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Abstract 

In young adults, pairing a taxing cognitive task with walking can have different effects on gait 
and cognitive task performance. In some cases, performance clearly declines whereas in others 
compensatory mechanisms maintain performance even under dual-task conditions. This study set 
out to investigate the preliminary finding of behavioral improvement in Go-NoGo response 
inhibition task performance during walking compared to sitting, which was observed at the 
piloting stage. Mobile Brain/Body Imaging (MoBI) was used to record electroencephalographic 
(EEG) activity, three-dimensional (3D) gait kinematics and behavioral responses in the cognitive 
task, during sitting or walking on a treadmill. In a cohort of twenty-six (26) young adults, 
fourteen (14) participants improved in measures of cognitive task performance while walking 
compared to sitting. These participants exhibited walking-related EEG amplitude reductions over 
frontal brain scalp regions during key stages of inhibitory control (conflict monitoring, control 
implementation and pre-motor stages), accompanied by reduced stride-to-stride variability and 
faster responses to stimuli compared to those who did not improve. In contrast, the twelve (12) 
participants who did not improve exhibited no EEG amplitude differences across physical 
condition. The neural activity changes associated with performance improvement during dual 
tasking hold promise as cognitive flexibility markers that can potentially help assess cognitive 
decline in aging and neurodegeneration. 
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Introduction 

Performance of executive functions requires coordination across distributed neural networks for 
both routine and more complex cognitive processes [1-4]. Yet, there are limits to the number and 
complexity of tasks that can be undertaken at the same time [5]. As this capacity limit is 
approached, behavioral performance may begin to deteriorate [6, 7]. Dual task performance, the 
simultaneous performance of two tasks, activates multiple brain regions concurrently, which can 
tax cognitive systems and bring them closer to this capacity limit [8-10]. Performing cognitive 
and motor tasks simultaneously sets the stage for competition for available neural resources 
leading to performance declines in both modalities. This is referred to as cognitive-motor 
interference (CMI) [11-14]. Pairing cognitive tasks with walking can elicit dual-task decline in 
gait performance and task-related behavior, as well as altered patterns of neural activation in 
older neurotypical adults [15-22] and in various patient populations [23-28]. However, in young 
adults, the manifestation of decrements in gait and cognitive task performance is not as clear, and 
as such, the neural activity changes detected in this group reflect interaction but not necessarily 
interference at a neural resource level. Some studies have reported evidence of no deterioration 
of response accuracy or increases in gait variability during dual-task walking in young adults 
[18, 29-36]. These studies suggest that young healthy adults adapt their gait and task-related 
behavior during dual-task walking and, consistent with this conclusion, report slower reaction 
times to stimuli [30-32], changes in stride length [29, 33, 36] and reduced gait speed and velocity 
[18, 33, 35]. These findings indicate that young adults adopt a more deliberate approach to both 
task responses and walking in order to maintain task accuracy, and as such, point to strategy 
changes that will necessarily involve neural reconfigurations. On the other hand, there are studies 
that have reported reductions in response accuracy [37, 38] and increases in gait variability [39-
41] during dual-task walking in young adults. This discrepancy suggests that young adults do not 
reach their cognitive capacity limit under all dual-task walking conditions; under certain 
conditions, presumably when the dual-task load is below the capacity limit, they seem to activate 
mechanisms to compensate for the increased dual-task demands. In these cases, dual-task-related 
neural activity changes likely reflect a reallocation of neural resources and the adoption of a 
different cognitive strategy that drives the observed compensatory adaptations. 

Response inhibition, namely withholding response to a thought, emotion, or stimulus, is one of 
the core executive functions and a vital component of everyday living. One often-used approach 
to studying response inhibition is the Go/NoGo task using a set of visual images as stimuli. The 
task requires pressing a response button after each novel image is presented (‘Go’ trial), but 
withholding the button press in response to the second presentation of a repeated image (‘NoGo’ 
trial) [15, 23, 29, 42-48].  During successful NoGo trials during which the participant properly 
withholds a response, two stimulus-locked Event-Related Potential (ERP) components are 
typically elicited: the N2 and the P3. The N2 is a negative voltage deflection that peaks around 
200-350 ms [49, 50] post-stimulus-onset and has a frontocentral scalp distribution. This 
topographical distribution reflects its generation by the anterior cingulate cortex (ACC), a brain 
region which is key for monitoring inhibitory conflict [49, 51-53]. The P3 is a positive voltage 
deflection that peaks around 350-600 ms post-stimulus-onset and has a broad distribution, 
extending from centroparietal to frontal areas [29, 54]. During the P3 processing stage, both 
motor and cognitive components of inhibition are executed [47]. In parallel to the motor 
inhibitory component of button press cancellation, higher inhibitory control is putatively exerted 
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by lateral prefrontal areas, specifically the dorsolateral prefrontal cortex (DLPFC), to reduce 
inhibitory conflict in ensuing trials and hence improve cognitive task performance [55, 56]. 
During unsuccessful NoGo inhibition trials, an ERP component known as the response-locked 
Event-Related Negativity (ERN) is elicited. The frontocentral ERN peaks approximately 50 ms 
after the erroneous motor response [57-59], and reflects conflict monitoring in error trials and the 
source has been localized to the ACC [55, 60, 61]. 

The effects of walking on the N2 and P3 typically elicited during successful performance of the 
Go-NoGo response inhibition task has been investigated by previous studies [15, 29]. De Sanctis 
and colleagues [29] observed amplitude reductions of both the N2 and the P3 event-related 
potentials (ERPs) during successful inhibitions while walking, as well as an anteriorization of the 
P3 distribution suggesting recruitment of frontal cortical circuits. Furthermore, they found no 
significant differences between sitting and walking in terms of response accuracy and response 
speed, and no significant changes in stride-to-stride variability when comparing single-task and 
dual-task walking in young adults. In the absence of significant dual-task decrements, these 
findings were interpreted as a shift to a less automatic (N2 amplitude reduction) and more 
effortful (P3 frontalization) cognitive strategy during walking.  

