basis function associated to a vertex in the
mesh. For Loop subdivision surfaces basis functions, the basis function spans the first
and second rows of elements surrounding the vertex (thicker white line). The vertices
that interact with vertex a in the same cell, represented by the set 〈〈a〉〉 (green) are
formed by the first, second, and third nearest neighbours in the mesh.
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2.1.3 Finite element discretisation

We now discretise the geometry of the surface using finite elements based on a
triangular control mesh of Ne triangles or elements and Nv vertices (Fig. 2). The
parametrisation of S is of the form

X(s1, s2) =
∑
a

XaBa(s1, s2) , (8)

where the sum is taken over vertices of the control mesh, labelled by a, Xa is the
position of vertex a on the control mesh, and Ba(s1, s2) is its basis function, defined in
terms of coordinates (s1, s2) on the control mesh. Given that S may have bending or
in-plane moments coupled to variations of the curvature tensor and the Christoffel
symbols in the differential virtual work (see Eq. (2) and Eq. (34) in S1 Appendix 3), the
basis functions Ba must be chosen to have second order derivatives that are
square-integrable; here we follow [38,56,57] and use Loop subdivision surfaces, which
lead to smooth surfaces that satisfy this condition by construction. We note that, in
practice, a consistent parametrisation (s1, s2) of the entire control mesh is not needed:
indeed one can consider the surface S as a union of surface elements associated to each
triangle e of the control mesh, which are given in terms of barycentric coordinates s1e, s

2
e

of the element e by

X(s1e, s
2
e) =

∑
a∈〈e〉

XaB
e
a(s1e, s

2
e) , (9)

see Fig. 2. Here we have denoted by 〈e〉 the set of vertices whose basis functions are
nonzero in element e, and Bea(s1e, s

2
e) corresponds to the contribution of the basis

function Ba, within element e, parametrised by the barycentric coordinates of e. For
Loop subdivision surfaces, 〈e〉 is formed by the vertices in the triangular element e, and
all first neighbours of these vertices.

The discretisation of the surface (Eq. (8)) transforms the virtual work principle
(Eq. (2)) into an expression of the form

δW =
∑
a

Fa

({
Xb, Ẋb

}
b∈〈〈a〉〉

)
· δXa = 0 . (10)

Here Fa, which can be interpreted as the net force on vertex a, can be obtained by
substituting, in the differential virtual work, the analytical expressions for the variations
δgij and δCij in terms of δX =

∑
aBa(s1, s2)δXa (S1 Appendix 6). We have denoted

by 〈〈a〉〉 the set of vertices interacting with vertex a, which for Loop subdivision
surfaces is formed by its first, second and third ring of neighbours, see Fig. 2B. Since
Eq. (10) has to be satisfied for any δXa, the net forces on the vertices need to vanish

Fa

({
Xb, Ẋb

}
b∈〈〈a〉〉

)
= 0 . (11)

Through this discretisation, we transform the original continuum problem into a set of
coupled ordinary differential equations (ODEs). These ODEs need to be discretised in
time to be resolved computationally; in the following we denote by (n) the n−th time
step of the time evolution. Here we employ a semi-implicit Euler discretisation, where
terms arising from the effective bending energy and active tension are discretised in a
fully implicit manner, whereas viscous and frictional terms are treated explicitly. This
particular choice leads to a variational time-integrator that preserves the dissipative
structure of the dynamics for a homogeneous and time-independent active tension [38].
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This implies that the tension and bending moment tensors at step n are evaluated as:

t̂
(n)
ij = η

g
(n+1)
ij − g(n)ij

∆t(n)
+ γg

(n+1)
ij

+ κ
(
C(n+1)k

k − C0

)[1

2

(
C(n+1)k

k − C0

)
g
(n+1)
ij − 2C

(n+1)
ij

]
,

m̄
(n)
ij = κ

(
C(n+1)k

k − C0

)
g
(n+1)
ij ,

(12)

which can be written in terms of X
(n+1)
a and X

(n)
a through the relation between the

surface definition and the position of vertices, Eq. (8). To discretise the strain rate
tensor, we have used its relation with the rate of change of components of the metric
tensor (see S1 Appendix 2). Plugging these expressions in the differential virtual work
Eq. (2) allows us to transform Eq. (11) into a set of (nonlinear) algebraic equations (S1
Appendix 6)

Fa

({
X

(n)
b ,X

(n+1)
b

}
b∈〈〈a〉〉

, P (n+1)

)
= 0 , (13)

which can be solved using a Newton-Raphson method together with the discretisation of
the volume constraint, which is imposed through the nonlinear constraint

FP

(
X(n+1)
a

)
= V0 . (14)

