

1

2 Potent and specific human monoclonal antibodies against SARS-CoV-2 3 Omicron variant by rapid mRNA immunization of humanized mice

4

5

6 Ping Ren ^{1,2,3,*}, Lei Peng ^{1,2,3,*}, Zhenhao Fang ^{1,2,3},
7 Kazushi Suzuki ^{1,2,3}, Paul Renauer ^{1,2,3,4}, Qianqian Lin ^{1,2,3},
8 Meizhu Bai ^{1,2,3}, Luojia Yang ^{1,2,3}, Tongqing Li ^{6,7},
9 Paul Clark ^{1,2,3}, Daryl Klein ^{6,7}, and Sidi Chen ^{1,2,3,4,5,8,9,10,@,#}

10

11 Affiliations

12

- 13 1. Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- 14 2. System Biology Institute, Yale University, West Haven, CT, USA
- 15 3. Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- 16 4. Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
- 17 5. Immunobiology Program, Yale University, New Haven, CT, USA
- 18 6. Department of Pharmacology, Yale University, New Haven, CT, USA
- 19 7. Cancer Biology Institute, Yale University, New Haven, CT, USA
- 20 8. Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
- 21 9. Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
- 22 10. Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA

23

24 * Co-first authors.

25

26 @ Correspondence:
27 SC (sidi.chen@yale.edu)

28

29 # Lead contact:
30 SC (sidi.chen@yale.edu)
31 +1-203-737-3825 (office)
32 +1-203-737-4952 (lab)

33

34

35

36

37 **Abstract**

38 The Omicron variant (B.1.1.529) of SARS-CoV-2 rapidly becomes dominant globally. Its extensive
39 mutations confer severe efficacy reduction to most of existing antibodies or vaccines. Here, we developed
40 **RAMIHM**, a highly efficient strategy to generate fully human monoclonal antibodies (mAbs), directly
41 applied it with Omicron-mRNA immunization, and isolated three potent and specific clones against
42 Omicron. Rapid mRNA immunization elicited strong anti-Omicron antibody response in humanized mice,
43 along with broader anti-coronavirus activity. Customized single cell BCR sequencing mapped the clonal
44 repertoires. Top-ranked clones collectively from peripheral blood, plasma B and memory B cell populations
45 showed high rate of Omicron-specificity (93.3%) from RAMIHM-scBCRseq. Clone-screening identified
46 three highly potent neutralizing antibodies that have low nanomolar affinity for Omicron RBD, and low
47 ng/mL level IC50 in neutralization, more potent than majority of currently approved or authorized clinical
48 RBD-targeting mAbs. These lead mAbs are fully human and ready for downstream IND-enabling and/or
49 translational studies.

50

51

52 **Keywords**

53 Omicron variant, COVID-19, SARS-CoV-2, rapid mRNA immunization, RAMIHM, single cell BCR-seq,
54 neutralizing antibody, humanized mice, fully human monoclonal antibodies

55

56 **Introduction**

57 SARS-CoV-2 has rapidly spread across the world, causing a global pandemic of coronavirus disease 2019
58 (COVID-19) and posing a serious threat to global healthcare systems(Corbett et al., 2020; Lu et al., 2020;
59 Zhou et al., 2020). To date, SARS-CoV-2 has infected hundreds of millions of people and caused millions
60 of deaths worldwide(Dejnirattisai et al., 2022b). Although multiple approved vaccines and neutralizing
61 mAbs were rapidly deployed(Baden et al., 2021; Krammer, 2020; Polack et al., 2020; Sadoff et al., 2021;
62 Weinreich et al., 2021), the emergence of new variants with mutations in spike (S) glycoprotein that could
63 escape the antibody response further threaten the protective immune responses from infection, vaccination
64 or antibody therapies (Dhar et al., 2021; Faria et al., 2021; Tegally et al., 2021).

65

66 Recently, the B.1.1.529 variant of SARS-CoV-2 was declared as variant of concern (VoC) and designated
67 as Omicron by the World Health Organization (WHO)(Karim and Karim, 2021; Scott et al., 2021).
68 Compared with previous VOCs, the Omicron variant is particularly concerning due to a high number of
69 mutations, especially in the spike protein relative to the ancestral virus of SARS-CoV-2. Notably, 15
70 Omicron mutations were distributed at the receptor-binding domain (RBD), including G339D, S371L,
71 S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, and
72 Y505H, which is the primary target of serum neutralizing antibodies elicited by infections or
73 vaccines(Piccoli et al., 2020). Among the mutations and indels in N-terminal domain (NTD), the 143-145
74 deletion is located in the antigenic supersite targeted by most of NTD neutralizing antibodies and is
75 predicted to mediate immune escape of NTD-targeting antibodies(Cao et al., 2021; Cerutti et al., 2021;
76 McCallum et al., 2021). SARS-CoV-2 spike contains a unique S1/S2 furin cleavage site (681-685aa in WT,
77 PRRAR), which is associated with SARS-CoV-2 transmissibility(Johnson et al., 2021) and
78 pathogenesis(Johnson et al., 2021), and is not present in other group 2B coronaviruses. Two Omicron
79 mutations (N679K and P681H) adjacent to the furin site add additional positive charged residues to this
80 short basic stretch and are predicted to enhance transmissibility. A series of recent studies have shown that
81 the mutations in Omicron variant lead to marked reduction of neutralizing activity from vaccination and
82 from approved or emergency-authorized therapeutic monoclonal antibodies (mAbs) (Callaway, 2021; Cao
83 et al., 2021; Cele et al., 2021b; Ju et al., 2020; Planas et al., 2021). These mutations in Omicron variant
84 renders the vast majority of the originally authorized monoclonal antibodies ineffective (Cao et al., 2021;
85 Hoffmann et al., 2022), causing them to be no longer recommended in the COVID-19 treatment guidelines
86 for patients with Omicron variant infections.

87

Omicron mAb RAMIHM

88 Data on initial epidemiological studies demonstrated the Omicron variant is leading the fourth wave of the
89 SARS-CoV-2 pandemic worldwide, potentially due to its higher transmissibility and immune evasion of
90 SARS-CoV-2 neutralizing antibodies (Cao et al., 2021; Liu et al., 2021; Meo et al., 2021; Starr et al., 2021;
91 VanBlargan et al., 2022; Wolter et al., 2022). Although Omicron variant appeared to be less severe, in the
92 currently largely vaccinated general population, the enormous number of infections still led to large
93 numbers of hospitalizations and deaths daily. Therefore, it is essential to develop next-generation
94 neutralizing mAbs that retain potency and limit SARS-CoV-2 virus transmission when current vaccines and
95 therapeutic antibodies are compromised(Cele et al., 2021a).

96

97 In this study, we developed **RApid mRNA Immunization of Humanized Mice (RAMIHM)**, an accelerated
98 animal immunization approach for neutralizing mAb discovery. The principle of this approach is to utilize
99 the high doses of antigen-specific LNP-mRNA to frequently immunize immunoglobulin (Ig) humanized
100 mice within 2 weeks, for isolation of high potency neutralizing mAbs against the targeted antigen. We
101 applied this approach directly with Omicron spike-encoding mRNA, used customized single cell BCR
102 sequencing (scBCR-seq) to obtain the human variable region sequences from enriched B cell clonotypes,
103 and generated potent and specific fully human antibodies against the Omicron variant.

104

105 Results

106

107 **Development of RApid mRNA Immunization of Humanized Mice (RAMIHM), a highly efficient** 108 **strategy to identify fully human monoclonal antibodies**

109 To date, two-dose SARS-CoV-2 mRNA-based vaccination strategy has been demonstrated to effectively
110 induce humoral and cellular immunity to SARS-CoV-2, including the ancestral virus (ancestral, reference,
111 wildtype (WT), Wuhan-1, or WA-1, identical sequences), and its VoCs such as Delta variant(Lopez Bernal
112 et al., 2021; Naranbhai et al., 2021). However, a number of recent studies demonstrated that the SARS-
113 CoV-2 Omicron variant has substantial changes in its genome, especially the spike protein (**Fig. 1A**), and
114 illustrated dramatically decreased neutralizing titers in convalescent or vaccinated recipients, causing
115 waning immunity and massive breakthrough infections(Carreno et al., 2021; Cele et al., 2021b; Dejnirattisai
116 et al., 2022b; Hu et al., 2022). Importantly, nearly all antibodies initially developed against the ancestral
117 virus have substantially dropped, or completely lost, the neutralization ability against Omicron(Cao et al.,
118 2021; Dejnirattisai et al., 2022a; Liu et al., 2021; Planas et al., 2021). For example, several of the currently
119 approved or emergency authorized mAbs have their binding interfaces impacted by the Omicron mutations
120 (**Fig. 1B**). Therefore, next-generation neutralizing antibodies are needed in speed. To combat the rapidly

Omicron mAb RAMIHM

121 evolving VoCs, for example the current resurgence of the Omicron pandemic, it is important to have the
122 ability to rapidly develop translatable human neutralizing mAbs to quickly react to the needs of new
123 therapeutics. We thus developed a novel antibody discovery approach named RAMIHM, with repetitive
124 intramuscular injections using high doses of LNP-mRNA, followed by B cell isolation, antigen enrichment
125 and single B cell sequencing (Fig. 1C). We applied this directly with Omicron-spike-encoding LNP-mRNA
126 to induce Omicron-specific immune responses for isolation of Omicron-targeting mAbs.

127

128 Using Omicron-specific LNP-mRNA that contains lipid nanoparticle formulated mRNA encoding the
129 HexaPro engineered full length of Omicron spike glycoprotein (Methods), we first characterized the
130 biophysical integrity of these LNP-mRNAs (Fig. S1A, S1B), and validated the expression of functional
131 Omicron spike protein surface expression via human ACE2 (hACE2) staining of LNP-mRNA transfected
132 HEK293 cells (Fig. S1C). Next, we performed administration of four 10 μ g doses and one 20 μ g dose of
133 Omicron specific-mRNA LNP in 3 IgG-humanized mice, collected retro-orbital blood samples from each
134 humanized mouse before and after booster immunization. Blood samples were labeled as pre-, 1st-, or 2nd
135 immunization draw depend on collection sequence (Fig. 1C). Antibody titers were measured using serial
136 plasma dilutions on ELISA plates coated with recombinant Omicron RBD protein. Binding activity was
137 visualized using anti-mouse IgG antibodies at 450nm optical density (OD). Three sequential plasma
138 samples showed increasing vaccine-elicited antibody responses during each blood collection (Fig. 1D). All
139 post-immunized plasma samples (2nd blood) showed strong reactivity to the recombinant SARS-CoV-2
140 Omicron RBD protein antigen (Fig. 1D). In addition, all these samples also showed strong cross-reactivity
141 to recombinant SARS-CoV-2 Delta RBD protein, and intermediately cross-reactivity to recombinant
142 SARS-CoV RBD protein, but no cross-binding to recombinant MERS-CoV RBD protein (Fig. 1D).
143 Together, these results demonstrated that Omicron-specific rapid mRNA immunization (Omicron-
144 RAMIHM) elicited strong anti-Omicron plasma in IgG humanized mice in two weeks, which also contains
145 broader reactive antibodies against other variant and coronavirus species such as SARS-CoV-2 Delta and
146 SARS-CoV.

147

148 **Customized single cell BCR sequencing (scBCRseq) mapped the IgG clonal repertoires of Omicron-
149 RAMIHM animals**

150 To obtain SARS-CoV-2 Omicron RBD-reactive B cells, we isolated spleen, lymph nodes, bone marrow
151 and whole blood from Omicron-RAMIHM mouse, and collected three different types of B cells (memory
152 B cell, plasma B cells, and peripheral blood mononuclear cells) by using different isolation procedures
153 (Methods), for B cell repertoire mapping and reactive BCR identification via scBCR-seq. To prepare

Omicron mAb RAMIHM

154 memory B cells enriched library, we used mouse memory B cell isolation kit to obtain total memory B cells
155 from fresh spleen and lymph nodes, and baited SARS-CoV-2 Omicron RBD specific memory B cells by
156 enrichment using recombinant Omicron-RBD proteins from isolated memory B cell subsets (Memory B
157 library). To generate plasma B cells enriched library, we applied anti-mouse CD138⁺ plasma cell isolation
158 to isolate CD138⁺ plasma B cells from freshly isolated raw bone marrow cells (Plasma B library). To
159 generate peripheral blood mononuclear cells library, we isolated peripheral blood mononuclear cells
160 (PBMCs) by centrifugation using PBMC isolation method from whole blood (PBMC / Peripheral B library).
161 We subjected each single cell BCR sequencing library with input of approximately 10,000 fresh cells from
162 above. After sequencing, we analyzed a total of 3,502 single B cells, and obtained 2,558 paired heavy- and
163 light-chain variable regions of antibody sequences (**Fig. 1E**). To examine the IgG clonal repertoires from
164 the scBCRseq data, we first examined B cell clonotypes, by calculating the frequencies of cells observed
165 for the clonotype and distributions of identical CDR3 region for both heavy and light chains in pairs. By
166 analyzing the BCR repertoires, we mapped the landscape of BCR populations in the Memory B, Plasma B
167 and Peripheral B / PBMC in Omicron-RAMIHM immunized mouse (**Fig. S2, Dataset S1**).
168

169 The SARS-CoV-2 Omicron RBD-specific antibodies had a relative enrichment for IGVH3-7, IGVH3-15,
170 IGVH3-20, IGVH3-23, IGVH3-30, IGVH3-33, IGHV3-43, and IGVH4-59, analyzed from 3 individual
171 BCR libraries (**Fig. 1E**). A range of lengths between 8-24 aa was observed for these BCR CDRH3s (**Fig.**
172 **1E**). Interestingly, a large portion of IgG2B-expressing B cells were identified from three B cell type
173 isolations (**Fig. 1F**), a signature of potential involvement of Th2 cells in B cells maturation and class switch
174 in these mice undergoing the Omicron-RAMIHM procedure. By analyzing the Ig heavy chain (IGH) and
175 light chain (IGK) paring, we also mapped out the overall, enriched and the top 10 heavy-and light-chain
176 V/J segment recombination in these B cell populations (**Fig. 2A-B, Fig. S3, Dataset S1**). In summary,
177 scBCRseq data mapped the clonal repertoires and revealed enriched IgG clonotypes in the peripheral blood,
178 plasma B cell and memory B cell populations in Omicron-RAMIHM humanized mouse.
179

