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Summary 
 
Walking is a fundamental mode of locomotion, yet its neural correlates are unknown at brain-
wide scale in any animal. We use volumetric two-photon imaging to map neural activity 
associated with walking across the entire brain of Drosophila. We detect locomotor signals in 
approximately 40% of the brain, identify a global signal associated with the transition from rest 
to walking, and define clustered neural signals selectively associated with changes in forward or 
angular velocity. These networks span functionally diverse brain regions, and include regions 
that have not been previously linked to locomotion. We also identify time-varying trajectories of 
neural activity that anticipate future movements, and that represent sequential engagement of 
clusters of neurons with different behavioral selectivity. These motor maps suggest a dynamical 
systems framework for constructing walking maneuvers reminiscent of models of forelimb 
reaching in primates and set a foundation for understanding how local circuits interact across 
large-scale networks. 
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Introduction 
 Topographic maps have provided fundamental insights into the functional organization of 
the brain. Such maps of neural activity have revealed spatial order in sensory systems, motor 
control, and cognitive processing in many different animals (Kaas 1997; Leyton and Sherrington 
1917; Patel et al. 2014). The existence of these functional maps reflects the fact that neural 
processing is often distributed across large populations of cells whose spatial arrangements 
reveal coding principles of the system. For example, functional maps of motor cortex in primates 
have revealed how movements of different limbs are spatially segregated, a necessary step to 
revealing how specific movement trajectories are encoded by the dynamics of neural populations 
(Churchland et al., 2012; Graziano and Aflalo, 2007; Penfield and Boldrey, 1937; Shenoy et al., 
2013). Many other brain regions contain signatures of behavioral movements such as walking 
(Ferreira-Pinto et al., 2018; Grillner and El Manira, 2020), and yet the brain-wide functional 
topography of walking behavior has not been described in any animal. 
 

Walking subserves a diverse array of behavioral goals in many animals, and must be 
shaped by both sensory inputs and internal states. Despite its central role, locomotor control is 
incompletely understood (Merel et al., 2019; Schwartz et al., 2016; Straka et al., 2018). In 
vertebrates, many brain regions play key roles in shaping locomotion, including the basal 
ganglia, brainstem, cerebellum, motor cortex, and spinal cord (Ferreira-Pinto et al., 2018; 
Grillner and El Manira, 2020; Kiehn and Dougherty, 2013). More recently, broad swaths of both 
sensory and non-sensory cortex have been shown to contain motor-related signals (Clancy et al., 
2019; Kaplan and Zimmer, 2020; Karadimas et al., 2020; Musall et al., 2019; Stringer et al., 
2019; Zatka-Haas et al., 2021). In addition, brain-wide signatures of neural activity associated 
with swimming and crawling have been measured in larval zebrafish, larval Drosophila, and C. 
elegans (Ahrens et al., 2012; Chen et al., 2018; Dunn et al., 2016; Hallinen et al., 2021; Kato et 
al., 2015; Kim et al., 2017; Mu et al., 2020; Naumann et al., 2016; Nguyena et al., 2015; Susoy et 
al., 2021). Moreover, recent work has described whole-brain imaging techniques in adult flies in 
the context of state dependent changes in activity and metabolism (Aimon et al., 2019; Mann et 
al., 2017; Mann et al., 2021; Schaffer et al., 2021; Tainton-Heap et al., 2021), as well as sensory 
evoked responses (Harris et al., 2015; Münch et al., 2021; Pacheco et al., 2021). Given the 
accumulating evidence across species for widespread distribution of motor signatures, directly 
measuring this topography is likely to provide insight into how the brain produces walking 
behavior. 
 

Insects have long provided valuable insights into the biomechanics and neural control of 
locomotion (Cruse et al., 2009; Hughes, 1952; Manton, 1973; Wilson, 1966). More recently, the 
scalability of Drosophila behavioral measurements has allowed a variety of quantitative 
descriptions of the structure of walking dynamics in flies (Berman et al., 2014; Branson et al., 
2009; Chun et al., 2021; DeAngelis et al., 2019; Kain et al., 2013; Katsov et al., 2017; Mendes et 
al., 2013; Strauss and Heisenberg, 1990). Furthermore, the majority of descending neurons 
(DNs) that relay movement commands from the central brain to the ventral nerve cord 
(Drosophila’s equivalent of a spinal cord) have been identified (Hsu and Bhandawat, 2016; 
Namiki et al., 2018). Functional measurements and perturbations of these populations have 
identified cell types that can specifically induce forward and backward walking (Bidaye et al., 
2014; Bidaye et al., 2020; Cande et al., 2018; Rayshubskiy et al., 2020). Moreover, 
characterization of circuits that relay visual information to DNs has provided insights into how 
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vision can monitor self-motion and guide steering control (Suver et al., 2016). In addition, 
targeted studies of specific visual interneurons have revealed how efference-copy signals are 
relayed into the visual system to modulate processing (Chiappe et al., 2010; Cruz et al., 2021; 
Fujiwara et al., 2017; Kim et al., 2015; Kim et al., 2017; Maimon et al., 2010; Suver et al., 2012). 
Finally, navigation related neural signals in the central complex, as well as associative learning 
signals in the mushroom body, are also modulated by walking (Cohn et al., 2015; Fisher et al., 
2019; Weir and Dickinson, 2015; Zolin et al., 2021). However, how this cornucopia of motor 
signals might be spatially organized across and within brain regions, and coordinated in time as 
walking occurs, is unknown.  
 

Here, we develop a volumetric two-photon imaging and analysis pipeline to extract 
neural activity from across the entire Drosophila brain as the animal behaves. We then describe a 
volumetric registration technique that allows signals to be quantitatively compared across brain 
regions and individuals. Using this method, we explore the brain-wide neural dynamics of 
walking. We discover that locomotor signals are widespread, extending throughout 
approximately 40% of the brain volume, and account for the dominant dimensions of neural 
activity. We discern both a global state change signal that defines the transition between moving 
and not moving, as well as particular brain regions that contain information specific to the 
forward or rotational velocity of the fly. Moreover, we observe activity in some brain regions 
that precedes changes in velocity by at least 300 milliseconds, while activity in other regions lags 
behind behavior by more than a second.  The temporal evolution of this activity thus describes a 
stereotyped pattern of recruitment of specific brain regions during walking. Combining the fine 
spatial structure of the topographic map of neural selectivity within individual brain regions with 
its temporal sequence of activation suggests a dynamical systems framework for relating neural 
activity to specific behavioral maneuvers. Taken together, these studies identify a brain-wide 
spatiotemporal topography of walking, setting a critical foundation for relating signals in 
specific, genetically targeted circuits and cell types to global dynamics. 
 

Results 
A novel method for whole-brain imaging in walking Drosophila. 

We sought to map neural activity associated with walking behavior across the Drosophila 
brain, to quantitatively compare these signals across individuals, and to develop mathematical 
models that relate neural and behavioral measurements. To do this we developed a pipeline for 
measuring neural activity across the whole volume of the brain while recording the animal’s 
locomotion in the dark (Figure 1A). We expressed two fluorescent indicators in all neurons: 
GCaMP6f to monitor neural activity, and myristylated-tdTomato as a structural marker (Chen et 
al., 2013; Pfeiffer et al., 2010). Flies were head-fixed and the posterior head cuticle was removed 
to expose the brain, including most of the optic lobe neuropils and the central brain (Figure S1). 
We then employed two-photon imaging with resonant scanning to achieve a volume imaging rate 
of 1.8 Hz, collecting approximately 1.6M voxels per volume, each occupying 2.6 x 2.6 x 5 µm. 
Signals from both fluorophores were acquired simultaneously. During each 30 minute imaging 
session the animal’s walking trajectory was measured by recording the rotations of an air-
suspended treadmill ball. At the end of each recording, we collected a high spatial resolution (0.6 
x 0.6 x 1 um/voxel) anatomical scan of the tdTomato signal. These structural measurements 
allowed us to register every voxel of neural activity across individuals with high spatial 
accuracy. Because individual flies display non-linear anatomical differences, we iteratively 
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applied both affine alignment as well as a diffeomorphic warping algorithm employed in human 
fMRI (Advanced Normalization Tools, ANTs (Avants et al., 2009; Avants et al., 2011)) to 
produce a “mean” brain (Figure S1).  This process created a common space in which data from 
across all flies, and across all brain regions were well aligned (Figure 1B). To parse these data 
into anatomically defined brain regions, we registered a canonical atlas of labeled neuropils (Ito 
et al., 2014; Jenett et al., 2012) into our common space using a two-step process that combined 
ANTs with a neural network, SynthMorph, trained to generalize over contrast variance, as seen 
in this type of multimodal image registration problem (Hoffman et al., 2020). 
 