Here P (n+1) is the intracellular pressure, playing the role of a Lagrange multiplier
imposing conservation of volume, see S1 Appendix 6.2. In this method, the solution is

updated by X
(n+1)
a ←X

(n+1)
a + ∆Xa, P (n+1) ← P (n+1) + ∆P (n+1) where ∆Xa and

∆P (n+1) satisfy the linearised equations

∂Fa

∂X
(n+1)
b

∆Xb = −Fa ,

∂Fa
∂P (n+1)

∆P (n+1) = −Fa
∂FP

∂X
(n+1)
a

∆X(n+1)
a = V0 − FP ,

(15)

until the norm of Fa and FP − V0 is below a given tolerance. Here ∂Fa/∂X
(n+1)
b ,

∂Fa/∂P
(n+1) , and ∂FP /∂X

(n+1)
a form the tangent matrix. The tangent matrix is

symmetric, in particular ∂FP /∂X
(n+1)
a = ∂Fa/∂P

(n+1). Because only vertices in 〈〈a〉〉
interact with a, this matrix is sparse and the linear system can be solved efficiently with
an iterative solver. Our computational framework makes use of Trilinos [58] to handle
all linear algebra objects, including sparse matrices, in parallel.

2.2 Forces arising from cell-cell interactions

Cell-cell adhesion modifies the previous equations by introducing interactions between
the vertices of interacting surfaces. We now consider a set of surfaces SI , I = 1 . . . N
describing N interacting cells. We assume that a pair of distinct cells I, J interact via
an effective energy:

FIJ [XI ,XJ ] =

∫
SI
dSI

∫
SJ
dSJϕ (|XI −XJ |) , (16)
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where ϕ is an effective adhesion potential. We discuss below a microscopic motivation
for this potential. The virtual work differential of the cell aggregate can then be written
as:

δW =
∑
I

δWI +
∑

cell pairs〈I,J〉

δFIJ , (17)

where the contribution δWI is given by Eq. (2) with infinitesimal displacement (δXI),
metric variation (δgI ij) and curvature variation (δCI ij) of cell I, and with the tension

tensor t̂ij , bending moment tensor m̄ij , and external force density excluding cell-cell
interaction forces f , given by the constitutive equations (3)-(7). Here and in the
following, we denote distinct cell pairs 〈I, J〉, such that in sums taken over 〈I, J〉, each
pair is counted only once.

Variations of the interaction free energy lead to

δFIJ =

∫
SI
dSI

∫
SJ
dSJ

{
ϕ′ (|XI −XJ |)

Xα
I −Xα

J

|XI −XJ |
(δXα

I − δXα
J )

+
1

2
ϕ (|XI −XJ |) (gijI δgI ij + gijJ δgJ ij)

}
.

(18)

Comparing this expression with Eq. (2), each cell interaction with a cell J is
contributing an additional external force density on cell I, fIJ , and an additional
isotropic tension to cell I, t̂ijIJ :

fIJ =−
∫
SJ
dSJ ϕ

′ (|XI −XJ |)
XI −XJ

|XI −XJ |
, (19)

t̂ijIJ =

∫
SJ
dSJ ϕ (|XI −XJ |) gijI . (20)

In addition, although this point is not directly apparent from Eq. (18), the variation
δFIJ can be written only in terms of normal displacements, provided that ϕ only
depends on |XI −XJ | (Eq. (53) in S1 Appendix 3). This shows that the net driving
force from the interaction potential, including the effect of both the force density fIJ
and tension t̂ijIJ , has a vanishing tangential component. Intuitively, the interaction
energy does not change if cells do not change shape, so it cannot generate a driving
force for tangential motion.

Following the same procedure as in the previous section, the condition δW = 0, with
δW defined in Eq. (17), gives rise to a set of (nonlinear) algebraic equations of the form

FI,a

({
X

(n)
J,b ,X

(n+1)
J,b

}
J,b∈〈〈I,a〉〉

, P
(n+1)
I

)
= 0 . (21)

Here 〈〈I, a〉〉 identifies the set of vertices (identified as the pair of labels J for the cell
considered and b for the vertex considered) that interact with vertex a in cell I.

The form of the effective energy (Eq. (16)) can be motivated microscopically by
considering an ensemble of stretchable linkers connecting pairs of surfaces, which quickly
equilibrate by binding and unbinding to cell surfaces, and whose free concentration is
set by contact with a reservoir. We characterise such an ensemble by a two-point
concentration field cIJ (XI ,XJ), which quantifies the number of bound linkers joining
the points XI and XJ per unit area of the first and second surfaces (thus, it has units
of the inverse of an area squared). The concentration cI denotes the concentration of
unbound, free linkers in cell I, with units of the inverse of an area. In the dilute limit,
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the free energy of this ensemble can be written as:

Fmicro =
∑
I

∫
SI
dSIkBTcI

(
log

cI
c0
− 1

)
+
∑
〈I,J〉

∫
SI
dSI

∫
SJ
dSJcIJ

[
kBT

(
log

cIJ
c20
− 1

)
+ φ (|XI −XJ |)