180 **Identification of Omicron-specific functional mAb clones from top-ranked paired human Ig chains 181 of Omicron-RAMIHM animals**

182 To test whether the most enriched BCRs in these B cell populations are Omicron-reactive, we selected a
183 panel of BCRs for recombinant mAb expression, including 3 from peripheral blood, 3 from plasma B and
184 9 from memory B cell populations (**Fig. 2C**). In order to functionally analyze the antibody response to
185 SARS-CoV-2 Omicron RBD, we cloned paired heavy- and light-variable segments into human IgG1
186 expression vectors (**Fig. 3A**), and used the Expi293F mammalian expression system to produce selected

Omicron mAb RAMIHM

187 mAbs. Thereafter, we used SARS-CoV-2 Omicron RBD-specific ELISA to determine antibody binding by
188 using transfected culture supernatants that contain secreted antibodies. As a result, almost all of the top-
189 enriched antibody clones collectively from peripheral blood, plasma B cell and memory B cell populations
190 are reactive to Omicron RBD (14/15 reactive, 1/15 slightly reactive), showing a high rate of antigen-
191 specificity (14/15, 93.3%) from Omicron-RAMIHM-scBCRseq (**Fig. 2C**). Ten out of fifteen (10/15)
192 selected clones showed potent binding capacity against recombinant SARS-CoV-2 Omicron RBD proteins,
193 4/15 showed moderate binding, an 1/15 showed relatively weak binding (**Fig. 2C**). These results indicated
194 that RAMIHM is a highly effective approach for generating and isolating antigen-specific mAbs.
195

196 To further screen for highly potent functional mAbs, we recombinantly expressed these 15 mAb candidate
197 clones in mammalian system and tested their neutralization ability against the Omicron variant. By
198 screening the mAbs from culture supernatants by neutralizing assay using a spike-based SARS-CoV-2
199 Omicron pseudovirus system, we found 3 clones with obvious neutralization activity against Omicron
200 pseudovirus (**Fig. S4A-B**). We chose these top 3 clones (named as PC.03, MB.02, and MB.08) for further
201 development and characterization.
202

203 **Characterization of fully human lead clones with strong binding to Omicron RBD**

204 We purified the three leading clones, PC.03, MB.02, and MB.08, by affinity chromatography using Protein
205 A beads and examined antibody purity by SDS-PAGE (**Fig. 3B**). Thereafter, purified leading mAbs were
206 tested for SARS-CoV-2 Omicron RBD reactivity by ELISA and monitored real-time association and
207 dissociation to recombinant SARS-CoV-2 Omicron RBD proteins using the Octet system. The ELISA
208 titration result of lead mAb clones vs. recombinant SARS-CoV-2 Omicron RBD proteins showed that these
209 three mAb clones have EC50s at the level of ~0.01 μ g/mL, suggesting that these mAbs can indeed tightly
210 bind to Omicron RBD (EC₅₀<16ng/mL for all 3 clones) (**Fig. 3C**). Octet results with his-tag Omicron RBD
211 antigen immobilization showed ultra-strong binding (K_D at 0.8nM for MB.02, and K_D <1pM for PC.03 and
212 MB.08) (**Fig. 3D**). Noted that this might be contributed by avidity effect due to multi-valent binding, we
213 also performed the reverse Octet assay with antibody immobilization, which measured the single-mAb
214 binding affinity (**Fig. 3D**), and showed that the affinity between these clones to Omicron RBD are at the
215 level of low nanomolar range (**Fig. 3D**). These K_D values (**Fig. 3E**) showed that the binding strengths of
216 the 3 lead mAbs are stronger than that of hACE2 with Omicron RBD (31.4±11.62nM) (Han et al., 2022).
217 Noted that most of approved or EUA mAbs have much weaker binding with Omicron RBD (Cameroni et
218 al., 2021; McCallum et al., 2022) (summarized in **Table S1**).
219

Omicron mAb RAMIHM

220 To further determine whether these leading mAbs compete for similar epitopes, we performed epitope
221 binning experiments by Octet using an in-tandem assay (**Fig. S5A**). The results have exhibited that PC.03,
222 MB.02, and MB.08 likely share overlapping epitopes (**Fig. S5B-C**). We next measured antibody
223 competition with ACE2, which was quantified as reduction in ACE2 and RBD binding. Consistent with
224 binding affinity findings, these three leading clones showed competitive binding with ACE2 against
225 Omicron RBD (**Fig. S6A-D**).

226

227 **Further characterization of fully human lead neutralization mAb clones against Omicron**

228 We then performed neutralization assays for the 3 lead mAbs in purified form, along with other mAbs. We
229 previously identified and developed several potent and specific mAbs against the ancestral virus and the
230 Delta variant, namely clones 2, 6 and 13A(Peng et al., 2021). In a pseudovirus neutralization assay, we
231 found that while clones 2 and 13A can still neutralize Omicron variant, the potency is significantly reduced
232 (by 1-2 orders of magnitude in terms of IC50 values, at 0.396 and 1.761 μ g/mL for clone 2 and 13A,
233 respectively) (**Fig. 4A**), a phenomenon similar to other mAbs developed against the ancestral
234 spike(Dejnirattisai et al., 2022a; Liu et al., 2021). In contrast, all three clones, PC.03, MB.02, and MB.08,
235 potently neutralized the Omicron variant, with IC50 values at 0.15 μ g/mL (PC.03), 0.09 μ g/mL (MB.02),
236 and 0.04 μ g/mL (MB.08) (**Fig. 4B; Fig. S7A**). The neutralization potency of the 3 lead Omicron-specific
237 mAb clones are much stronger than those of our prior mAbs and those under prior regulatory approval or
238 EUAs (**Fig. 4, Table S1**). These 3 mAbs however showed no neutralization against the Delta variant (**Fig.**
239 **S7B**), further suggesting that they are Omicron-specific.

240

241 In order to test if these clones can be used in combination, we again performed neutralization assays by
242 combining two clones. Interestingly, despite epitope overlap, these mAb clones can still enhance each
243 other's neutralization capacity, with the best combination being an antibody cocktail of MB.02 + MB.08
244 (IC50 = 0.03 μ g/mL) against pseudotyped SARS-CoV-2 Omicron variant (**Fig. 4C**). In summary, these
245 lead neutralizing mAbs showed that they have high affinity vs Omicron RBD, and strong potency in
246 pseudovirus neutralization, which are at least 2 orders of magnitude more potent than existing clinically
247 approved or authorized SARS-CoV-2 mAbs, where their cocktail combinations can also further enhance
248 the neutralization potency (**Table S1**).

249

250 **Discussion**

251 To date, the COVID-19 pandemic has entered into a next stage since the emergence of SARS-CoV-2
252 Omicron variant, which spread globally in recent months due to higher transmission rates and immune

Omicron mAb RAMIHM

253 escape (Cao et al., 2021; Liu et al., 2021; Planas et al., 2021; Viana et al., 2022; Volz et al., 2021). The
254 Omicron variant harbors 15 mutations were reported in the RBD domain compared with the ancestral
255 Wuhan-1/WA-1 virus, with 9 of these mutations overlap with ACE2 binding footprint, the mediator of host
256 cell entry. In addition, currently approved vaccines (such as BNT162b2, mRNA-1273, and Ad26.COV2.S)
257 are all designed against the original wild-type SARS-CoV-2 (Jackson et al., 2020; Polack et al., 2020;
258 Sadoff et al., 2021). However, it has been shown that neutralizing antibody responses of sera from
259 convalescent or vaccinated individuals was dramatically decreased with increased time post vaccination to
260 against the emerging variant (Flemming, 2022; Hu et al., 2022; Rossler et al., 2022).

261

262 The highly mutated Omicron variant has the potential for evasion of binding and neutralization by the
263 majority of clinically neutralizing mAbs (Cao et al., 2021; Dejnirattisai et al., 2022a; Liu et al., 2021;
264 Takashita et al., 2022; VanBlargan et al., 2022). To experimentally validate this assumption, we previously
265 developed and validated 3 high potency neutralizing mAbs against authentic SARS-CoV-2 ancestral virus
266 and Delta variant (Peng et al., 2021). We found that the Omicron variant, harboring substantially more
267 mutation than prior variant, indeed could completely or partially escape neutralization by existing potent
268 SARS-CoV-2 mAbs including approved or emergency authorized clinical antibodies.

269

270 To provide countermeasurements quickly to new VoCs such as the Omicron variant, we developed a highly
271 effective animal immunization approach (RAMIHM) with high-throughput customized single cell BCR
272 sequencing. RAMIHM enables us to obtain potent antigen-specific neutralizing mAbs within 3 weeks,
273 offering the opportunity to rapidly respond the potential risks of emerging new viruses or variants.
274 Compared to other approaches, RAMIHM does not rely on human samples and is fully controllable in the
275 laboratory. Compared to traditional antibody development approaches, RAMIHM is faster than regular
276 immunization, and generates fully human mAbs without the need for humanization from traditional animal
277 immunization. Thus, the resulted mAbs developed by RAMIHM is fully human and ready for downstream
278 IND-enabling and/or translational studies.

279

280 In this study, we identified 3 potent and specific anti-Omicron neutralizing mAbs from Ig humanized mice
281 by RAMIHM. Among those mAbs, MB.08 showed the high binding capacity ($K_D = 7\text{nM}$) and strong
282 neutralizing ability against pseudotyped SARS-CoV-2 Omicron RBD ($\text{IC}_{50} = 44\text{ng/mL}$). All three clones
283 are more potent than the majority of currently approved or authorized clinical RBD-targeting mAbs. Results
284 of epitope binning experiment suggested that MB.08 might bind to sites in Omicron spike RBD with
285 overlapping epitope(s) to PC.03 and MB.02. Nevertheless, an antibody cocktail combining MB.08 with

Omicron mAb RAMIHM

286 MB.02 exhibited enhanced SARS-CoV-2 Omicron neutralization potency (IC₅₀ = 30 ng/mL) compared to
287 individual clones. These antibodies or their cocktail combinations are worthy of further development, such
288 as downstream IND-enabling and/or translational studies. In general, RAMIHM can also serve as a versatile
289 platform broadly applicable in antibody discovery against emerging pathogens or other therapeutic targets.
290

291 **Acknowledgments**

292 We thank various members from our labs for discussions and support. We thank staffs from various Yale
293 core facilities (Keck, YCGA, HPC, YARC, CBDS and others) for technical support. We thank Drs.
294 Tsemperouli, Karatekin, Lin and others for providing equipment and related support. We thank various
295 support from Department of Genetics; Institutes of Systems Biology and Cancer Biology; Dean's Office of
296 Yale School of Medicine and the Office of Vice Provost for Research.

297

298 **Funding**

299 This work is supported by DoD PRMRP IIAR (W81XWH-21-1-0019) and discretionary funds to SC. The
300 TEM core is supported by NIH grant GM132114. YCGA is supported by an NIH instrument grant
301 1S10OD028669-01.

302

303 **Institutional Approval**

304 This study has received institutional regulatory approval. All recombinant DNA (rDNA) and biosafety work
305 were performed under the guidelines of Yale Environment, Health and Safety (EHS) Committee with
306 approved protocols (Chen 15-45, 18-45, 20-18, 20-26). All animal work was performed under the guidelines
307 of Yale University Institutional Animal Care and Use Committee (IACUC) with approved protocols (Chen-
308 2020-20358; Chen 2021-20068).

309

310

311 **Methods**

312

313 **Rapid mRNA immunization of humanized mice**

314 The full-length Omicron spike sequence used in mRNA immunization was based on two North America
315 patients identified on Nov23rd, 2021. The LNP-mRNA was generated as previously described (Fang et al.,
316 2022). Humanized mice with human IgG and IgK transgene knock-ins (ATX-GK, Alloy Therapeutics) were
317 used for rapid mRNA immunization, according to an accelerated (two-week) vaccination schedule. Pre-
318 immune sera were collected from the mice prior to the initiation of immunization. The mice were primed
319 with intramuscular injection of 10 μ g Omicron LNP-mRNA and boosted on days 2, 4, 7 with the same dose
320 as prime. On day 11, three days prior to sacrifice, mice received a final boost with 20 μ g Omicron LNP-
321 mRNA. All mice were retro-orbital bled on days 7, 14 and anti-plasma titers were evaluated using an
322 immunoassay as described below.

323

324 **ELISA analysis for plasma and mAbs supernatant binding to Omicron RBD protein**

325 Plasma was extracted from surface layer by using SepMate-15 tubes with Lymphoprep gradient medium
326 (StemCell Technologies) after centrifugation at 1200g for 20 minutes. Afterwards, antibody titers in plasma
327 against Omicron RBD were evaluated using a direct coating ELISA. 384-well microtiter plate (Corning)
328 were coated with 3 μ g/ml of Omicron RBD recombinant protein (Sino Biological 40592-V08H121) in PBS
329 at 4°C for overnight. Plate was washed with standard wash buffer PBS-T (PBS containing 0.05% Tween
330 20) and blocked with blocking buffer (PBS containing 0.5% BSA) for 1 hour at room temperature (RT).
331 Either serially diluted plasma samples or mAbs supernatant were added to plate and incubated for 1hour at
332 RT. Wells were then washed and incubated with secondary goat anti-mouse IgG labeled with HRP (Fisher,
333 Cat# A-10677) at 1:2500 dilution in a blocking buffer for 1h at RT. Thereafter, wells were developed using
334 TMB substrate (Biolegend, 421101) according to the manufacturer's protocol. The reactions were
335 terminated with 1M H₃PO₄ after 20 minutes incubation at RT and optical density (OD) was measured by a
336 spectrophotometer at 450nm (PerkinElmer EnVision 2105).

337

338 **Humanized mice B cell isolation and purification**

339 Three sets of single B cells were collected: PBMC sample, Omicron RBD-specific memory B cell sample
340 and CD138⁺ plasma B cell sample. PBMC cells were isolated from fresh whole blood by using SepMate-
341 15 tubes with Lymphoprep gradient medium (StemCell Technologies) after centrifugation at 1200g for 20
342 minutes. Poured top layer solution that contained PBMCs from SepMate tubes to a new falcon tube and
343 washed once with PBS+2%FBS, resuspended with PBS and stored on ice until use.