By registering all our data into a common space and concatenating the neural and 
behavioral signals across flies (and sessions), we created a unified dataset (the “superfly”) where 
1.6M voxels have each been sampled 30,456 times over the course of 4.5 hr and 9 individuals 
(Figure 1A). For each of these individuals, we sampled the movement of the ball as a proxy for 
walking at a temporal frequency of 50Hz. These measurements were then temporally smoothed 
and aligned with neural activity data from each voxel with a precision of approximately 5 ms 
(see Methods). The large number of temporal samples in our unified neural activity dataset, 
combined with these precise timestamps on the acquisition of each voxel relative to behavior, 
allowed us to construct temporal filters that relate neural activity to behavior across the dataset 
(Figure 1C). In most subsequent cases, we also reduced the number of features in the neural 
activity dataset by agglomerative clustering of neighboring voxels with similar responses to 
create “supervoxels” (Figure 1A). In the following analyses, we describe the relationship 
between neural activity across the brain and walking behavior using combinations of 
correlations, principal components, and temporal modeling. 
 
Neural encoding of velocity space is widespread across the brain 

In darkness, tethered flies spontaneously initiate bouts of walking activity composed of 
sequences of turns and straight runs (spanning seconds), separated by periods of quiescence and 
grooming (lasting tens of seconds). We reasoned that, under these conditions, neural activity 
might reveal a common pattern of spatiotemporal dynamics, including signals that initiate 
movement, execute specific maneuvers, and relay information about ongoing movement to 
sensory systems. To relate neural activity to behavior, we decomposed the walking trajectories of 
each fly in the dataset into forward velocity (VF) and rotational velocity (VR (right turn, 
clockwise),  and VL (left turn, counterclockwise)) (Figure 2A). Then, we calculated the 
correlation of each voxel’s neural activity with each of these three components (Figure 2B). To 
visualize the spatial structure of these correlations, we colored the correlation with each velocity 
component as an axis in red-green-blue (RGB) color space (Figure 2C). We observed that signals 
were widespread, with 39% of the brain volume correlating with at least one of the three 
behavioral variables (p<0.001, Bonferroni Corrected; Figure S2). VF correlations exhibited strong 
mirror symmetry across the midline, and consisted of voxels that correlated only to VF (15% 
brain volume) as well as voxels that correlated with multiple variables (20% brain volume). In 
contrast, VR and VL correlations were anti-symmetric, with high levels of correlation on the side 
of the brain that is ipsilateral to the direction of the turn, with significantly fewer correlated 
voxels on the contralateral side. In other words, turning to the left (counterclockwise) is strongly 
correlated with activity in the left hemisphere, and vice versa for a right turn. Most voxels that 
correlated with VR or VL also correlated with VF (20% brain volume), with relatively few 
correlating only with turning (4% brain volume). In all, 90% of brain voxels that correlated with 
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behavior displayed a tuning preference in velocity space, with only 10% of voxels responding 
indiscriminately to all velocity components. Taken together, these data argue for the presence of 
distributed neural signals that relate to specific velocity features of locomotion. 
 

We next wondered how these voxel correlations map onto the anatomical substructures of 
the brain. Visualizing individual slices through the volume along three orthogonal axes reveals 
spatially structured correlation patterns, spanning much of the central brain and optic lobes 
(Figure 2D; Figure S2). However, a 3D representation of this data proved challenging, given the 
intricate anatomy of the brain. In contrast, cutting the brain into its anatomically defined regions 
and visualizing them separately allowed the correlations to be visualized well, but the 
relationships between signals in neighboring neuropils was lost. We therefore split the brain into 
large regions and then took a maximum intensity projection through each substructure (Figure 
2E). This segmentation revealed that behaviorally correlated voxel signals were highly spatially 
structured, with some signals being restricted to specific anatomical regions, and others revealing 
additional structure in which specific layers or sub-regions of a given anatomical region display 
selective behavioral correlations. 
 

Although almost all neuropils contained signals that were correlated with behavior, their 
velocity preferences were highly non-uniform across brain regions (Figure 2E-I). To examine the 
structure of these voxel categories across each anatomical region, we next calculated the fraction 
of the volume of each anatomical region that was composed of each voxel category.  As 
expected, the central complex navigation and premotor region (including the Protocerebral 
Bridge (PB), Fan-shaped Body (FB), Ellipsoid Body (EB) and Nodulus (NO)) was well 
represented.  Similarly, areas that are associated with extensive innervation by descending 
neurons (DNs), and hence are likely involved in motor control, were also highly engaged, with 
strong signals in the Inferior Posterior Slope (IPS), Superior Posterior Slope (SPS), Vest (VES), 
Superior Medial Protocerebrum (SMP), and Superior Lateral Protocerebrum (SLP). Notably, 
however, other regions that also include significant descending neuron innervation are not 
strongly correlated with walking, suggesting that they may be predominantly engaged in 
controlling other motor behaviors.  Finally, we also observe significant behavioral signals in 
higher order sensory areas, including signals related to visual processing (the Anterior Optic 
Tubercle (AOTU), the Lobula (LO), and the Medulla), olfactory processing (Antenna Lobe (AL) 
and Lateral Horn (LH)), and auditory information (Antennal Mechanosensory and Motor Center 
(AMMC)). Finally, the associative learning center, the mushroom body (MB), is also strongly 
correlated with walking behavior.  Taken together, these data demonstrate that locomotor 
behavior is associated with changes in neural activity across navigation areas, motor areas, 
higher order sensory areas and association areas, revealing the extensive impact of movement on 
neural processing. 
 
Distinct topographic maps of locomotor signals exist in multiple brain regions  

 
This initial characterization revealed that signals associated with specific combinations of 

forward and angular locomotor velocities were differentially mapped across many brain areas 
(Figure 2D-I). For example, the Inferior Posterior Slope (IPS), the Anterior Optic Tubercle 
(AOTU) and the Vest (VES) have a significant fraction of their volumes occupied by the 
relatively rare signals associated only with angular velocity (“turning only”); the Mushroom 
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Body (MB) and Lateral Accessory Lobe (LAL) are dominated by the forward-and-turning type; 
and, the Superior Medial Procerebrum (SMP) and the Superior Intermediate Protocerebrum (SIP) 
had mostly the forward-only type. We also observed that although ipsilateral hemispheres were 
well-correlated with turning, there were also notable exceptions, most obviously within 
subregions of the Inferior Posterior Slope (IPS) and Lateral Accessory Lobe (LAL), in which 
contralateral signals were correlated with their respective turn direction. 
 

Given this rich distribution of voxel tuning properties, we next examined whether 
different voxel signals were spatially organized within each neuropil.  Taking slices through 
orthogonal planes of each neuropil, we observed clear spatial organization at the sub-neuropil 
scale (Figure 3; Figure S3). The Posterior Lateral Protocerebrum (PLP) contained an 
approximately 15 micron diameter column of voxels running along the dorsal-ventral axis which 
uniformly correlated with both forward and ipsilateral turning velocities (Figure 3A). The 
Inferior Posterior Slope (IPS) contained discrete compartments correlating with either left or 
right turns, and were anti-symmetric between hemispheres (Figure 3B). The Lobula (LO) 
displayed segregated bands of correlation, consistent with known anatomy, that had mixed 
selectivity for forward velocity and ipsilateral turning (Figure 3C). The Lateral Horn (LH) 
contained a dorsal-ventral split, with the dorsal half correlating with forward velocity, and the 
ventral half correlating with both forward velocity and ipsilateral turning (Figure 3D). The Fan-
shaped Body (FB) contained two distinct layers with identical velocity correlations (forward 
velocity and ipsilateral turning) (Figure 3E). The entire Protocerebral Bridge (PB) correlated 
with forward velocity, in addition to an overlaid alternating pattern of left and right turning 
correlations, matching known functional connectivity (Figure 3F) (Franconville et al., 2018; 
Green et al., 2017). The Nodulus (NO) was uniformly correlated with forward velocity, but 
contained distinct glomeruli that correlate with contralateral turning (Figure 3G). Similar to the 
IPS and the LH, the Lateral Accessory Lobe (LAL) contained distinct compartments, all 
correlated with forward velocity, but with the medial portion of the neuropil correlated with 
ipsilateral turns, and a lateral portion correlated with contralateral turns (Figure 3H). In 
summary, our experimental and analytical approach has revealed topographic maps containing 
extensive functional order at the sub-neuropil level, relating neural activity to specific changes in 
behavior. 
 
