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Abstract 
 
Intravenous leiomyomatosis (IVLM) is a rare benign smooth muscle tumour that is 
characterised by intravenous growth in the uterine and pelvic veins. Previous DNA copy 
number and transcriptomic studies have shown that IVLM harbours unique genomic and 
transcriptomic alterations when compared to uterine leiomyoma (uLM), which may account for 
their distinct clinical behaviour. Here we undertake the first comparative proteomic analysis of 
IVLM and other smooth muscle tumours (comprising uLM, soft tissue leiomyoma and benign 
metastasising leiomyoma) utilising data-independent acquisition mass spectrometry. We 
show that, at the protein level, IVLM is defined by the unique co-regulated expression of 
splicing factors. In particular, IVLM is enriched in two clusters composed of co-regulated 
proteins from the hnRNP, LSm, SR and Sm classes of the spliceosome complex. One of these 
clusters (Cluster 3) is associated with key biological processes including nascent protein 
translocation and cell signalling by small GTPases. Taken together, our study provides 
evidence of co-regulated expression of splicing factors in IVLM compared to other smooth 
muscle tumours which suggests a possible role for alternative splicing in the pathogenesis of 
IVLM.  
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Introduction 
 
Intravenous leiomyomatosis (IVLM) is a rare histologically benign smooth muscle tumour 
which is characterised by intravenous growth in the uterine and pelvic veins [1,2]. In some 
instances, it can extend into the inferior vena cava and the right heart which in rare cases may 
cause death [3,4]. IVLM is usually present with concomitant uterine leiomyoma (uLM) and one 
theory is that it originates from a pre-existing uLM where it extends and invades into the vessel 
wall [4,5]. Given that there are some instances where IVLM arises in the absence of a uLM 
[2,6], an alternate theory is that this tumour originates from the smooth muscle cells of the 
vessel wall.  In addition to IVLM, there are other rare smooth muscle tumours with unusual 
quasi-malignant clinical behaviour such as benign metastasising leiomyoma (BML) and 
disseminated peritoneal leiomyomatosis [7,8]. 
 
Previous studies have undertaken comparative analysis of the molecular features of IVLM 
versus uLM to gain a better understanding of its underlying biology as well as the relationship 
between the two entities [9-15]. Some of the system-wide comprehensive profiling studies that 
have been reported include array comparative genomic profiling (aCGH) and transcriptomic 
analysis [9,11,13,14]. Collectively, these focused and system-wide studies indicate that IVLM 
share some cytogenetic and protein expression features with uLM (e.g. translocations in 
(12;14) and HMGA2 protein expression) [11,12,14,15], while at the same time harbour genetic 
and transcriptomic alterations that are unique. These unique alterations include distinct 
MED12 mutations and elevated HOXA13 gene expression in IVLM [10,12,13].  Given its rarity, 
all of the published Omics-based IVLM molecular profiling studies, with the exception of a 
recent study by Ordulu et al.[11], have been limited to a small number of cases (typically <5). 
 
To date no proteomic profiling analyses have been undertaken in IVLM. Proteins are the 
critical drivers of cellular communication in normal cells and dysregulation of protein function 
is causative of many diseases including cancer [16,17]. We hypothesized that, unlike genomic 
and transcriptomic analysis, proteomic profiling will provide a more direct readout of the 
biological pathways and protein complexes that may play a role in the pathogenesis of IVLM 
[18,19].  Here we undertake a comparative mass spectrometry-based proteomic analysis of 
IVLM and other smooth muscle tumours (uLM, soft tissue leiomyoma (stLM) and BML), and 
demonstrate that at the protein level, IVLM is characterised by the unique co-regulated 
expression of splicing factors that comprise the spliceosome. 
 