344

345 Omicron RBD-specific memory B cells were isolated from pre-enriched memory B cells by magnetic
346 positive selection according to the manufacturer's protocol (Miltenyi Biotec, 130-095-838). Briefly, spleen
347 and lymph nodes were gently homogenized and red blood cells were lysed in ACK lysis buffer (Lonza).
348 The remaining cells were washed by PBS with 2%FBS and filtered through with a 50ml falcon tube.
349 Thereafter, memory B cells were labeled with memory B cell biotin-antibody cocktail combined with anti-
350 biotin microbeads and isolated using a magnetic rack. Enriched memory B cells were eluted and mixed with
351 25ug of Omicron RBD recombinant protein with his tag and incubated for 30mins on ice. After incubation,
352 the complex was washed and respectively incubated with anti-his-APC antibody and anti-APC microbeads.
353 The final antigen-enrichment B cells were eluted in PBS and stored on ice until use.

354

355 Plasma B cells were collected by fragmenting and rinsing bone marrows with PBS containing 2% FBS.
356 Non-plasma cells were labeled with a biotin-conjugated antibody cocktail combined with anti-biotin
357 microbeads and separated using a magnetic rack according to the manufacturer's protocol (Miltenyi Biotec,
358 130-092-530). Purified plasma B cells were eluted and sequentially incubated with CD138 microbeads for
359 an additional 15 minutes at 4°C. The final CD138⁺ plasma B cells were eluted in PBS and stored on ice
360 until use.

361

362 Single cell VDJ sequencing and data analysis

363 10,000 of cells per each above collection were loaded on Chromium Next GEM Chip K Single Cell Kit.
364 Single-cell lysis and cDNA first strand synthesis were performed using Chromium Next GEM Single Cell
365 5' Kit v2 according to the manufacturer's protocol. The barcoded single strand cDNA was isolated via a
366 Dynabeads MyOne SILANE bead cleanup mixture. The cDNA was amplified by 14 PCR cycles and
367 purified via SPRI bead cleanup (X0.6) according to the manufacturer's protocol. For BCR repertoire
368 libraries, 2 µL of amplified cDNA underwent two rounds of Target Enrichment using nested custom primer
369 pairs specific for BCR constant regions. The target's enrichments for heavy chain and light chain were
370 performed in separate reactions. After each PCR reaction, the PCR products were subjected to double-sided
371 size selection with SPRI bead cleanup (X0.6 followed by X0.8) The primers were designed by Alloy
372 biotechnologies and synthesized by KECK.

373

374 25 ng of each target enrichment PCR product was combined, and used for library preparation, consisting of
375 fragmentation, end repair, A-tailing, adaptor ligation (Library Construction Kit) and sample index PCR
376 (Dual Index Kit TT Set A) according to the manufacturer's instructions. The final library was profiled and

Omicron mAb RAMIHM

377 quantified using the D1000 ScreenTape assay (Agilent) for TapeStation system. Libraries were sequenced
378 by paired-end sequencing (26 × 91 bp) on an Illumina Miseq. All libraries were targeted for sequencing
379 depth of 5,000 raw read pairs per cell.

380

381 For bioinformatic analysis, BCL data were converted to demultiplexed FASTQ files using Illumina Miseq
382 controller and processed by using Cell Ranger v6.0.1 with default settings to align the reads to customized
383 germline V and J gene references. The custom references were created by combining mouse constant genes
384 along with human V(D)J genes. The consensus amino acid sequences of top-enriched clonotypes from each
385 collection were selected by using the Loupe V(D)J Browser and cDNA sequences were synthesized for
386 further molecular cloning and recombinant antibody expression.

387

388 ***In vitro* generation of recombinant mAbs**

389 The cDNA of paired heavy- and light-chains from top-enriched IgG clonotypes were codon-optimized and
390 respectively subcloned into human IgG1 expression vectors, based on Gibson assembly, to generate
391 recombinant mAbs. mAbs were produced by transient transfection into Expi293F™ cells with equal
392 amounts of paired heavy- and light-chain expression vectors using ExpiFectamine 293 transfection kit
393 according to the manufacturer's protocol (Thermo fisher). Five days post antibody expression, the secreted
394 mAbs from cultured cells were collected and purified by affinity chromatography using rProtein A
395 Sepharose Fast Flow beads according to the manufacturer's instruction (Cytiva). Eluted mAbs were
396 eventually kept in PBS for long-term storage after buffer exchange using Amicon Ultra-4 Centrifugal Filter
397 (MilliporeSigma). The purified mAbs were examined by running SDS-PAGE and kept in -80°C for further
398 usage.

399

400 **Omicron pseudovirus generation and neutralization assay**

401 Omicron pseudovirus was generated by using a modified method from a previously described study. Briefly,
402 full length Omicron spike gene was constructed into GFP encoding (pCCNanoLuc2AEGFP) human
403 immunodeficiency vector backbone, then Omicron spike protein expression vectors were combined with
404 HIV-1 structural corresponding plasmids and co-transfected into HEK-293T cells with PEI (1mg/ml, PEI
405 MAX, Polyscience). Two-day post-transfection, viral supernatants were harvested, collected, filtered and
406 aliquoted to use in assays.

407

408 Neutralization assays were performed by incubating pseudovirus with serial dilutions of mAbs. 10,000
409 cells/well of HEK-293T-hACE2 cells were seeded in a 96-well plate, 24 hours prior to assay. mAbs

Omicron mAb RAMIHM

410 supernatant/purified mAbs were serially diluted in DMEM media with 10% FBS and incubated with an
411 equal volume of purified Omicron pseudovirus at 37°C for 1 hour. Thereafter, the virus-antibody mixture
412 was added triplicate onto HEK-293T-hACE2 cells and incubated at 37°C for additional 24 hours. Then,
413 infected cells were counted and determined by evaluating GFP expression after 24 hours exposure to virus-
414 antibody mixture using Attune NxT Acoustic Focusing Cytometer (Thermo Fisher). Half-maximal
415 inhibitory concentration (IC50) for mAbs was calculated with a four-parameter logistic regression using
416 GraphPad Prism (GraphPad Software Inc.).

417

418 **Antibody binding kinetics, epitope mapping by bio-layer interferometry (BLI)**

419 Antibody binding kinetics for anti-Omicron RBD mAbs were evaluated by BLI on an Octet RED96e
420 instrument (FortéBio) at RT. 25ng/ul of purified mAbs were captured on a AHC biosensor (Sartorius, 18-
421 5060). The baseline was recorded for 60s in a running buffer (PBS, 0.02% Tween-20, and 0.05% BSA, pH
422 7.4). Followed by sensors were subjected to an association phase for 300s in wells containing Omicron
423 RBD with his tag protein diluted in the buffer. In the dissociation phase, the sensors were immersed in the
424 running buffer for 500s. The dissociation constants K_D , kinetic constants K_{on} and K_{off} were calculated by
425 FortéBio data analysis software.

426

427 For epitope mapping, two different antibodies were sequentially injected and monitored for binding activity
428 to determine whether the two mAbs recognized separate or closely-situated epitopes by in-tandem approach
429 on OCTET RED. Briefly, SARS-CoV-2 RBD-His recombinant protein (Sino Biological 40592-V08H121)
430 was diluted with PBS to 20 μ g/mL, and was captured by anti-Penta-His (HIS1K) sensors (Sartorius, 18-
431 5120). The primary antibody was diluted to 150nM with a running buffer in wells, and then sensors were
432 firstly subjected to an association phase for 500s, the response value was recorded. Followed by sensors
433 were subjected to the secondary antibody mixture, and the response value was recorded again. Competition
434 tolerance was calculated by the percentage increase of response after the secondary antibody was added.
435 The column indicates the primary antibody, and the row indicates secondary antibodies. Competition
436 tolerance less than 25% indicates a high possibility of closely-situated epitope.

437

438 **ACE2 competition assay**

439 3 μ g/ml of Omicron RBD recombinant protein (Sino Biological 40592-V08H121) was coated in a 384-well
440 ELISA plate (Corning) at 4°C for overnight incubation. Plate was washed with standard wash buffer PBS-
441 T (PBS containing 0.05% Tween 20) and blocked with a blocking buffer (PBS containing 0.5% BSA) for
442 1 hour at room temperature (RT). 50ng/mL his-tagged hACE2 protein and PBS were firstly added to plate

Omicron mAb RAMIHM

443 and incubated for 1 hour at RT. Wells were washed and incubated with serially diluted purified mAbs were
444 sequentially added and incubated for 1 hour at RT. Thereafter, wells were incubated with secondary goat
445 anti-mouse IgG labeled with HRP (Fisher, Cat# A-10677) at 1:2500 dilution in blocking buffer for 1h at
446 RT after washed. Finally, wells were developed using TMB substrate (Biolegend, 421101) according to the
447 manufacturer's protocol. The reactions were terminated with 1M H₃PO₄ after 20minutes incubation at RT
448 and optical density (OD) was measured by a spectrophotometer at 450nm (PerkinElmer EnVision 2105).

449

450 **Standard statistics**

451 Standard statistical methods were applied to non-high-throughput experimental data. The statistical
452 methods are described in figure legends and/or supplementary Excel tables. The statistical significance was
453 labeled as follows: n.s., not significant; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. Prism
454 (GraphPad Software) and RStudio were used for these analyses. Additional information can be found in the
455 supplemental excel tables.

456

457 **Schematic illustrations**

458 Schematic illustrations were created with Affinity Designer or BioRender.

459

460 **Replication, randomization, blinding and reagent validations**

461 Sample size: Sample size determination was performed according to similar work in the field.

462 Replicate experiments have been performed for key data shown in this study.

463 Replication: Biological or technical replicate samples were randomized where appropriate. In animal
464 experiments, mice were randomized by cage, sex and littermates.

465 Binding: Experiments were not blinded. It is unnecessary for animal immunization for antibody production
466 to be blinded.

467 Antibodies and dilutions: Commercial antibodies used for various experiments are described in methods,
468 with typical dilutions noted. For custom Antibodies generated in this study, dilutions were often serial
469 titrations (i.e. a number of dilutions as specified in each figure). Commercial antibodies were validated by
470 the vendors, and re-validated in house as appropriate. Custom antibodies were validated by specific
471 antibody - antigen interaction assays, such as ELISA. Isotype controls were used for antibody validations.

472 Eukaryotic cell lines: Cell lines are from various sources as described in methods. Cell lines were
473 authenticated by original vendors, and re-validated in lab as appropriate. All cell lines tested negative for
474 mycoplasma. No commonly misidentified lines involved.

475

476 Animals and other organisms: Laboratory animals: *M. musculus*, ATX strain (Alloy Tx).

477

478 **Data, resources and code availability**

479 All data generated or analyzed during this study are included in this article and its supplementary
480 information files. Specifically, source data and statistics for non-high-throughput experiments are provided
481 in a supplementary table excel file. The ATX humanized mice are available via Alloy Therapeutics.
482 Additional information related to this study are available from the corresponding author(s) upon reasonable
483 request.

484

485

486 **Figure legends**

487

488 **Figure 1. Development of RAMIHM for rapid discovery of fully human monoclonal antibodies and**
489 **application with Omicron mRNA immunization**

490 **A**, Schematic showing the domain arrangement of the SARS-CoV-2 WT spike and its recent variant SARS-
491 CoV-2 B.1.1.529 (Omicron). Mutations present in Omicron spike protein are labeled. Full-length of
492 Omicron spike gene was synthesized to construct Omicron-specific mRNA-lipid nanoparticle and
493 Omicron-specific pseudo-virus.

494 **B**, Footprint of SARS-CoV-2 RBD-directed antibodies. The SARS-CoV-2 Omicron RBD/hACE2 structure
495 was downloaded from PDB 7T9K, approved or authorized antibodies are labeled.

496 **C**, Schematic illustration of immunization and blood sample collection. Three humanized mice were
497 repetitively immunized with Omicron LNP-mRNA as immunogen. 10 μ g of Omicron LNP-mRNA were
498 given for each mouse on day0, day2 and day4 and day7, and followed by 20 μ g of Omicron LNP-mRNA
499 were injected on day11. Retro-orbital blood was collected on day0, day7 and day14. Plasma was isolated
500 from blood for downstream experiments.

501 **D**, Anti-plasma titer determination. Upper panel, all plasma samples were serially 5-fold diluted from
502 1:1000 and assayed by a direct coating ELISA with Omicron RBD protein coated plate. Error bars represent
503 mean \pm SEM of triplicates with individual data points in plots. Lower panel, all post-immunized plasma
504 samples (2nd blood) were serially 5-fold diluted from 1:1000 and assayed by a direct coating ELISA with
505 selected pan-CoV-RBD proteins coated plate, respectively. Error bars represent mean \pm SEM of triplicates
506 with individual data points in plots.

507 **E**, B cell characterization by customized scBCR-seq profiling. Left panel, Distribution of heavy chain
508 complementarity-determining region 3 (HCDR3) length in each B cell group (Memory B, Plasma B and
509 PBMC) from Omicron-RAMIHM mice. Right panel, distributions of heavy chain V-segment in each B cell
510 group (Memory B, Plasma B and PBMC) from Omicron-RAMIHM mice. Total number of single cells
511 sequenced with BCRs (Memory B library, n = 2,646; Plasma B library, n = 617; PBMC library, n = 239;
512 Total n = 3,502).

513 **F**, Ig class distributions of Omicron-RAMIHM mice's clonotypes. Distribution and frequency analysis of
514 immunoglobulin isotypes usage in spleen, bone marrow and PBMC from Omicron-RAMIHM mice.
515 Source data and additional statistics for experiments are in supplemental excel file(s).

516

517 **Figure 2. Identification of fully human Omicron-specific monoclonal antibodies against Omicron**

Omicron mAb RAMIHM

518 **A**, Distribution of top10 heavy- and light- chain V/J segment recombination. Chord diagrams (circos plots)
519 showing the distribution of top10 heavy- and light-chain V and J gene-segment recombination obtained in
520 each representative library. Interconnecting lines indicate the relationship between antibodies that share V
521 and J gene-segment at both IGH and IGL. Top to bottom: Memory B library, PBMC library, and Plasma
522 B library.

523 **B**, Single B cell variable chains for antibody cloning. Variable (V) genes and CDR3 lengths for paired
524 heavy- and light-chains of top-enriched clones to SARS-CoV-2 Omicron from single BCR sequencing.