Neural activity in the central brain is highly predictive of locomotor velocity 

 
Our analysis of correlations between voxel activity and behavior considered each voxel 

independently.  We next sought to consider all voxels simultaneously in order to identify shared, 
common signals, and to use these signals to predict the structure of behavior. To accomplish this, 
we first reduced the number of features (corresponding to the number of voxels) by 
agglomerative clustering in which individual voxels were sequentially merged into 
“supervoxels” so as to minimize the variance of each cluster.  This clustering step also served to 
increase the signal to noise ratio (Figure S4). As an initial glimpse into the temporal structure of 
these data, we then performed Principal Component Analysis (PCA) on the full neuronal (but not 
behavioral) dataset (30,456 timepoints, 98,000 spatial supervoxels). 
 

This analysis revealed that the most significant dimensions of variation were highly 
structured (Figure 4A). To explore the relationship between the first three principal components 
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and behavior, we projected neural activity onto each of the eigenvectors to calculate their 
temporal signals, and then binned the signals in 2-D and 1-D velocity spaces (Figure 4B,C). 
Strikingly, these dimensions were highly structured by the relationship with behavior, as 
described by changes in forward and angular velocities. In particular, the value of PC1 was low 
when the fly was not moving and high otherwise, while PC2 increased with forward velocity but 
was invariant with respect to angular velocity, and PC3 encoded information about the sign of 
the angular velocity. To quantify this observation, we set a velocity threshold to approximate the 
transition from being stopped to being walking, and then calculated the correlation between each 
principal component and each velocity component, both below and above the threshold (Figure 
4C,D). As expected, the under-threshold correlations were high for PC1 and low for PC2 and 
PC3, while PC2 displayed the highest correlation for above-threshold forward velocity, and PC3 
showed opposite correlations to above-threshold left and right angular velocities. Consistent with 
these average correlations, similar relationships were observed when comparing the values of 
each PC overlaid with the corresponding behavioral variables in a single bout (Figure 4E). 
Finally, in addition to these first three PCs having distinct correlations with behavior, we 
observed that many other PCs were highly structured in velocity space (Figure S4). Thus, these 
data demonstrate that there are signatures of locomotor behavior that are widely shared across 
the brain.  
 

To test the relationship between these dimensions of neural activity and behavior, we 
built a linear model that used PCs as input variables and predicted forward and angular velocities 
as outputs. We first determined how many PCs were necessary to maximize prediction accuracy, 
and observed that model performance improved over the first 100 PCs used, before declining as 
additional PCs were incorporated (Figure 4F).  Notably, all three behavioral variables displayed 
comparable predictability on held-out test data, with average R2 values of approximately 0.3, a 
highly significant prediction capability for a model that generalized across flies (Figure 4G). 
Moreover, comparing model predictions on individual animals revealed that flies that moved less 
along a given velocity component were poorly predicted (R2 of approximately 0), while those 
that explored a velocity component more were well predicted (with R2 values up to 0.6) (Figure 
4H). Significantly, despite differences in prediction accuracy, the weights assigned to each PC 
for each fly, and for each behavior, were highly stereotyped such that each individual fly 
weighted the same dimension of neural activity comparably (Figure 4I).  Additionally, the 
weights assigned to the first three PCs were in line with our previous interpretations: PC1 was 
used to predict all velocity components, PC2 was predominantly used to predict forward 
velocity, and PC3 was used for left and right turning predictions, flipping sign between the two. 
Finally, at a qualitative level, the predicted velocity traces from these models closely tracked 
those seen in the behavioral measurements for both forward and angular velocities (Figure 
4J).  Taken together, these analyses demonstrate that we have identified a common neural 
activity space that predicts locomotor behavior across flies. 
 
Demixing the unique contribution of each velocity component to neural activity 
 

The structure of walking behavior produces correlated changes in forward and angular 
velocities over a wide range of timescales (Berman et al., 2014; Katsov et al., 2017). Such 
behavioral correlations can obfuscate the relationship between neural activity and a specific 
behavioral variable. To estimate the effect of such correlations, we built a linear model that 
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predicted neural activity in each voxel using four separate behavioral variables, namely a binary 
variable describing locomotor state (walking or stopped), forward velocity, and left and right 
angular velocities (see Methods).  Using this approach we distinguished between the variance of 
each voxel that could be explained by several behavior variables, versus the unique variance of 
the voxel that could be explained only by one specific variable. That is, we identified neural 
activity signals that could not be accounted for using any of the other three behavior variables, 
and was therefore unique, on a voxel by voxel basis. 
 

Using this approach, we reconstructed brainwide maps of the contributions of each voxel 
to each single variable trained separately, as well as of the unique contributions of each of the 
four behavioral variables, trained together (Figure 5A). This comparison revealed that the brain-
wide maps of unique contributions identified sparser subsets of voxels than the single variable 
models (Figure 5A). For example, while the single variable forward walking and locomotor state 
(stopped versus walking) maps were very similar, the maps created by demixing revealed that 
forward velocity was encoded by a spatially organized subset of voxels, while locomotor state 
was not encoded uniquely anywhere in the brain. 
 

As the unique contributions of forward velocity and left and right angular velocities 
revealed clearly distinct spatial networks, we wanted to more closely examine these functional 
regions and their tuning properties. To do this, we averaged neural activity across each of the 
functional brain regions, and plotted their relationships to each of the three behavioral variables 
(Figure 5B). As before, we set a velocity threshold to approximate the speed at which a fly 
transitions between walking and not walking. Then, we calculated the correlation between each 
functional region and each velocity component, separately for below and above the threshold 
(Figure 5C). Significantly, we found that all three regions were highly correlated when the fly 
was stopped (below the threshold), strongly arguing for a wide-spread increase in neural activity 
associated with the initiation of movement (Figure S5). Moreover, when moving (above the 
threshold), each brain region had a different response to each of the three velocity variables, and 
as expected, each region had strong correlations with only one behavioral velocity component. 
Overall, this analysis has allowed us to spatially define functional brain regions that relate to 
unique axes of velocity space. 
 

By visualizing these functional regions, we observed that both the correlation maps 
(Figure 2), and the PC maps (Figure 4), were very similar to the demixed maps (Figure 5D,E, 
Figure S5). In particular, the demixed forward velocity functional region closely matches both 
PC2, and the forward correlation map. Similarly, the demixed left and right angular velocity 
functional regions closely match PC3, as well as the left and right turning correlation maps. 
Finally, this demixing analysis  revealed an additional feature of the relationship between neural 
activity and angular velocity that could not be discerned from either our correlation maps, or our 
PCA-based approach.  In particular, the demixing linear model revealed that when the fly is 
turning, neural activity on the ipsilateral hemisphere increases in specific regions, while the 
contralateral hemisphere experiences a corresponding decrease in activity in the same regions 
(Figure 5F).  Thus, initiating a turn engages widespread, reciprocal changes in neural activity 
across ipsi- and contra-lateral hemispheres. Overall, our analyses demonstrate that three distinct 
approaches, namely correlations (Figure 2), principal components (Figure 4), and linear models 
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(Figure 5), all converge in their description of the relationship between brain-wide neural activity 
and locomotion. 
 
The temporal relationship between neural activity and behavior varies across brain regions 
 

We next sought to determine the temporal relationship between neural activity and 
behavior.  To do this, we cross-correlated neural activity of each supervoxel with each of the 
three behavioral variables (Vf, Vr and Vl), sweeping a range of relative time offsets between the 
two signals. At each time offset, we calculated the correlation between each supervoxel and each 
behavioral variable (Figure 6A) and plotted the time of peak correlation for each supervoxel 
(Figure 6B-D). The results revealed strong spatiotemporal structure across the brain, identifying 
brain regions whose signals were correlated with future changes in behavior, regions whose 
maximum correlations were contemporaneous with behavior, and regions that were most 
correlated with changes in behavior that had happened in the past.  At a high level, the earliest 
correlations between neural activity and behavior emerged in specific neuropils approximately 
300 milliseconds before the change in behavior, with the latest peak correlations persisting for 
more than 1 second after the change in behavior. Moreover, these spatiotemporal patterns were 
dramatically different for forward and rotational velocities, consistent with our instantaneous 
analyses, again suggesting distinct patterns of brain regions are engaged with forward and 
rotational velocities. In addition, we observed a positive correlation between the time of peak 
correlation and the width of the temporal kernel, i.e. supervoxels that contain delayed 
information about behavior displayed a broad temporal kernel, while supervoxels that contain 
anticipatory information about behavior displayed narrow temporal kernels (Figure 6E-G). Thus, 
lagging signals do not appear to capture as much temporal precision as leading signals, and 
instead reflect integration over a longer history of behavior. Finally, we emphasize that these 
time intervals reflect peak correlations, rather than the time at which correlations first become 
statistically significant, thereby establishing a conservative estimate of the interval over which 
correlations between neural activity and behavior can be detected. 
 