Materials and methods 
 
Patients and tumour specimens 
Use of archival formalin fixed paraffin embedded (FFPE) tumour samples and linked 
anonymised patient data was approved by Institutional Review Board as part of the 
PROSPECTUS study, a Royal Marsden-sponsored non-interventional translational protocol 
(CCR 4371, REC 16/EE/0213). One of the IVLM cases in this series has previously been 
described in a case report [20]. FFPE tissue from surgically resected primary tumours and 
accompanying annotation of baseline clinico-pathological variables were identified and 
retrieved through retrospective review of departmental database and medical notes at the 
Royal Marsden NHS Foundation Trust. The histological diagnosis was confirmed in all cases 
by experienced soft tissue pathologists (KT, CF). For each tumour, a single FFPE tissue block 
containing representative viable tumour was selected through review of haematoxylin and 
eosin (H&E)-stained sections. Five 20µm sections were cut from each selected tumour block 
and, where indicated, macrodissected to enrich to >75% viable tumour content. 
 
Protein extraction and sample preparation 
The samples were processed as previously described [18]. Briefly, 20µm tissue sections from 
each sample were deparaffinised in xylene, rehydrated by washes with decreasing ethanol 
gradient and then dried. Samples were homogenized in lysis buffer (0.1M Tris-HCl pH 8.8, 
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0.50% (w/v) sodium deoxycholate, 0.35% (w/v) sodium lauryl sulphate) at a ratio of 200ul/mg 
of dry tissue using a LabGen700 blender (ColeParmer) with 3x 30s pulses. Homogenates 
were sonicated on ice for 10 min and then incubated at 95⁰C for 1 h to reverse formalin 
crosslinks. Lysis was continued by shaking at 750rpm at 80⁰C for 2 h. The resulting 
homogenate was then centrifuged for 15min at 4°C at 15,000rpm, the supernatant was 
collected and protein concentration of the supernatant was measured by bicinchoninic acid 
(BCA) assay (Pierce). The extracted proteins were digested using the Filter-Aided Sample 
Preparation (FASP) protocol as previously described [21]. Briefly, each sample was placed 
into an Amicon-Ultra 4 (Merck) centrifugal filter unit and detergents were removed by several 
washes with 8M urea. The concentrated sample was then transferred to Amicon-Ultra 0.5 
(Merck) filters, reduced with 10mM dithiothreitol (DTT) and alkylated with 
55mM iodoacetamide (IAA). The sample was washed with 100mM ammonium 
bicarbonate (ABC) and digested by trypsin (Promega, trypsin to starting protein ratio 1:100 
µg) overnight at 37°C. Peptides were desalted on C18 SepPak columns (Waters), dried in a 
SpeedVac concentrator and stored at -80°C. 
 
SWATH-MS data acquisition and processing 
Quantitative proteomic profiling was performed by sequential window acquisition of all 
theoretical fragments mass spectrometry (SWATH-MS) which is also known as data-
independent acquisition mass spectrometry. Dried, desalted peptides were resuspended in a 
buffer A (2% ACN/ 0.1% formic acid), spiked with iRT calibration mix (Biognosys AG) and 
analysed on an Agilent 1260 HPLC system (Agilent Technologies) coupled to a TripleTOF 
5600+ mass spectrometer with NanoSource III (AB SCIEX). 1 μg of peptides for each sample 
was loaded onto a self-made trap column packed with a 10 μm ReprosilPur C18AQ beads 
(Dr. Maisch) and washed for 5 minutes by buffer A. Peptides were then separated on a 75 
μm×15 cm long analytical column with an integrated manually pulled tip packed with Reprosil 
Pur C18AQ beads (3 μm, 120 Å particles, Dr. Maisch). A linear gradient of 2–40% of Buffer B 
(98% ACN, 0.1% formic acid) in 120 min and a flow rate of 250 nl/min was used. Each sample 
was acquired in 2 technical replicates. Acquisition parameters were as follows: 60 precursor 
isolation windows with a fixed size of 13 Da across the mass range of m/z 380–1100 with 1 
Da overlap. MS/MS scans were acquired in the mass range of m/z 100-1500. Cycle time of 
3.1 s was used resulting in average 8 datapoints per elution peak. SWATH-MS spectra were 
analysed using Spectronaut 15.2 (Biognosys AG) against a published human library [22]. FDR 
was restricted to 1% on both protein and PSM level. Peak area of 3 to 6 fragment ions was 
used for peptide quantification. The mean value of max 6 peptides was used to quantify 
proteins while 2 unique peptides was set as a minimum requirement for inclusion of a protein 
in the subsequent analysis.  
 