]
, (22)

where kB is the Boltzmann constant and T the temperature. The first sum corresponds
to the free energy of free linkers, described as an ideal solution in contact with a
reservoir imposing a chemical potential. This chemical potential determines the value of
c0. The second sum corresponds to the free energy of bound linkers, described as an
ideal solution, with an energy per linker dependent on the linker elongation, quantified
by the potential φ. The potential is defined such that the force sustained by a linker of
length r is −φ′(r). One can then show that if linkers are at equilibrium with respect to
surfaces I, J with a fixed shape, the free energy of interaction of two surfaces I, J is (S1
Appendix 5)

FIJ = −kBTc20
∫
SI
dSI

∫
SJ
dSJ exp

[
−φ (|XI −XJ |)

kBT

]
, (23)

which gives a relation between the microscopic behaviour of the linkers and the potential
ϕ introduced in Eq. (16). For the particular choice of φ(r) = φ0 + k(r− rmin)2/2 with k
the bond stiffness and rmin its reference length, one obtains:

ϕ(r) = −kBTc20 exp

(
− φ0
kBT

)
exp

[
−k(r − rmin)2

2kBT

]
, (24)

which corresponds to an inverted Gaussian with centre at the equilibrium length rmin,
width

√
kBT/k and depth D = kBTc

2
0 exp(−φ0/(kBT )).

This description however still does not take into account short range repulsion
between two cells surfaces. This could be taken into account by introducing a second
repulsive interaction potential between surfaces. Here we choose instead to introduce a
convenient effective potential of interaction, the Morse potential

ϕMorse(r) = D

{[
1− exp

(
rmin − r

l

)]2
− 1

}
, (25)

which like the interaction potential in Eq. (23), vanishes for r →∞, has a minimum at
r = rmin with minimum value −D, and is also peaked around its minimum with
characteristic length l. In addition, for l� rmin it exhibits a sharp short-range
repulsion.

Although ϕMorse(r) decays with r rapidly, it is convenient to have a strict cut-off on
its range, to limit interacting vertices of the meshes. Therefore, we further multiply
ϕMorse(r) by a smooth step function:

ϕ(r) = ϕMorse(r)w(r; rmin, rmin + 3l) . (26)

where

w(r; r1, r2) =


1 if r ≤ r1 ,(
r2−r
r2−r1

)3 [
6
(
r2−r
r2−r1

)2
− 15

(
r2−r
r2−r1

)
+ 10

]
if r1 < r < r2 ,

0 if r ≥ r2 .

(27)

This ensures that the potential ϕ(r) goes to zero exactly at a distance rmin + 3l with
first and second order continuous derivatives; a convenient property to solve numerically
the non-linear equations (Eq. (21)).
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2.3 Surface reparametrisation

The method discussed in the previous sections is based on a Lagrangian scheme, such
that a node of the mesh flows with the material particles of the interface. This, however,
can lead to large in-plane distortions, notably if surface tension gradients generate
in-plane flows [38,47]. To compensate for the resulting mesh distortion, we describe
here a reparametrisation method, in the spirit of Refs. [56, 57]. In this method, vertices
of the control mesh move tangentially to the surface to minimise an effective mesh
quality energy. We stress that this step does not bear any physical meaning. Here we
discuss again a single cell. Given the mesh of a cell, we define the energy

Fmesh

(
{Xa}Na=1

)
=
∑
e

f(Ie, Je) , (28)

where the sum is performed over the triangles of the control mesh, and

Ie =

√
3

2
· l

2
e1 + l2e2 + l2e3

Ae
, Je =

√
Ae
〈A〉

, (29)

where Ae is the area of the triangle e and le1, le2, le3 its side lengths. Ie and Je
represent the invariants (trace and square root of the determinant) of the Cauchy-Green
deformation tensor [59] assuming a reference equilateral triangle of size
〈A〉 =

∑
eAe/Ne, where the sum is taken over the Ne triangles of a meshed surface. To

specify the free energy f , we use the Neohookean energy
f(Ie, Je) = µIe + λ(Je − 1)2 [59]. Note that we define this energy on the mesh rather
than on S. We want to minimise Eq. (28), but with the restriction that the cell shape S
does not change, so that this operation corresponds to a surface reparametrisation
without surface deformation. For this, we evolve the position of the vertices of the mesh
according to velocities Ẋa. These velocities are obtained by introducing a continuous
velocity field on the surface v(s1, s2) =

∑
a ẊaBa(s1, s2), and by solving the following

equations for the vertices velocities:

∂Fmesh

∂Xα
a

+

∫
S

[vα + pnα]BadS = 0 , (30)∫
S
vαnαBadS = 0 , (31)

where p(s1, s2) =
∑
a paBa(s1, s2) plays the role of a normal pressure, here a field

enforcing the condition that the normal flow vanishes in a weak sense, Eq. (31). This
leads to the relaxation of the free energy Fmesh, with vertices constrained to the shape
of S, where the constraint is enforced weakly, i.e. in a finite element sense. In practice,
this reparametrisation step is performed after a number of steps of the physical
evolution of the cell surfaces, and we stop this mesh improvement dynamics when
|∂Fmesh/∂X

α
a |∞ = maxa(|∂Fmesh/∂X

α
a |) is smaller than a given tolerance.