To capture the temporal profiles of each brain region, we plotted a histogram of peak 
correlation times for each supervoxel within a region (Figure 6E-G).  For changes in forward 
velocity, the earliest peak correlations appeared in olfactory sensory areas, namely the Antennal 
Lobe (AL) and Lateral Horn (LH), raising the possibility that these movements were initiated by 
incidental odors encountered by the fly inside the microscope (Figure 6E). Coincident with this, 
several subregions of the mushroom body are also highly correlated with future movements. 
Soon afterward, specific areas associated with extensive descending neuron innervation, such as 
the Gnathal Ganglion (GNG) and the Saddle (SAD) also display peak correlations with future 
changes in forward velocity, correlations that can persist until after the change in velocity has 
occurred.  The Central Complex (including the Protocerebral Bridge (PB), the Fan-shaped Body 
(FB), the Ellipsoid Body (EB) and the Noduli (NO)) also include subregions that have peak 
correlations that span the initiation of movement, but also persist after the correlated change in 
forward velocity.  Finally, peak correlations in sensory areas like the visual system (including the 
Medulla (MED) and the Lobula (LO), as well as the Lobula Plate (LP) emerged only after the 
change in velocity, and persisted in some cases for more than a second.  Thus, changes in 
forward velocity are correlated with a characteristic sequence of changes in neural activity 
distributed widely across the brain, spanning sensory, motor, and navigation centers. 
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A different temporal sequence was observed when neural activity in each supervoxel was 

correlated with angular velocity (Figure 6F, G).  In this case, while neural activity in olfactory 
regions as well as the mushroom body continued to correlate with future changes in angular 
velocity, a set of motor areas that partially overlapped with that associated with forward velocity 
but was nonetheless distinct, including the Inferior Posterior Slope (IPS) the Gorget (GOR), and 
the Vest (VES), were also correlated with future movements.  Correlations between angular 
velocity and supervoxels in navigation centers, namely the Protocerebral Bridge (PB), the Fan-
shaped Body (FB), the Ellipsoid Body (EB) and the Noduli (NO), lagged changes in velocity, 
consistent with the fact that these regions can integrate angular velocity signals to represent 
heading (Green and Maimon, 2018; Kim et al., 2017; Shiozaki et al., 2020). Signals in the optic 
lobes, the Medulla (MED), the Lobula (LO) and the Lobula Plate (LP), substantially lagged the 
correlated change in angular velocity.  Finally, across nearly all brain regions, the time of peak 
correlation with angular velocity emerged first in the ipsilateral hemisphere relative to the 
contralateral hemisphere.  Thus, the antagonistic relationship we observed between hemispheres 
using our linear modeling (Figure 5) appears to reflect an anticipatory increase in neural activity 
within specific regions of the ipsilateral hemisphere, followed by delayed, selective decrease of 
neural activity in the contralateral hemisphere. Finally, we note that maps of the correlations 
between neural activity and acceleration and deceleration show nearly identical temporal patterns 
to those seen using velocity (Figure S6). 
 
Individual brain regions display spatiotemporally structured patterns of engagement 
 

Given the observation that individual brain regions contained topographic maps of 
behavioral variables, we next examined whether the distribution of peak correlation times we 
observed within a region might reflect spatiotemporal trajectories within each topographic map 
(Figure 7; Figure S7).  These analyses revealed that even within each brain region, the temporal 
order of neural engagement was highly organized, and aligned with both behavioral and 
anatomical features. For example, the Lateral Horn (LH) contains a dorsal region that was more 
correlated with forward velocity, and a ventral region that was more associated with angular 
velocity (Figure 3).  For forward velocity, this functional division corresponds to a temporal 
separation, with the dorsal region being correlated with behavior before the ventral 
region.  Conversely, for angular velocity, this functional division is erased: on the ipsilateral side, 
most of the Lateral Horn (LH) displayed early correlations with the change in velocity, while on 
the contralateral side, peak correlation times gradually progressed along the medial-lateral axis. 
Indeed, such temporal gradients were widespread across brain regions, across different axes, and 
correlated with either forward or angular velocity, being apparent in the Inferior Posterior Slope 
(IPS), Superior Medial Protocerebrum (SMP), the Superior Intermediate Protocerebrum (SIP), 
and the Fan-Shaped Body (FB).  In other brain regions, such as the Lateral Accessory Lobe 
(LAL), the Mushroom Body Medial Lobe (MB-ML), and the Posterior Lateral Protocerebrum 
(PLP), the timing of peak correlations with forward velocity were uniformly distributed across 
the structure, while the timing of peak correlations with angular velocity displayed the 
characteristic temporal order of ipsilateral signals preceding contralateral signals.  Finally, in the 
optic lobe, where all of the correlations with behavior presumably reflect feedback entering the 
visual system from the central brain, the temporal order of activation captured the ipsi-leading, 
contra-lagging pattern for angular velocity, and mapped onto distinct “input” layers.   

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2022. ; https://doi.org/10.1101/2022.03.20.485047doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.20.485047
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Taken together, these results demonstrate that the temporal relationships between neural 

signals in each brain region and changes in specific behavioral velocities is exceptionally rich, 
and reflect multiple levels of functional and anatomical organization.  Strikingly, temporal 
gradients of correlation that presumably reflect wave-like sequences of changes in neural activity 
that propagate across specific regions are a common organizational principle in this system.          
 

Discussion 
 
Summary 
 

Here we describe a novel two-photon imaging approach to extract neural signals across 
the entire Drosophila brain as the animal behaves, and via volumetric registration, quantitatively 
compare signals across brain regions and individuals (Figure 1). We find that neural activity 
containing information about locomotion is widespread across the brain, extending well beyond 
regions commonly associated with motor control (Figure 2). We observe striking topographic 
order within individual brain regions, such that neurons with distinct selectivity for behavioral 
features are highly compartmentalized (Figure 3). Remarkably, these signals account for the 
dominant dimensions of neural activity in the brain (Figure 4). These signals include a nearly 
brain-wide state-change associated with the transition between moving and not moving, as well 
as localized signals that contain information specific to the forward or rotational velocity of the 
fly (Figure 5). We find that the temporal relationship between neural activity and behavior 
evolves across the brain: activity in some regions precedes changes in locomotor velocity by 300 
ms; in others, changes in neural activity are contemporaneous with behavior, while in others, 
neural activity lags behavioral changes by more than a second (Figure 6). Strikingly, neural 
signals associated with changes in angular velocity are anti-symmetric across hemispheres, such 
that an increase in activity in several brain regions on the ipsilateral side precedes a mirrored 
decrease in activity in the same regions on the contralateral side (Figure 5, 6). Within many 
individual brain regions we observe temporal gradients of neural activity that sometimes respect 
functional compartments, but more often sequentially engage neurons with different behavioral 
selectivity (Figure 7). Taken together, these studies identify a brain-wide spatiotemporal 
topography of walking, in which distinct networks of neurons are engaged by specific behavior 
maneuvers and follow stereotyped temporal trajectories (Figure 8). 
 
A unified functional brain space enables quantitative comparisons across individuals and 
conditions  
 

Spatial registration of neural data in Drosophila has enabled genetically labeled neurons 
in different animals to be compared in the same space, and has allowed functional data to be 
aligned with established brain atlases (Bates et al., 2020; Bogovic et al., 2020; Costa et al., 2016; 
Ito et al., 2014; Mann et al., 2017; Mann et al., 2021; Münch et al., 2021; Pacheco et al., 2021; 
Peng et al., 2011). Here we describe a generalizable, fully automated pipeline for functional 
brain registration in behaving animals, spanning virtually the entire brain. We demonstrate how 
spatial registration in the context of a brain whose wiring is highly stereotyped between 
individuals can be leveraged to increase the SNR of each voxel. Moreover, we show that 
registration enables modeling of neural and behavioral data across individuals without 
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compromising spatial or temporal resolution. Most significantly, the capacity to routinely 
register functional signals from many individual brains into a common space enables future 
quantitative comparisons across experimental conditions and laboratories. Using this approach, 
future work could compare functional maps of different sensory modalities, behaviors, and 
neural computations, as well as conditions that would be impossible to implement in a single 
animal, such as silencing or activating many different genetically targeted populations of 
neurons, or exploring the effects of particular genes on functional maps. Finally, registering these 
functional data with fly connectomes will greatly increase opportunities for modeling how neural 
signals are transformed across the brain (Scheffer et al., 2020; Turner et al., 2021; Zheng et al., 
2018). 
 