Data processing and statistical methods 
The proteomics dataset was further processed using R, Perseus 1.5.6 [23,24] and GraphPad 
8.2.1. Protein quantities were log2 transformed and quantile normalised at sample level using 
proBatch package [25] in R followed by protein median centering across the samples. The 
normalized dataset was then visualized by hierarchical clustering using ComplexHeatmap 
package in R [26]. Gene Set Enrichment Analysis (GSEA) was applied using GenePattern 
online tool [27] to identify gene sets obtained from the MSigDB (c5.gobp.v7.5) [28] that were 
significantly enriched in IVLM samples. Similarly, single sample GSEA (ssGSEA) was applied 
using GenePattern to score sample-specific enrichment of the Spliceosome gene set from the 
KEGG pathways database [29]. To identify spliceosome components, the list of all identified 
proteins in this study was cross-referenced with the annotated spliceosome protein interaction 
dataset published by Hegele et al. [30]. Mutual co-expression of the splicing factors was 
assessed by Pearson’s correlation coefficient that was calculated in Perseus for all possible 
combinations of the identified splicing factors. The resulting similarity matrix was analysed and 
visualised by ConsensusClusterPlus [31] and ComplexHeatmap packages in R respectively.  
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To study association of the splicing factors identified in clusters 1-3 with known biological 
pathways, Pearson’s correlation coefficients between splicing factors and all other proteins in 
the proteomic dataset (after removal of all proteins annotated in the Spliceosome Database 
[32]) were calculated in Perseus. The resulting similarity matrices were hierarchically clustered 
and visualized by ComplexHeatmap package in R, where rows of each matrix were split into 
4 clusters using k-means partitioning, Euclidean distance and 1000 repetitions. Subsets of 
proteins from the clusters with the highest and lowest average correlation were then used for 
over-representation analysis using DAVID 6.8 Functional analysis online tool [33]. 
 
Results 
 
Quantitative proteomic profiling of smooth muscle tumours 
The cohort is comprised of FFPE tumour material from 14 patients treated at The Royal 
Marsden Hospital. These specimens were obtained from surgical resections of IVLM (n = 3), 
uLM (n = 3), stLM (n = 7) and BML (n=1). Tumour specimens were subjected to sample 
preparation and protein extraction as depicted in Figure 1. Digested peptides then underwent 
proteomic profiling with SWATH-MS in technical duplicates. This analysis resulted in the 
identification and quantification of 2,473 proteins (Table S1).  Unsupervised clustering of the 
full dataset shows that the IVLM cases largely cluster together separate from the stLM and 
uLM cases (Figure 2A). Interestingly the only BML case in the cohort clusters most closely to 
the IVLM cases.  
 
Assessment of proteins that are significantly different in IVLM cases compared to uLM, stLM 
and BML cases identified 162 proteins of which 109 and 53 proteins are upregulated (>2 fold) 
or downregulated (<2 fold) in IVLM respectively (Fig 2B). Consistent with published 
immunohistochemical analysis studies [12], expression of the chromatin factor HMGA2, a 
protein which is highly expressed in IVLM due to the breakpoint on 12q14-15 [11,12,14], was 
not significantly different between IVLM and the other smooth muscle tumours in the cohort 
(Fig S1). Interestingly we find that 29/162 (18%) of the differentially expressed proteins are 
components of the spliceosome complex (Figure 2B).  
 
Enrichment of splicing processes in IVLM  
To further investigate the biological processes that are enriched in IVLM compared to the other 
smooth muscle tumours, we undertook gene set enrichment analysis (GSEA) of the full 
proteomic dataset (Figure 3A). We show that the majority of the top 20 ranked enriched gene 
sets are processes associated with RNA splicing, processing, transport or metabolism. 
Beyond RNA-related biological processes, other enriched gene sets include protein targeting 
and localisation to membrane, regulation of gene transcription and translation. In line with the 
observation that a significant proportion of proteins enriched in IVLM are components of the 
spliceosome complex (Figure 2B), single sample GSEA (ssGSEA) of the proteomic data for 
each specimen in the cohort using the KEGG spliceosome gene set showed that the IVLM 
cases had significantly higher ssGSEA spliceosome scores compared to the other smooth 
muscle tumours in the cohort (Figure 3B). Taken together, our data indicate that both the 
spliceosome complex and biological processes involving RNA biology are enriched in IVLM 
specimens. 
 