3 Results

We now discuss applications of the interacting active surface framework. We first
consider flows in a single spherical cell driven by gradient of cortical tension, a set-up
which allows to compare simulation results to an analytical solution. We then examine
the shape of the simplest multicellular aggregate, a doublet formed by two cells, when
the two participating cells have equal or different tensions. Next, we consider an
aggregate of cells assembled in a planar configuration, recapitulating the organisation of
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Fig 3. Single cell dynamics and convergence of the numerical framework. (A) An
inhomogeneous pattern of active surface tension γ is imposed on a spherical surface. (B)
Analytically computed velocity field generated by the active tension profile in A. The
velocity field is decomposed into its normal (colormap) and tangential (arrows)
components. (C) Numerical solution for the velocity profile generated by the active
tension profile in A. (D) Discretisation error, evaluated here in terms of the L2 norm of
the difference between the analytical and numerical solutions for the velocity, as a
function of the average mesh size h and for κ̃ = κ/(γ̄`2) = 0 (blue), κ̃ = 0.1 (orange)
and κ̃ = 1 (green). Other parameters are ξ`2/η = 4, C0` = 1.

a small epithelial island. Finally, we introduce cell divisions in our framework and
simulate the growth of a three-dimensional cell aggregate from a single cell. In the
following we introduce a reference length scale ` = (3V ∗/(4π))

1
3 which corresponds to

cell radius of a spherical cell, a reference surface tension γ̄, and a reference time scale
τ = η/γ̄, which corresponds to the characteristic time scale of cortical flows. We use
these reference quantities for normalisation of other quantities.

3.1 Single cell: convergence with mesh size

We first consider flows driven by gradients of active tension in a single cell. This allows
us to test the convergence of the numerical method for the dynamics of a single
spherical cell, since we can compare the velocity field resulting from the method
discretisation to an analytical solution using spherical harmonics. We consider a pattern
of surface tension on a spherical surface of radius `, given by

γ =

∞∑
A=0

A∑
a=−A

γAaY Aa , (32)

where Y Aa is the spherical harmonic of degree A and order a. The volume enclosed by
the surface is assumed to be subjected to a uniform pressure difference P . The resulting
velocity field can then be written as (S1 Appendix 7)

v = (∂iφ) ei + vnn , (33)
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where the functions φ and vn can also be expanded in spherical harmonics,
φ =

∑∞
A=0

∑A
a=−A φ

AaY Aa , vn =
∑∞
A=0

∑A
a=−A v

Aa
n Y Aa , and the coefficients read:

φAa =
γAa ξ`

4

4η2

A(A+ 1)(1 + ξ`2

2η ) + (2 + ξ`2

2η )( ξ`
2

2η − 1)
, A > 0 , (34)

vAan =
1(

2 + ξ`2

2η

)
`

[
A(A+ 1)φAa − `2

η
γAa +

√
4π`3

2η
δA0 (P`+ κ(2/`− C0)C0)

]
.

(35)

In Fig. 3, we consider flows resulting from a surface tension profile given by the
coefficients γ00 = 2

√
πγ̄`, γAa = γ̄`a2/A2 if 1 < A ≤ 4 and γAa = 0 for A > 4, and

from the imposed inner pressure P = 2γ̄/` (Fig. 3A). We obtain the velocity field
analytically (v∗, Fig. 3B) and numerically (v, Fig. 3C), for different mesh sizes. We

then compute the L2 norm of the error v − v∗, i.e. L2(|v − v∗|) =
√∫
S |v − v∗|2dS,

with respect to the L2 norm of v∗, L2(|v∗|) =
√∫
S |v∗|2dS. We find an excellent

agreement between the exact and numerically obtained velocity field (Fig. 3B-D). The
corresponding error scales with (h/`)2, where h is the average mesh size, in line with
the reported convergence rate of subdivision surfaces for other systems of partial
differential equations [60] (Fig. 3D).

3.2 Shape and dynamics of an adhering cell doublet

We now discuss the equilibrium shape of an adhering cell doublet. In this and the
following sections, the cell pressure difference PI is imposed as a Lagrange multiplier
enforcing the condition VI = V0, with VI the cell volume and V0 = 4

3π`
3 a reference

volume, and we assume that C0 = 0. With these choices, 5 normalised, non-dimensional
parameters have to be specified for each simulation: ξ̃ = ξ`2/η, l̃ = l/`, r̃min = rmin/`,
D̃ = Drminl/γ̄, and κ̃ = κ/(γ̄`2).

