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Abstract

In young adults, pairing ataxing cognitive task with walking can have different effects on gait
and cognitive task performance. In some cases, performance clearly declines whereas in others
compensatory mechanisms maintain performance even under dual-task conditions. This study set
out to investigate the preliminary finding of behavioral improvement in Go-NoGo response
inhibition task performance during walking compared to sitting, which was observed at the
piloting stage. Mobile Brain/Body Imaging (MoBI) was used to record e ectroencephal ographic
(EEG) activity, three-dimensional (3D) gait kinematics and behavioral responses in the cognitive
task, during sitting or walking on atreadmill. In a cohort of twenty-six (26) young adults,
fourteen (14) participants improved in measures of cognitive task performance while walking
compared to sitting. These participants exhibited walking-related EEG amplitude reductions over
frontal brain scalp regions during key stages of inhibitory control (conflict monitoring, control
implementation and pre-motor stages), accompanied by reduced stride-to-stride variability and
faster responses to stimuli compared to those who did not improve. In contrast, the twelve (12)
participants who did not improve exhibited no EEG amplitude differences across physical
condition. The neural activity changes associated with performance improvement during dual
tasking hold promise as cognitive flexibility markers that can potentially help assess cognitive
decline in aging and neurodegeneration.
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I ntroduction

Performance of executive functions requires coordination across distributed neural networks for
both routine and more complex cognitive processes [1-4]. Y et, there are limits to the number and
complexity of tasks that can be undertaken at the same time [5]. As this capacity limitis
approached, behavioral performance may begin to deteriorate [6, 7]. Dual task performance, the
simultaneous performance of two tasks, activates multiple brain regions concurrently, which can
tax cognitive systems and bring them closer to this capacity limit [8-10]. Performing cognitive
and motor tasks simultaneously sets the stage for competition for available neural resources
leading to performance declinesin both modalities. Thisis referred to as cognitive-motor
interference (CMI) [11-14]. Pairing cognitive tasks with walking can dlicit dual-task declinein
gait performance and task-related behavior, aswell as altered patterns of neural activation in
older neurotypical adults[15-22] and in various patient populations [23-28]. However, in young
adults, the manifestation of decrementsin gait and cognitive task performanceis not as clear, and
as such, the neural activity changes detected in this group reflect interaction but not necessarily
interference at a neural resource level. Some studies have reported evidence of no deterioration
of response accuracy or increases in gait variability during dual-task walking in young adults
[18, 29-36]. These studies suggest that young healthy adults adapt their gait and task-related
behavior during dual-task walking and, consistent with this conclusion, report slower reaction
timesto stimuli [30-32], changes in stride length [29, 33, 36] and reduced gait speed and velocity
[18, 33, 35]. These findings indicate that young adults adopt a more deliberate approach to both
task responses and walking in order to maintain task accuracy, and as such, point to strategy
changes that will necessarily involve neural reconfigurations. On the other hand, there are studies
that have reported reductions in response accuracy [37, 38] and increases in gait variability [39-
41] during dual-task walking in young adults. This discrepancy suggests that young adults do not
reach their cognitive capacity limit under all dual-task walking conditions; under certain
conditions, presumably when the dual-task load is below the capacity limit, they seem to activate
mechanisms to compensate for the increased dual-task demands. In these cases, dual-task-related
neural activity changes likely reflect areallocation of neural resources and the adoption of a
different cognitive strategy that drives the observed compensatory adaptations.

Response inhibition, namely withholding response to athought, emotion, or stimulus, is one of
the core executive functions and a vital component of everyday living. One often-used approach
to studying response inhibition is the Go/NoGo task using a set of visual images as stimuli. The
task requires pressing a response button after each novel image is presented (‘Go’ tria), but
withholding the button press in response to the second presentation of a repeated image (‘NoGo’
trial) [15, 23, 29, 42-48]. During successful NoGo trials during which the participant properly
withholds a response, two stimulus-locked Event-Related Potential (ERP) components are
typically elicited: the N2 and the P3. The N2 is a negative voltage deflection that peaks around
200-350 ms|[49, 50] post-stimulus-onset and has a frontocentral scalp distribution. This
topographical distribution reflects its generation by the anterior cingulate cortex (ACC), abrain
region which is key for monitoring inhibitory conflict [49, 51-53]. The P3 is a positive voltage
deflection that peaks around 350-600 ms post-stimulus-onset and has a broad distribution,
extending from centroparietal to frontal areas [29, 54]. During the P3 processing stage, both
motor and cognitive components of inhibition are executed [47]. In parallel to the motor
inhibitory component of button press cancellation, higher inhibitory control is putatively exerted
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by lateral prefrontal areas, specifically the dorsolateral prefrontal cortex (DLPFC), to reduce
inhibitory conflict in ensuing trials and hence improve cognitive task performance [55, 56].
During unsuccessful NoGo inhibition trials, an ERP component known as the response-locked
Event-Related Negativity (ERN) iselicited. The frontocentral ERN peaks approximately 50 ms
after the erroneous motor response [57-59], and reflects conflict monitoring in error trials and the
source has been localized to the ACC [55, 60, 61].

The effects of walking on the N2 and P3 typically elicited during successful performance of the
Go-NoGo response inhibition task has been investigated by previous studies [15, 29]. De Sanctis
and colleagues [29] observed amplitude reductions of both the N2 and the P3 event-related
potentials (ERPs) during successful inhibitions while walking, as well as an anteriorization of the
P3 digtribution suggesting recruitment of frontal cortical circuits. Furthermore, they found no
significant differences between sitting and walking in terms of response accuracy and response
speed, and no significant changes in stride-to-stride variability when comparing single-task and
dual-task walking in young adults. In the absence of significant dual-task decrements, these
findings were interpreted as a shift to aless automatic (N2 amplitude reduction) and more
effortful (P3 frontalization) cognitive strategy during walking.