525 **C**, ELISA of mAbs supernatant binding specificity against Omicron RBD protein. All full length mAb
526 clones from single BCR sequencing and control were evaluated against Omicron RBD protein coated on
527 the ELISA plate and binding activity was recorded at an optical density (OD) of 450nm. Triplicate
528 datapoints (n = 3 each).

529 In this figure:

530 Data are shown as mean \pm s.e.m. plus individual data points in dot plots.

531 Statistics: One-way ANOVA was used to assess statistical significance. Each mAb clone was compared to
532 control. Multiple testing correction was made to correct the p values. Two-sided tests were performed. The
533 p-values are indicated in the plots. Statistical significance labels: * p < 0.05; ** p < 0.01; *** p < 0.001;
534 **** p < 0.0001. Non-significant comparisons are not shown, unless otherwise noted as n.s., not significant.
535 Source data and additional statistics for experiments are in supplemental excel file(s).

536

537 **Figure 3. Biophysical and functional characterization of lead clones of Omicron-specific antibodies**

538 **A**, Schematic of human IgG1 mAb production.

539 **B**, SDS-PAGE analysis of purified mAbs under nonreducing and reducing (10mM DTT) conditions. Four
540 micrograms of purified protein were analyzed using a Novex WedgeWell 4-20% (wt/vol) Tirs-Glycine
541 gel.

542 **C**, Graph shows leading Omicron mAbs reactivity. The ELISA EC50 values were calculated by Prism V8.0
543 software using a four-parameter logistic curve fitting approach. Error bars represent mean \pm SEM of
544 triplicates with individual data points in plots.

545 **D**, Binding characteristics of the neutralizing mAbs determined by using BLI. Upper panel, recombinant
546 SARS-CoV-2 Omicron RBD were covalently immobilized onto a HIS1K sensor, all measurements were
547 performed by using a serial 2-fold dilution of purified mAbs, starting from 50nM (Magenta) to 1.56nM
548 (Brown). Lower panel, purified mAbs were immobilized onto an AHC sensor, all measurements were
549 performed by using a serial 2-fold dilution of soluble SARS-CoV-2 Omicron RBD, starting from 50nM

Omicron mAb RAMIHM

550 (Magenta) to 1.56nM (Brown). Global fit curves are shown as red dashed lines, The vertical black dotted
551 dashed lines indicate the transition between association and disassociation phases.

552 **E**, Summary data of BLI (D) results.

553 Source data and additional statistics for experiments are in supplemental excel file(s).

554

555 **Figure 4. Additional functional characterization of lead clones of Omicron-specific antibodies**

556 **A**, Neutralization assay of SARS-CoV-2 Omicron pseudovirus by WA-1/Delta mAbs. Graph shows the
557 normalized relative GFP signals for detection of 293T cells expressing hACE2, 24h after infection with
558 SARS-CoV-2 Omicron pseudovirus, in the presence of increasing concentration of indicated WA-1/Delta
559 mAbs.

560 **B**, Neutralization assay of SARS-CoV-2 Omicron pseudovirus by leading Omicron mAbs. Graph shows
561 the normalized relative GFP signals for detection of 293T cells expressing hACE2, 24h after infection with
562 SARS-CoV-2 Omicron pseudovirus, in the presence of increasing concentration of indicated Omicron
563 mAbs.

564 **C**, Neutralization assay of SARS-CoV-2 Omicron pseudovirus by leading Omicron mAb combinations.
565 Graph shows the normalized relative GFP signals for detection of 293T cells expressing hACE2, 24h after
566 infection with SARS-CoV-2 Omicron pseudovirus, in the presence of increasing concentration of indicated
567 Omicron mAb combinations (MB.02+MB.08, MB.08+PC.03, MB.02+PC.03).

568 The IC₅₀ values were calculated by Prism V8.0 software using a four-parameter logistic curve fitting
569 approach. Dashed line indicated 50% reduction in viral infectivity. Error bars represent mean ± SEM of
570 triplicates with individual data points in plots.

571 Source data and additional statistics for experiments are in supplemental excel file(s).

572

573

574 **Supplemental Figures**

575 **Figure S1. Characterization of Omicron-spike specific LNP-mRNA**

576 **A**, Omicron LNP-mRNA image collected on transmission electron microscope.

577 **B**, Dynamic light scattering derived histogram depicting the particle radius distribution of Omicron spike
578 LNP-mRNA

579 **C**, Human ACE2 receptor binding of Omicron spike expressed in 293T cells as detected by human ACE2-
580 Fc fusion protein and PE-anti-human Fc antibody on Flow cytometry.

581

582 **Figure S2. Heatmaps for non-stochastic paired BCR repertoire**

Omicron mAb RAMIHM

583 Heatmaps showing the paired of immunoglobin heavy chains and light chains gene variable region segment
584 of clonotypes in Omicron-RAMIHM mice. The reader color means the higher usage of specific VH-VL
585 gene pairs. Memory B library, Plasma B library and PBMC library were shown in separate plots.
586 Source data and additional statistics for experiments are in supplemental excel file(s).
587

588 **Figure S3. Distribution of heavy- and light- chain V/J segment recombination**

589 Chord diagrams (circos plots) showing the distribution of all heavy- and light-chain V and J gene-segment
590 recombination obtained in each representative library. Interconnecting lines indicate the relationship
591 between antibodies that share V and J gene-segment at both IGH and IGL.

592 A. Memory B library,

593 B. PBMC library,

594 C. Plasma B library.

595 Source data and additional statistics for experiments are in supplemental excel file(s).
596

597 **Figure S4. Clone screening for mAbs neutralization activity against Omicron pseudovirus**

598 A, Gating strategy used for GFP-based neutralization analysis.

599 B, mAbs supernatant neutralization curves in clone screening. Serial dilutions of all full length mAb clones
600 from single BCR sequencing and control were added with Omicron pseudovirus-GFP to hACE2-O/E cells,
601 and GFP expression was monitored and measured 24 hours after infection as a readout for virus infectivity.
602 Data are graphed as percentage neutralization relative to virus-only infection control.

603 Source data and additional statistics for experiments are in supplemental excel file(s).
604

605 **Figure S5. Epitope mapping through competitive binding measured by BLI**

606 A, Schematic of epitope binning experiment.

607 B, Summary data of BLI (C) results. The matrix presents the concluded epitope specificity for each
608 competition experiments. The column indicated the primary loading antibody, and the row indicated the
609 secondary antibody combinations.

610 C, Epitope binning of the three potent neutralizing mAbs. Sensorgram show distinct binding patterns when
611 pairs of testing antibodies were sequentially applied to the recombinant SARS-CoV2 Omicron RBD
612 covalently immobilized onto a HIS1K sensor. The level of increment in response unit comparing with or
613 without prior antibody incubation is the key criteria for determining the two mAbs recognize the separate
614 or closely situated epitopes.

615 Source data and additional statistics for experiments are in supplemental excel file(s).

616

617 **Figure S6. ACE2 competition for binding to SARS-CoV-2 Omicron RBD measured by ELISA**

618 **A-D**, Curves show distinct binding patterns of ACE2 to SARS-CoV-2 Omicron RBD with or without prior
619 antibody incubation with each testing antibody. The competition capacity of each antibody is indicated by
620 the level of reduction in response unit of ACE comparing with or without prior antibody incubation. A
621 commercial mAb CR3022 that binds to conserved region of spike was used as a control.

622 **A.** MB.02 clone

623 **B.** MB.08 clone

624 **C.** PB.03 clone

625 **D.** CR3022 control mAb

626 Source data and additional statistics for experiments are in supplemental excel file(s).

627

628 **Figure S7. Neutralization assay of leading Omicron mAbs with pseudotyped SARS-CoV-2 variants**

629 **A**, Individual neutralization curves for leading Omicron mAbs against Omicron pseudovirus.

630 **B**, Individual neutralization curves for leading Omicron mAbs against Delta pseudovirus.

631 Source data and additional statistics for experiments are in supplemental excel file(s).

632

633 **Supplemental Tables**

634 **Key resources table (KRT)**

635

636 **Table S1. Summary of mAb efficacy against Omicron variant**

637

638 **Source data and statistics**

639 Source data and statistics provided in an excel file

640

641 **Supplemental Datasets**

642 **Dataset S1. Single cell BCR-seq processed results**

643

644

645 **References:**

646

647 Baden, L.R., El Sahly, H.M., Essink, B., Kotloff, K., Frey, S., Novak, R., Diemert, D., Spector, S.A.,
648 Roush, N., Creech, C.B., *et al.* (2021). Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine.
649 *N Engl J Med* 384, 403-416.

650 Callaway, E. (2021). Omicron likely to weaken COVID vaccine protection. *Nature* 600, 367-368.

651 Camerini, E., Saliba, C., Bowen, J.E., Rosen, L.E., Culap, K., Pinto, D., VanBlargan, L.A., De Marco,
652 A., Zepeda, S.K., Iulio, J.D., *et al.* (2021). Broadly neutralizing antibodies overcome SARS-CoV-2
653 Omicron antigenic shift. *bioRxiv*.

654 Cao, Y., Wang, J., Jian, F., Xiao, T., Song, W., Yisimayi, A., Huang, W., Li, Q., Wang, P., An, R., *et al.*
655 (2021). Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. *Nature*.

656 Carreno, J.M., Alshammary, H., Tcheou, J., Singh, G., Raskin, A., Kawabata, H., Sominsky, L., Clark, J.,
657 Adelsberg, D.C., Bielak, D., *et al.* (2021). Activity of convalescent and vaccine serum against SARS-
658 CoV-2 Omicron. *Nature*.

659 Cele, S., Jackson, L., Khan, K., Khouri, D.S., Moyo-Gwete, T., Tegally, H., Scheepers, C., Amoako, D.,
660 Karim, F., Bernstein, M., *et al.* (2021a). SARS-CoV-2 Omicron has extensive but incomplete escape of
661 Pfizer BNT162b2 elicited neutralization and requires ACE2 for infection. *medRxiv*.

662 Cele, S., Jackson, L., Khouri, D.S., Khan, K., Moyo-Gwete, T., Tegally, H., San, J.E., Cromer, D.,
663 Scheepers, C., Amoako, D.G., *et al.* (2021b). Omicron extensively but incompletely escapes Pfizer
664 BNT162b2 neutralization. *Nature*.

665 Cerutti, G., Guo, Y., Zhou, T., Gorman, J., Lee, M., Rapp, M., Reddem, E.R., Yu, J., Bahna, F., Bimela,
666 J., *et al.* (2021). Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain
667 target a single supersite. *Cell Host Microbe* 29, 819-833 e817.

668 Corbett, K.S., Flynn, B., Foulds, K.E., Francica, J.R., Boyoglu-Barnum, S., Werner, A.P., Flach, B.,
669 O'Connell, S., Bock, K.W., Minai, M., *et al.* (2020). Evaluation of the mRNA-1273 Vaccine against
670 SARS-CoV-2 in Nonhuman Primates. *N Engl J Med* 383, 1544-1555.

Omicron mAb RAMIHM

671 Dejnirattisai, W., Huo, J., Zhou, D., Zahradnik, J., Supasa, P., Liu, C., Duyvesteyn, H.M.E., Ginn, H.M.,
672 Mentzer, A.J., Tuekprakhon, A., *et al.* (2022a). SARS-CoV-2 Omicron-B.1.1.529 leads to widespread
673 escape from neutralizing antibody responses. *Cell*.

674 Dejnirattisai, W., Shaw, R.H., Supasa, P., Liu, C., Stuart, A.S., Pollard, A.J., Liu, X., Lambe, T., Crook,
675 D., Stuart, D.I., *et al.* (2022b). Reduced neutralisation of SARS-CoV-2 omicron B.1.1.529 variant by
676 post-immunisation serum. *Lancet* 399, 234-236.

677 Dhar, M.S., Marwal, R., Vs, R., Ponnusamy, K., Jolly, B., Bhoyar, R.C., Sardana, V., Naushin, S.,
678 Rophina, M., Mellan, T.A., *et al.* (2021). Genomic characterization and epidemiology of an emerging
679 SARS-CoV-2 variant in Delhi, India. *Science* 374, 995-999.

680 Fang, Z., Peng, L., Lin, Q., Ren, P., KSuzuki, K., Xiong, Q., Clark, P., Lin, C., and Chen, S. (2022).
681 SARS-CoV-2 Omicron-specific mRNA vaccine induces potent and broad antibody responses in vivo.
682 bioRxiv.

683 Faria, N.R., Mellan, T.A., Whittaker, C., Claro, I.M., Candido, D.D.S., Mishra, S., Crispim, M.A.E.,
684 Sales, F.C.S., Hawryluk, I., McCrone, J.T., *et al.* (2021). Genomics and epidemiology of the P.1 SARS-
685 CoV-2 lineage in Manaus, Brazil. *Science* 372, 815-821.

686 Flemming, A. (2022). Omicron, the great escape artist. *Nat Rev Immunol*.

687 Han, P., Li, L., Liu, S., Wang, Q., Zhang, D., Xu, Z., Han, P., Li, X., Peng, Q., Su, C., *et al.* (2022).
688 Receptor binding and complex structures of human ACE2 to spike RBD from omicron and delta SARS-
689 CoV-2. *Cell*.

690 Hoffmann, M., Kruger, N., Schulz, S., Cossmann, A., Rocha, C., Kempf, A., Nehlmeier, I., Graichen, L.,
691 Moldenhauer, A.S., Winkler, M.S., *et al.* (2022). The Omicron variant is highly resistant against
692 antibody-mediated neutralization: Implications for control of the COVID-19 pandemic. *Cell* 185, 447-456
693 e411.

694 Hu, J., Peng, P., Cao, X., Wu, K., Chen, J., Wang, K., Tang, N., and Huang, A.L. (2022). Increased
695 immune escape of the new SARS-CoV-2 variant of concern Omicron. *Cell Mol Immunol* 19, 293-295.

Omicron mAb RAMIHM

696 Jackson, L.A., Anderson, E.J., Roush, N.G., Roberts, P.C., Makhene, M., Coler, R.N., McCullough,
697 M.P., Chappell, J.D., Denison, M.R., Stevens, L.J., *et al.* (2020). An mRNA Vaccine against SARS-CoV-
698 2 - Preliminary Report. *N Engl J Med* 383, 1920-1931.