In the following we set ξ̃ = 10−3 so that the effect of friction is small. A cadherin
bond has a typical length ∼15-30 nm [61] and a typical actomyosin cortex thickness is
200nm [62], both much smaller than the typical radius of a cell, ∼ from a few to tens of
µm. Therefore, in the interaction of potential of cell surface we take r̃min, l̃� 1. For
simplicity, in the following we constrain r̃min = 3l̃. We typically choose values
r̃min = 0.06, l̃ = 0.02 which for a cell radius of 5µm, correspond to rmin = 300nm and
l = 100nm.

We note that if the reference cell volume V0 is constant, the system can be viewed as
a generalised gradient flow minimising the net free energy
F =

∑
I

∫
SI

(
γ + κ(C i

i )2/2
)
dSI +

∑
〈I,J〉 FIJ , subjected to the constraint V = V0,

where the first term represents an effective energy for the active tension γ and FIJ is
defined in Eq. (16). We thus expect the system to eventually reach an equilibrium state
with vanishing cortical flows.

We first analyse the behaviour of a doublet of identical cells. We initialise the
simulation by putting two spherical cells close to each other, such that they are within
the interaction range of the potential ϕ(r) (Eq. (26)) without touching. As expected,
after an initial transient and contact growth, the doublet reaches an equilibrium shape
(Fig. 4A-B). Increasing the relative adhesion strength D̃ leads to an increasing adhesion
patch and a lower cell pressure (Fig. 4C-D and S2 Fig. B). The value of the normalised
distance l̃ modulates the distance between the two cells (Fig. 4E). For D̃ beyond a
threshold which depends on r̃min and l̃, the adhesion patch develops a buckling
instability. We found that this instability eventually leads to self-intersection of the
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Fig 4. Dynamics and steady-state shape of a cell doublet. (A) Normalised area of
contact as a function of time (κ̃ = 10−2, l̃ = 0.04). (B) Snapshots of deforming doublet
at times indicated in (A), with the cell surface velocity field superimposed. (C) Coloured
lines: ratio of contact surface area Acontact to cell surface area A, for simulations with
different values of l̃ and κ̃. Black dotted line: theoretical approximation valid in the
limit of κ̃→ 0, l̃→ 0, r̃min → 0. (D) Snapshots of doublet equilibrium shape for
increasing adhesion strength; different parameters in (D1)-(D3) correspond to points
labelled in C. (E) Comparison of a slice for the different simulations, with values of l̃
and κ̃ indicate in C, and D̃ = 0.14. The value of κ̃ affects the shape smoothness of the
edge of the adhesion patch. (F) Convergence of the method evaluated by computing the
inner cell pressure P for different average mesh sizes h, and comparing the results with
a simulation with h/` ≈ 2 · 10−2 (finer). For each h, we compute a box plot using
different values of D̃ and fixed κ̃ = 10−2, l̃ = 0.02. (G) Schematic of adhering doublet,
with different active tensions γ1 and γ2 for each cell. (H) Position of the cell centre of
mass X1 and X2, as a function of active tension asymmetry between the two adhering
cells, α = (γ1 − γ2)/(γ1 + γ2), where γ1 and γ2 are the surface tensions of the two cells.
Beyond α = 0.69, the cell with lowest tension completely engulfs the one with highest
tension. (I) Snapshots of doublet equilibrium shape, clipped by a plane passing by the
line joining the cell centres, for increasing difference of active surface tension;
corresponding to points labelled in H. In H, I: D̃ = 0.072, κ̃ = 10−2, l̃ = 0.04.
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computational mesh, as there is no energy contribution in our framework preventing
such self-intersection (S2 Fig. A). Varying the bending modulus κ̃, but maintaining
relatively small values (κ̃ ≤ 10−2), we find slightly smoother shapes at the boundary of
the adhesion patch as well as a slight modulation of the threshold for buckling
instability of the contact zone, with larger κ̃ leading to higher stability (Figs. 4C,E).