Other studies focused on the correlation between neural activity and several behavioral measures
in the context of a Go-NoGo response inhibition task. Falkenstein and colleagues found that
young healthy individuals who had a high rate of unsuccessful inhibitions exhibited a smaller
and later N2 compared to those with alow rate of unsuccessful inhibitions [62]. Roche and
colleagues showed that highly absentminded, young healthy individuals had larger and earlier
N2 and P3 components in successful inhibition trials and larger error-related componentsin
unsuccessful inhibition trials compared to less absentminded individuals of the same age group
[63]. Karamacoska and colleagues reported smaller P3 amplitudes in young healthy adults with
increased response time variability, who were also found to commit more errors, compared to
peers with low response time variability [64]. In each case, different criteriawere used to split
the cohort into two subgroups, depending on the behavioral variable of interest: certain studies
performed a median split [46, 63-65], others leveraged the bimodality of the distribution of the
behavioral variable and split the cohort based on the two modes [62] and studies investigating
impulsivity applied the splitting methodology proposed by Pailing and colleagues [66, 67]. In the
context of collecting pilot data for the present study, data from five (5) young healthy adults
were collected. Analysis of these preliminary data showed that three (3) of the pilot participants
improved response accuracy during walking compared to sitting. Improvement in cognitive task
performance with the addition of walking appeared to conflict with the CMI hypothesis.
Response accuracy was measured using the d’ score (sensitivity index) [68, 69], Sinceitisabias-
free measure that takes into account both the Go and the NoGo behavior (greater d’ score
signifies better response accuracy). These preliminary data were then sequestered (see
Supplemental Material). The working hypothesis that young individuals who improve
performance during walking would differ in their ability to flexibly allocate neural resources for
accomplishing both the motoric and cognitive tasks, and might also differ in the consistency of
their gait compared to those who do not improve while walking, was tested in this report.
Participants were divided into two (2) subgroups based on the walking-minus-sitting d’
difference: 1) participants who exhibited a positive walking-minus-sitting d’ difference
(cognitive task performance improved during walking compared to sitting - IMPs) and 2)
participants who exhibited a walking-minus-sitting d’ difference which was either negative or not
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significantly different from zero (cognitive task performance did not improve during walking
compared to sitting - nIM Ps).

The current study examined successful NoGo inhibition trials during the N2 and P3 processing
stages and unsuccessful NoGo inhibition trials during the ERN stage for walking-related
amplitude changes in neurophysiological activity in the entire young adult cohort, and
subsequently in the IMP and nIMP subgroups. Gait variability and response speed were
additionally examined for dual-task changes in the same groups, to test whether improvement in
response accuracy (IMPs) would be accompanied by trade-offs reflected in other physiological
domains; for example, whether IMPs would be more accurate but slower in their responses, or
they would walk more variably. ldentifying potential differencesin the way IMPs alter their
neural activity in response to dual-task load compared to nIMPs can shed light on the underlying
neurocognitive mechanismsthat drive their behavioral improvement.
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M aterials and M ethods

Participants

Twenty-six (26) young adults (18-30 years old; age = 22.35 + 3.27 years; 13 female, 13 male; 23
right-handed, 3 |eft-handed) participated in the study. All participants provided written informed
consent, reported no diagnosed neurological conditions, no recent head injuries, and normal or
corrected-to-normal vision. The Institutional Review Board of the University of Rochester
approved the experimental procedures (STUDY 00001952). All procedures were compliant with
the principles laid out in the Declaration of Helsinki for the responsible conduct of research.
Participants were paid $15/hour for time spent in the |ab.

Experimental Design

A Go-NoGo response inhibition cognitive task was employed. During each experimental block,
images were presented in the central visual field for 67 mswith a fixed stimulus-onset-
asynchrony of 1017 ms. Images subtended 10° of visual angle horizontally and 8° vertically.
The task was coded using the Presentation software (version 20.1, Neurobehavioral Systems,
Albany, CA, USA). Participants were instructed to press the button of awireless game controller
asfast and accurately as possibleif the presented image was different from the preceding image
(‘Go’ trial). They were instructed to withhold pressing the button if the presented image was the
same as the preceding image (‘NoGo’ trial) (Fig. 1). Participants performed blocks of 240 trials
in which 209 (87%) were Go trials and 31 (13%) were NoGo trials. NoGo trials were randomly
distributed within each block.

Three (3) behavioral conditions of the cognitive task were defined: 1) correct rejections, defined
as the NoGo trials on which participants correctly withheld their response, 2) false alarms,
defined as the NoGo trials on which participants incorrectly pressed the response button and 3)
hits, defined as the Go trials on which participants correctly pressed the response button.

87% Go Trials
13% NoGo Trials
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Fig. 1. lllustration of the Go-NoGo response inhibition experimental design. Participants are
instructed to respond on Go trials and withhold response on NoGo trials.

Experimental blocks were performed while the participants were either sitting or walking on a
treadmill (Tuff Tread, Conroe, TX, USA), at adistance of 2.25 m approximately from the
projection screen on which the images were projected (Barco F35 AS3D, 1920x1080 pxl). A
safety harness was worn while walking to guard against falls[70]. An experimental session
consisted of 16 blocks: 1 training block at the beginning, 7 sitting blocks, 7 walking blocks, and
1 single-task walking block (walking on the treadmill without a cognitive task). The order of
sitting and walking blocks was pseudorandomized; no more than 3 consecutive walking blocks
occurred to prevent exhausting the participants. Participants were allowed to take short breaks
between the blocks, each of which lasted 4 minutes. Most participantstook at least one break
during the experiment. If a break was requested, typically it did not last longer than 10 minutes.
Participants were asked to select a treadmill speed corresponding to brisk walking for them,
starting from the recommended speed of 4.8 km/h and increasing or decreasing as necessary. The
vast majority of participants (22 out of 26) selected a speed of 4.8 km/h, while 4 participants
selected lower speeds (3 participants walked at 4.2 km/h and 1 participant at 3.9 km/h). In
general, the walking speeds selected corresponded to brisk walking [71].

The pictures used for stimuli were drawn from the International Affective Picture System (IAPS)
database [72]. The |IAPS database contains pictures of varied emotional valence and semantic
content. Positive, neutral and negative pictures were all used, however analyzing the emotional
valence or semantic content of stimuli is beyond the scope of this study.

EEG data were recorded using a BioSemi Active Two System (BioSemi Inc., Amsterdam, The
Netherlands) and a 64-electrode configuration following the International 10-20 system. Neural
activity was digitized at 2048 Hz. Full-body motion capture was recorded using a 16 camera
OptiTrack system (Prime 41 cameras), and Motive software (OptiTrack, Natural Point, Inc.,
Corvallis, OR, USA) in a~37 m* space. Cameras recorded 41 markers on standard anatomical
landmarks along the torso, the head and both arms, hands, legs and feet at 360 frames per
second. Stimulus triggers from Presentation (Neurobehavioral Systems Inc., Berkeley, CA,
USA), behavioral responses from the game controller button, motion tracking data and EEG data
were time-synchronized using Lab Streaming Layer (LSL) software (Swartz Center for
Computational Neuroscience, University of California, San Diego, CA, USA; available at:
https:.//github.com/sccn/labstreaminglayer). Motion capture data were recorded using custom
software written to rebroadcast the data from the Motive software to the LSL |ab recorder. EEG
data were recorded from available LSL streaming plugins for the BioSemi system. Behavioral
event markers were recorded using the built-in LSL functionality in the Presentation software.
The long-term test-retest reliability of the MoBI approach has been recently detailed [73]. All
behavioral, EEG and motion kinematic data processing and basic analyses were performed using
custom MATLAB scripts (MathWorks Inc., Natick, MA, USA) and/or functions from EEGLAB
[74]. Custom code from this study will be made available on GitHub (https://github.com/CNL-R)
upon publication.
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Cognitive Task Performance Processing & Analysis

The exact timing of each button press relative to stimulus onset, the participant’ s response times
(RTs), were recorded using the Response Manager functionality of Presentation and stored with
precision of 1/10 millisecond. The Response Manager was set to accept responses only after 183
ms post-stimulus-onset within each experimental trial. Any responses prior to that were
considered delayed responses to the previous trial and were ignored. This RT threshold was
selected to filter out as many delayed-response trials as possible, without rejecting any valid
trials for which the responses were merely fast [75].