699 Johnson, B.A., Xie, X., Bailey, A.L., Kalveram, B., Lokugamage, K.G., Muruato, A., Zou, J., Zhang, X.,
700 Juelich, T., Smith, J.K., *et al.* (2021). Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis.
701 *Nature* 591, 293-299.

702 Ju, B., Zhang, Q., Ge, J., Wang, R., Sun, J., Ge, X., Yu, J., Shan, S., Zhou, B., Song, S., *et al.* (2020).
703 Human neutralizing antibodies elicited by SARS-CoV-2 infection. *Nature* 584, 115-119.

704 Karim, S.S.A., and Karim, Q.A. (2021). Omicron SARS-CoV-2 variant: a new chapter in the COVID-19
705 pandemic. *Lancet* 398, 2126-2128.

706 Krammer, F. (2020). SARS-CoV-2 vaccines in development. *Nature* 586, 516-527.

707 Liu, L., Iketani, S., Guo, Y., Chan, J.F., Wang, M., Liu, L., Luo, Y., Chu, H., Huang, Y., Nair, M.S., *et al.*
708 (2021). Striking Antibody Evasion Manifested by the Omicron Variant of SARS-CoV-2. *Nature*.

709 Lopez Bernal, J., Andrews, N., Gower, C., Gallagher, E., Simmons, R., Thelwall, S., Stowe, J., Tessier,
710 E., Groves, N., Dabrera, G., *et al.* (2021). Effectiveness of Covid-19 Vaccines against the B.1.617.2
711 (Delta) Variant. *N Engl J Med* 385, 585-594.

712 Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., *et al.* (2020).
713 Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and
714 receptor binding. *Lancet* 395, 565-574.

715 McCallum, M., Czudnochowski, N., Rosen, L.E., Zepeda, S.K., Bowen, J.E., Walls, A.C., Hauser, K.,
716 Joshi, A., Stewart, C., Dillen, J.R., *et al.* (2022). Structural basis of SARS-CoV-2 Omicron immune
717 evasion and receptor engagement. *Science*, eabn8652.

718 McCallum, M., De Marco, A., Lempp, F.A., Tortorici, M.A., Pinto, D., Walls, A.C., Beltramello, M.,
719 Chen, A., Liu, Z., Zatta, F., *et al.* (2021). N-terminal domain antigenic mapping reveals a site of
720 vulnerability for SARS-CoV-2. *Cell* 184, 2332-2347 e2316.

Omicron mAb RAMIHM

721 Meo, S.A., Meo, A.S., Al-Jassir, F.F., and Klonoff, D.C. (2021). Omicron SARS-CoV-2 new variant:
722 global prevalence and biological and clinical characteristics. *Eur Rev Med Pharmacol Sci* 25, 8012-8018.

723 Naranbhai, V., Garcia-Beltran, W.F., Chang, C.C., Mairena, C.B., Thierauf, J.C., Kirkpatrick, G.,
724 Onozato, M.L., Cheng, J., St Denis, K.J., Lam, E.C., *et al.* (2021). Comparative immunogenicity and
725 effectiveness of mRNA-1273, BNT162b2 and Ad26.COV2.S COVID-19 vaccines. *J Infect Dis.*

726 Peng, L., Hu, Y., Mankowski, M.C., Ren, P., Chen, R.E., Wei, J., Zhao, M., Li, T., Tripler, T., Ye, L., *et*
727 *al.* (2021). Monospecific and bispecific monoclonal SARS-CoV-2 neutralizing antibodies that maintain
728 potency against B.1.617. *bioRxiv*.

729 Piccoli, L., Park, Y.J., Tortorici, M.A., Czudnochowski, N., Walls, A.C., Beltramello, M., Silacci-Fregni,
730 C., Pinto, D., Rosen, L.E., Bowen, J.E., *et al.* (2020). Mapping Neutralizing and Immunodominant Sites
731 on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology.
732 *Cell* 183, 1024-1042 e1021.

733 Planas, D., Saunders, N., Maes, P., Guivel-Benhassine, F., Planchais, C., Buchrieser, J., Bolland, W.H.,
734 Porrot, F., Staropoli, I., Lemoine, F., *et al.* (2021). Considerable escape of SARS-CoV-2 Omicron to
735 antibody neutralization. *Nature*.

736 Polack, F.P., Thomas, S.J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J.L., Perez Marc,
737 G., Moreira, E.D., Zerbini, C., *et al.* (2020). Safety and Efficacy of the BNT162b2 mRNA Covid-19
738 Vaccine. *N Engl J Med* 383, 2603-2615.

739 Rossler, A., Riepler, L., Bante, D., von Laer, D., and Kimpel, J. (2022). SARS-CoV-2 Omicron Variant
740 Neutralization in Serum from Vaccinated and Convalescent Persons. *N Engl J Med*.

741 Sadoff, J., Gray, G., Vandebosch, A., Cardenas, V., Shukarev, G., Grinsztejn, B., Goepfert, P.A., Truyers,
742 C., Fennema, H., Spiessens, B., *et al.* (2021). Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine
743 against Covid-19. *N Engl J Med* 384, 2187-2201.

744 Scott, L., Hsiao, N.Y., Moyo, S., Singh, L., Tegally, H., Dor, G., Maes, P., Pybus, O.G., Kraemer,
745 M.U.G., Semenova, E., *et al.* (2021). Track Omicron's spread with molecular data. *Science* 374, 1454-
746 1455.

747 Starr, T.N., Greaney, A.J., Dingens, A.S., and Bloom, J.D. (2021). Complete map of SARS-CoV-2 RBD
748 mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016. *Cell Rep*
749 *Med* 2, 100255.

750 Takashita, E., Kinoshita, N., Yamayoshi, S., Sakai-Tagawa, Y., Fujisaki, S., Ito, M., Iwatsuki-Horimoto,
751 K., Chiba, S., Halfmann, P., Nagai, H., *et al.* (2022). Efficacy of Antibodies and Antiviral Drugs against
752 Covid-19 Omicron Variant. *N Engl J Med*.

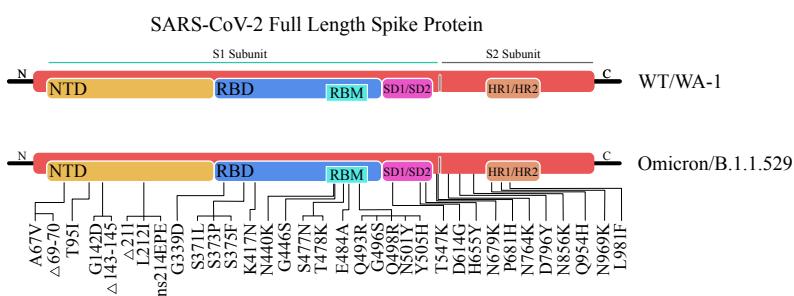
753 Tegally, H., Wilkinson, E., Giovanetti, M., Iranzadeh, A., Fonseca, V., Giandhari, J., Doolabh, D., Pillay,
754 S., San, E.J., Msomi, N., *et al.* (2021). Detection of a SARS-CoV-2 variant of concern in South Africa.
755 *Nature* 592, 438-443.

756 VanBlargan, L.A., Errico, J.M., Halfmann, P.J., Zost, S.J., Crowe, J.E., Jr., Purcell, L.A., Kawaoka, Y.,
757 Corti, D., Fremont, D.H., and Diamond, M.S. (2022). An infectious SARS-CoV-2 B.1.1.529 Omicron
758 virus escapes neutralization by therapeutic monoclonal antibodies. *Nat Med*.

759 Viana, R., Moyo, S., Amoako, D.G., Tegally, H., Scheepers, C., Althaus, C.L., Anyaneji, U.J., Bester,
760 P.A., Boni, M.F., Chand, M., *et al.* (2022). Rapid epidemic expansion of the SARS-CoV-2 Omicron
761 variant in southern Africa. *Nature*.

762 Volz, E., Hill, V., McCrone, J.T., Price, A., Jorgensen, D., O'Toole, A., Southgate, J., Johnson, R.,
763 Jackson, B., Nascimento, F.F., *et al.* (2021). Evaluating the Effects of SARS-CoV-2 Spike Mutation
764 D614G on Transmissibility and Pathogenicity. *Cell* 184, 64-75 e11.

765 Weinreich, D.M., Sivapalasingam, S., Norton, T., Ali, S., Gao, H., Bhore, R., Musser, B.J., Soo, Y.,
766 Rofail, D., Im, J., *et al.* (2021). REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with
767 Covid-19. *N Engl J Med* 384, 238-251.


768 Wolter, N., Jassat, W., Walaza, S., Welch, R., Moultrie, H., Groome, M., Amoako, D.G., Everatt, J.,
769 Bhiman, J.N., Scheepers, C., *et al.* (2022). Early assessment of the clinical severity of the SARS-CoV-2
770 omicron variant in South Africa: a data linkage study. *Lancet* 399, 437-446.

Omicron mAb RAMIHM

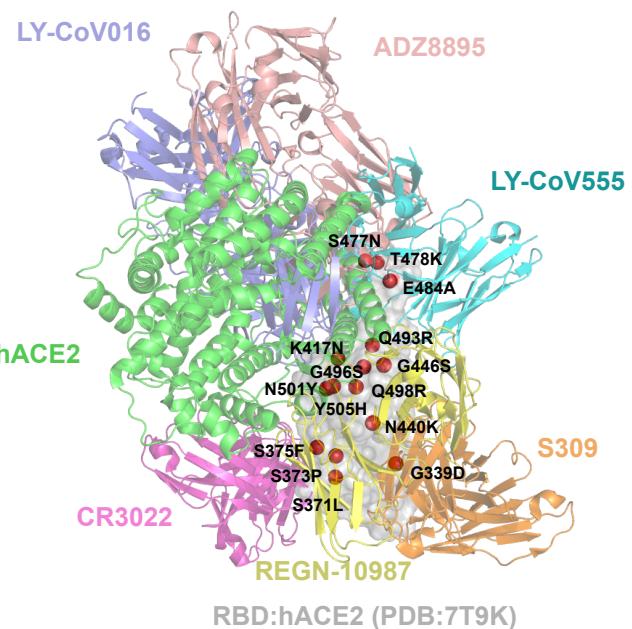
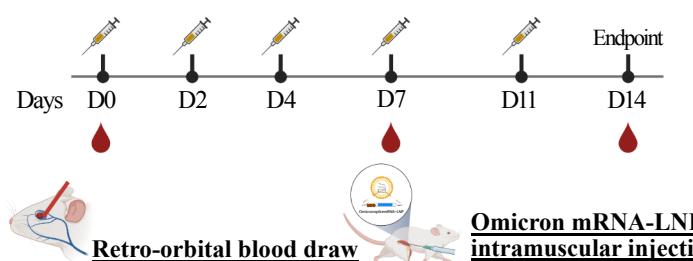
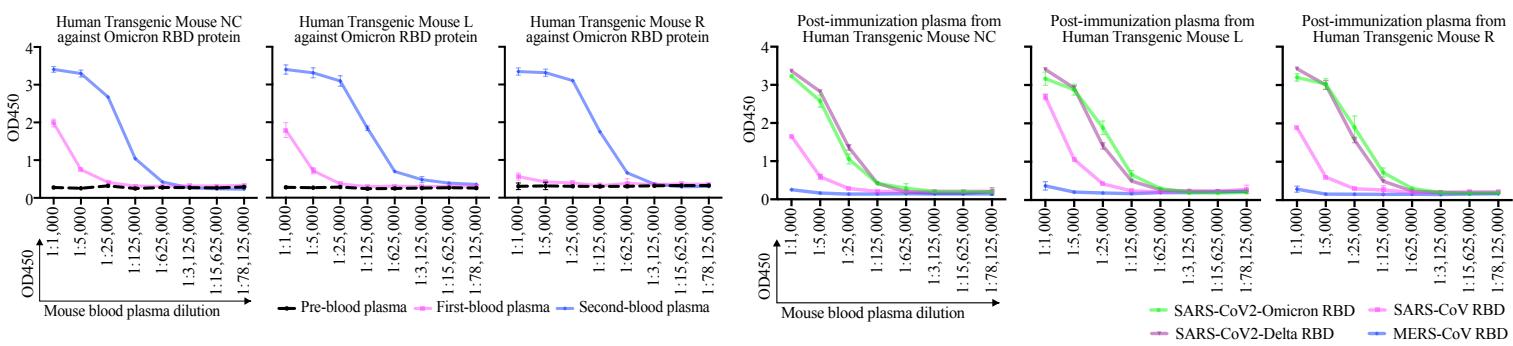

771 Zhou, P., Yang, X.L., Wang, X.G., Hu, B., Zhang, L., Zhang, W., Si, H.R., Zhu, Y., Li, B., Huang, C.L.,
772 *et al.* (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. *Nature*
773 579, 270-273.
774