To interpret these results, we turn to an approximate analysis of the shape of a
doublet. Assuming a small bending rigidity κ̃� 1, we approximate the cell doublet by
two spherical caps of height hc and base of radius rc, forming an adhesion patch where
the cells are separated by a distance d (Fig. 4E). The effective free energy of such a
doublet configuration can then be written as

F(rc, hc, d, P ) ≈ 2γ̄π(2r2c + h2c) + πr2cζ(d)− 2P (V − V0) , (36)

where V = πhc(3r
2
c + h2c)/6 is the volume of one cell, P is the cell pressure, and ζ(d) an

effective surface tension at the contact arising from cell-cell adhesion. For a sufficiently
large patch compared to the interaction distances rmin, and l, the effective surface
tension can be approximated as (S1 Appendix 8):

ζ(d) =

∫ ∞
0

rdr ϕ(
√
r2 + d2) , (37)

which can be evaluated numerically for a given potential ϕ. Minimising the effective
free energy (36), one obtains equilibrium values r∗c , h∗c , d

∗, P ∗ (S1 Appendix 8), which
depend on the effective surface tension of a cell at the contact:

γl = γ̄

(
1− 1

2
β
(rmin

l

)
D̃

)
, (38)

where the surface tension of the whole interface is 2γl. Here, we have introduced a
numerical function β( rmin

l ), whose functional form depends on the potential ϕ(r). For
the value of rmin/l chosen here, β ' 10.7. When the net tension at the contact 2γl

becomes negative, for

D̃ =
Drminl

γ̄
>

2

β
' 0.187 , (39)

we expect the system to develop a buckling instability. Indeed, the corresponding
threshold for buckling is well predicted by the simulation with smallest l/` and bending
modulus κ (Fig. 4C). Before the buckling instability, the ratio between the contact area
and the cell surface area as well as the cell pressure P ∗ are well predicted by the
approximate analysis, which become more accurate as κ̃, l̃→ 0 (Fig. 4C and S2 Fig. B).

To further check the numerical method, we analyse the convergence of the
intracellular pressure P as a function of the mesh size h, by comparing the pressure
value P obtained at different values of h and D̃ (for a fixed l̃ = 0.02) with a simulation
with a fine mesh h/` ≈ 2 · 10−2 (Fig. 4F). We observe that, on average, errors converge
as ∼ h3.

Finally, we examine an asymmetric doublet system where cells have different
tensions γ1 and γ2 (Fig. 4G-I). The corresponding equilibrium state has been
considered previously (Ref. [63] and references therein). Fixing a relatively low value of
D̃ = 0.072, we change the ratio α = (γ1 − γ2)/(γ1 + γ2). As expected from previous
studies, we observe that the cell with lowest tension progressively engulfs the cell with
highest tension as the ratio α is increased. As a result, their centre of masses approach
each other for increasing values of α (Fig. 4H-I). In our numerical simulations, beyond
α ' 0.69, the cell with lowest tension self-intersects before completely engulfing the one
with highest tension (S2 Fig. C).
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3.3 Epithelial monolayer

We now discuss simulations of aggregates containing a larger number of cells. We start
by considering a sheet of cells with free boundary conditions, intended to resemble the
organisation of a simple epithelial island. To obtain an initial condition for such a sheet,
spherical cells with homogeneous active tension γ̄ are positioned with their centres on a
6x6 hexagonal lattice with side s = 2`+ rmin + l. We then let the system relax to its
equilibrium state, varying the adhesion parameter D̃, keeping its value below the
instability threshold identified in the doublet analysis. As the adhesion parameter D̃ is
increased, the cellular shapes progressively deviate from loosely adhering spheres to
packed columnar cells (Fig. 5A-B). The reduced volume v = 6

√
πV/A3/2 with V the cell

volume and A its surface area, a measure of the deviation of the cell shape from a
sphere with v = 1 being a sphere, is close to 1 for small D̃ and then decreases (Fig. 5B).

We compare the simulation results with a theoretical prediction from a 3D vertex
model on a perfect hexagonal lattice, i.e. formed by uniform hexagonal prisms with
height hc and side length a (Figs. 5C-D). We consider that cells are subjected to an
apico-basal tension γab = γ̄, lateral tension γl = γ̄(1− βD̃/2), and an inner pressure P
enforcing the cell volume to be equal to the reference volume V0 = 4π`3/3. We then
write the corresponding effective free energy for a single cell in the tissue (S1 Appendix
9):

F(a, hc, P ) = 2γabAab + γlAl − P (V − V0) . (40)

For a hexagonal prism, Aab = 3
√

3a2/2 the apical and basal surface area, Al = 6ahc the
lateral surface area, and the cell volume is V = 3

√
3a2hc/2. Minimising the effective

free energy, we obtain the equilibrium ratio Aab/Al which can be compared to
simulation results for the 16 inner cells (Fig. 5E). This area ratio is related to the cell
aspect ratio, with smaller values corresponding to more columnar cells and larger values
corresponding to more squamous cells. Although this simplified model captures the
qualitative trend of the cell shape dependency on cell adhesion, it underestimates the
simulated area ratio. We now consider alternative simplified descriptions where (i) each
cell is considered as a cylinder connected to two spherical caps, or (ii) use an
approximation where the surface area and volume of the cell is defined through the
union of a hexagonal prism and two spherical caps (S1 Appendix 9). These choices
better capture the actual simulated shapes (Fig. 5E), showing that taking the apical
and basal curvatures play a significant role in the equilibrium cell shape. These refined
models however still underestimate the area ratio Aab/Al. This can arise from the fact
that these simplified descriptions do not take into account the surface bending modulus,
the tissue-scale deformation due to the system finite size and free boundary conditions,
and consider approximate cell shapes.