Two (2) behavioral conditions of the cognitive task were interrogated in this study, 1) correct
rejections and 2) false alarms. For both correct rgjections and false alarms, only trials that were
preceded by hits were kept, to ensure that the inhibitory component was present.

Two (2) behavioral measures were calculated: 1) thed’ score (sensitivity index) and 2) mean RT
during (correct) Go trials, namely hits. D’ is a standardized score and it is computed as the
difference between the Gaussian standard scores for the false alarm rate and the hit rate [68, 69].

Statistical Analysis

In the full young adult cohort, d’ score differences between sitting and walking were assessed
using a paired t-test (the walking-minus-sitting d’ score difference was subjected to a Shapiro-
Wilk normality test [ 76] and the null hypothesis was not rejected). Additionally, mean RTs
during Go trials were tested for differences between sitting and walking using a paired t-test (the
walking-minus-sitting mean RT difference was subjected to a Shapiro-Wilk normality test and
the null hypothesis was not rejected).

Participants were subsequently classified on the basis of whether their d’ score during walking
was significantly higher than when they were seated (their cognitive task performance improved
(IMP) while walking), or whether they did not improve (nl M P) performance while walking
(either because their d’ scores declined or were unchanged). Significant walking-minus-sitting d’
score difference was defined as the difference that lay outside of the 95% confidence interval of
the normal distribution that had a mean value of zero and a standard deviation equal to that of the
(d’'walking — d' sitting) distribution of the entire cohort.

In the context of the split-group analysis, IMPs and nIM Ps were compared in terms of average d’
d’walking+ d’sitting

score, i.e. using an independent samplest-test (the average d’ scores of
IMPs and IMPs were subj ected to a Shapiro-Wilk normality test and the null hypothesis was not
rejected for either group). Additionally, mean RTs during Go trials were subjected to a 2 (Group:
IMPs, nIMPs) x 2 (Motor Load: sitting, walking) ANOV A to test for response speed differences
between IMPs and nIMPs, as well as for differences in how response speed was modulated by
the addition of walking in these groups.

Gait Kinematics Processing & Analysis

Heel markers on each foot were used to track gait kinematics. The three dimensions (3D) of
movement were defined as follows: X isthe dimension of lateral movement (right-and-left
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relative to the motion of the treadmill belt), Y isthe dimension of vertical movement (up-and-
down relative to the motion of the treadmill belt), and Z isthe dimension of fore-aft movement
(paralld to the motion of the treadmill belt). The heel marker motion in 3D is described by the
three (3) time series of the marker position over timeinthe X, Y and Z dimension, respectively.
Gait cycle was defined as the time interval between two consecutive hedl strikes of the same
foot. Heel strikes were identified as the local maxima of the Z position waveform over time. To
ensure that no ‘phantom’ heel strikes were captured, only peaks with a prominence greater than
0.1 m were kept (findpeaks function in MATLAB, minimum peak prominence parameter was set
to 0.1 m).

Stride-to-stride variability was quantified as the mean Euclidean distance between consecutive
3D gait cycletrgjectories, using the Dynamic Time Warping algorithm (DTW) [77, 78]. DTW is
an algorithm for measuring the similarity between time series, and its efficacy in measuring 3D
gait trgectory similarity is well-established [79-81].

signal, then DTW finds a sequence{ix, iy} of indices (called warping path), such that X(ix) and
Y (iy) have the smallest possible distance. Theix and iy are monotonically increasing indices to
the elements of signals X, Y respectively, such that e ements of these signals can be indexed
repeatedly as many times as necessary to expand appropriate portions of the signals and thus
achieve the optimal match. This concept can be generalized to multidimensional signalstoo, like
the 3D gait cycle trgjectories which are of interest here. The minimal distance between the
reference and the test signals (gait trajectories here) is given by the equation below:

distance = Y meix Admn (X, Y) (D

neiy

Gait cycle trgectories with akurtosis that exceeded 5 standard deviations of the mean were
rejected as outliers. Also, before DTW computation, gait cycle tragjectories were resampled to
100 samples. Since DTW essentially calculates the sum of the Euclidean distances between
corresponding points of two interrogated trajectories, ensuring that all trajectories are resampled
to the same length helps avoid bias in the algorithm computations.

The actual measure that was used to quantify each participant’ s stride-to-stride variability isthe
mean across DTW distances occurring from all stride-to-stride comparisons. Right-foot and |eft-
foot stride-to-stride DTW distances were pooled to calculate the mean DTW distance per
participant.

Statistical Analysis

In the full young adult cohort, mean DTW distance differences between single-task (ST) walking
and dual-task (DT) walking were assessed using a Wilcoxon signed rank test (the DT-minus-ST
mean DTW distance difference was subjected to a Shapiro-Wilk normality test and the null
hypothesis was rejected). One (1) participant did not have ST walking recordings and was
therefore excluded from this analysis.

In the context of the split-group analysis, mean DTW distance was subjected to a 2 (Group:
IMPs, nIMPs) x 2 (Cognitive Load: ST walking, DT walking) ANOV A to test for stride-to-stride
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variability differences between IMPs and nIMPs, as well as for differences in how the addition of
cognitive task performance modulated stride-to-stride variability in these groups. The two
participants excluded from the group level analysis both belonged to the IMP subgroup.

EEG Activity Processing & Analysis

EEG signals were first filtered using a zero-phase Chebyshev Type Il filter (filtfilt functionin
MATLAB, passband ripple Apass = 1 dB, stopband attenuation Astop = 65 dB) [82], and
subsequently down-sampled from 2048 Hz to 512 Hz. Next, ‘bad’ electrodes were detected
based on kurtosis, probability, and spectrum of the recorded data, setting the threshold to 5
standard deviations of the mean, as well as covariance, with the threshold set to +3 standard
deviations of the mean [82]. These ‘bad’ electrodes were removed and interpolated based on
neighboring electrodes, using spherical interpolation. All the electrodes were re-referenced
offline to a common average reference.

Winkler and colleagues have shown that 1-2 Hz highpass filtered EEG datayield the optimal
Independent Component Analysis (ICA) decomposition resultsin terms of signal-to-noise ratio
[83]. In order to both achieve a high-quality ICA decomposition and retain as much low-
frequency (< 1 Hz) neural activity as possible, after running Infomax ICA (runica function in
EEGLAB, the number of retained principal components matched the rank of the EEG data) on 1-
45 Hz bandpass-filtered data and obtaining the decomposition matrices (weight and sphere
matrices), these matrices were transferred and applied to 45-Hz lowpass-filtered data. No
highpass filtering was applied, since there is evidence indicating that the best way to avoid
introducing artifacts into the ERP waveforms is either to use conservative high-pass filters (< 0.1
Hz) or to avoid high-pass filtering altogether [84]. ICs were |abeled using the ICLabel algorithm
[85]. Artifactual ICs, namely ICs classified as eye activity, muscle activity, ground noise, poor
electrode quality or contact, or heart activity, were detected and rejected, while the remaining
|Cs were back-projected to the sensor space.