Other studies focused on the correlation between neural activity and several behavioral measures 
in the context of a Go-NoGo response inhibition task. Falkenstein and colleagues found that 
young healthy individuals who had a high rate of unsuccessful inhibitions exhibited a smaller 
and later N2 compared to those with a low rate of unsuccessful inhibitions [62]. Roche and 
colleagues showed that highly absentminded, young healthy individuals had larger and earlier 
N2 and P3 components in successful inhibition trials and larger error-related components in 
unsuccessful inhibition trials compared to less absentminded individuals of the same age group 
[63]. Karamacoska and colleagues reported smaller P3 amplitudes in young healthy adults with 
increased response time variability, who were also found to commit more errors, compared to 
peers with low response time variability [64]. In each case, different criteria were used to split 
the cohort into two subgroups, depending on the behavioral variable of interest: certain studies 
performed a median split [46, 63-65], others leveraged the bimodality of the distribution of the 
behavioral variable and split the cohort based on the two modes [62] and studies investigating 
impulsivity applied the splitting methodology proposed by Pailing and colleagues [66, 67]. In the 
context of collecting pilot data for the present study, data from five (5) young healthy adults 
were collected.  Analysis of these preliminary data showed that three (3) of the pilot participants 
improved response accuracy during walking compared to sitting. Improvement in cognitive task 
performance with the addition of walking appeared to conflict with the CMI hypothesis. 
Response accuracy was measured using the d’ score (sensitivity index) [68, 69], since it is a bias-
free measure that takes into account both the Go and the NoGo behavior (greater d’ score 
signifies better response accuracy). These preliminary data were then sequestered (see 
Supplemental Material). The working hypothesis that young individuals who improve 
performance during walking would differ in their ability to flexibly allocate neural resources for 
accomplishing both the motoric and cognitive tasks, and might also differ in the consistency of 
their gait compared to those who do not improve while walking, was tested in this report. 
Participants were divided into two (2) subgroups based on the walking-minus-sitting d’ 
difference: 1) participants who exhibited a positive walking-minus-sitting d’ difference 
(cognitive task performance improved during walking compared to sitting - IMPs) and 2) 
participants who exhibited a walking-minus-sitting d’ difference which was either negative or not 
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significantly different from zero (cognitive task performance did not improve during walking 
compared to sitting - nIMPs).  

The current study examined successful NoGo inhibition trials during the N2 and P3 processing 
stages and unsuccessful NoGo inhibition trials during the ERN stage for walking-related 
amplitude changes in neurophysiological activity in the entire young adult cohort, and 
subsequently in the IMP and nIMP subgroups. Gait variability and response speed were 
additionally examined for dual-task changes in the same groups, to test whether improvement in 
response accuracy (IMPs) would be accompanied by trade-offs reflected in other physiological 
domains; for example, whether IMPs would be more accurate but slower in their responses, or 
they would walk more variably. Identifying potential differences in the way IMPs alter their 
neural activity in response to dual-task load compared to nIMPs can shed light on the underlying 
neurocognitive mechanisms that drive their behavioral improvement.  
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Materials and Methods 

Participants 

Twenty-six (26) young adults (18-30 years old; age = 22.35 ± 3.27 years; 13 female, 13 male; 23 
right-handed, 3 left-handed) participated in the study. All participants provided written informed 
consent, reported no diagnosed neurological conditions, no recent head injuries, and normal or 
corrected-to-normal vision. The Institutional Review Board of the University of Rochester 
approved the experimental procedures (STUDY00001952). All procedures were compliant with 
the principles laid out in the Declaration of Helsinki for the responsible conduct of research. 
Participants were paid $15/hour for time spent in the lab. 

Experimental Design 

A Go-NoGo response inhibition cognitive task was employed. During each experimental block, 
images were presented in the central visual field for 67 ms with a fixed stimulus-onset-
asynchrony of 1017 ms.  Images subtended 10° of visual angle horizontally and 8° vertically. 
The task was coded using the Presentation software (version 20.1, Neurobehavioral Systems, 
Albany, CA, USA). Participants were instructed to press the button of a wireless game controller 
as fast and accurately as possible if the presented image was different from the preceding image 
(‘Go’ trial). They were instructed to withhold pressing the button if the presented image was the 
same as the preceding image (‘NoGo’ trial) (Fig. 1). Participants performed blocks of 240 trials 
in which 209 (87%) were Go trials and 31 (13%) were NoGo trials. NoGo trials were randomly 
distributed within each block.  

Three (3) behavioral conditions of the cognitive task were defined: 1) correct rejections, defined 
as the NoGo trials on which participants correctly withheld their response, 2) false alarms, 
defined as the NoGo trials on which participants incorrectly pressed the response button and 3) 
hits, defined as the Go trials on which participants correctly pressed the response button.  
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Experimental blocks were performed while the participants were either sitting or walking on a 
treadmill (Tuff Tread, Conroe, TX, USA), at a distance of 2.25 m approximately from the 
projection screen on which the images were projected (Barco F35 AS3D, 1920x1080 pxl). A 
safety harness was worn while walking to guard against falls [70]. An experimental session 
consisted of 16 blocks: 1 training block at the beginning, 7 sitting blocks, 7 walking blocks, and 
1 single-task walking block (walking on the treadmill without a cognitive task). The order of 
sitting and walking blocks was pseudorandomized; no more than 3 consecutive walking blocks 
occurred to prevent exhausting the participants. Participants were allowed to take short breaks 
between the blocks, each of which lasted 4 minutes. Most participants took at least one break 
during the experiment. If a break was requested, typically it did not last longer than 10 minutes. 
Participants were asked to select a treadmill speed corresponding to brisk walking for them, 
starting from the recommended speed of 4.8 km/h and increasing or decreasing as necessary. The 
vast majority of participants (22 out of 26) selected a speed of 4.8 km/h, while 4 participants 
selected lower speeds (3 participants walked at 4.2 km/h and 1 participant at 3.9 km/h). In 
general, the walking speeds selected corresponded to brisk walking [71].  

The pictures used for stimuli were drawn from the International Affective Picture System (IAPS) 
database [72]. The IAPS database contains pictures of varied emotional valence and semantic 
content. Positive, neutral and negative pictures were all used, however analyzing the emotional 
valence or semantic content of stimuli is beyond the scope of this study.  

EEG data were recorded using a BioSemi Active Two System (BioSemi Inc., Amsterdam, The 
Netherlands) and a 64-electrode configuration following the International 10-20 system. Neural 
activity was digitized at 2048 Hz. Full-body motion capture was recorded using a 16 camera 
OptiTrack system (Prime 41 cameras), and Motive software (OptiTrack, NaturalPoint, Inc., 
Corvallis, OR, USA) in a ~37 m2 space. Cameras recorded 41 markers on standard anatomical 
landmarks along the torso, the head and both arms, hands, legs and feet at 360 frames per 
second. Stimulus triggers from Presentation (Neurobehavioral Systems Inc., Berkeley, CA, 
USA), behavioral responses from the game controller button, motion tracking data and EEG data 
were time-synchronized using Lab Streaming Layer (LSL) software (Swartz Center for 
Computational Neuroscience, University of California, San Diego, CA, USA; available at: 
https://github.com/sccn/labstreaminglayer). Motion capture data were recorded using custom 
software written to rebroadcast the data from the Motive software to the LSL lab recorder. EEG 
data were recorded from available LSL streaming plugins for the BioSemi system. Behavioral 
event markers were recorded using the built-in LSL functionality in the Presentation software. 
The long-term test-retest reliability of the MoBI approach has been recently detailed [73]. All 
behavioral, EEG and motion kinematic data processing and basic analyses were performed using 
custom MATLAB scripts (MathWorks Inc., Natick, MA, USA) and/or functions from EEGLAB 
[74]. Custom code from this study will be made available on GitHub (https://github.com/CNL-R) 
upon publication.  