In addition, we noticed that for higher values of D̃, the cellular shapes appear more
heterogeneous (Fig. 5A). This heterogeneity appears to be linked to an asymmetry in
the cell apical and basal surface areas (see zoomed area comparing how lateral faces
look for small D̃ = 0.07 and for larger D̃ = 0.15 in Fig. 5A). To verify this, we introduce
a polar order parameter for the shape of cell I (Fig. 5F):

PI =
1

SI

∫
SI
dSI X − 1

VI

∫
VI
dVI X, (41)

with VI the volumetric domain enclosed by SI , and SI and VI the surface area and
volume of cell I. We calculate the order parameter for all cells in the simulation and
consider its projection on the direction orthogonal to the plane containing the initial cell
centers, z. We observe that, with increasing adhesion strength D̃, the average projected
cell polarity does not clearly deviate from zero, 〈Pz〉 ' 0, but the average of the
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Fig 5. (A) Simulation results (equilibrium shapes) for a planar sheet for different
values of the adhesion parameter D̃ = Drminl/γ̄ (κ̃ = 10−2, l̃ = 0.04). (B) Reduced
volume v as a function of D̃. (C) Schematic for the measured apical and basal cell
surface area Aab, lateral surface area Al, side length a and cell thickness hc. (D) Results
are compared to a simple 3D vertex model with a lateral surface tension γl and apical
and basal surface tension γab. (E) Box plots: ratio of apico-basal to lateral surface area
2Aab/Al for the center cells, as a function of the adhesion parameter D̃. Dashed black,
blue and green lines: prediction of simplified theories describing the cell shape as an
hexagonal prism, a cylinder with two spherical caps, and the union of a hexagonal prism
with two spherical caps. Inset: cellular aspect ratio a/hc, with a measuring the side of
the hexagonal face and hc the thickness of the sheet, as a function of D̃. Here

a =
√

2Aab/(3
√

3) and h = Al/(6a). (F) Schematic for the polar vector P

characterising the asymmetry of the cell shape. (G) Box plot for Pz (blue) and |Pz|
(red). As adhesion increases, cells deform asymmetrically in the direction orthogonal to
the planar sheet.
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Fig 6. Growth of small cell aggregates, driven by synchronous cell divisions and cell
volume increase (D̃ = 0.15, κ̃ = 10−2, ˜̀= 0.04). (A) Each cell doubles its volume
between birth and division, over a cell cycle time tD. Cell division is introduced by
splitting the mother cell with a plane passing through the cell centre, and generating
two daughter cells separated by a distance d∗ (d∗/2 from the division plane). (B-D)
Simulation results for two values of the ratio τ/tD. (B): Largest centre-to-centre cell
distance max〈I,J〉RIJ , as a function of time. Jumps correspond to cell division events.
(C) Average reduced volume 〈v〉 as a function of time. (D) Snapshots of simulations of
two growing aggregates.

absolute value of the projected cell polarity, 〈|Pz|〉, strongly increases (Fig. 5G). This
suggests that at high enough adhesion, cells adopt polarised apico-basal shapes
orthogonal to the plane of the tissue, with no consistent overall shape polarisation
orthogonal to the tissue (Fig. 5A). Possibly, such a spatial arrangement favours larger
contact areas, which is beneficial at large adhesion.

3.4 Adding cell divisions: growth of an organoid

We now discuss simulations modelling the growth of a cell aggregate from a single cell,
for which we introduce cell divisions in our framework. When a cell divides, the mother
cell is replaced by two daughter cells as follows: a randomly oriented plane passing
through the mother cell centre is selected, splitting the mother cell in two parts. The
two daughter cells are then separated by this plane and simply fill the original shape of
the mother, except for a small region that separates the daughter cells by a distance d∗,
perpendicular to the division plane (Fig. 6A). To determine timepoints of cell division,
each cell is assigned a cell cycle time tD, which we take equal for all cells. We assume
that in between divisions, cell volume follows a linear growth law V̇ I = V0/tD, where V0
is the volume of the cell at its birth. This effectively leads to cells doubling their volume
during their lifetime - we note however that a small volume loss occurs at division due
to the initial separation of the daughter cells by a distance d∗ (Fig. 6A). At each time
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point, cell volume is imposed through the Lagrange multiplier PI .
We then simulate the growth of an aggregate starting from a single cell (Fig. 6B-D

and S3-4 videos). The dynamics of the growing aggregate strongly depends on τ/tD,
which measures the ratio between a characteristic time scale of cell shape relaxation,
and the cell cycle time. For smaller values of τ/tD, the growing aggregate is more
compact (Fig. 6B), cells have a smaller reduced volume and have therefore shapes
further away from spheres (Fig. 6C). Here, the aggregate compactness is measured by
calculating the maximum distance between cell centres (Fig. 6B). These observations
indicate that the shape of a cell aggregate can strongly depend on a competition
between its growth rate and internal mechanical relaxation times.