Subsequently, the resulting neural activity was split into temporal epochs. For the correct
rejection trials, epochs were locked to the stimulus onset, beginning 200 ms before and extending
until 800 ms after stimulus onset of the trial. Correct rejection epochs were baseline-corrected
relative to the pre-stimulus-onset interval from -100 to O ms. For the false darm trials, epochs
were locked to the response onset, beginning 500 ms before and extending until 500 ms after
response onset of the trial. False alarm epochs were baselined-corrected relative to the pre-
response interval from -400 to -300 ms. Epochs with a maximum voltage greater than £150 pVvV
or that exceeded 5 standard deviations of the mean in terms of kurtosis and probability were
excluded from further analysis. Epochs that deviated from the mean by +50 dB in the 0-2 Hz
frequency window (eye movement detection) and by +25 or -100 dB in the 20-40 Hz frequency
window (muscle activity detection) were rejected as well. For the sitting condition, on average
21% of thetrials were regjected based on these criteria, while for the walking condition the
respective percentage was 39%. Event-related potentials (ERPs) were measured by averaging
epochs for (2 motor task) x (2 cognitive task) conditions, namely four (4) experimental
conditions in total. The motor task conditions were 1) sitting and 2) walking; and the cognitive
task conditions were 1) correct rejections and 2) response-locked false alarms.
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Statistical Analysis

The EEG statistical analyses were performed using the FieldTrip toolbox [86]
(http://fieldtriptoolbox.org). To compare ERP waveforms between sitting and walking, paired t-
tests and cluster-based permutation tests were used [87]. As stated in the Introduction, significant
differences between sitting and walking were hypothesized to be found in N2 ([200, 350] ms[49,
50]) and P3 ([350, 600] ms[29, 54]) latencies and topographies during correct rgjection trials,
and in ERN ([-50, 100] ms[57, 58]) latencies and topographies during response-locked false
alarm trials. Despite having formulated specific hypotheses about the latency and the
topographies of the effects, the full set of 64 electrodes and all the epoch timepoints were
included in the analyses, to explore potential effects that might have been overlooked by
previous studies. By using this approach, both the hypothesis-driven and the exploratory
component of this study are satisfied at once.

First, the mean walking-minus-sitting difference ERP waveform was obtained for each electrode
and for each subject by subtracting the within-subject mean sitting ERP waveform from the
corresponding mean walking ERP waveform. Next, one-sample t-tests were performed on the
mean difference ERP waveforms coming from all subjects, at each electrode and timepoint. To
correct for multiple comparisons, cluster-based permutation tests were performed, using the
Monte Carlo method (5000 permutations, significance level of the permutation testsa = 0.05,
probabilities corrected for performing two-sided tests) and the weighted cluster mass statistic
[88] (cluster significance level a = 0.05, parametric cluster threshold). This procedure was
performed separately for each one of the interrogated behavioral conditions of the cognitive task
(correct rgjection, response-locked false alarm), first for the entire cohort and, subsequently, for
the IMP and nIMP subgroups. The results of the point-wise t-tests from all 64 electrodes and all
timepoints were displayed as an intensity plot to efficiently summarize and facilitate the
identification of the onset and general topographical distribution of walking-related changesin
ERP activity. The x, y, and z axes, respectively, represent time, electrode location, and the t-
statistic (indicated by a color value) at each electrode-timepoint pair.
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Results

Group-Level Analysis

Cognitive Task Paerformance

In previous studies, correct rejection rate (CRR) and hit rate (HR) have been used to assess
cognitive task performance in a Go-NoGo response inhibition task [29]. However, CRR and HR
in isolation can be impacted by changes in the participant’ s response criterion. The sensitivity
index (d') measures the discriminability between the Go and the NoGo conditionsand is
independent of the response criterion. Higher d’ scores indicate an increased ability to properly
detect and respond to both Go and NoGo stimuli.

In the current cohort, d’ scores during sitting and walking were calculated and d' differences
between sitting and walking were examined using a paired t-test. Overall, d’ scores were higher
during walking compared to sitting (d'sitting = 2.27 + 1.20, d’'walking = 2.50 + 1.07; t,s = 2.85,
p = 0.0087, Cohen’s d = 0.56) indicating better performance when participants were walking on
the treadmill (Fig. 2A). This observation appears to be incons stent with the hypothesis that there
will be interference between motor and cognitive tasks (CMI) during dual-task conditions [12].

Mean Go RT differences between sitting and walking were assessed using a paired t-test. No
significant differences were found between sitting and walking mean Go RTs (mean RT Go
sitting = 382 = 62 ms, mean RT Go walking = 390 + 47 ms; t,s = 1.36, p = 0.1862, Cohen’sd =
0.27; Fig. 2B).
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Fig. 2. Sitting and walking A. d’ scores and B. mean Go RTs of the full young adult cohort.
Dots represent individual participants. The central mark of each box indicates the median, and
the bottom and top edges indicate the 25" and 75" percentiles, respectively. The whiskers
extend to the most extreme data points not considered outliers. There were no outliers here.
D’ scores during walking were higher compared to sitting, indicating better cognitive task
performance during walking in young adults. No significant differences were found in mean
Go RTs between sitting and walking.
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Based on these data, young adults responded more accurately to task-related stimuli during
walking than while sitting. This behavioral improvement was not accompanied by response
speed costs (i.e., no speed-accuracy trade-off was observed).

Gait Kinematic Activity

Walking on atreadmill imposes a fixed walking speed, and as a result stride time variability may
underestimate the impact of cognitive tasks on gait. To evaluate gait kinematics across the entire
gait cycle (stance and swing phases) and compare 3D trgectories of consecutive strides, a
Dynamic Time Warping (DTW) approach was used (details in Methods).