Figure 1

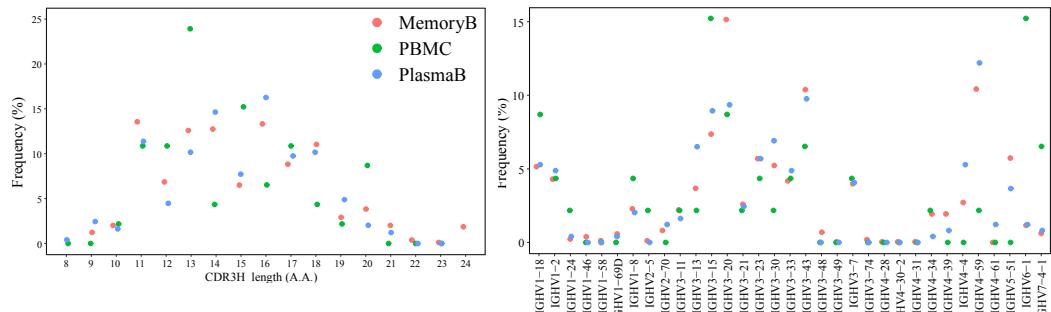
A

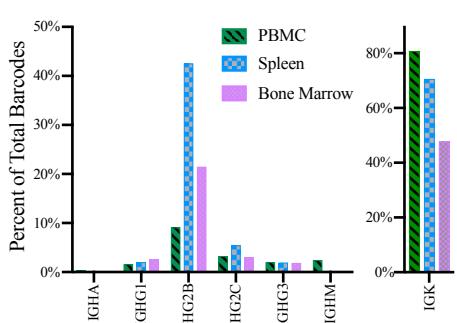


B

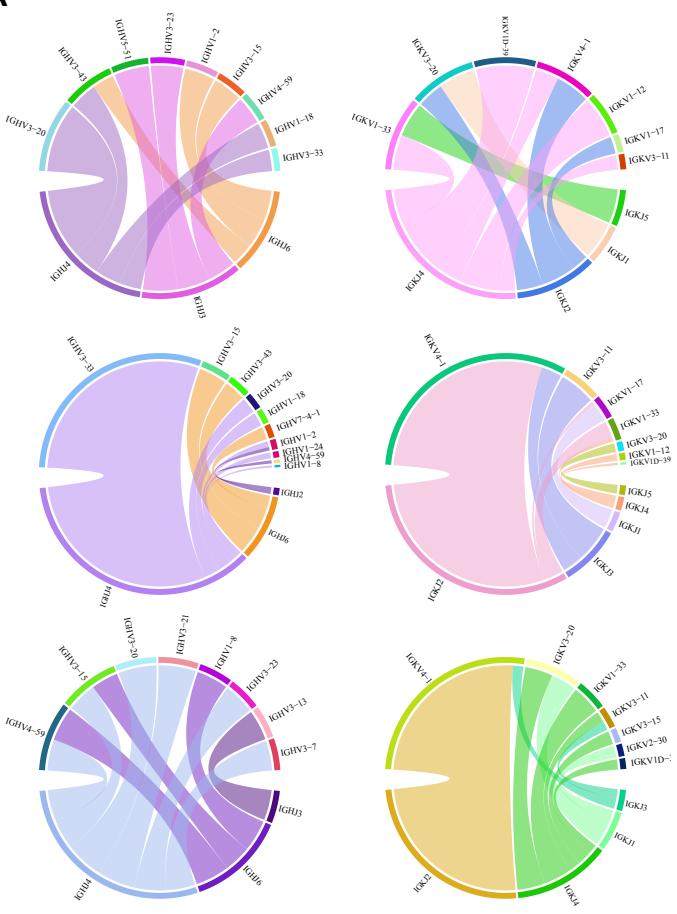


C


Rapid mRNA immunization schedule


D

E



F

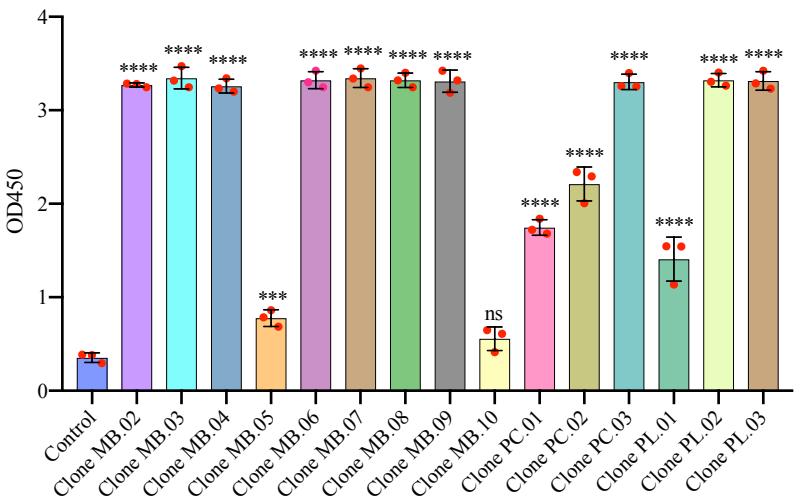
Figure 2

A

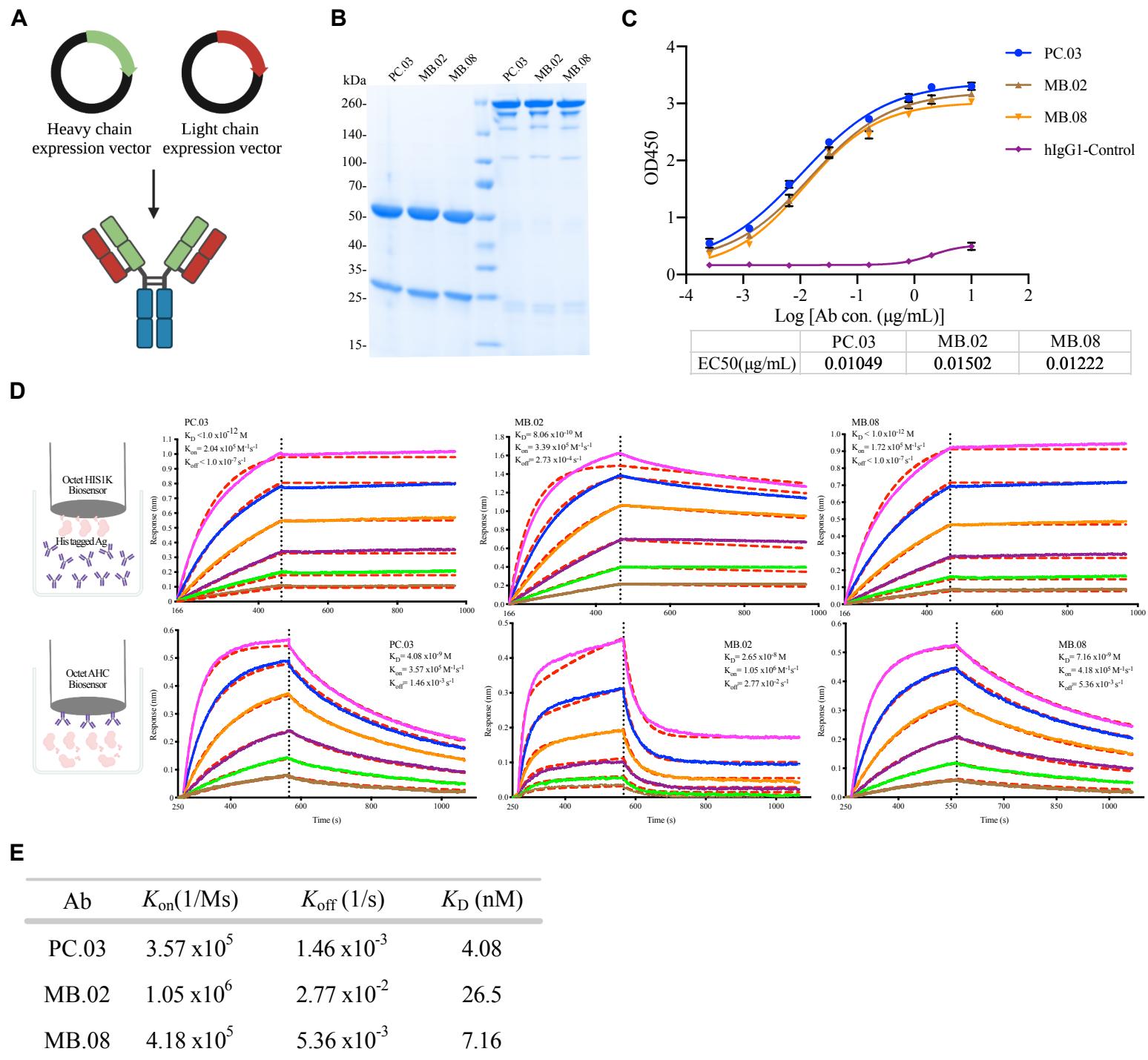
B

Top BCR pairs of IgG clonotypes from Omicron-RBD specific memory B sample

Clonotype	VHeavy	CDH3Heavy	CHeavy	VLight	CDH3Light	Clonal freq%
#02	IGHV5-51	CARGGYEDVFDIW	IGHG2B	IGKV3-20	CQQYGSPLPTF	4.46%
#03	IGHV1-2	CASHGSRYYYYYMDVW	IGHG2B	IGKV1-39	CQQYDNLPLTF	3.17%
#04	IGHV3-30	CAKGSYSYYYYMDVW	IGHG2B	IGKV1-33	CQQYDNLPLTF	2.57%
#05	IGHV3-20	CARGSGSEDYW	IGHG2B	IGKV3-20	CQQYGSPLPTF	2.42%
#06	IGHV3-7	CARDPLYSSFDAFDIW	IGHG2B	IGKV6-21	CHQSSLPHTF	2.19%
#07	IGHV3-9	CAKERWGPFDYW	IGHG2B	IGKV3-15	CQQYNIWPITF	1.93%
#08	IGHV4-59	CARGLTGDDAFDIW	IGHG2B	IGKV4-1	CQQYSTPLTF	1.70%
#09	IGHV3-9	CAKDYYGSGSFDAFDIW	IGHG2B	IGKV1-12	CQQQANSPLTF	1.47%
#10	IGHV3-20	CARGSGSLDWY	IGHG2B	IGKV3-20	CQQYGSPPWTF	1.44%


Top BCR pairs of IgG clonotypes from CD138⁺ plasma B sample

Clonotype	VHeavy	CDH3Heavy	CHeavy	VLight	CDH3Light	Clonal freq%
#01	IGHV3-9	CAKGSRYYYYYMDVW	IGHG2B	IGKV1-33	CQQYGSPLTF	1.94%
#02	IGHV3-33	CAKAGSYYYYYMDVW	IGHG2B	IGKV1-39	CQQYDNLPLTF	1.46%
#03	IGHV1-2	CASHGSYYDYYYYMDVW	IGHG2B	IGKV1-39	CQQSYSTPLTF	1.30%


Top BCR pairs of IgG clonotypes from PBMC sample

Clonotype	VHeavy	CDH3Heavy	CHeavy	VLight	CDH3Light	Clonal freq%
#01	IGHV3-15	CTTAHYDFWSGYLLPVW	IGHG2B	IGKV1-9	CQQQANSFPTF	3.35%
#02	IGHV6-1	CARRGGDGAFDIW	IGHG2C	IGKV3-20	CQQYGSPLTF	2.93%
#03	IGHV3-23	CAKDKAVEAFDIW	IGHG1	IGKV1-33	CQQYDNLPLTF	2.93%

C

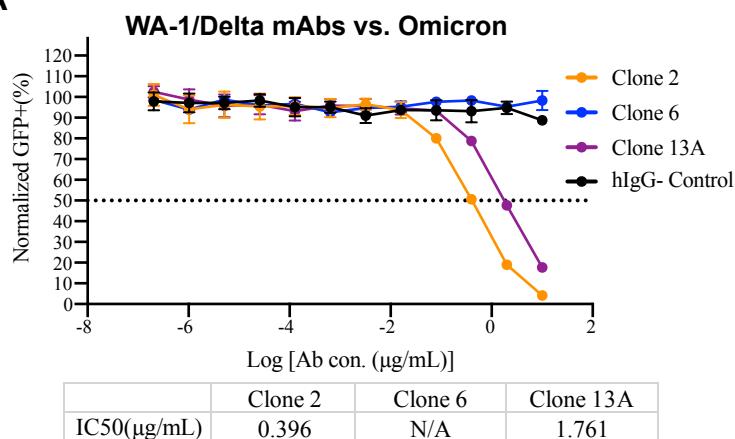


Figure 3

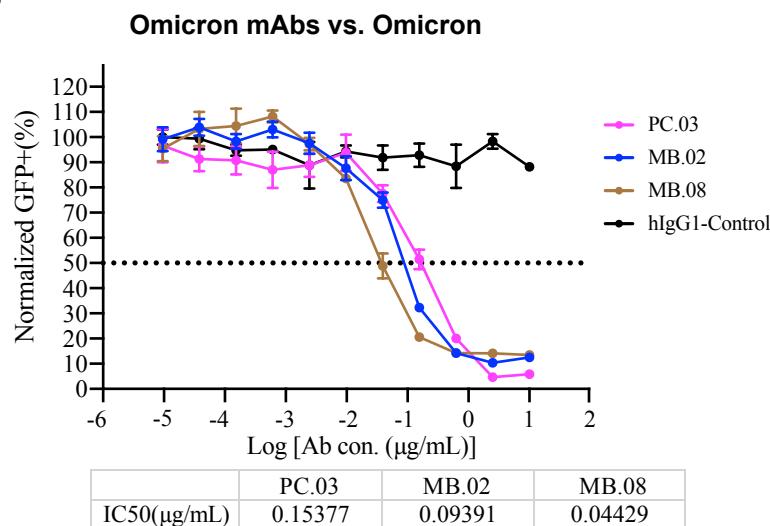
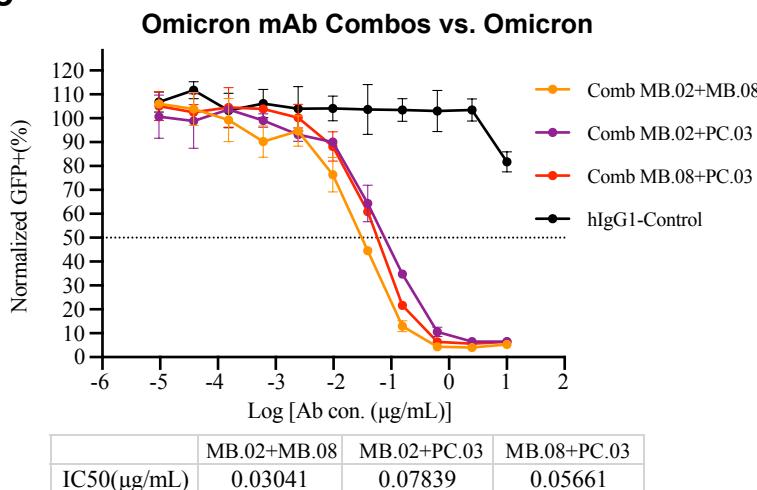
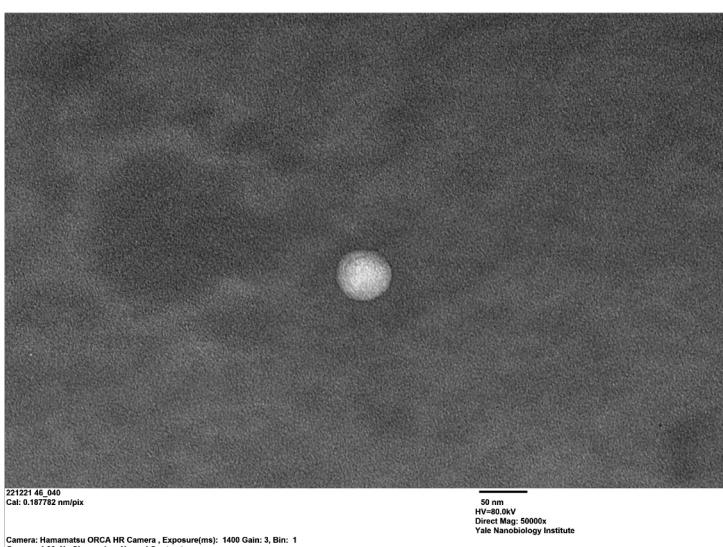