Locomotor Signals are Widespread and Highly Structured 
 

Measurements and perturbations of genetically identified cell types have provided 
fundamental insights into a wide diversity of neural processes in the fruit fly. At the same time, 
how these relatively compact circuit computations might be embedded within larger neural 
networks that could be engaged during behavior has remained unclear. Indeed, while data in 
vertebrates demonstrates that behavioral signals are prominent in many different brain regions, 
whether such a distributed representation of locomotion might exist in the fly was unknown. Our 
data demonstrate that locomotor signals can be detected in approximately 40% of the brain 
volume, and across almost every neuropil (Figure 2). Some of this signal can be attributed to a 
global change in activity that is associated with the onset of movement (Figure 4). However, 
much of this signal is selective to specific behavioral variables and brain regions (Figure 
5).  This selectivity is spatially structured, even within individual brain regions, such that neural 
activity signals with different selectivities are often topographically segregated at the mesoscale, 
well above the spatial resolution of our imaging approach (Figure 3). Given the scale of these 
motor maps, this observation is consistent with the notion that neurons that have similar tuning 
with respect to locomotor behavior are physically grouped.  

  
These distributed locomotor signals likely play diverse computational roles in different 

brain regions.  For example, modulation of visual circuits by locomotion-evoked changes in 
octopamine increase the gain of visual processing to capture the more rapid changes in visual 
scene statistics caused by movement (Suver et al., 2012).  In addition, locomotion can provide a 
predictive signal that can incorporate the dynamics of locomotor behavior to modulate motion 
processing (Cruz et al., 2021; Fujiwara et al., 2017; Kim et al., 2015; Kim et al., 2017; Strother et 
al., 2017).  Consistent with these previous observations, our data reveal extensive locomotor 
signals in the visual neuropils, including the Medulla, Lobula, and Lobula Plate, and are often 
restricted to specific processing layers (Figure 5). We note that we were unlikely to directly 
detect rapid efference copy signals that hyperpolarize specific visual interneurons given that we 
were imaging GCaMP6f, which favors depolarizing signals (Chen et al., 2013; Fujiwara et al., 
2017; Kim et al., 2015; Kim et al., 2017).  
 

Beyond early visual processing, behavior signals have been previously observed in 
higher-order circuits. In particular, the mushroom body, responsible for learning and memory in 
Drosophila, encodes behavior as a dopaminergic signal to coordinate synaptic plasticity and 
reward (Cohn et al., 2015; Zolin et al., 2021). In addition, navigation circuits in the ellipsoid 
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body rely on behavior evoked signals to coordinate remapping of the heading-direction network 
(Fisher et al., 2019). Moreover, the fan-shaped body, another region engaged with sensory 
integration and navigation, shows behavior-based gating of visual responses (Weir and 
Dickinson, 2015).  Our data extend these observations to many other regions in the central brain 
that have had only limited functional characterization, opening new avenues for understanding 
the interactions between behavior and other circuit computations.  Finally, the breadth and 
diversity of the locomotor signals we describe in the fly closely parallel analogous observations 
in a variety of contexts and brain regions in other animals (Kaplan and Zimmer, 2020). 
 
Different locomotor movements engage distinct spatiotemporal neural networks 
 
 Locomotor behavior reflects complex, time-evolving changes in specific velocities that 
are structured over hundreds of milliseconds (Berman et al., 2014; Branson et al., 2009; Chun et 
al., 2021; DeAngelis et al., 2019; Katsov et al., 2017; Kain et al., 2013; Mendes et al., 2013; 
Strauss and Heisenberg, 1990). Our data demonstrate that changes in the instantaneous forward 
and angular velocities of the animal engage distinct neural networks distributed over multiple 
brain regions, and follow stereotyped temporal sequences of coordinated activity (Figure 
8).  While the network that is engaged by changes in forward velocity is bilaterally symmetric, 
the networks engaged in changes in angular velocity are anti-symmetric across the midline, 
revealing that activation of specific areas in one hemisphere is paired with a subsequent, targeted 
reduction in signal in the same regions in the other hemisphere. As analogous antisymmetric 
networks for steering control have long been known from work in vertebrate spinal cord 
(Deliagina et al., 2000; Fagerstedt et al., 2001; Grillner et al., 2007), our data demonstrate that 
this organizational principle extends across the brain. 
 

Focusing on neural signals that anticipate and are contemporaneous with changes in 
behavioral velocities reveals engagement of regions that contain substantial innervation by 
descending neurons, a key bottleneck in motor control, as well as other regions whose 
relationship to motor control is unknown.  Thus, understanding how temporal patterns of 
descending neuron recruitment and dismissal emerge will likely require relating these patterns to 
the extensive networks in which they are embedded. 

 
The fine structure of our spatiotemporal maps suggest a framework for how neurons with 

different feature selectivities can be sequentially engaged during a movement trajectory (Figure 
8).  In particular, while neurons with similar selectivities are spatially clustered, the temporal 
precession of neural activity is often spatially graded, and can cross more than one cluster.  This 
suggests that different pools of neurons are recruited in a specific temporal order that relates to 
the evolving pattern of movement.  Such a dynamical systems perspective parallels the 
conceptual framework that describes forelimb movement in primate motor cortex (Churchland et 
al., 2012; Shenoy et al., 2013).  In this view, populations of neurons are activated in a temporal 
pattern that describes the structure of the limb trajectory, but no spatial order has been detected 
within these populations.  Our data raise the possibility that a conceptually similar principle 
underpins walking behavior in the fly, but that in this compact nervous system, a mesoscale 
spatial order has been imposed on the dynamical system. Given the powerful tools available in 
the fly for targeted measurements and perturbations, future work should define the causal 
structure of this dynamical system with single cell precision. 
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Main Figures  

 
Figure 1 - Whole-brain imaging in walking Drosophila. (A) Overview of pipeline. After 
dissection of the posterior head cuticle, the fly is mounted under a two-photon microscope and 
walks on an air-suspended ball in the dark. GCaMP6f is expressed pan-neuronally, as is a 
structural marker, tdTomato. Volumes were acquired at 1.8 Hz at a resolution of 2.6 x 2.6 x 5um 
for 30 minutes to capture neural activity; a subsequent anatomical scan was taken at higher 
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spatial resolution (0.6um x 0.6um x 1um). The structural marker was used to correct brain 
motion. Nine individuals passed all quality control metrics (see Supplemental Figure 1) and were 
used for subsequent analyses. All nine datasets were registered into a single mean brain using the 
structural marker; these warp parameters were then applied to the functional neural data to bring 
all flies into the same space. A standard anatomical atlas was also registered into this common 
space. Concatenating all data resulted in a “Superfly” with 270 cumulative minutes of neural and 
behavioral recording. Voxels were clustered into supervoxels (see methods). Behavior was 
collected at 50 Hz and walking trajectories were decomposed into forward and rotational 
velocities. Data was analyzed using correlations, principal components, and temporal modeling. 
(B) Qualitative comparison of alignment quality. The meanbrain is compared with anatomical 
scans from each individual. Five representative regions of the brain are cropped to the same 
coordinates after alignment. (C) Schematic illustration of the logic for obtaining high temporal 
resolution filters from low temporal resolution data. Temporal acquisition of each voxel is well 
defined. A single pass through a behavior of interest yields a poor estimate of the underlying 
filter; with many passes at different offsets a high resolution filter can be measured. 
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Figure 2. Neural encoding of movement velocity is widespread across the brain and highly 
structured. (A) The trajectory of the fly was decomposed into a forward velocity, as well as 
positive (clockwise) and negative (anticlockwise) angular velocities. (B) Correlation map of 
individual voxels for each behavioral velocity. A single example slice is shown. Voxels above a 
significance threshold were not considered for analysis and were set to white (p > 0.0001; see 
Methods). (C) Venn diagram distribution of voxel-tuning types. Voxels were categorically 
assigned to a velocity set. Numbers indicate percent of voxels in each category. Red, green and 
blue correspond to a neural signal that correlated with only one of the three velocity variables, 
while cyan, magenta, and yellow correspond to correlations with two of the variables, and white 
corresponds to a correlation with all variables. (D) Example slices through orthogonal planes of 
the brain. RGB values were independently set based on correlation with velocity components. 
(E) Maximum intensity projection of the partially exploded mean brain illustrating the 
categorical assignment of voxel tuning (following the color code in (C). (F-I) As in (E), 
separating categorical voxel types into separate panels. Bar charts quantify percent of voxels in 
each anatomical ROI that fall into each velocity category. 
 