Using DTW, the variability from one stride to the next was quantified as DTW distance and,
subsequently, the mean DTW distance of all stride-to-stride comparisons was extracted per
participant (Fig. 3A). Mean DTW distance was calculated during both single-task (ST) and dual-
task (DT) walking. One (1) participant did not have ST walking recordings and was therefore
excluded from this analysis, resulting in a set of twenty-five (25) participants. Mean DTW
distance differences between ST and DT walking were assessed using a Wilcoxon signed rank
test. Mean DTW distances were greater during ST compared to DT walking (mean DTW
distance ST = 2.44 + 0.61 m, mean DTW distance DT = 2.21 + 0.52 m; z=4.02, p = 0.0001,
Rosenthal’sr = 0.80). Asillustrated, walking variability decreased when combined with the
response inhibition task compared to walking in isolation (Fig. 3B).
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Fig. 3. A. 3D representations of trgjectories of a series of strides. Lateral is the dimension of
movement right-and-left relative to the motion of the treadmill belt. Vertical isthe dimension
movement up-and-down relative to the motion of the treadmill belt. Fore-aft is the dimension
of movement parallel to the motion of the treadmill belt. Perspective (I€ft), top (upper right)
and right (lower right) views are provided. Using DTW, the variability from one stride to the
next was quantified as DTW distance (see Methods) and the mean DTW distance of all stride-
to-stride comparisons was extracted per participant. B. Mean DTW distance distribution
during single-task walking (ST) and dual-task walking (DT); mean DTW distances of
individual participants are represented as dots scattered on the boxes. Mean DTW distance
was smaller during DT compared to ST walking. Red ‘+' symbols indicate outliers.
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EEG Activity
Correct Rejections

Cluster-based permutation tests were used to examine neural activity differences between sitting
and walking during correct rejection trials. First, three (3) midline electrode locations — a
frontocentral midline electrode (FCz), a central midline electrode (Cz) and a centroparietal
midline electrode (CPz) — were plotted and inspected for differences (Fig. 4A, latency intervals
of significant differences are highlighted in gray). The selection of these electrodes was based on
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previous studies showing that the N2 amplitude is maximal over frontocentral midline scalp and
the P3 ismaximal over centroparietal midline scalp [47, 89]. Reduced ERP amplitudes during
walking were found at FCz and Cz during the N2 latency interval, and at the Cz and CPz during
the P3 latency interval (Fig. 4A). The cluster-based permutation approach also allowed for
exploring the existence of walking-related effects on ERPs in the entire electrode set and at all
the epoch timepoints. The effects that this approach revealed were ERP amplitude reductions
during walking 1) over frontal and frontocentral scalp (yellow in the Fig. 4B statistical
clusterplot) and over parietal and occipital scalp (blue) during the N2 latency interval, 2) over
left prefrontal (yellow) and over central and centroparietal scalp (blue) during the P3 latency
interval and 3) over central and centroparietal scalp during latencies beyond the P3 latency
interval, until the end of the epoch (blue). The topographical distribution of the average
(walking-minus-sitting) neural activity difference during correct rejection trials is shown for
selected timepoints at which this difference was found to be significant (Fig. 4C, red dots on the
maps show electrodes that exhibit significant differences).
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Fig. 4. Neura activity differences between sitting and walking during correct rejection trials.
A. Grand average sitting and walking ERP waveforms, at three midline electrode locations:
frontocentral midline (FCz), central midline (Cz) and centroparietal midline (CPz) electrode.
The shaded regions around the ERP waveforms indicate the Standard Error of the Mean
(SEM) across participants. The latency interval of significant differences in each electrode is
highlighted in gray. B. Spatiotemporal walking-minus-sitting ERP differences using cluster-
based permutation tests. The statistical clusterplot shows the t-values for the electrode-
timepoint pairs at which significant ERP differences between sitting and walking were found.
Positive t-values (yellow) indicate that walking ERP amplitude was greater than sitting ERP
amplitude. Significant differences were found 1) over frontal and frontocentral scalp (yellow)
and over parietal and occipital scalp (blue) during the N2 latency interval, 2) over left
prefrontal (yellow) and over central and centroparietal scalp (blue) during the P3 latency
interval and 3) over central and centroparietal scalp during latencies beyond the P3 latency
interval, until the end of the epoch (blue). The black rectangles indicate latencies
corresponding to the N2 and P3. C. Topographical maps showing the average (walking-
minus-sitting) neural activity difference for selected timepoints at which this difference was
found to be significant. The electrodes exhibiting significant differences are depicted as red
dots on the maps. The electrodes to which the ERP waveforms of panel A correspond are
circled in black (vertical order matched).

Response-Locked False Alarms

Cluster-based permutation tests were used to examine neural activity differences between sitting
and walking during response-locked false alarm trials. First, the FCz electrode was plotted and
inspected for differences (Fig. 5A), since the ERN has been shown to have maximal amplitude
over frontocentral midline scalp [90, 91]. Reduced ERP amplitudes during walking were found
at FCz during the ERN latency interval. By exploring the entire electrode set and all the epoch
timepoints, the effects that the cluster-based permutation approach revealed were frontocentral
walking-related amplitude reductions during ERN latencies, as well as during latencies preceding
the ERN ([-130, -50 ms] approximately, corresponding to the yellow points outside of the black
rectanglein Fig. 5B statistical clusterplot). The latency and topography of these earlier, pre-ERN
differences indicate reduction in pre-motor neural activity reflected by the pre-movement
positivity (PMP) ERP [92, 93]. The topographical distribution of the average (walking-minus-
sitting) neural activity difference during response-locked false alarm trials is shown for selected
timepoints at which this difference was found to be significant (Fig. 5C, red dots on the maps
show electrodes that exhibit significant differences).
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Fig. 5. Neural activity differences between sitting and walking during response-locked false
alarm trials (modeled per Fig. 4). A. Grand average sitting and walking ERP waveforms
during response-locked false alarm trials, at a frontocentral midline eectrode (FCz). B.
Spatiotemporal walking-minus-sitting ERP differences using cluster-based permutation tests.
Significant differences, shown in yellow in the statistical clusterplot, were found over
frontocentral scalp during the ERN latency interval, and over similar frontocentral scalp
during pre-ERN latencies. The latter indicated reduction in the pre-motor positivity (PMP). C.
Topographical maps showing the average (walking-minus-sitting) neural activity difference
for selected timepoints at which this difference was found to be significant. The electrode to
which the ERP waveforms of panel A correspond iscircled in black.

Split-Group Differences Based on Cognitive Task Performance

Coqnitive Task Performance

As shown above, mean d’ scores for the entire cohort improved when participants were walking
on thetreadmill. Thisisan indication of cognitive-motor enhancement, rather than the more
typically expected cognitive-motor interference often observed in dual task paradigms. In other
words, the response inhibition task appears to have gotten easier when coupled with walking in
this young adult cohort. Several questions arise from this observation: Does each individual
improve? Are there neural patternsthat differ based on behavioral improvement versus non-
improvement while walking? Are there differences in gait variability for those that improve
compared to those that do not? These questions are addressed below in split-group analyses that
compare those who improved their performance while walking (IMPs) and those who did not
(nIMPs).

The (d'walking — d' sitting) difference was calculated for each participant and its significance
was subsequently tested by determining whether it lay outside of the 95% confidence interval of
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the normal distribution having a mean value of zero and a standard deviation equal to that of the
(d’walking — d’ sitting) distribution of the entire cohort. If d’'walking > d’sitting, namely the
participant improved significantly during walking compared to sitting, they were classified into
the IMP subgroup. If d'walking < d'sitting, namely the participant did not improve significantly
during walking compared to sitting, they were classified into the nIMP subgroup. In total,
fourteen (14) participants were classified into the IMP subgroup and twelve (12) participants into
the nIMP subgroup (8 had d’ walking =~ d’ sitting, 4 had d’ walking < d’ sitting), as shown in Fig.
6A.