Fig. 1. Illustration of the Go-NoGo response inhibition experimental design. Participants are 
instructed to respond on Go trials and withhold response on NoGo trials. 
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Cognitive Task Performance Processing & Analysis 

The exact timing of each button press relative to stimulus onset, the participant’s response times 
(RTs), were recorded using the Response Manager functionality of Presentation and stored with 
precision of 1/10 millisecond. The Response Manager was set to accept responses only after 183 
ms post-stimulus-onset within each experimental trial. Any responses prior to that were 
considered delayed responses to the previous trial and were ignored. This RT threshold was 
selected to filter out as many delayed-response trials as possible, without rejecting any valid 
trials for which the responses were merely fast [75]. 

Two (2) behavioral conditions of the cognitive task were interrogated in this study, 1) correct 
rejections and 2) false alarms. For both correct rejections and false alarms, only trials that were 
preceded by hits were kept, to ensure that the inhibitory component was present. 

Two (2) behavioral measures were calculated: 1) the d’ score (sensitivity index) and 2) mean RT 
during (correct) Go trials, namely hits. D’ is a standardized score and it is computed as the 
difference between the Gaussian standard scores for the false alarm rate and the hit rate [68, 69]. 

Statistical Analysis 

In the full young adult cohort, d’ score differences between sitting and walking were assessed 
using a paired t-test (the walking-minus-sitting d’ score difference was subjected to a Shapiro-
Wilk normality test [76] and the null hypothesis was not rejected). Additionally, mean RTs 
during Go trials were tested for differences between sitting and walking using a paired t-test (the 
walking-minus-sitting mean RT difference was subjected to a Shapiro-Wilk normality test and 
the null hypothesis was not rejected). 

Participants were subsequently classified on the basis of whether their d’ score during walking 
was significantly higher than when they were seated (their cognitive task performance improved 
(IMP) while walking), or whether they did not improve (nIMP) performance while walking 
(either because their d’ scores declined or were unchanged). Significant walking-minus-sitting d’ 
score difference was defined as the difference that lay outside of the 95% confidence interval of 
the normal distribution that had a mean value of zero and a standard deviation equal to that of the 
(d’walking – d’sitting) distribution of the entire cohort.  

In the context of the split-group analysis, IMPs and nIMPs were compared in terms of average d’ 

score, i.e.  
���������	 ���������



, using an independent samples t-test (the average d’ scores of 

IMPs and IMPs were subjected to a Shapiro-Wilk normality test and the null hypothesis was not 
rejected for either group). Additionally, mean RTs during Go trials were subjected to a 2 (Group: 
IMPs, nIMPs) x 2 (Motor Load: sitting, walking) ANOVA to test for response speed differences 
between IMPs and nIMPs, as well as for differences in how response speed was modulated by 
the addition of walking in these groups.  

Gait Kinematics Processing & Analysis 

Heel markers on each foot were used to track gait kinematics. The three dimensions (3D) of 
movement were defined as follows: X is the dimension of lateral movement (right-and-left 
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relative to the motion of the treadmill belt), Y is the dimension of vertical movement (up-and-
down relative to the motion of the treadmill belt), and Z is the dimension of fore-aft movement 
(parallel to the motion of the treadmill belt). The heel marker motion in 3D is described by the 
three (3) time series of the marker position over time in the X, Y and Z dimension, respectively. 
Gait cycle was defined as the time interval between two consecutive heel strikes of the same 
foot. Heel strikes were identified as the local maxima of the Z position waveform over time. To 
ensure that no ‘phantom’ heel strikes were captured, only peaks with a prominence greater than 
0.1 m were kept (findpeaks function in MATLAB, minimum peak prominence parameter was set 
to 0.1 m).  

Stride-to-stride variability was quantified as the mean Euclidean distance between consecutive 
3D gait cycle trajectories, using the Dynamic Time Warping algorithm (DTW) [77, 78]. DTW is 
an algorithm for measuring the similarity between time series, and its efficacy in measuring 3D 
gait trajectory similarity is well-established [79-81]. 

In the case of one-dimensional signals, if Xm=1,2,..,M the reference signal and Yn=1,2,..,N the test 
signal, then DTW finds a sequence {ix, iy} of indices (called warping path), such that X(ix) and 
Y(iy) have the smallest possible distance. The ix and iy are monotonically increasing indices to 
the elements of signals X, Y respectively, such that elements of these signals can be indexed 
repeatedly as many times as necessary to expand appropriate portions of the signals and thus 
achieve the optimal match. This concept can be generalized to multidimensional signals too, like 
the 3D gait cycle trajectories which are of interest here. The minimal distance between the 
reference and the test signals (gait trajectories here) is given by the equation below: 

                                               �������� 	 ∑ �����, ������
����

                                         �1� 

Gait cycle trajectories with a kurtosis that exceeded 5 standard deviations of the mean were 
rejected as outliers. Also, before DTW computation, gait cycle trajectories were resampled to 
100 samples. Since DTW essentially calculates the sum of the Euclidean distances between 
corresponding points of two interrogated trajectories, ensuring that all trajectories are resampled 
to the same length helps avoid bias in the algorithm computations.  

The actual measure that was used to quantify each participant’s stride-to-stride variability is the 
mean across DTW distances occurring from all stride-to-stride comparisons. Right-foot and left-
foot stride-to-stride DTW distances were pooled to calculate the mean DTW distance per 
participant.  

Statistical Analysis 

In the full young adult cohort, mean DTW distance differences between single-task (ST) walking 
and dual-task (DT) walking were assessed using a Wilcoxon signed rank test (the DT-minus-ST 
mean DTW distance difference was subjected to a Shapiro-Wilk normality test and the null 
hypothesis was rejected). One (1) participant did not have ST walking recordings and was 
therefore excluded from this analysis. 

In the context of the split-group analysis, mean DTW distance was subjected to a 2 (Group: 
IMPs, nIMPs) x 2 (Cognitive Load: ST walking, DT walking) ANOVA to test for stride-to-stride 
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variability differences between IMPs and nIMPs, as well as for differences in how the addition of 
cognitive task performance modulated stride-to-stride variability in these groups. The two 
participants excluded from the group level analysis both belonged to the IMP subgroup. 

EEG Activity Processing & Analysis 

EEG signals were first filtered using a zero-phase Chebyshev Type II filter (filtfilt function in 
MATLAB, passband ripple Apass = 1 dB, stopband attenuation Astop = 65 dB) [82], and 
subsequently down-sampled from 2048 Hz to 512 Hz. Next, ‘bad’ electrodes were detected 
based on kurtosis, probability, and spectrum of the recorded data, setting the threshold to 5 
standard deviations of the mean, as well as covariance, with the threshold set to ±3 standard 
deviations of the mean [82]. These ‘bad’ electrodes were removed and interpolated based on 
neighboring electrodes, using spherical interpolation. All the electrodes were re-referenced 
offline to a common average reference. 