Identification of co-regulated expression of splicing factors in the proteomic profiling dataset 
It is well-established that the spliceosome is a highly dynamic macromolecular complex where 
more than 200 splicing factors are assembled into distinct complexes that vary in their 
composition in space and time [30,34]. We therefore hypothesized that despite the overall 
enrichment of spliceosome components in IVLM (Figure 3B), it is possible that subsets of co-
regulated splicing factors may be responsible for the distinct clinical behaviour of IVLM versus 
leiomyomas.  Indeed, unsupervised hierarchical clustering of 116 spliceosome components in 
the proteomic dataset showed that the spliceosome complex as a whole was not upregulated 
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in IVLM (Figure 4A). Rather, there appeared to be subsets of splicing factors that were 
differentially expressed in IVLM, uLM and stLM.  
 
Inspired by a previous study which showed that co-regulation of splicing factors is important 
in regulating breast cancer progression [35], we performed a Pearson’s correlation coefficient 
analysis of the protein expression levels of all possible combinations of 116 splicing factors in 
our dataset. Consensus clustering identified 3 clusters of splicing factors which is shown in 
the similarity matrix in Figure 4B (composition of each cluster provided in Table S2). In 
particular, Clusters 2 (n=43) and 3 (n=40) contain splicing factors which are negatively 
correlated between clusters but are positively correlated within clusters. Cluster 1 (n=33) is 
mixed with both positively and negatively correlated splicing factors. 
 
Distinct co-regulated clusters are comprised of splicing factors which are differentially 
expressed in IVLM versus the other smooth muscle tumours. 
An evaluation of the composition of splicing factors showed that each cluster is comprised of 
different proportions of core and non-core spliceosome proteins with Cluster 2 having the 
highest proportion of core proteins (65%) and Cluster 3 having the least core proteins (25%) 
(Figure 4C). Furthermore, assessment of the splicing factor classes based on nomenclature 
defined by Hegele et al., [30] finds that the splicing factor class composition of Clusters 1 and 
3 is similar with the majority of proteins coming from the hnRNP, LSm, SR and Sm protein 
classes (Figure 4C).  In contrast, the composition of cluster 2 is very different with U2, U2 rel 
and U5 protein classes dominating.  
 
Quantitative assessment of the proteomic data showed that when broken down by cluster 
assignment, the IVLM specimens were significantly enriched in co-regulated splicing factors 
from Clusters 1 and 3 versus the other smooth muscle tumours in the cohort (Figure 4C).  No 
significant difference between IVLM and the other smooth muscle tumours was seen in co-
regulated splicing factors in Cluster 2. Collectively, this analysis indicates that at the protein 
level, IVLM is characterised by the co-regulated expression of specific classes of splicing 
factors that comprise the spliceosome. 
 
Co-regulated splicing factors are associated with multiple biological pathways, including 
protein translocation and signal transduction by small GTPases. 
We sought to determine if the expression of splicing factors in each of these clusters was 
linked to specific biological process. To do this, the Pearson’s correlation coefficient was 
calculated between all the proteins in the dataset (excluding spliceosomal proteins) and 
splicing factors in each of the three clusters. Unsupervised hierarchical clustering finds that 
537 and 585 proteins were positively or negatively correlated with the splicing factors in 
Cluster 2, respectively (Figure 5A, clusters C and A). The same analysis in Cluster 3 identified 
positive and negative correlation in 545 and 738 proteins, respectively (Figure 5B, clusters C 
and B).  Unsurprisingly, since Cluster 1 comprised of both positively and negatively correlated 
splicing factors, no significantly correlated proteins were found in our dataset (data not shown). 
Given that Clusters 2 and 3 have opposing profiles in co-regulated splicing factors (Figure 4B), 
it is expected that proteins correlating with these clusters would follow the same trend.  Indeed, 
we demonstrate that there was substantial overlap of proteins which show opposite co-
expression patterns (i.e. positively correlated proteins in Cluster 2 and negatively correlated 
proteins in Cluster 3), and vice versa (Figure 5C).  
 