In the subsequent analyses, response times, ERPs, and gait kinematic variability were contrasted
between IMPs (Fig. 6B) and nIMPs (Fig. 6C).

A B ¢
= E—= —
0 - — | %
Sitting Walking Sitting Walking Sitting Walking
@ d' walking > d' sitting d' walking = d' sitting @mm®d’ walking < d' sittingl

Fig. 6. Sitting and walking d' scores of A. the full young adult cohort, B. participants who
improved during walking (IMPs), and C. participants who did not improve during walking
(nIMPs). Each line corresponds to one participant.

No significant differencesin average d’ scores were found between IMPs and nIMPs, asthe
independent samples t-test indicated (averaged’ IMPs=2.30 £ 0.70, averaged’ nIMPs=2.48 £
1.49; to4 = 0.39, p = 0.7020, Cohen’sd = 0.15).

The 2x2 ANOV A assessing the effects of Group (IMPs vs nIMPs) and Motor Load (sitting vs
walking) on mean RTs revealed a significant main effect of Group (F124= 4.86, p = 0.0373, n° =
0.16). Thisindicated that IMPs (mean RT sitting = 360 £ 54 ms, mean RT walking = 372 + 41
ms) were overall faster than nIMPs (mean RT sitting = 407 + 64 ms, mean RT walking =411 +
47 ms) to respond to image presentation. No significant effects of Motor Load (F1 4= 1.65, p =
0.2108, ? < 0.01) or Group/Motor Load interaction was found (Fy2,= 0.55, p = 0.4649, n° <
0.01).

Gait Kinematic Activity

The effects of Group (IMPs vs nIMPs) and Cognitive Load (ST vs DT walking) on mean DTW
distance were assessed by means of a2x2 ANOVA. ThisANOVA revealed asignificant main
effect of Group (F123= 4.71, p = 0.0406, n° = 0.14) indicating that IMPs (mean DTW distance
ST =2.46 £ 0.54 m, mean DTW distance DT = 2.08 £ 0.36 m) walked less variably than nIMPs
(mean DTW distance ST = 2.82 £ 0.67 m, mean DTW distance DT = 2.59 + 0.57 m) (Fig. 7B).
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The significant main effect of Cognitive Load (F123= 13.48, p = 0.0013, n° = 0.07) that occurred
is expected, since the same effect was tested using the Wilcoxon signed rank test as part of the
group-level analysis. Within-group post-hoc t-tests showed that mean DTW distance decreased
significantly during DT walking in both the IMP (t;2 = 2.59, p = 0.0235, Cohen’sd = 0.72) and
the nIMP subgroups (t1; = 3.35, p = 0.0064, Cohen’sd = 0.97). No significant Group/Cognitive
Load interaction was found (F123= 0.80, p = 0.3811, n° < 0.01) (Fig. 7B). Of note, the one (1)
participant excluded from the corresponding group-level analysis was an IMP, thusresulting in a
set of thirteen (13) IMPs and twelve (12) nIMPs entered into this analysis.

Fig. 7A shows 3D representations of trajectories of a series of strides for an IMP (top) and a

nIMP (bottom), to give an example of what alower-variability series of strides (IMP) looks like
compared to a higher-variability series of strides (nNIMP).
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distance was smaller in IMPs compared to nIMPs.

Fig. 7. A. 3D representations of trgectories of a series of strides for an IMP (top) and anIMP
(bottom). For both the IMP and the nIMP , perspective (l€ft), top (middle) and right (right)
views are provided in the respective panels. B. Mean DTW distance distribution during
single-task walking (ST) and dual-task walking (DT), for IMPs and nIMPs. Mean DTW
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EEG Activity

Correct Rejections

To compare the spatiotemporal effects of walking on neurophysiology between IMPs and nIMPs
during correct rgjection trials, cluster-based permutation tests were performed separately for each
group to examine differences between the sitting and the walking correct rejection ERP
waveform. During correct rejection trials, IMPs exhibited reduced walking ERP amplitudes over
frontocentral scalp during the N2 latency interval and over |eft prefrontal scalp during the P3
latency interval, while nIMPs exhibited no detectable ERP differences between sitting and
walking (Fig. 8B). These walking-related effects in IMPs were represented by the yellow cluster
in the Fig. 8B statistical clusterplot. By comparing these walking-related effectsto the
corresponding group-level effects shown in the Fig. 4B statistical clusterplot, it can be observed
that the yellow cluster was almost identical between IMPs and the entire cohort, indicating that
IMPs maintain only the frontal/frontocentral portion of walking-related effects that were found in
the overall combined cohort. Sitting and walking ERPs of IMPs and nIM Ps during correct
rejection trials are depicted at FCz, since this electrode belongs to the frontocentral cluster of
significant effects (Fig. 8A). The topographical maps of Fig. 8C show the scalp distribution of
the average (walking-minus-sitting) neural activity difference in IMPs and nIMPs during correct
rejection trials, for selected timepoints at which this difference was found to be significant in
IMPs.
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Fig. 8. Walking-minus-sitting ERP differences in IMPs and nIMPs during correct rejection
trials. A. Grand average sitting and walking ERP waveforms of IMPs (left column) and IMPs
(right column), at a frontocentral midline electrode (FCz) that exhibits significant differences
between the two motor load conditions for IMPs. B. Spatiotemporal walking-minus-sitting
ERP differences in IMPs (left column) and IMPs (right column), using cluster-based
permutation tests. Such differences were found only in IMPs, over frontocentral scalp during
the N2 latency interval and left prefrontal scalp during the P3 latency interval (yellow
cluster). C. Topographical maps showing the average (walking-minus-sitting) neural activity
difference for selected timepoints at which this difference was found to be significant in
IMPs. Maps areillustrated both for IMPs and nIMPs, for comparison purposes. The electrode
to which the ERP waveforms of panel A correspond iscircled in black.