Winkler and colleagues have shown that 1-2 Hz highpass filtered EEG data yield the optimal 
Independent Component Analysis (ICA) decomposition results in terms of signal-to-noise ratio 
[83]. In order to both achieve a high-quality ICA decomposition and retain as much low-
frequency (< 1 Hz) neural activity as possible, after running Infomax ICA (runica function in 
EEGLAB, the number of retained principal components matched the rank of the EEG data) on 1-
45 Hz bandpass-filtered data and obtaining the decomposition matrices (weight and sphere 
matrices), these matrices were transferred and applied to 45-Hz lowpass-filtered data. No 
highpass filtering was applied, since there is evidence indicating that the best way to avoid 
introducing artifacts into the ERP waveforms is either to use conservative high-pass filters (≤ 0.1 
Hz) or to avoid high-pass filtering altogether [84]. ICs were labeled using the ICLabel algorithm 
[85]. Artifactual ICs, namely ICs classified as eye activity, muscle activity, ground noise, poor 
electrode quality or contact, or heart activity, were detected and rejected, while the remaining 
ICs were back-projected to the sensor space. 

Subsequently, the resulting neural activity was split into temporal epochs. For the correct 
rejection trials, epochs were locked to the stimulus onset, beginning 200 ms before and extending 
until 800 ms after stimulus onset of the trial. Correct rejection epochs were baseline-corrected 
relative to the pre-stimulus-onset  interval from -100 to 0 ms. For the false alarm trials, epochs 
were locked to the response onset, beginning 500 ms before and extending until 500 ms after 
response onset of the trial. False alarm epochs were baselined-corrected relative to the pre-
response interval from -400 to -300 ms. Epochs with a maximum voltage greater than ±150 µV 
or that exceeded 5 standard deviations of the mean in terms of kurtosis and probability were 
excluded from further analysis. Epochs that deviated from the mean by ±50 dB in the 0-2 Hz 
frequency window (eye movement detection) and by +25 or -100 dB in the 20-40 Hz frequency 
window (muscle activity detection) were rejected as well. For the sitting condition, on average 
21% of the trials were rejected based on these criteria, while for the walking condition the 
respective percentage was 39%. Event-related potentials (ERPs) were measured by averaging 
epochs for (2 motor task) x (2 cognitive task) conditions, namely four (4) experimental 
conditions in total. The motor task conditions were 1) sitting and 2) walking; and the cognitive 
task conditions were 1) correct rejections and 2) response-locked false alarms.  
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Statistical Analysis 

The EEG statistical analyses were performed using the FieldTrip toolbox [86]  
(http://fieldtriptoolbox.org). To compare ERP waveforms between sitting and walking, paired t-
tests and cluster-based permutation tests were used [87]. As stated in the Introduction, significant 
differences between sitting and walking were hypothesized to be found in N2 ([200, 350] ms [49, 
50]) and P3 ([350, 600] ms [29, 54]) latencies and topographies during correct rejection trials, 
and in ERN ([-50, 100] ms [57, 58]) latencies and topographies during response-locked false 
alarm trials. Despite having formulated specific hypotheses about the latency and the 
topographies of the effects, the full set of 64 electrodes and all the epoch timepoints were 
included in the analyses, to explore potential effects that might have been overlooked by 
previous studies. By using this approach, both the hypothesis-driven and the exploratory 
component of this study are satisfied at once. 

First, the mean walking-minus-sitting difference ERP waveform was obtained for each electrode 
and for each subject by subtracting the within-subject mean sitting ERP waveform from the 
corresponding mean walking ERP waveform. Next, one-sample t-tests were performed on the 
mean difference ERP waveforms coming from all subjects, at each electrode and timepoint. To 
correct for multiple comparisons, cluster-based permutation tests were performed, using the 
Monte Carlo method (5000 permutations, significance level of the permutation tests � 	 0.05, 
probabilities corrected for performing two-sided tests) and the weighted cluster mass statistic 
[88] (cluster significance level � 	 0.05, parametric cluster threshold). This procedure was 
performed separately for each one of the interrogated behavioral conditions of the cognitive task 
(correct rejection, response-locked false alarm), first for the entire cohort and, subsequently, for 
the IMP and nIMP subgroups. The results of the point-wise t-tests from all 64 electrodes and all 
timepoints were displayed as an intensity plot to efficiently summarize and facilitate the 
identification of the onset and general topographical distribution of walking-related changes in 
ERP activity. The x, y, and z axes, respectively, represent time, electrode location, and the t-
statistic (indicated by a color value) at each electrode-timepoint pair. 
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Results 

Group-Level Analysis  

Cognitive Task Performance 

In previous studies, correct rejection rate (CRR) and hit rate (HR) have been used to assess 
cognitive task performance in a Go-NoGo response inhibition task [29]. However, CRR and HR 
in isolation can be impacted by changes in the participant’s response criterion. The sensitivity 
index (d’) measures the discriminability between the Go and the NoGo conditions and is 
independent of the response criterion. Higher d’ scores indicate an increased ability to properly 
detect and respond to both Go and NoGo stimuli. 

In the current cohort, d’ scores during sitting and walking were calculated and d’ differences 
between sitting and walking were examined using a paired t-test. Overall, d’ scores were higher 
during walking compared to sitting (d’sitting = 2.27 ± 1.20, d’walking = 2.50 ± 1.07; t25 = 2.85, 
p = 0.0087, Cohen’s d = 0.56) indicating better performance when participants were walking on 
the treadmill (Fig. 2A). This observation appears to be inconsistent with the hypothesis that there 
will be interference between motor and cognitive tasks (CMI) during dual-task conditions [12].  

Mean Go RT differences between sitting and walking were assessed using a paired t-test. No 
significant differences were found between sitting and walking mean Go RTs (mean RT Go 
sitting = 382 ± 62 ms, mean RT Go walking = 390 ± 47 ms; t25 = 1.36, p = 0.1862, Cohen’s d = 
0.27; Fig. 2B). 

  

Fig. 2. Sitting and walking A. d’ scores and B. mean Go RTs of the full young adult cohort. 
Dots represent individual participants. The central mark of each box indicates the median, and 
the bottom and top edges indicate the 25th and 75th percentiles, respectively. The whiskers 
extend to the most extreme data points not considered outliers. There were no outliers here. 
D’ scores during walking were higher compared to sitting, indicating better cognitive task 
performance during walking in young adults. No significant differences were found in mean 
Go RTs between sitting and walking. 
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Based on these data, young adults responded more accurately to task-related stimuli during 
walking than while sitting. This behavioral improvement was not accompanied by response 
speed costs (i.e., no speed-accuracy trade-off was observed). 

Gait Kinematic Activity 

Walking on a treadmill imposes a fixed walking speed, and as a result stride time variability may 
underestimate the impact of cognitive tasks on gait. To evaluate gait kinematics across the entire 
gait cycle (stance and swing phases) and compare 3D trajectories of consecutive strides, a 
Dynamic Time Warping (DTW) approach was used (details in Methods). 