 
Figure 3. Topographic maps of neural tuning to behavioral velocities in specific brain 
regions. Coronal and horizontal slices shown. (A) Posterior Lateral Protocerebrum (PLP). (B) 
Inferior Posterior Slope (IPS). (C) Lobula (LO). (D) Lateral Horn (LH). (E) Fan-shaped Body 
(FB). (F) Protocerebral Bridge (PB). (G). Ellipsoid Body. (H). Lateral Accessory Lobe 
(LAL).  Color coding as in Figure 2. Related to Supplemental Figure 3. 
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Figure 4. Low dimensions of neural activity are structured and predictive of velocity space. 
(A) The first three principal components of the integrated whole-brain neural dataset (n = 9 
flies). Maximum intensity projections are colored by voxel weights for each principal 
component. (B) Neural data projected onto each principal component and binned in 2D velocity 
space. We note that the small skew in the angular velocity distribution reflects a small rotational 
asymmetry in placement of each fly on the ball.  (C) 1D velocity spaces versus principal 
component values. Grey dots are single timepoints of a collected neural volume. Vertical dashed 
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black line represents the chosen threshold between moving and not-moving. Colored lines denote 
the linear regression of data above this threshold. White lines are mean bin values, with a width 
of 0.5 s.d.. Vertical white lines represent ± 1 SEM, but are too small to be visible. (D) 
Quantification of data in (C). Correlations were measured independently for below and above the 
movement threshold. *p < 0.05, **p < 0.01, ***p 0.001. (E) Example trace of first 3 PCs and 
behavior. Black lines are PCs, blue is forward velocity, and red and green are rotational 
velocities. PCs are overlayed with relevant behaviors. Gray shading shows 0.75 s.d. threshold 
used in previous panel. (F) Cross-validated R2 prediction accuracy on test data for linear models 
independent fit to predict velocity components. For each velocity component, separate models 
were fit using different numbers of principal components as input features (x-axis). Curving gray 
lines are individual flies. Colored lines are the integrated superfly. Vertical dashed gray lines 
represent the number of components used in subsequent panels. (G) Cross-validated R2 prediction 
accuracy for a model with 100 input principal components. Solid gray lines are individual flies 
predicted using the principal components from the integrated superfly dataset, while the dashed 
gray lines are individual flies fit using their respective individual principal components. Box 
plots represent first quartile, median, and third quartile, while whiskers are 1.5 times the 
interquartile-range. (H) Same data as solid gray lines in (F), but compared with the mean amount 
of each velocity component seen in each individual fly. Colored lines are linear regression. (I) 
Model weights fit for the first 20 principal components. Each dot is an individual fly. (J) Actual 
(black) versus predicted (color) velocity traces. Principal components and behavior were 
interpolated to 10 Hz for this visualization. 
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Figure 5. Demixing the unique contributions of each velocity component to neural activity 
using linear models. (A) Cross-validated linear models fit to predict voxel activities given 
various behavior input features. Maximum projections of R2 prediction accuracy. Top row: 
models are given only one behavior variable. Bottom row: the unique contribution of each 
behavior variable is measured by comparing a model that receives all four behavior variables to 
one that receives all variables except for the variable of interest. (B) Relationship between mean 
neural activity across identified functional regions from (A) versus each behavioral variable. 
Grey dots are single timepoints. Vertical dashed black line represents the threshold between 
moving and not-moving. Colored lines and thick black lines are the linear regression of data 
above threshold. White lines are mean bin values, with width of 0.5 s.d.. Vertical white lines 
represent ± 1 SEM, but are too small to be visible. (C) Quantification of data in (B). Correlations 
were measured independently below and above the movement threshold. *p < 0.05, **p < 0.01, 
***p 0.001. (D) Maximum intensity projection colored by functional regions defined in (A). (E) 
Percent of voxels in each anatomical ROI that fall into each functional region. (F) Difference in 
brain-wide activity between a fly walking forward slowly versus turning. Red box indicates 
bounds for slow walking; red lines indicate lower thresholds for turning. Maximum intensity 
projection; average of (left turn - slow) and (right turn - slow) after mirroring the brain across the 
midline. 
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Figure 6. The temporal relationship between neural activity and behavior varies across 
brain regions (A) Cross-correlation filters of supervoxel neural activity and forward velocity (n 
= 9 flies). Filters are first sorted by anatomical region, then peak time. Peak times are marked by 
the black traces. Filters are an average of both hemispheres., and have been deconvolved based 
on measurements of the impulse response of GCaMP6f kinetics (see Methods). (B) Maximum 
intensity projection. Colors represent time of peak cross-correlation between neural activity and 
forward velocity. Only filters that pass a significance threshold are shown (see methods) (n = 9 
flies). (C) Same, but for left rotational velocity. (D) Same, but for right rotational velocity. (E) 
Histograms of peak cross-correlation of supervoxel neural activity and forward velocity. For 
each anatomical region, the percent of the volume that peaks at a given time is plotted. Below, 
kernel density estimates from each region are overlayed. (F) As in (E), but left and right 
rotational velocities for the left-hemisphere. (G) As in (E), but left and right rotational velocities 
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for the right-hemisphere. (H) Relationship between forward velocity filter peak time and full-
width-at-half-max. Each dot is a supervoxel. Black line is a linear regression. 
 

 
Figure 7. Topographic maps of peak correlation times are spatially structured within 
individual brain regions. (A). Lateral Horn (LH). (B) Inferior Posterior Slope (IPS). (C) 
Superior Medial Protocerebrum (SMP). (D) Superior Intermediate Protocerebrum (SIP). (E) Fan-
shaped Body (FB). (F) Lateral Accessory Lobe (LAL). (G) Mushroom Body Medial Lobe (MB-
ML). (H) Posterior Lateral Protocerebrum (PLP). (I) Lobula (LO). (J). Medulla (ME). Each 
column contains the correlation maps describing the categorial voxel assignments (from Figure 
3), as well as the topographic maps of relative peak correlation time (where the earliest peak 
correlation time relative to behavior is set to 0) for Vf, Vl and Vr. 
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Figure 8. Locomotion related signals are temporally ordered within and across brain 
regions. (A) Abstract representation of categorized brain regions activating and deactivating 
along a temporal sequence. Comparing forward and angular velocity, as well as ipsilateral and 
contralateral hemispheres for angular velocity. (B) Abstract representation of how a motor region 
with compartmentalized velocity tuning combined with a temporal gradient of neural activity 
could embed a stereotyped behavioral maneuver, such as a turn. 
 

Supplemental Figures  
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Supplemental Figure 1. Whole-brain imaging and data alignment in walking Drosophila, 
related to Figure 1. (A) Overview of the sequence of dissections needed to expose the entire 
brain. (i) Each fly was glued into a metal shim. (ii) Placement of first cuts with dissection needle. 
(iii) Three cuticle boundaries near the neck. (iv) Cut along the black line. (v) Cut along the eye 
border. (vi) Yellow line denotes a strong cuticular structure. Continue cutting along the black 
line, breaking through yellow line. (vii) Remove cuticle. (viii) Remove trachea and fat. (B) 
Meanbrain creation. Slices through 16 anatomical volumes (including 9 brains from animals that 
were used for functional imaging, as well as 7 additional animals) were used to create the 
meanbrain. (C) 2D histograms of Vf, Vr and Vl for the nine flies in this study. (D) Temporal 
traces of walking behavior derived from ball movement across the entire 30 minute session for 
each fly. 
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Supplemental Figure 2. Brainwide correlations measured with single voxels versus 
supervoxels using both GcAMP and tdTomato to control for brain motion, related to 
Figure 2. (A) Slices through the meanbrain overlaid with velocity component correlations to 
single voxels and anatomical ROI boundaries. Slices are arranged from anterior to posterior. See 
Figure 2. (B) As in (A) but with supervoxels instead of single voxels. (C) Distribution of single 
voxel correlations with three velocity components. Dashed line indicates the significance 
threshold used in Figure 2. (D) As in (C), but with supervoxels. Note increased correlations. (E) 
As in (D), but calculating the correlations using the tdTomato signal (structural marker) instead 
of GCaMP6f (neural activity). (F) Brain-wide map of the number of flies that had a correlation 
with velocity above an r-value of 0.05. (G) Maximum projection through the slices shown in (A). 
(H) As in (G), but using the correlations calculated with the tdtomato signal. The absence of 
signal in this Figure indicates that motion artifacts were undetectably small. 
 