Response-locked False Alarms

To compare the spatiotemporal effects of walking on neurophysiology between IMPs and nIMPs
during response-locked false alarm trials, cluster-based permutation tests were performed
separately for each group to examine differences between the sitting and walking response-
locked false alarm ERP waveform. During response-locked false alarm trials, IMPs exhibited
reduced walking-related ERP amplitudes over frontal/frontocentral scalp during the ERN latency
interval and over central/frontocentral scalp during pre-ERN latencies (Fig. 9B). Pre-ERN
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amplitude reductions, which were not part of our initial hypothesis, were also encountered in the
group-level analysis (Fig. 5B) where they were interpreted as reduction in the PMP. Here, even
though differential effects started earlier than in the combined group (-210 vs -130 ms,
approximately), they are still thought to reflect PM P amplitude reduction during walking based
on their latency and topography, only more pronounced compared to the entire cohort. No
detectable ERP differences between sitting and walking were found in nIMPs (Fig. 9B). The
walking-related effects in IMPs are represented by the yellow cluster in the Fig. 9B statigtical
clusterplot. By comparing these walking-related effects to the corresponding group-level effects
shown inthe Fig. 5B statistical clusterplot, it can be observed that the yellow cluster manifested
in IMPs was qualitatively similar to the corresponding cluster of the entire cohort, with the
difference that the IMP cluster had an earlier onset (more pronounced PM P reduction during
walking in IMPs) and it spread over more electrodes during the ERN latency interval (more
pronounced ERN reduction during walking in IMPs). This indicates that IMPsin general
maintain the walking-related effects that were found in the overall combined cohort. Sitting and
walking ERPs of IMPs and nIMPs during response-locked false alarm trials are depicted at FCz,
since this electrode belongs to the frontocentral cluster of significant effects (Fig. 9A). The
topographical maps of Fig. 9C show the scalp distribution of the average (walking-minus-sitting)
neural activity difference in IMPs and nIMPs during response-locked false alarm trials, for
selected timepoints at which this difference was found to be significant in IMPs.
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Fig. 9. Walking-minus-sitting ERP differences in IMPs and nIMPs during the response-
locked false alarm trials (modeled per Fig. 8). A. Grand average sitting and walking ERP
waveforms of IMPs (left column) and IMPs (right column), at a frontocentral midline
electrode (FC2z) that exhibits significant differences between the two motor load conditions
for IMPs. B. Spatiotemporal walking-minus-sitting ERP differences in IMPs (left column)
and IMPs (right column), using cluster-based permutation tests. Such differences were found
only in IMPs, over frontocentral scalp during the ERN latency interval and over
central/frontocentral scalp during latencies preceding the ERN (yellow cluster). The latter
indicated reduction in the PMP. C. Topographical maps showing the average (walking-minus-
sitting) neural activity difference for selected timepoints at which this difference was found to
be significant in IMPs. Maps are illustrated both for IMPs and nIMPs, for comparison
purposes. The electrode to which the ERP waveforms of panel A correspond is circled in

IMPs
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Discussion

Cognitive-Motor Interference (CMI) [14] predicts that walking will have a detrimental effect on
cognitive task performance and/or on gait kinematics due to competition in neural resource
allocation between the two concurrent task components. However, in the current cohort, walking
actually improved performance in more than half of the participants (14 out of 26). The
remaining 12 participants showed either no change in performance (n = 8) while walking, or had
the expected decline (n = 4). Those who improved (IMPs) responded more quickly to Go stimuli
and had significantly reduced stride-to-stride variability compared to those who did not improve
(nIMPs). Behavioral improvement effects while walking were accompanied by ERP changes
during both the correct rejection trials and the response-locked false alarm trials. No dual-task-
related ERP differences were present in participants who did not improve performance while
walking. The findings above suggest that IMPs may adjust their cognitive strategy in response to
the increased task demands, and this adjustment is reflected in the ERP amplitude reductions
during key processing stages of inhibitory control.

Reduction in stride-to-stride variability during dual-task walking compared to single-task
walking was found both in the cohort overall and in the IMP and nIM P subgroups, suggesting
that this effect may characterize young healthy adultsin general, independent of cognitive task
performance. A number of studies have reported findings similar to this, especialy in young
adults [94-99]. One possibility to account for this pattern is that shifting attention solely to motor
control of walking, alargely automated motor pattern [100], increases susceptibility to
endogenous or exogenous noise, which, in turn, can compromise walking performance [97, 101,
102]. In contrast, with the addition of a cognitive load, attention shifts away from walking-
related motor control, enhancing automaticity and improving the consistency of the generated
walking patterns [95, 98]. Indeed, a recent paper demonstrated that the addition of cognitive
load, via performance of a Go-NoGo task, reduced the impact of perturbationsin ongoing optic
flow inputs on both gait parameters and EEG outcomes while participants were engaged in
treadmill walking [103].

During correct rgjection trials, ERP amplitude reductions during walking were found 1) over
frontal, frontocentral, parietal and occipital scalp regions during the N2 latency interval, 2) over
left prefrontal, central and centroparietal scalp regions during the P3 latency interval and 3) over
central and centroparietal scalp regions during latencies beyond the P3 latency interval, until the
end of the epoch (Fig. 4). From these effects, the walking-related amplitude reductions of the
frontocentral N2 and the centroparietal P3 are consistent with previous literature [29]. However,
the left prefrontal amplitude reductions during the P3 latency interval, along with the late
central/centroparietal amplitude reductions during post-P3 latencies, have not been reported by
previous studies (Fig. 4). The latter central/centroparietal effect isthought to mostly stem from
differences in the EEG processing pipelines; neural activity was not highpass-filtered here thus
allowing more low-frequency content to be retained. IMPs maintained the anterior
(frontal/frontocentral) portion of effects found in the combined cohort, namely they exhibited
ERP amplitude reductions during walking over frontal/frontocentral scalp during the N2 latency
interval and in left prefrontal scalp during the P3 latency interval (Fig. 8). In contrast, nIMPs
exhibited no detectable walking-related effects during correct rejection trials. (Fig. 8). Focusing
on the effects found in IMPs, the N2 is thought to reflect the conflict between the two competing
response tendencies (the ‘Go’ and the ‘NoGo’) and its generation has been traced to the anterior
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cingulate cortex (ACC), aregion that plays akey rolein conflict monitoring [51-53, 104, 105].
The neural activity differences between sitting and walking in IMPs during these latencies had a
frontal/frontocentral topographical distribution which aligns with ACC engagement (Fig. 8).
During the P3 latencies, atopographical shift of the walking-minus-sitting ERP differences
towards left lateral prefrontal scalp regions was observed (Fig. 8). Thisfinding too can be
interpreted using the conflict monitoring hypothesis, which predicts that, once conflict between
active representationsis detected by the ACC, aconflict-related signal isrelayed to lateral
prefrontal resources, and more specifically the dorsolateral prefrontal cortex (DLPFC), where
inhibitory control isimplemented. In that way, the top-down attentional resources hosted by the
DLPFC are activated towards implementing behavioral adjustments, to reduce conflict in
ensuing trials [55]. Neuroimaging studies have shown that that increased left DLPFC activation
in particular is associated with lower activation levelsin conflict-related brain regionsin
subsequent trials of a Go-NoGo response inhibition task, thus emphasizing the central role that
the left DLPFC plays in exerting top-down cognitive control [106]. Taken together, our
neurophysiological findings during correct rejection trials suggest that successful inhibition in
IMPs during walking is driven by modulation of the conflict monitoring (N2 stage) and the
subsequent control implementation (P3 stage) neural processes compared to sitting, with such
effects being absent in nIMPs.