Using DTW, the variability from one stride to the next was quantified as DTW distance and,  
subsequently, the mean DTW distance of all stride-to-stride comparisons was extracted per 
participant (Fig. 3A). Mean DTW distance was calculated during both single-task (ST) and dual-
task (DT) walking. One (1) participant did not have ST walking recordings and was therefore 
excluded from this analysis, resulting in a set of twenty-five (25) participants. Mean DTW 
distance differences between ST and DT walking were assessed using a Wilcoxon signed rank 
test. Mean DTW distances were greater during ST compared to DT walking (mean DTW 
distance ST = 2.44 ± 0.61 m, mean DTW distance DT = 2.21 ± 0.52 m; z = 4.02, p = 0.0001, 
Rosenthal’s r = 0.80). As illustrated, walking variability decreased when combined with the 
response inhibition task compared to walking in isolation (Fig. 3B).  
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EEG Activity 

Correct Rejections 

Cluster-based permutation tests were used to examine neural activity differences between sitting 
and walking during correct rejection trials. First, three (3) midline electrode locations – a 
frontocentral midline electrode (FCz), a central midline electrode (Cz) and a centroparietal 
midline electrode (CPz) – were plotted and inspected for differences (Fig. 4A, latency intervals 
of significant differences are highlighted in gray). The selection of these electrodes was based on 

Fig. 3. A. 3D representations of trajectories of a series of strides. Lateral is the dimension of 
movement right-and-left relative to the motion of the treadmill belt.  Vertical is the dimension 
movement up-and-down relative to the motion of the treadmill belt. Fore-aft is the dimension 
of movement parallel to the motion of the treadmill belt. Perspective (left), top (upper right) 
and right (lower right) views are provided. Using DTW, the variability from one stride to the 
next was quantified as DTW distance (see Methods) and the mean DTW distance of all stride-
to-stride comparisons was extracted per participant. B. Mean DTW distance distribution 
during single-task walking (ST) and dual-task walking (DT); mean DTW distances of 
individual participants are represented as dots scattered on the boxes. Mean DTW distance 
was smaller during DT compared to ST walking. Red ‘+’ symbols indicate outliers.  
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previous studies showing that the N2 amplitude is maximal over frontocentral midline scalp  and 
the P3 is maximal over centroparietal midline scalp [47, 89]. Reduced ERP amplitudes during 
walking were found at FCz and Cz during the N2 latency interval, and at the Cz and CPz during 
the P3 latency interval (Fig. 4A). The cluster-based permutation approach also allowed for 
exploring the existence of walking-related effects on ERPs in the entire electrode set and at all 
the epoch timepoints. The effects that this approach revealed were ERP amplitude reductions 
during walking 1) over frontal and frontocentral scalp (yellow in the Fig. 4B statistical 
clusterplot) and over parietal and occipital scalp (blue) during the N2 latency interval, 2) over 
left prefrontal (yellow) and over central and centroparietal scalp (blue) during the P3 latency 
interval and 3) over central and centroparietal scalp during latencies beyond the P3 latency 
interval, until the end of the epoch (blue). The topographical distribution of the average 
(walking-minus-sitting) neural activity difference during correct rejection trials is shown for 
selected timepoints at which this difference was found to be significant (Fig. 4C, red dots on the 
maps show electrodes that exhibit significant differences).  
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Response-Locked False Alarms 

Cluster-based permutation tests were used to examine neural activity differences between sitting 
and walking during response-locked false alarm trials. First, the FCz electrode was plotted and 
inspected for differences (Fig. 5A), since the ERN has been shown to have maximal amplitude 
over frontocentral midline scalp [90, 91]. Reduced ERP amplitudes during walking were found 
at FCz during the ERN latency interval. By exploring the entire electrode set and all the epoch 
timepoints, the effects that the cluster-based permutation approach revealed were frontocentral 
walking-related amplitude reductions during ERN latencies, as well as during latencies preceding 
the ERN ([-130, -50 ms] approximately, corresponding to the yellow points outside of the black 
rectangle in Fig. 5B statistical clusterplot). The latency and topography of these earlier, pre-ERN 
differences indicate reduction in pre-motor neural activity reflected by the pre-movement 
positivity (PMP) ERP [92, 93]. The topographical distribution of the average (walking-minus-
sitting) neural activity difference during response-locked false alarm trials is shown for selected 
timepoints at which this difference was found to be significant (Fig. 5C, red dots on the maps 
show electrodes that exhibit significant differences).  

Fig. 4. Neural activity differences between sitting and walking during correct rejection trials. 
A. Grand average sitting and walking ERP waveforms, at three midline electrode locations: 
frontocentral midline (FCz), central midline (Cz) and centroparietal midline (CPz) electrode. 
The shaded regions around the ERP waveforms indicate the Standard Error of the Mean 
(SEM) across participants. The latency interval of significant differences in each electrode is 
highlighted in gray. B. Spatiotemporal walking-minus-sitting ERP differences using cluster-
based permutation tests. The statistical clusterplot shows the t-values for the electrode-
timepoint pairs at which significant ERP differences between sitting and walking were found. 
Positive t-values (yellow) indicate that walking ERP amplitude was greater than sitting ERP 
amplitude. Significant differences were found 1) over frontal and frontocentral scalp (yellow) 
and over parietal and occipital scalp (blue) during the N2 latency interval, 2) over left 
prefrontal (yellow) and over central and centroparietal scalp (blue) during the P3 latency 
interval and 3) over central and centroparietal scalp during latencies beyond the P3 latency 
interval, until the end of the epoch (blue). The black rectangles indicate latencies 
corresponding to the N2 and P3. C. Topographical maps showing the average (walking-
minus-sitting) neural activity difference for selected timepoints at which this difference was 
found to be significant. The electrodes exhibiting significant differences are depicted as red 
dots on the maps. The electrodes to which the ERP waveforms of panel A correspond are 
circled in black (vertical order matched). 
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Split-Group Differences Based on Cognitive Task Performance  

Cognitive Task Performance 

As shown above, mean d’ scores for the entire cohort improved when participants were walking 
on the treadmill.  This is an indication of cognitive-motor enhancement, rather than the more 
typically expected cognitive-motor interference often observed in dual task paradigms. In other 
words, the response inhibition task appears to have gotten easier when coupled with walking in 
this young adult cohort. Several questions arise from this observation: Does each individual 
improve? Are there neural patterns that differ based on behavioral improvement versus non-
improvement while walking? Are there differences in gait variability for those that improve 
compared to those that do not? These questions are addressed below in split-group analyses that 
compare those who improved their performance while walking (IMPs) and those who did not 
(nIMPs). 

The (d’walking – d’sitting) difference was calculated for each participant and its significance 
was subsequently tested by determining whether it lay outside of the 95% confidence interval of 

Fig. 5. Neural activity differences between sitting and walking during response-locked false 
alarm trials (modeled per Fig. 4). A. Grand average sitting and walking ERP waveforms 
during response-locked false alarm trials, at a frontocentral midline electrode (FCz). B. 
Spatiotemporal walking-minus-sitting ERP differences using cluster-based permutation tests. 
Significant differences, shown in yellow in the statistical clusterplot, were found over 
frontocentral scalp during the ERN latency interval, and over similar frontocentral scalp 
during pre-ERN latencies. The latter indicated reduction in the pre-motor positivity (PMP). C. 
Topographical maps showing the average (walking-minus-sitting) neural activity difference 
for selected timepoints at which this difference was found to be significant. The electrode to 
which the ERP waveforms of panel A correspond is circled in black. 
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the normal distribution having a mean value of zero and a standard deviation equal to that of the 
(d’walking – d’sitting) distribution of the entire cohort. If d’walking > d’sitting, namely the 
participant improved significantly during walking compared to sitting, they were classified into 
the IMP subgroup. If d’walking ≤  d’sitting, namely the participant did not improve significantly 
during walking compared to sitting, they were classified into the nIMP subgroup. In total, 
fourteen (14) participants were classified into the IMP subgroup and twelve (12) participants into 
the nIMP subgroup (8 had d’walking ≈ d’sitting, 4 had d’walking < d’sitting), as shown in Fig. 
6A. 