 
Supplemental Figure 3. Topographic maps of neural tuning to behavioral velocities in 
specific brain regions, related to Figure 3. Slices of correlation maps through the Superior 
Posterior Slope (SPS), the Antennal Mechanosensory and Motor Center (AMMC), the Ellipsoid 
Body (EB), the Superior Medial Protocerebrum (SMP), the Gnathal Ganglion (GNG), the Saddle 
(SAD), the Vest (VES), and the Mushroom Body Calyx (MB-CA).  
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Supplemental Figure 4. Many dimensions of neural activity are predictive of velocity space, 
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related to Figure 4. (A) Voxels were agglomerated into supervoxels before performing PCA. To 
determine the optimum number of supervoxels per slice, we swept a range of supervoxel sizes, 
and fit linear models that predict the forward velocity of the fly. Too few or too many 
supervoxels reduced accuracy. Three regularization methods were used. (B) Neural variance 
explained by the first 20 principal components. (C) The first 20 principal components viewed on 
the brain and in 2D behavior space, as in Figure 4.  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2022. ; https://doi.org/10.1101/2022.03.20.485047doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.20.485047
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Supplemental Figure 5. Topographic inspection of velocity demixing results, related to 
Figure 5. (A) Slices through the meanbrain, overlaid with demixed velocity component R2 to 
supervoxels and anatomical ROI boundaries. Slices are arranged from anterior to posterior. See 
Figure 5. (B) As in Figure 5C, but reporting average correlations across anatomically defined 
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regions. White bars were below the movement threshold; color bars denote velocity components 
above the movement threshold. (C) Above movement threshold correlations with each 
anatomically defined region and velocity component. (D) Extension of Figure 5F, but showing 
alternative 2D behavior defined comparisons. Comparing the difference in neural activity across 
the brain for a fly stopped versus moving slowly forward, and a fly moving slowly forward 
versus quickly forward. 
 

 
Supplemental Figure 6. Temporal relationship between neural activity, velocity, and 
acceleration, related to Figure 6. (A) Trace of forward velocity and acceleration for a 10 
second window of behavior. (B) Histograms of instantaneous correlation between neural activity 
of supervoxels and forward velocity or acceleration. (C) Comparing peak cross-correlation 
values for velocity, acceleration, and deceleration for a right turn. (D) Map of peak cross-
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correlation time between neural activity and velocity components. Comparing two thresholds for 
significant voxels. 
 

 
Supplemental Figure 7. Topographic maps of peak correlation times are spatially 
structured within individual brain regions, related to Figure 7. Slices through individual 
brain regions showing velocity component tuning and peak cross-correlation. Regions are 
Superior Posterior Slope (SPS), Nodulus (NO), Protocerebral Bridge (PB), Antennal 
Mechanosensory and Motor Center (AMMC), Gnathal Ganglion (GNG), Saddle (SAD), Vest 
(VES), Mushroom Body Peduncle (MB-PED). 
 

STAR Methods 
 
RESOURCE AVAILABILITY 
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Lead contact 
Further information and requests for resources should be directed to the lead contact, Thomas R. 
Clandinin (trc@ stanford.edu). 
 
Materials availability 
This study did not generate new unique reagents. 
 
Data and code availability 

• Microscopy (structural and functional neural recordings) and behavioral data have been 
deposited at Dryad and are publicly available as of the date of publication. DOIs are 
listed in the key resources table. 

• All original code has been deposited at Github and is publicly available as of the date of 
publication. DOIs are listed in the key resources table. 

• Any additional information required to reanalyze the data reported in this paper is 
available from the lead contact upon request. 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 
Drosophila melanogaster were of the genotype w+/w+;UAS-myr::tdTomato/UAS-
GCaMP6f;nSyb-Gal4/+. Flies were raised on molasses medium at 25 °C with a 12/12-h 
light/dark cycle. Flies were housed in mixed male/female vials of 10-20 individuals. 3-4 days 
post-eclosion females were used for imaging. 
 
METHOD DETAILS 
 
Mounting and Dissection 
Each fly was anesthetized on a chilled Peltier plate with a thermally coupled custom holder. Each 
immobilized fly was carefully fitted into a custom mount consisting of 3D-printed plastic and a 
custom cut steel shim to tightly nestle the head and thorax. To fix the fly to the mount, UV-
curable glue was placed and cured on the dorsal region of the face between the eyes, and on the 
thorax. A saline solution was added to the dish for dissection (103 mM NaCl, 3 mM KCl, 5 mM 
TES, 1 mM NaH2PO4, 4 mM MgCl2, 1.5 mM CaCl2, 10 mM trehalose, 10 mM glucose, 7 mM 
sucrose, and 26 mM NaHCO3). Using a tungsten needle the posterior head cuticle was carefully 
cut and removed to reveal the whole brain (Figure S1). Dissection forceps were used to remove 
fat and trachea. 
  
Two-Photon Imaging 
Flies were imaged using a resonant scanning Bruker Ultima IV system with a piezo drive and a 
Leica 20× HCX APO 1.0 NA water immersion objective lens. GCaMP6f and tdTomato were 
simultaneously excited with a Chameleon Vision II femtosecond laser (Coherent) at 920 nm. A 
525/50 nm filter and a 550/50 nm filter were used to collect signals from GCaMP6f 
and  tdTomato. Photons were detected simultaneously using two GaAsP-type photomultiplier 
tubes. The exposed fly brain was perfused with carbogen-bubbled (95% O2, 5% CO2) saline 
solution (same as above) heated to 30°C with an in-line heater. For the 30 min functional scan, 
volumes were collected at a resolution of 2.6 x 2.6 x 5 µm (256 voxels x 128 voxels x 49 slices, 
XYZ), resulting in an approximate volume rate of 1.8Hz. Scans were bidirectional along the X 
axis. For the immediately subsequent anatomical scan, spatial dimensions were adjusted to 0.6 x 
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0.6 x 1µm (1024 voxels x 512 voxels x 241 slices, XYZ), and 100 volumes were collected. In 
this orientation, all regions of the brain were visible, except for the laminas in each optic lobe, 
which are occluded by the eye, and a portion of the Gnathal Ganglion, which is occluded by the 
esophagus. 
  
Behavior Tracking 
During imaging, the head-fixed fly performed spontaneous bouts of walking on a painted, air-
suspended foam ball (9 mm diameter, LAST-A-FOAM FR4615). The ball was imaged at 50 Hz 
with a Flea FL3-U3-13E4M-C sensor and Edmund Optics 100 mm C Series Fixed Focal Length 
Lens. An IR LED directed with optic fibers was used to illuminate the ball. Frames were 
processed using Fictrac to calculate the animal’s walking velocity (Moore et al., 2014). Before 
all subsequent analysis, forward and rotational velocities were smoothed with a Savitzky-Golay 
filter of window length 500 ms and a polynomial of order 3. 
  
Data Preprocessing 
Brain volumes were first motion-corrected using ANTs (Avants et al., 2009; Avants et al., 2011); 
the tdTomato channel was time-averaged across the 30 min recording and each tdTomato 
volume was warped (affine and non-linear) to the mean. Each volume’s warp parameters were 
then applied to the GCaMP6f channel. Then, each voxel was independently corrected for 
bleaching as well as other slow temporal trends by subtracting a temporally smoothed signal 
from the raw trace (smooth signal produced by gaussian filter of 2 minute sigma, truncated at 1 
sigma). Finally, each voxel in the GCaMP6f recording was Z-scored. This preprocessing was all 
done on individual animals before volumetric alignment and concatenation. 
  