During response-locked false alarm trials, ERP amplitude reductions during walking were found
over frontocentral scalp regions during the ERN latency interval, aswell as during earlier
latencies preceding the ERN which were interpreted as pre-movement positivity (PMP) ERP
effects (Fig. 5). IMPs exhibited a pronounced version of the walking-related ERP effects found
in the combined cohort, maintaining the general topography and latency of the effects, while
nIMPs exhibited no detectable effects during the response-locked false alarm trials. (Fig. 9).
Focusing on the effects found in IMPs, the ERN is thought to reflect the conflict between the
erroneous motor response and corrective processes, a few milliseconds following the motor
response (it peaks roughly 50 ms post-response, in accord with the results shown in Fig. 9). The
source of the ERN has been localized to the ACC [55, 59, 60], same asthe N2, consistent with
the frontocentral topographical distribution of the walking-minus-sitting ERP differences
demonstrated in Fig. 9 during this latency interval. The main difference compared to the N2 is
that herethe ACC is activated and thus conflict is detected after the response instead of before
[52, 55]. Therefore, the timing of the activation of the ACC, which functions as a conflict
monitor, plays acritical role in determining the behavioral outcome. Regarding the earlier pre-
ERN differences, the [-210, -50] ms latency interval during which they were observed has been
associated with pre-motor processes reflected by the PMP[92, 93]. The PMP has been proposed
to reflect the *go-ahead’ signal generated by the supplementary motor area (SMA) and preeSMA
to allow movement execution, cons stent with the central/frontocentral topography of the
walking-minus-sitting ERP differences detected during these latencies (Fig. 9). Summarizing the
findings during response-locked false alarm trials, IMPs seem to manage an unsuccessful
inhibition differently during walking compared to Sitting, and this difference was pinpointed to
modulation of the pre-motor neural processes preceding the erroneous motor response (PMP
stage), as well as of the conflict monitoring neural processes immediately following the
erroneous response (ERN stage). No such modulation was evident in nIMPs.

The CMI hypothesis proposes that cognitive task-related and gait kinematic performance
decrements stem from underlying competition in the allocation of neural resources between the
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cognitive and the motor task. The IMP phenotype of improvement in al interrogated domains
clearly contradicts the CMI hypothesis, suggesting that neural resource competition islikely
absent in this subgroup, or that other factors are at play. Given that IMPs were found to alter
neural activity during walking compared to sitting while nIMPs did not, these IM P-specific
walking-related neural activity changes might hold the key to understanding how IMPs manage
to flexibly recalibrate the underlying neural processes in order to avoid inter-task neural resource
competition. It is proposed that these neural activity changes manifested by IMPs in response to
motoric load increase hold promise as neural markers of cognitive flexibility.

One explanation for not observing CMI effectsin IMPs s that the employed task might not have
been sufficiently taxing on their cognitive resources. Walking is arelatively automatic motor
task [100], so it may have sufficed to recruit certain cortical (e.g. sensorimotor) or non-cortical
(e.g. subcortical, brainstem, spinal) neural networks to produce this automatic walking pattern
[107-111] without interfering with the neural resources used by the response inhibition task.
Also, the generally good performance of the IMP subgroup on the Go-NoGo response inhibition
task suggests that thisis not an especially difficult task for them. It will be interesting to observe
in future work whether increasing the difficulty of the motor and/or the cognitive task will bring
the cognitive resources of IMPs closer to their capacity limit, and as such, make individuals of
this group manifest effects consistent with CMI. However, IMPs did not just maintain
performance; they actually achieved better performance when walking. Findings such asthis,
although unanticipated based on CM|I, have been reported and interpreted before. Thereis
evidence that moderate exercise like walking can enhance sustained attention and facilitate
cognitive task performance [112-114]. Thisfacilitatory effect has been explained using
neurotransmitter models, proposing that moderate exercise induces an increase in catecholamine
levels, which, in turn, boosts the signal-to-noise ratio during processing by prefrontal attentional
systems[115, 116]. This hypothesis aligns with the present findings, since the observed
modulation in lateral prefrontal neural activity in IMPs coexisted with reduced conflict-related
ERP amplitudes (N2 in correct rejections and ERN in response-locked false alarms) during
walking, as shown in Figs. 8 and 9. Therefore, this reduction in inhibitory conflict that IMPs
manifest during walking might stem from a more active and/or efficient engagement of top-down
attentional resources, which presumably induces a shift to a more proactive cognitive strategy
and hence promotes better anticipation of the rare ‘NoGo' events.

A limitation of this study is that nIMPs were more variable in terms of d’ scores than IMPs, both
for sitting and walking. Based on Fig. 6, while IMPs all lie within arange of medium d’
performance, nIM Ps were scattered over the full d’ range, encompassing low, medium and high
performers. As part of future research, we aim to collect more nIMP datasets in order to compare
IMPs and nIMPs having d' scores within similar ranges. Despite thislimitation, the neural
signatures of improvement that this study yielded hold significant potential as cognitive
flexibility markers which could potentially be translated to older neurotypical or patient
populations to assess and quantify age-related or neurodegeneration-related cognitive decline,
respectively. As afirst step in this direction, we aim to expand the methodology employed here
to older neurotypical adultsto test its efficacy in distinguishing ‘ super-agers from older adults
that exhibit normal or aggravated age-related cognitive decline [117].
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Conclusions

This study examined differences in neural activity, stride-to-stride variability and response speed
between 1) young adults who improved in terms of response accuracy during walking compared
to sitting (IMPs) and 2) young adults who did not improve (nNIMPs) under the same conditions.
This split of the young adult cohort was motivated by findings at the piloting stage of the study,
where 3 out of 5 young adults performed better during walking compared to sitting, conflicting
with the CMI hypothesis. During correct rejection trials, ERP amplitude reductions were found
during walking in IMPs, specifically over frontocentral scalp regions during N2 latencies and
over left prefrontal scalp regions during P3 latencies. Also, during response-locked false alarm
trials, IMPs exhibited reduced ERP amplitudes while walking over frontocentral scalp regions,
during Event-Related Negativity (ERN) and pre-ERN latencies. No detectable differences were
found in the neural activity of nIMPs between sitting and walking, neither during correct
rejection trials nor during response-locked false alarm trials. The present findings indicate that
IMPs can flexibly modulate frontal brain activity during walking during key stages of inhibitory
control (conflict monitoring for N2 and ERN, control implementation for P3, pre-motor for pre-
ERN), something that nIMPs do not seem to do. Combining these neurophysiological findings
with findings of faster responses and less stride-to-stride variability in IMPs, these neura activity
differences were interpreted as neural signatures of behavioral improvement during dual-task
walking. Future research can test the potential of these neural signatures as markers for assessing
cognitive flexibility in populations where it tends to get compromised, for example older adults
who either age normally or have been diagnosed with neurodegenerative diseases, such as
Parkinson’s or Alzheimer’s disease.
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