Figure 4


A

B



C

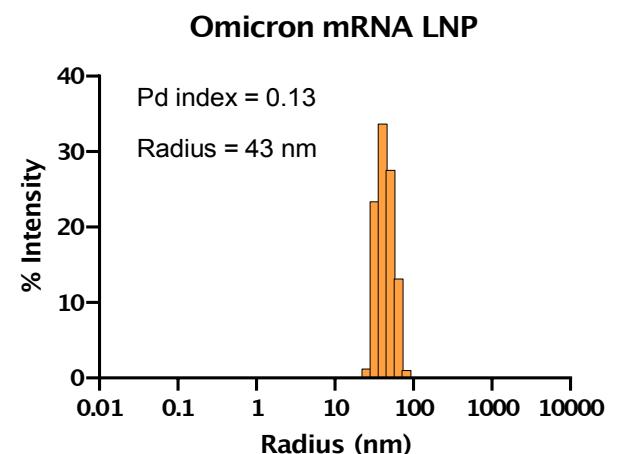
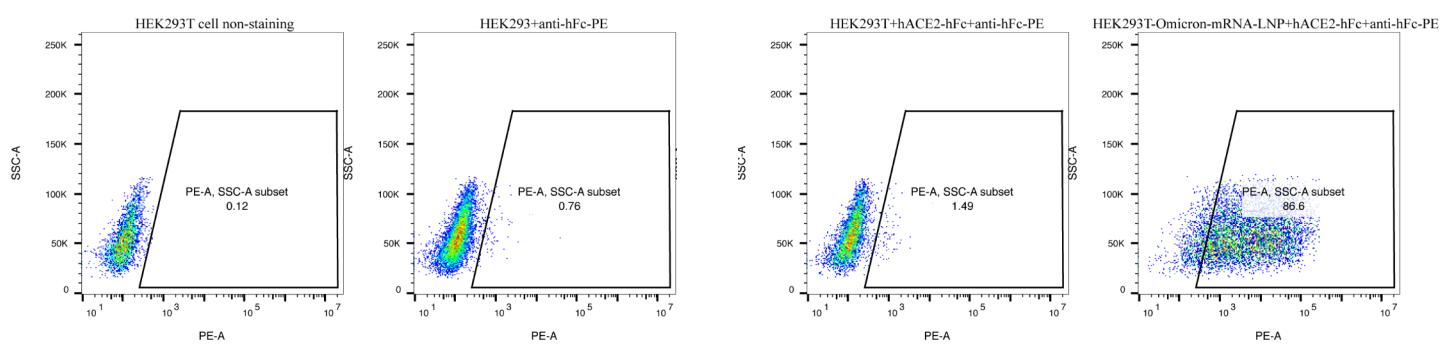
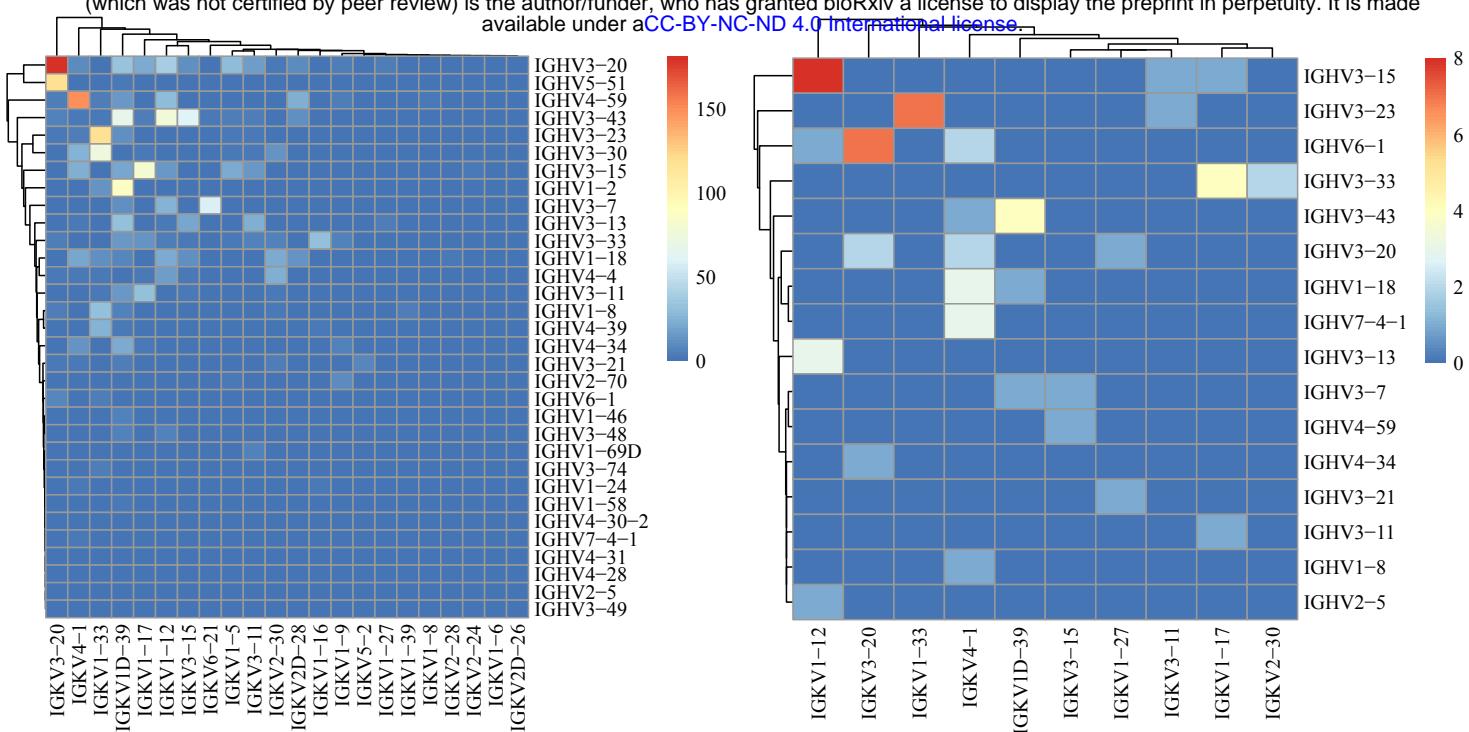
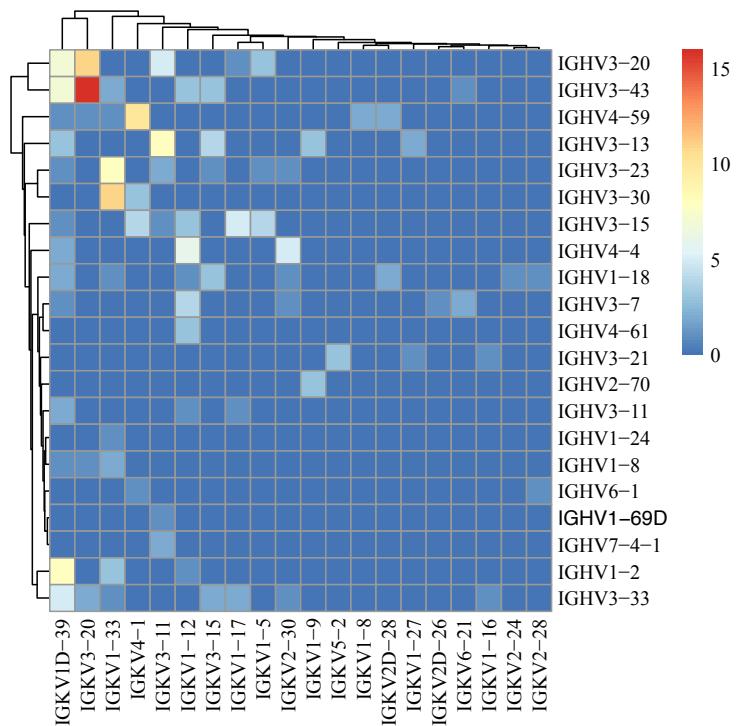


Figure S1

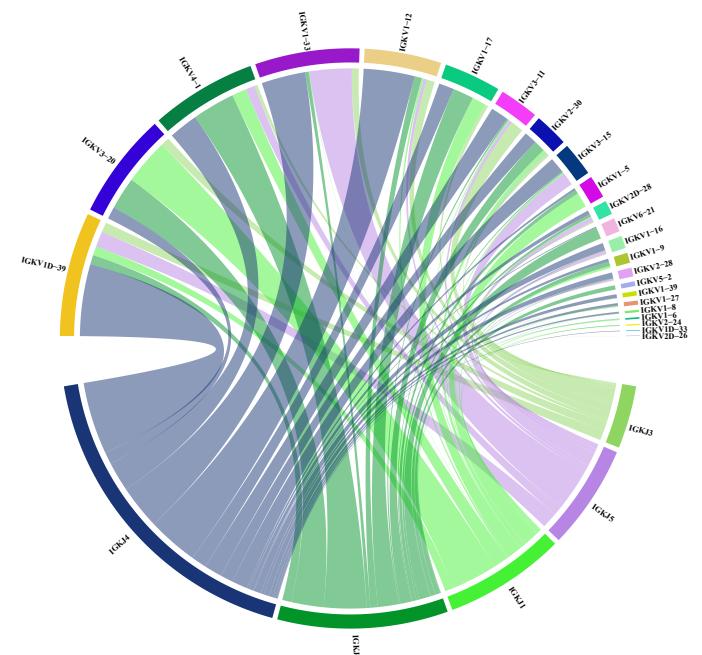
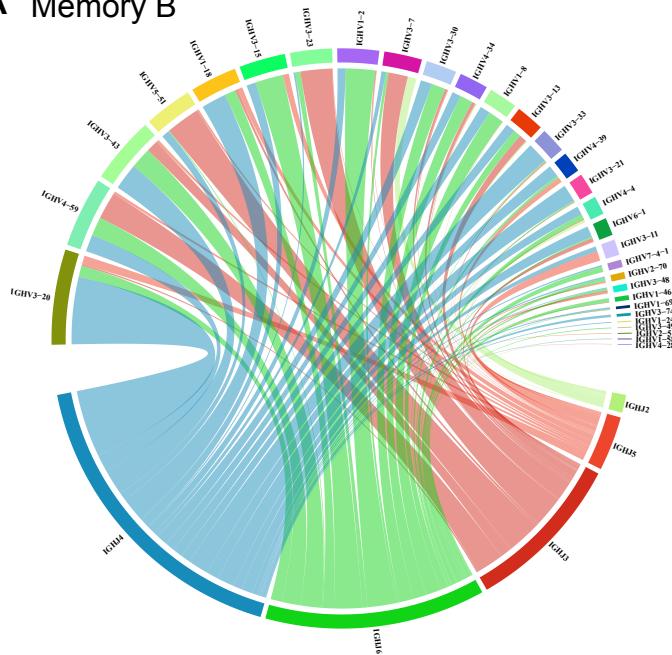

A

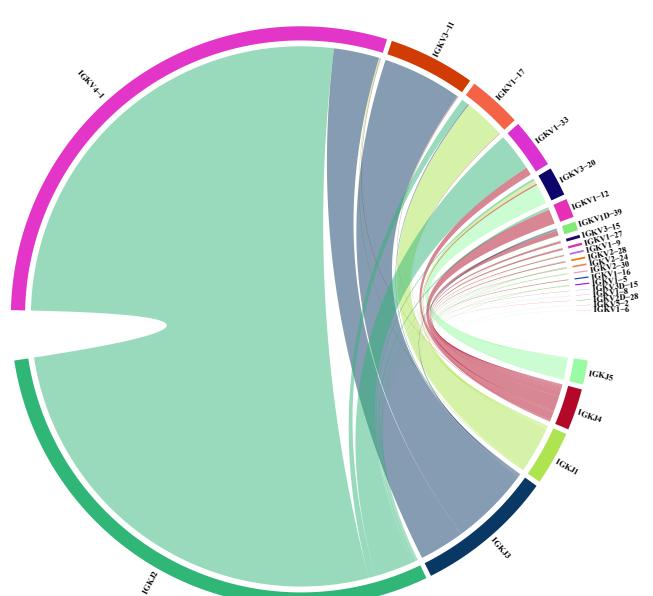
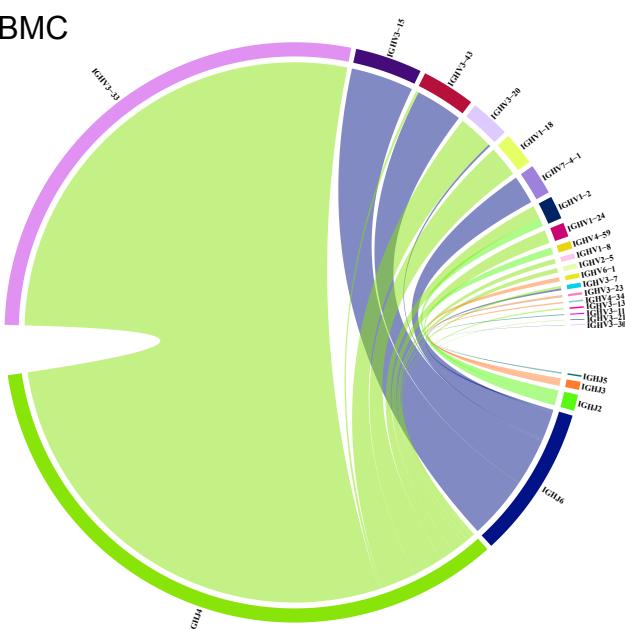
B