4 Discussion

The framework of interacting active surfaces introduced here is a novel method to study
the mechanics of cell aggregates such as early developing embryos or organoids, and
opens the door to their systematic modelling and simulation. We have demonstrated
here that it can be used to study in detail the shape of adhering cell doublets, simple
epithelia, as well as growing cellular aggregates. Our method is well-suited to capture
the mechanics of tissues and organoids connecting it to cell level processes such as
cortical flows, cortical tension and cellular adhesion in the organisation of a cellular
aggregate.

In this study we have restricted ourselves to relatively simple constitutive equations
for the tension and bending moment tensors (Eqs. (3)), and we have considered
situations with a uniform and constant surface tension within each cell. Our method is
based on using the virtual work principle (Eq. (2)), a very general statement of force
and torque balance for a surface, to obtain a set of algebraic equations for the cell
surface described with finite elements. As such it is versatile and we expect that more
complex constitutive equations, corresponding to more detailed physical descriptions of
the cell surface, can be easily introduced in our description. We now discuss some of
these possible extensions of our framework.

First, we have not included here apico-basal polarity, an axis of cell organisation
which results from a spatially segregated protein distribution and inhomogeneous
cytoskeletal structures [64]. To take this into account, one could introduce a polarity
field in each cell and consider an active tension γ on the cell surface whose value at each
point depends on the polarity field orientation. This could be used to introduce, for
instance, differences in apical, basal and lateral surface tension which are taken into
account in 3D vertex models [19].

It would be natural to introduce a concentration field on the cell surface, describing
a regulator of the cortical tension, such as myosin concentration. At the level of a single
surface, such coupling between cortical flows and its regulator can give rise to pattern
formation, spontaneous symmetry breaking and shape oscillation [37,65,66]. The
dynamics of the concentration per unit area, c, of such a regulator can be obtained from
the balance equation on the surface:

Dtc+ cvii +∇ · j = r, (42)

where Dtc is the material derivative of c (∂tc in a Lagrangian description), j is the flux
of c relative to the centre of mass, and r is a reaction rate. A natural choice for the flux
would be j = −D∇c to represent diffusion according to Fick’s law. A natural choice for
the reaction rate would be r = kon − koffc for turnover dynamics, with target
concentration c0 = kon/koff and typical turnover time τ = k−1off . The discretisation of
such fields can be easily introduced in our framework, following the methods detailed
in [38,67].
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Importantly, the model introduced here is based on an interaction potential between
cells, which can be motivated microscopically from a description of cell-cell linkers that
equilibrate quickly to their Boltzmann distribution, with free linkers on the surface in
contact with a reservoir imposing a constant concentration. From a computational
perspective, the exact integration of the interaction potential requires the computation
of double integrals, which have a large computational cost. Alternatively, one could
approximate the double integrals further in the limit l̃, r̃min � 1 by considering the
interaction of each point on surface SI only with its closest point projection on SJ ,
following classical numerical approaches for the adhesion between interfaces (Ref. [68]
and references therein).

On the other hand, the interplay of adhesive cell-cell linkers such as E-cadherin with
cortical dynamics also plays an important role in orchestrating cell adhesion [69]. Unlike
the specific adhesion of solid interfaces, cell-cell adhesion dynamics involves a complex
interplay between the diffusion, advection and binding dynamics of linkers [70]. Notably,
E-cadherin junctions have been shown to be mechanosensitive [71] and to act to
regulate the actomyosin levels at junctions [72]. To take these effects into account, an
explicit description of E-cadherin concentration on the cell surface might be required.
Thus, an extension of our model could introduce explicitly two-point density fields
cIJ(X1,X2) representing the concentration of bound linkers between cells I and J , as
well as a concentration field of free linkers on each cell cI . Alternatively, one could
introduce cell-cell adhesion by considering a finite number of explicitely described
individual linkers [73].

Our model does not account for the friction generated by relative surface flows
between cells that adhere to each other, which is likely to play an important role during
cell rearrangements. The effective friction stemming from an ensemble of transiently
binding and unbinding linkers can be modelled effectively with a friction coefficient
motivated by microscopic models such as a Lacker-Peskin model [74], which lead to
predictions of force-velocity relations which depend on whether linkers are
force-sensitive, e.g. slip or catch bonds [75,76]. One could include these terms
systematically in our finite element discretisation following the ideas in [77,78].

In its current version and with these additions, we hope that the interacting active
surface framework will be a useful tool to investigate the mechanics and
self-organisation of cellular aggregates.
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