In the subsequent analyses, response times, ERPs, and gait kinematic variability were contrasted 
between IMPs (Fig. 6B) and nIMPs (Fig. 6C).  

No significant differences in average d’ scores were found between IMPs and nIMPs, as the 
independent samples t-test indicated (average d’ IMPs = 2.30 ± 0.70, average d’ nIMPs = 2.48 ± 
1.49; t24 = 0.39, p = 0.7020, Cohen’s d = 0.15).  

The 2x2 ANOVA assessing the effects of Group (IMPs vs nIMPs) and Motor Load (sitting vs 
walking) on mean RTs revealed a significant main effect of Group (F1,24 = 4.86, p = 0.0373, η2 = 
0.16). This indicated that IMPs (mean RT sitting = 360 ± 54 ms, mean RT walking = 372 ± 41 
ms) were overall faster than nIMPs (mean RT sitting = 407 ± 64 ms, mean RT walking = 411 ± 
47 ms) to respond to image presentation. No significant effects of Motor Load (F1,24 = 1.65, p = 
0.2108, η2 < 0.01) or Group/Motor Load interaction was found (F1,24 = 0.55, p = 0.4649, η2 < 
0.01).  

Gait Kinematic Activity 

The effects of Group (IMPs vs nIMPs) and Cognitive Load (ST vs DT walking) on mean DTW 
distance were assessed by means of a 2x2 ANOVA. This ANOVA revealed a significant main 
effect of Group (F1,23 = 4.71, p = 0.0406, η2 = 0.14) indicating that IMPs (mean DTW distance 
ST = 2.46 ± 0.54 m, mean DTW distance DT = 2.08 ± 0.36 m) walked less variably than nIMPs 
(mean DTW distance ST = 2.82 ± 0.67 m, mean DTW distance DT = 2.59 ± 0.57 m) (Fig. 7B). 

Fig. 6. Sitting and walking d’ scores of A. the full young adult cohort, B. participants who 
improved during walking (IMPs), and C. participants who did not improve during walking 
(nIMPs). Each line corresponds to one participant. 
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The significant main effect of Cognitive Load (F1,23 = 13.48, p = 0.0013, η2 = 0.07) that occurred 
is expected, since the same effect was tested using the Wilcoxon signed rank test as part of the 
group-level analysis. Within-group post-hoc t-tests showed that mean DTW distance decreased 
significantly during DT walking in both the IMP (t12 = 2.59, p = 0.0235, Cohen’s d = 0.72) and 
the nIMP subgroups (t11 = 3.35, p = 0.0064, Cohen’s d = 0.97). No significant Group/Cognitive 
Load interaction was found (F1,23 = 0.80, p = 0.3811, η2 < 0.01) (Fig. 7B). Of note, the one (1) 
participant excluded from the corresponding group-level analysis was an IMP, thus resulting in a 
set of thirteen (13) IMPs and twelve (12) nIMPs entered into this analysis. 

Fig. 7A shows 3D representations of trajectories of a series of strides for an IMP (top) and a 
nIMP (bottom), to give an example of what a lower-variability series of strides (IMP) looks like 
compared to a higher-variability series of strides (nIMP).  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 20, 2022. ; https://doi.org/10.1101/2022.03.18.484948doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.18.484948
http://creativecommons.org/licenses/by-nc-nd/4.0/


20

 

Fig. 7. A. 3D representations of trajectories of a series of strides for an IMP (top) and a nIMP 
(bottom). For both the IMP and the nIMP , perspective (left), top (middle) and right (right) 
views are provided in the respective panels. B. Mean DTW distance distribution during 
single-task walking (ST) and dual-task walking (DT), for IMPs and nIMPs. Mean DTW 
distance was smaller in IMPs compared to nIMPs.  
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EEG Activity 

Correct Rejections 

To compare the spatiotemporal effects of walking on neurophysiology between IMPs and nIMPs 
during correct rejection trials, cluster-based permutation tests were performed separately for each 
group to examine differences between the sitting and the walking correct rejection ERP 
waveform. During correct rejection trials, IMPs exhibited reduced walking ERP amplitudes over 
frontocentral scalp during the N2 latency interval and over left prefrontal scalp during the P3 
latency interval, while nIMPs exhibited no detectable ERP differences between sitting and 
walking (Fig. 8B). These walking-related effects in IMPs were represented by the yellow cluster 
in the Fig. 8B statistical clusterplot. By comparing these walking-related effects to the 
corresponding group-level effects shown in the Fig. 4B statistical clusterplot, it can be observed 
that the yellow cluster was almost identical between IMPs and the entire cohort, indicating that 
IMPs maintain only the frontal/frontocentral portion of walking-related effects that were found in 
the overall combined cohort. Sitting and walking ERPs of IMPs and nIMPs during correct 
rejection trials are depicted at FCz, since this electrode belongs to the frontocentral cluster of 
significant effects (Fig. 8A). The topographical maps of Fig. 8C show the scalp distribution of 
the average (walking-minus-sitting) neural activity difference in IMPs and nIMPs during correct 
rejection trials, for selected timepoints at which this difference was found to be significant in 
IMPs. 
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Response-locked False Alarms 

To compare the spatiotemporal effects of walking on neurophysiology between IMPs and nIMPs 
during response-locked false alarm trials, cluster-based permutation tests were performed 
separately for each group to examine differences between the sitting and walking response-
locked false alarm ERP waveform. During response-locked false alarm trials, IMPs exhibited 
reduced walking-related ERP amplitudes over frontal/frontocentral scalp during the ERN latency 
interval and over central/frontocentral scalp during pre-ERN latencies (Fig. 9B). Pre-ERN 