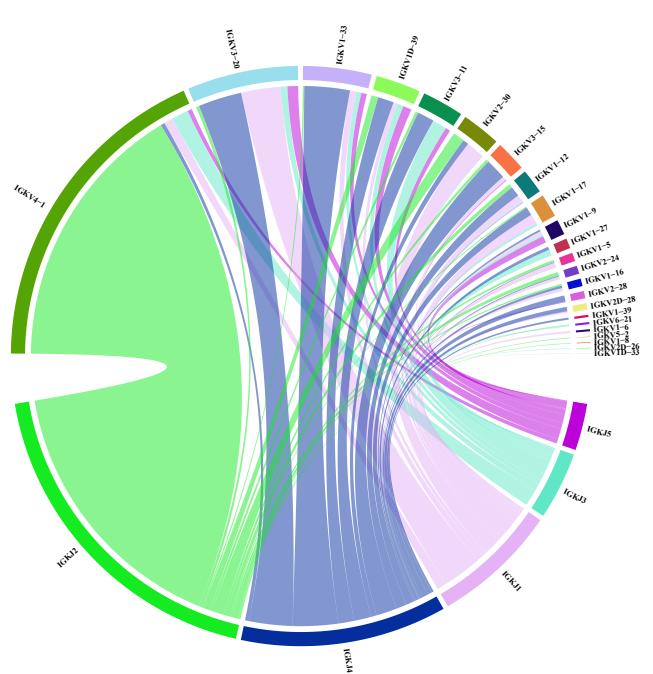
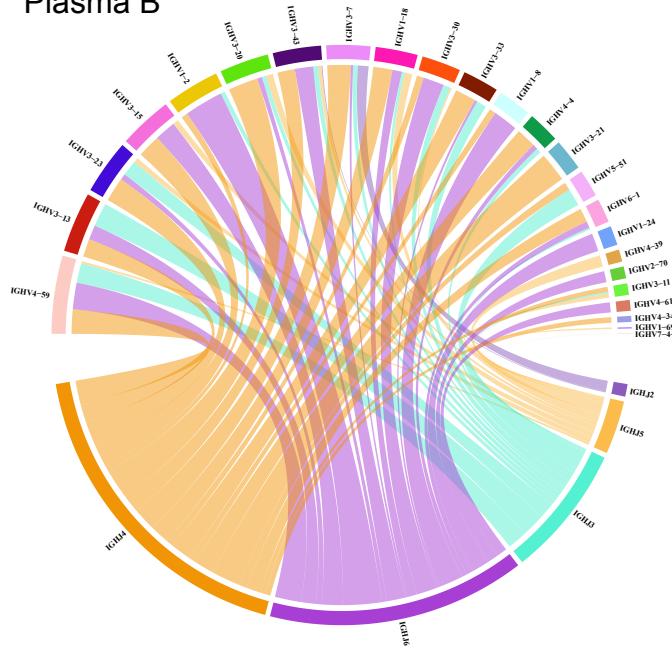

C


Figure S2

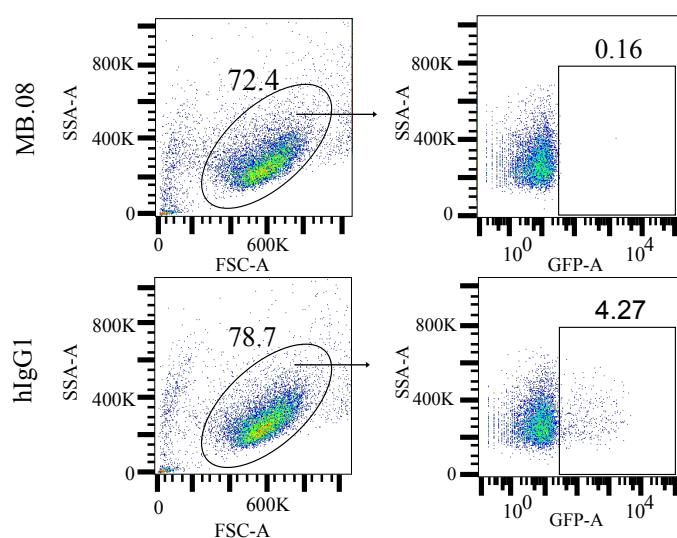
Memory B



bioRxiv preprint doi: <https://doi.org/10.1101/2022.03.17.484817>; this version posted March 18, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.



Plasma B



A Memory B

B PBMC



C Plasma B

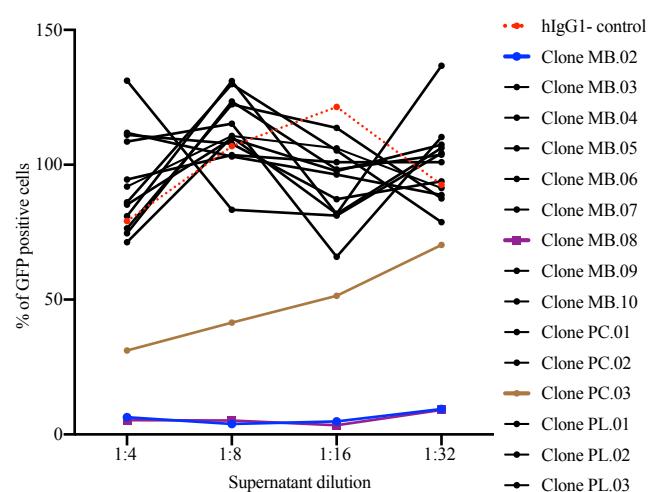
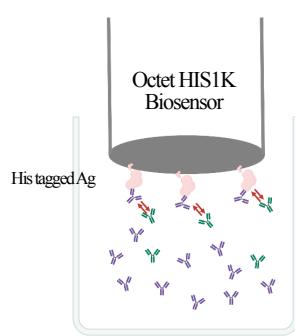


Figure S4

A



B

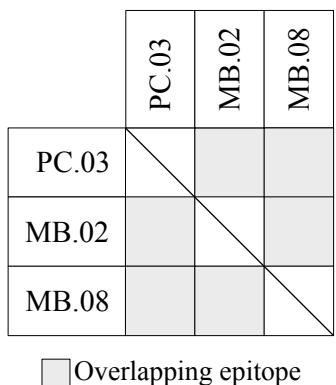
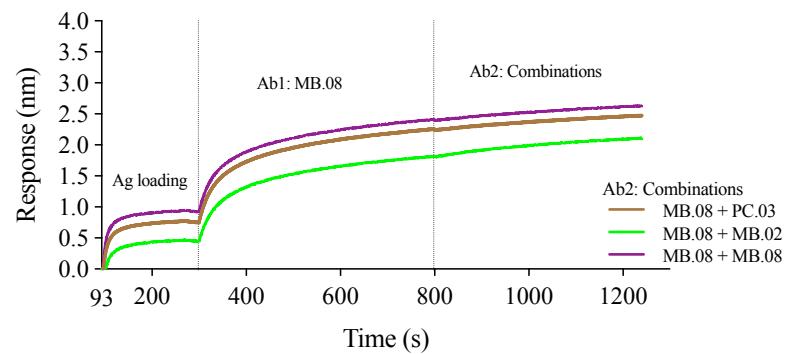
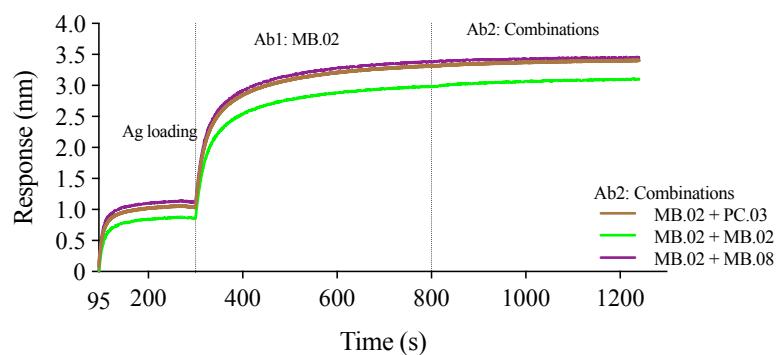
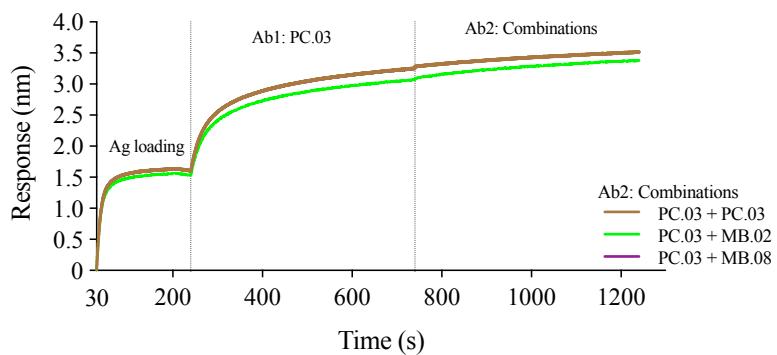
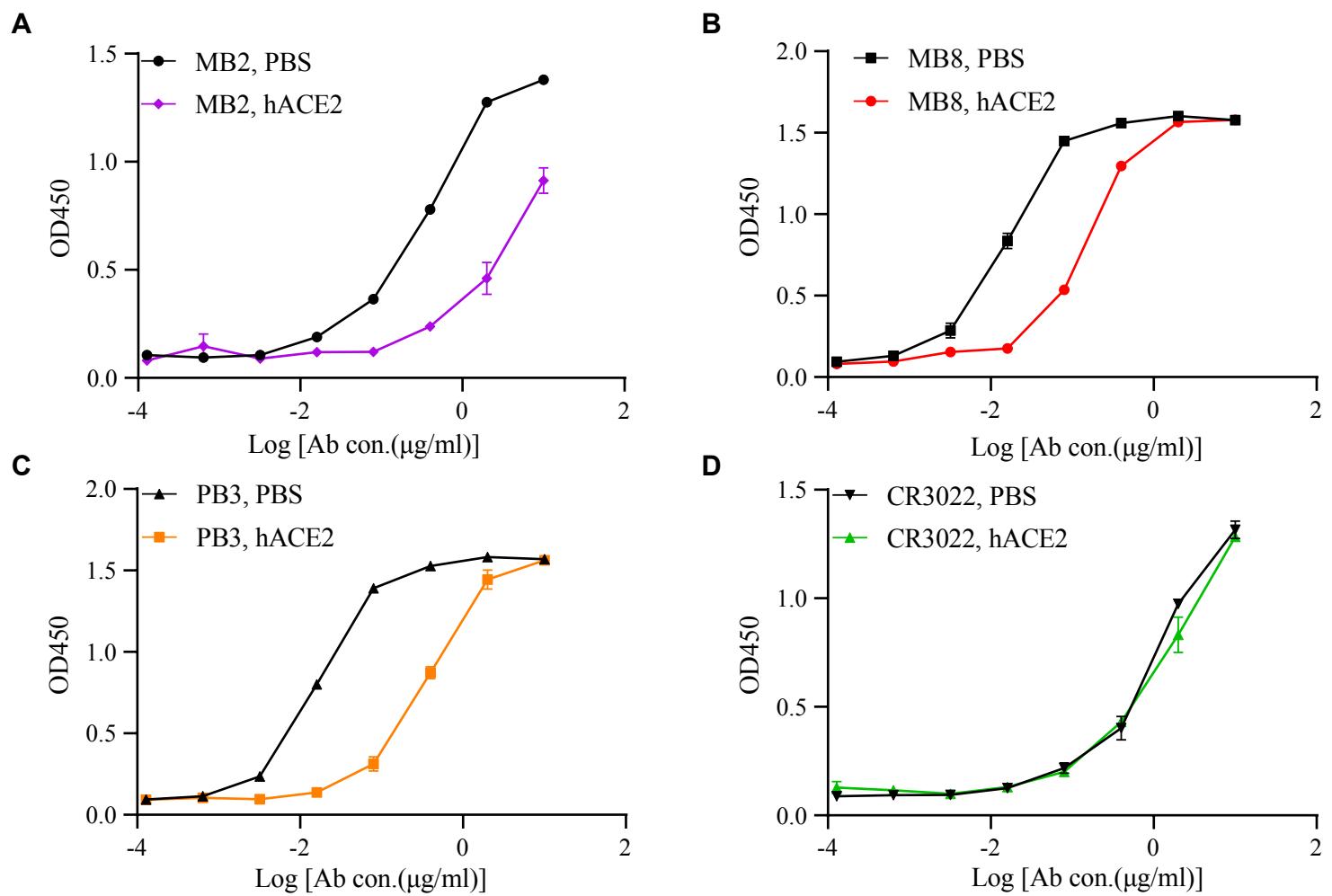


Figure S5




A


B

C

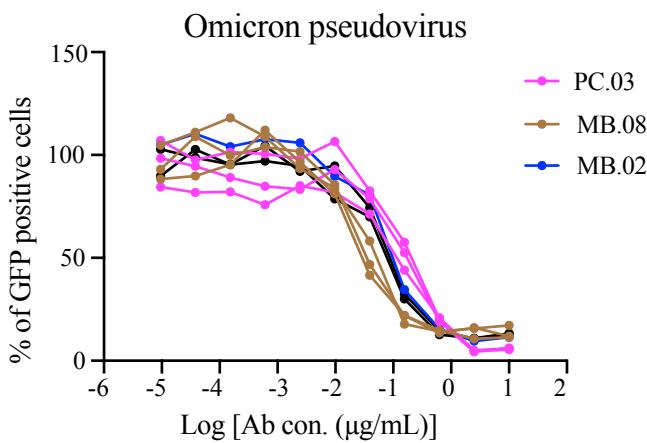


Figure S6

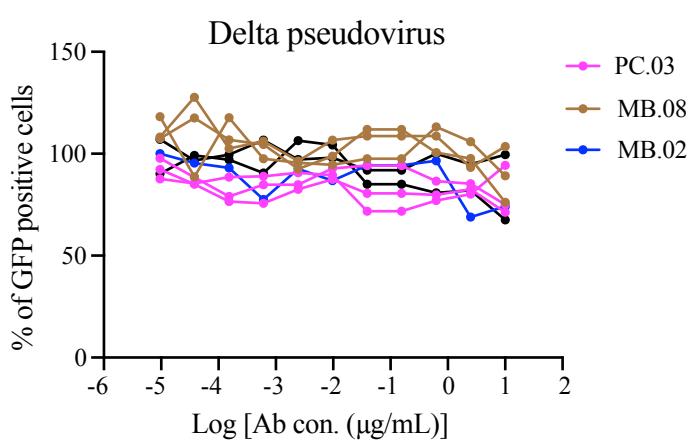


Figure S7

A

B