Focusing on Cluster 3 which is significantly upregulated in IVLM (Figure 4C), over-
representation analysis finds 4 ontologies that are enriched in the proteins that are positively 
correlated with the splicing factors in this cluster (Figure 5D).  These ontologies include 
nascent protein targeting to the endoplasmic reticulum (SRP-dependent cotranslational 
protein targeting to membrane), signal transduction mediated by small GTPases, hydrolysis 
of proteins by peptidases (negative regulation of endopeptidase activity) and proteins involved 
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in viral transcription. The positively coregulated proteins in these ontologies is shown in the 
chord diagram in Figure 5E.  
 
Discussion 
 
IVLM is a rare benign smooth muscle tumour with quasi-malignant clinical behaviour. Previous 
profiling studies characterising its molecular features have focused on DNA copy number and 
transcriptomic alterations [9,11,13,14].  Here we performed the first proteome level analysis of 
IVLM and compare it to other smooth muscle tumours including uLM, stLM and BML.  We 
show that IVLM is characterised by a differential expression of spliceosome complex 
components.  In particular, by utilising a bioinformatics approach to delineate co-regulation of 
splicing factors, we find that there are two specific clusters of co-regulated splicing factors in 
the hnRNP, LSm, SR and Sm protein classes that are enriched in IVLM compared to the other 
smooth muscle tumours in this cohort. Finally, we demonstrate that one of these clusters 
(Cluster 3) is associated with high expression of proteins involved in key biological processes 
such as nascent protein translocation and signalling by small GTPases. To our knowledge this 
is the first demonstration that IVLM is characterised by a distinct group of co-regulated splicing 
factors, which may contribute to its unique clinical behaviour. It highlights the utility of 
proteomics to provide novel insights into IVLM tumour biology beyond the current state-of-the-
art gained from published aCGH and gene expression studies. 
 
Splicing occurs through a complex series of well-regulated steps mediated by the spliceosome 
machinery [36]. It has been shown that aberrations in specific splicing factors disrupt the 
composition of the spliceosome complex and drive carcinogenesis [37,38].  For instance, 
mutations in the splicing factor SF3B1 in both solid and liquid cancers initiate oncogenic 
alternative splicing reprogramming that is key to cancer development and progression [39-43]. 
Furthermore, it has been recently shown that some of these splicing factor mutations may 
induce new vulnerabilities that can be therapeutically exploited in a synthetic lethal fashion 
[44-46]. In the same vein, it is possible that the distinct co-regulation of splicing factors 
observed in IVLM may result in dysregulated alternative splicing that could account for its 
intravenous growth patterns. Unfortunately, due to the highly fragmented nature of total RNA 
extracted from FFPE specimens, we were unsuccessful in our efforts to measure alternative 
splicing profiles by RT-PCR from the cases in this series despite multiple repeated attempts. 
Future RNASeq or RT-PCR analysis on prospectively collected flash frozen specimens would 
be key to establishing if differential alternative splicing occurs in IVLM versus uLM. Identifying 
such alternatively spliced genes could offer a mechanistic explanation into the quasi-malignant 
behaviour of IVLM.  
 
This study is limited by the small number of IVLM cases that were studied. IVLM is a rare 
condition and the vast majority of profiling studies to date comprise a small number of cases 
(typically <5). Despite the limited numbers, we were able to demonstrate that there was a 
statistically significant enrichment of co-regulated spliceosome components in IVLM.  
Interestingly, we show that the sole BML case in our cohort clustered most closely to the IVLM 
cases (Figure 2A). BML is another rare unusual variant of leiomyoma that often manifests as 
multiple nodules in the lungs and other sites [47]. A recent aCGH analysis finds that IVLM and 
BML share recurrent copy number alterations that are rarely seen in uLM [11].  Consistent with 
this finding, our data shows that at the proteomic level, BML is more similar to IVLM compared 
to uLM. It is however important to note that our proteomic analysis was performed on a small 
case series treated within a single institution and any findings will need to be independently 
validated. 
 