Fig. 8. Walking-minus-sitting ERP differences in IMPs and nIMPs during correct rejection 
trials. A. Grand average sitting and walking ERP waveforms of IMPs (left column) and IMPs 
(right column), at a frontocentral midline  electrode (FCz) that exhibits significant differences 
between the two motor load conditions for IMPs. B. Spatiotemporal walking-minus-sitting 
ERP differences in IMPs (left column) and IMPs (right column), using cluster-based 
permutation tests. Such differences were found only in IMPs, over frontocentral scalp during 
the N2 latency interval and left prefrontal scalp during the P3 latency interval (yellow 
cluster). C. Topographical maps showing the average (walking-minus-sitting) neural activity 
difference for selected timepoints at which this difference was found to be significant in 
IMPs. Maps are illustrated both for IMPs and nIMPs, for comparison purposes. The electrode 
to which the ERP waveforms of panel A correspond is circled in black. 
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amplitude reductions, which were not part of our initial hypothesis, were also encountered in the 
group-level analysis (Fig. 5B) where they were interpreted as reduction in the PMP. Here, even 
though differential effects started earlier than in the combined group (-210 vs -130 ms, 
approximately), they are still thought to reflect PMP amplitude reduction during walking based 
on their latency and topography, only more pronounced compared to the entire cohort. No 
detectable ERP differences between sitting and walking were found in nIMPs (Fig. 9B). The 
walking-related effects in IMPs are represented by the yellow cluster in the Fig. 9B statistical 
clusterplot. By comparing these walking-related effects to the corresponding group-level effects 
shown in the Fig. 5B statistical clusterplot, it can be observed that the yellow cluster manifested 
in IMPs was qualitatively similar to the corresponding cluster of the entire cohort, with the 
difference that the IMP cluster had an earlier onset (more pronounced PMP reduction during 
walking in IMPs) and it spread over more electrodes during the ERN latency interval (more 
pronounced ERN reduction during walking in IMPs). This indicates that IMPs in general 
maintain the walking-related effects that were found in the overall combined cohort. Sitting and 
walking ERPs of IMPs and nIMPs during response-locked false alarm trials are depicted at FCz, 
since this electrode belongs to the frontocentral cluster of significant effects (Fig. 9A). The 
topographical maps of Fig. 9C show the scalp distribution of the average (walking-minus-sitting) 
neural activity difference in IMPs and nIMPs during response-locked false alarm trials, for 
selected timepoints at which this difference was found to be significant in IMPs. 
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Fig. 9. Walking-minus-sitting ERP differences in IMPs and nIMPs during the response-
locked false alarm trials (modeled per Fig. 8). A. Grand average sitting and walking ERP 
waveforms of IMPs (left column) and IMPs (right column), at a frontocentral midline  
electrode (FCz) that exhibits significant differences between the two motor load conditions 
for IMPs. B. Spatiotemporal walking-minus-sitting ERP differences in IMPs (left column) 
and IMPs (right column), using cluster-based permutation tests. Such differences were found 
only in IMPs, over frontocentral scalp during the ERN latency interval and over 
central/frontocentral scalp during latencies preceding the ERN (yellow cluster). The latter 
indicated reduction in the PMP. C. Topographical maps showing the average (walking-minus-
sitting) neural activity difference for selected timepoints at which this difference was found to 
be significant in IMPs. Maps are illustrated both for IMPs and nIMPs, for comparison 
purposes. The electrode to which the ERP waveforms of panel A correspond is circled in 
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Discussion 

Cognitive-Motor Interference (CMI) [14] predicts that walking will have a detrimental effect on 
cognitive task performance and/or on gait kinematics due to competition in neural resource 
allocation between the two concurrent task components. However, in the current cohort, walking 
actually improved performance in more than half of the participants (14 out of 26). The 
remaining 12 participants showed either no change in performance (n = 8) while walking, or had 
the expected decline (n = 4).  Those who improved (IMPs) responded more quickly to Go stimuli 
and had significantly reduced stride-to-stride variability compared to those who did not improve 
(nIMPs). Behavioral improvement effects while walking were accompanied by ERP changes 
during both the correct rejection trials and the response-locked false alarm trials. No dual-task-
related ERP differences were present in participants who did not improve performance while 
walking. The findings above suggest that IMPs may adjust their cognitive strategy in response to 
the increased task demands, and this adjustment is reflected in the ERP amplitude reductions 
during key processing stages of inhibitory control. 

Reduction in stride-to-stride variability during dual-task walking compared to single-task 
walking was found both in the cohort overall and in the IMP and nIMP subgroups, suggesting 
that this effect may characterize young healthy adults in general, independent of cognitive task 
performance. A number of studies have reported findings similar to this, especially in young 
adults [94-99]. One possibility to account for this pattern is that shifting attention solely to motor 
control of walking, a largely automated motor pattern [100], increases susceptibility to 
endogenous or exogenous noise, which, in turn, can compromise walking performance [97, 101, 
102]. In contrast, with the addition of a cognitive load, attention shifts away from walking-
related motor control, enhancing automaticity and improving the consistency of the generated 
walking patterns [95, 98]. Indeed, a recent paper demonstrated that the addition of cognitive 
load, via performance of a Go-NoGo task, reduced the impact of perturbations in ongoing optic 
flow inputs on both gait parameters and EEG outcomes while participants were engaged in 
treadmill walking [103]. 

During correct rejection trials, ERP amplitude reductions during walking were found 1) over 
frontal, frontocentral, parietal and occipital scalp regions during the N2 latency interval, 2) over 
left prefrontal, central and centroparietal scalp regions during the P3 latency interval and 3) over 
central and centroparietal scalp regions during latencies beyond the P3 latency interval, until the 
end of the epoch (Fig. 4). From these effects, the walking-related amplitude reductions of the 
frontocentral N2 and the centroparietal P3 are consistent with previous literature [29]. However, 
the left prefrontal amplitude reductions during the P3 latency interval, along with the late 
central/centroparietal amplitude reductions during post-P3 latencies, have not been reported by 
previous studies (Fig. 4). The latter central/centroparietal effect is thought to mostly stem from 
differences in the EEG processing pipelines; neural activity was not highpass-filtered here thus 
allowing more low-frequency content to be retained. IMPs maintained the anterior 
(frontal/frontocentral) portion of effects found in the combined cohort, namely they exhibited 
ERP amplitude reductions during walking over frontal/frontocentral scalp during the N2 latency 
interval and in left prefrontal scalp during the P3 latency interval (Fig. 8). In contrast, nIMPs 
exhibited no detectable walking-related effects during correct rejection trials. (Fig. 8). Focusing 
on the effects found in IMPs, the N2 is thought to reflect the conflict between the two competing 
response tendencies (the ‘Go’ and the ‘NoGo’) and its generation has been traced to the anterior 
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cingulate cortex (ACC), a region that plays a key role in conflict monitoring [51-53, 104, 105]. 
The neural activity differences between sitting and walking in IMPs during these latencies had a 
frontal/frontocentral topographical distribution which aligns with ACC engagement (Fig. 8). 
During the P3 latencies, a topographical shift of the walking-minus-sitting ERP differences 
towards left lateral prefrontal scalp regions was observed (Fig. 8). This finding too can be 
interpreted using the conflict monitoring hypothesis, which predicts that, once conflict between 
active representations is detected by the ACC, a conflict-related signal is relayed to lateral 
prefrontal resources, and more specifically the dorsolateral prefrontal cortex (DLPFC), where 
inhibitory control is implemented. In that way, the top-down attentional resources hosted by the 
DLPFC are activated towards implementing behavioral adjustments, to reduce conflict in 
ensuing trials [55]. Neuroimaging studies have shown that that increased left DLPFC activation 
in particular is associated with lower activation levels in conflict-related brain regions in 
subsequent trials of a Go-NoGo response inhibition task, thus emphasizing the central role that 
the left DLPFC plays in exerting top-down cognitive control [106]. Taken together, our 
neurophysiological findings during correct rejection trials suggest that successful inhibition in 
IMPs during walking is driven by modulation of the conflict monitoring (N2 stage) and the 
subsequent control implementation (P3 stage) neural processes compared to sitting, with such 
effects being absent in nIMPs. 