Data Alignment 
Each individual’s anatomical scan was created from 100 collected volumes of tdTomato signal. 
These 100 volumes were first averaged, then each volume was warped (affine and non-linear) to 
this mean using ANTs. These aligned volumes were then averaged, creating the final anatomical 
scan for the individual. A cross-individual mean anatomical brain was then produced to facilitate 
warping all data into a common space as follows. 16 anatomical scans, selected as the highest 
quality from a larger pool of approximately 30 brains, were first pre-processed with an intensity-
based masking, removal of non-contiguous blobs, and quantile normalization to brighten overly-
dark areas and darken overly-bright areas. Each brain was additionally mirrored across the Y-
axis to double our effective data to 32 brains. These 32 brains were all aligned (affine) to a seed-
brain chosen from the 32, and averaged to produce affine_0. The 32 brains were then aligned 
(affine) to affine_0, and averaged to produce affine_1. Next, the individual anatomical scans 
were sharpened (using unsharp masking), and aligned (affine and non-linear) to affine_1, and 
averaged to produced SyN_0. The last step was repeated two more times on the subsequent 
output brains to produce the final meanbrain. Finally, the meanbrain was affine aligned to the 
JFRC2018 female brain to put the brain in familiar coordinates as well as level the brain. With 
the mean brain in hand, we then aligned all our functional data into this space as follows. Each 
individual’s functional scan was affine aligned to their anatomical scan using the tdTomato 
channel and applying the transforms to the GCaMP6f channel. Then, each anatomical scan was 
aligned (affine and non-linear) to the meanbrain using the tdTomato channel, and the transforms 
were applied to the GCaMP6f channel. Finally, we warped an atlas of spatially defined 
anatomical brain regions into our meanbrain space by first warping the IBNWB brain (and 
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accompanying atlas) into JRC 2018 female brain space, and then warping this into our 
meanbrain (affine and non-linear) (Ito 2014, Bogovic 2020). Warping JRC 2018 into our 
meanbrain space with ANTs was followed by SynthMorph to improve registration accuracy 
(Hoffmann 2020). 
  
QUANTIFICATION AND STATISTICAL ANALYSIS 
  
Agglomerative Clustering Supervoxel Creation 
Individual voxels were spatially aggregated into supervoxels to reduce the number of features for 
computational tractability and to boost SNR as follows. After functional GCaMP6f data was 
preprocessed and warped into the common meanbrain space, individual flies were temporally 
concatenated to create a single large “superfly” matrix of (x, y, z, t; 256, 128, 49, 30456) (Figure 
1A). Then, supervoxels were merged independently for each z-slice via agglomerative clustering 
with Ward linkage and a connectivity constraint (only spatially neighboring voxels could be 
merged). The number of supervoxels per slice was determined by sweeping across a range of 
supervoxels (1, 100, 500, 1000, 2000, 5000, 10000) and for each fitting a linear model that takes 
the supervoxel neural signals and predicts behavior. Too few or too many supervoxels results in 
lower prediction accuracy, with a peak at 2000 supervoxels (Figure S4A). 
 
Correlation Analysis (Voxel- and Supervoxel- Wise) 
We started with the superfly with supervoxels (supervoxel, z, t; 2000, 49, 30456). The Pearson 
correlation was calculated for each supervoxel and for each of three behaviors: forward velocity, 
left rotational velocity, and right rotational velocity. The threshold for a significant correlation 
was set as p = 0.001 with a Bonferroni multiple comparison correction (2000 x 49 comparisons), 
giving a final p threshold of 1x10-8. Because supervoxels reduce the spatial resolution, we also 
calculated correlations of the individual voxels (x, y, z, t; 256, 128, 49, 30456). Indeed, we found 
that in this simple correlation analysis, the individual voxels produced a higher spatial resolution 
map. However, with so many comparisons, using a Bonferroni correction caused a very strong 
erosion of the map. Therefore, we used the approximate spatial coverage of the supervoxel map 
with its Bonferroni correction to set a reasonable p-value threshold for the individual voxel map 
(p = 1x10-4). This resulted in a map with the highest possible spatial resolution, while still using a 
principled means of setting the significance threshold. 
  
Principal Component Analysis and Linear Modeling 
Principal components were calculated using the superfly with supervoxels (supervoxel, z, t; 
2000, 49, 30456). The matrix was reshaped as (feature, t; 98000, 30456), the covariance matrix 
was calculated, and an eigendecomposition was performed producing eigenvalues and 
eigenvectors. This was repeated for individual flies as well (not pooled into a superfly) to 
compare the differences (Figure 3G). Linear models were fit using principal components as 
features and a single behavioral variable as output. The number of features were sweeped to find 
the value that maximizes prediction accuracy (Figure 3F). Data was split into training and test 
sets and five-fold cross-validation was used to calculate the prediction accuracy on the held out 
test set (R2). A ridge penalty was employed to regularize the model and prevent overfitting. 
 
Unique Variance Explained Modeling 
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Here, we used behavior to predict neural activity of each supervoxel independently (supervoxel, 
z, t; 2000, 49, 30456). For each supervoxel, we fit separate models with different combinations 
of input features: single behavior variables (forward velocity, left rotational velocity, right 
rotational velocity, and binary walking or not walking), all four behavior variables, or leave-one-
out. We calculated the prediction accuracy for each model and for each supervoxel. To calculate 
the unique contribution of each behavior variable, we subtracted the prediction accuracy of the 
leave-one-out models from the all-four-variable model. All models were five-fold cross-
validated and regularized with ridge regression. 
 
Cross-Correlation Analysis 
Given a matrix of timestamps for each slice of neural data acquisition across the superfly (z, 
vol_num; 49, 30456), windows of interpolation of behavior variables were created centered at 
each slice and volume number, with 20 ms steps extending 5 sec before and after. This resulted 
in a behavior matrix of (z, vol_num, interp_window; 49, 30456, 500). This matrix was then 
weighted by the neural activity for each supervoxel to produce a filter matching the interpolation 
window. This resulted in the equivalent of a cross-correlation filter for each supervoxel and for 
each behavior variable. We noticed these filters had a power peak in the frequency spectrum at 
the volume imaging rate (1.8 Hz), which we removed with a notch filter. Only the top 40% of 
responding filters were used for analysis, informed by the statistically significant fraction of the 
brain determined to correlate with behavior (previous correlation analysis). 
 
GCaMP6f Deconvolution 
The temporal dynamics were deconvolved from both the cross-correlation filters and the whole-
brain spatiotemporal filters as follows. An experimental measurement of the GCaMP6f impulse 
response was used (100 ms to peak and 250 ms wide at half-max), taken from Drosophila early 
visual system neurons Tm3 and Mi1 (Yang et al., 2016). The measured kinetics were modeled by 
the formula ΔF/F = (1-e-t/4)*(-e-t/8) (Lütcke et al., 2013). This was expanded into a Toeplitz 
matrix and the deconvolved filters are given by the least-squares solution to y = Xb, where y is 
the measured convolved filter, X is the Toeplitz matrix, and b is the unknown deconvolved filter 
(Hansen, 2002). 
 

Supplemental Videos and Tables 
 
Supplemental Video 1. Brain-wide correlation with velocity space, coronal view, related to 
Figure 2. Mean anatomical Drosophila brain colored by superfly correlations to velocity (n = 9 
flies). Blue is correlation with forward velocity, green is correlation with left angular velocity, 
and red is correlation with right angular velocity. White lines indicate neuropil boundaries. 
Video moves from anterior to posterior. Top to bottom of any given frame is dorsal to ventral.  
 
Supplemental Video 2. Brain-wide correlation with velocity space, horizontal view, related 
to Figure 2. Mean anatomical Drosophila brain colored by superfly correlations to velocity (n = 
9 flies). Blue is correlation with forward velocity, green is correlation with left angular velocity, 
and red is correlation with right angular velocity. White lines indicate neuropil boundaries. 
Video moves from dorsal to ventral. Top to bottom of any given frame is anterior to posterior.  
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Supplemental Video 3. Brain-wide unique contribution from velocity components, related 
to Figure 5. Mean anatomical Drosophila brain colored by superfly unique variance explained 
of velocity components (n = 9 flies). Blue is unique contribution from forward velocity, green is 
unique contribution from left angular velocity, and red is unique contribution from right angular 
velocity. White lines indicate neuropil boundaries. Video moves from anterior to posterior. Top 
to bottom of any given frame is dorsal to ventral.  
 
Supplemental Video 4. Brain-wide temporal relationship between neural activity and 
velocity components, related to Figure 6. Mean anatomical Drosophila brain colored by 
temporal relationship to each velocity component (n = 9 flies) (see Figure 6 for details). Neural 
activity in red voxels preceed velocity, white is contemporaneous with velocity, and blue lags 
behind velocity. Top brain relates to forward velocity, middle relates to left angular velocity, and 
bottom relates to right angular velocity. White lines indicate neuropil boundaries. Video moves 
from anterior to posterior. Top to bottom of any given frame is dorsal to ventral.  
 
Supplemental Table 1. Anatomical region abbreviations, related to Figures 2, 5, and 6. 
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