Conclusions 
 
In summary, we have undertaken a comparative proteomic profiling study of IVLM and other 
smooth muscle tumours (uLM, stLM and BML) and describe the selective enrichment of co-
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regulated splicing factors which are associated with distinct biological pathways. We anticipate 
that future work integrating proteomics with complementary Omics-based profiling approaches 
such as RNAseq will shed further insights into the possible role of alternative splicing in the 
pathogenesis of IVLM. 
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Figures 

 

Figure 1: Experimental workflow depicting key procedures of sample selection and 
preparation, proteomic data acquisition and subsequent data processing and analysis. 

 

 

 

 

Figure 2: (A) Heatmap depicting unsupervised hierarchical clustering of 2,478 proteins that 
were quantified across all samples. The distance measure used for clustering is Pearson’s 
correlation. The full protein list is provided in Table S1. (B) Volcano plot depicting difference 
in protein expression between IVLM cases and all the other smooth muscle tumours (rest). 
Splicing factors with significantly different expression levels (>2 fold or < 2 fold) are highlighted 
in red.  
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Figure 3: (A) Plot of Gene Set Enrichment Analysis (GSEA) results showing all the gene sets 
that are significantly enriched in IVLM samples. FDR q-value is represented by the colour of 
the circles while the size of the circles represents number of identified genes within each gene 
set. NES – normalized enrichment score. (B) Plot of single sample GSEA scores for the 
spliceosome gene set as defined by KEGG. The line and whiskers in plots represent mean 
and standard deviation. Statistical significance was calculated by two-sample t-test.  *** 
p<0.001. 
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Figure 4: (A) Heatmap depicting unsupervised hierarchical clustering of 116 proteins of the 
spliceosome complex as defined by Hegele et al. [30]. The distance measure used for 
clustering is Pearson’s correlation. (B) Heatmap depicting similarity matrix of Pearson’s 
correlation coefficients of all possible pairwise combinations of the 116 splicing factors. Three 
clusters were identified by consensus clustering analysis. (C) Annotation and expression 
profile of the spliceosomal proteins belonging to clusters shown in Figure 4B. Venn diagrams 
depict spliceosome composition (core versus non-core, and distinct splicing factor classes) in 
each cluster while plots below show average expression levels of spliceosome components 
in each sample for a given cluster. Detailed composition of clusters and identity of individual 
proteins are listed in Table S2. The line and whiskers in plots represent mean and standard 
deviation. Statistical significance was calculated by two-sample t-test. ** p<0.01, **** 
p<0.0001. 
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Figure 5: Heatmaps depicting correlation matrix of Pearson’s correlation coefficient calculated 
between the splicing factors in (A) Cluster 2 or (B) Cluster 3 and all the other proteins in the 
dataset that are not part of the spliceosome complex. Heatmaps are split into four clusters 
based on k-means partitioning. (C) Venn diagrams depicting the overlap between the 
positively and negatively correlated proteins in Cluster 2 and 3 respectively, and vice versa. 
(D) Plot of overrepresentation analysis results showing ontologies which are positively 
correlated with the splicing factors in Cluster 3 (FDR < 0.1). (E) Chord plot depicting all 
positively correlated proteins identified by overrepresentation analysis in Fig 5D.  
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Supplemental figure 

 

Figure S1: Expression levels of HGMA2 protein of each case in the cohort. The line and 
whiskers in plots represent mean and standard deviation. Expression levels of this protein was 
not significantly different between IVLM and the other smooth muscle tumours in the cohort 

 

Supplemental table legends 

Table S1: Full proteomic dataset for the cohort. The dataset was log2 transformed and 
quantile normalized. Reported values represent median centred protein expression levels. 

Table S2: List of splicing factors found in the three individual consensus clusters which are 
annotated based on spliceosome complex protein classes as defined by Hegele et al., Mol. 
Cell. 2012 
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