During response-locked false alarm trials, ERP amplitude reductions during walking were found 
over frontocentral scalp regions during the ERN latency interval, as well as during earlier 
latencies preceding the ERN which were interpreted as pre-movement positivity (PMP) ERP 
effects (Fig. 5). IMPs exhibited a pronounced version of the walking-related ERP effects found 
in the combined cohort, maintaining the general topography and latency of the effects, while 
nIMPs exhibited no detectable effects during the response-locked false alarm trials. (Fig. 9). 
Focusing on the effects found in IMPs, the ERN is thought to reflect the conflict between the 
erroneous motor response and corrective processes, a few milliseconds following the motor 
response (it peaks roughly 50 ms post-response, in accord with the results shown in Fig. 9). The 
source of the ERN has been localized to the ACC [55, 59, 60], same as the N2, consistent with 
the frontocentral topographical distribution of the walking-minus-sitting ERP differences 
demonstrated in Fig. 9 during this latency interval. The main difference compared to the N2 is 
that here the ACC is activated and thus conflict is detected after the response instead of before 
[52, 55]. Therefore, the timing of the activation of the ACC, which functions as a conflict 
monitor, plays a critical role in determining the behavioral outcome. Regarding the earlier pre-
ERN differences, the [-210, -50] ms latency interval during which they were observed has been 
associated with pre-motor processes reflected by the PMP [92, 93]. The PMP has been proposed 
to reflect the ‘go-ahead’ signal generated by the supplementary motor area (SMA) and pre-SMA 
to allow movement execution, consistent with the central/frontocentral topography of the 
walking-minus-sitting ERP differences detected during these latencies (Fig. 9). Summarizing the 
findings during response-locked false alarm trials, IMPs seem to manage an unsuccessful 
inhibition differently during walking compared to sitting, and this difference was pinpointed to 
modulation of the pre-motor neural processes preceding the erroneous motor response (PMP 
stage), as well as of the conflict monitoring neural processes immediately following the 
erroneous response (ERN stage). No such modulation was evident in nIMPs. 

The CMI hypothesis proposes that cognitive task-related and gait kinematic performance 
decrements stem from underlying competition in the allocation of neural resources between the 
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cognitive and the motor task. The IMP phenotype of improvement in all interrogated domains 
clearly contradicts the CMI hypothesis, suggesting that neural resource competition is likely 
absent in this subgroup, or that other factors are at play. Given that IMPs were found to alter 
neural activity during walking compared to sitting while nIMPs did not, these IMP-specific 
walking-related neural activity changes might hold the key to understanding how IMPs manage 
to flexibly recalibrate the underlying neural processes in order to avoid inter-task neural resource 
competition. It is proposed that these neural activity changes manifested by IMPs in response to 
motoric load increase hold promise as neural markers of cognitive flexibility. 

One explanation for not observing CMI effects in IMPs is that the employed task might not have 
been sufficiently taxing on their cognitive resources. Walking is a relatively automatic motor 
task [100], so it may have sufficed to recruit certain cortical (e.g. sensorimotor) or non-cortical 
(e.g. subcortical, brainstem, spinal) neural networks to produce this automatic walking pattern 
[107-111] without interfering with the neural resources used by the response inhibition task. 
Also, the generally good performance of the IMP subgroup on the Go-NoGo response inhibition 
task suggests that this is not an especially difficult task for them. It will be interesting to observe 
in future work whether increasing the difficulty of the motor and/or the cognitive task will bring 
the cognitive resources of IMPs closer to their capacity limit, and as such, make individuals of 
this group manifest effects consistent with CMI. However, IMPs did not just maintain 
performance; they actually achieved better performance when walking. Findings such as this, 
although unanticipated based on CMI, have been reported and interpreted before. There is 
evidence that moderate exercise like walking can enhance sustained attention and facilitate 
cognitive task performance [112-114]. This facilitatory effect has been explained using 
neurotransmitter models, proposing that moderate exercise induces an increase in catecholamine 
levels, which, in turn, boosts the signal-to-noise ratio during processing by prefrontal attentional 
systems [115, 116]. This hypothesis aligns with the present findings, since the observed 
modulation in lateral prefrontal neural activity in IMPs coexisted with reduced conflict-related 
ERP amplitudes (N2 in correct rejections and ERN in response-locked false alarms) during 
walking, as shown in Figs. 8 and 9. Therefore, this reduction in inhibitory conflict that IMPs 
manifest during walking might stem from a more active and/or efficient engagement of top-down 
attentional resources, which presumably induces a shift to a more proactive cognitive strategy 
and hence promotes better anticipation of the rare ‘NoGo’ events.  

A limitation of this study is that nIMPs were more variable in terms of d’ scores than IMPs, both 
for sitting and walking. Based on Fig. 6, while IMPs all lie within a range of medium d’ 
performance, nIMPs were scattered over the full d’ range, encompassing low, medium and high 
performers. As part of future research, we aim to collect more nIMP datasets in order to compare 
IMPs and nIMPs having d’ scores within similar ranges.  Despite  this limitation,  the neural 
signatures of improvement that this study yielded hold significant potential as cognitive 
flexibility markers which could potentially be translated to older neurotypical or patient 
populations to assess and quantify age-related or neurodegeneration-related cognitive decline, 
respectively. As a first step in this direction, we aim to expand the methodology employed here 
to older neurotypical adults to test its efficacy in distinguishing ‘super-agers’ from older adults 
that exhibit normal or aggravated age-related cognitive decline [117].
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Conclusions 

This study examined differences in neural activity, stride-to-stride variability and response speed 
between 1) young adults who improved in terms of response accuracy during walking compared 
to sitting (IMPs) and 2) young adults who did not improve (nIMPs) under the same conditions. 
This split of the young adult cohort was motivated by findings at the piloting stage of the study, 
where 3 out of 5 young adults performed better during walking compared to sitting, conflicting 
with the CMI hypothesis. During correct rejection trials, ERP amplitude reductions were found 
during walking in IMPs, specifically over frontocentral scalp regions during N2 latencies and 
over left prefrontal scalp regions during P3 latencies. Also, during response-locked false alarm 
trials, IMPs exhibited reduced ERP amplitudes while walking over frontocentral scalp regions, 
during Event-Related Negativity (ERN) and pre-ERN latencies. No detectable differences were 
found in the neural activity of nIMPs between sitting and walking, neither during correct 
rejection trials nor during response-locked false alarm trials. The present findings indicate that 
IMPs can flexibly modulate frontal brain activity during walking during key stages of inhibitory 
control (conflict monitoring for N2 and ERN, control implementation for P3, pre-motor for pre-
ERN), something that nIMPs do not seem to do. Combining these neurophysiological findings 
with findings of faster responses and less stride-to-stride variability in IMPs, these neural activity 
differences were interpreted as neural signatures of behavioral improvement during dual-task 
walking. Future research can test the potential of these neural signatures as markers for assessing 
cognitive flexibility in populations where it tends to get compromised, for example older adults 
who either age normally or have been diagnosed with neurodegenerative diseases, such as 
Parkinson’s or Alzheimer’s disease. 
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