

1 **Plasma iron controls neutrophil production and function**

2
3 Joe N. Frost¹, Sarah K. Wideman^{1*}, Alexandra E. Preston^{1*}, Megan R Teh^{1*}, Zhichao Ai^{2*}, Lihui
4 Wang^{2*}, Amy Cross³, Natasha White¹, Yavuz Yazicioglu², Michael Bonadonna^{4, 5}, Alexander J.
5 Clarke², Andrew E. Armitage¹, Bruno Galy⁴, Irina A. Udalova², Hal Drakesmith¹.

6
7 * these authors contributed equally

8
9 ¹MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University
10 of Oxford, Oxford, OX3 9DS, UK

11 ²Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, OX3 7FY,
12 UK

13 ³ Translational Research Immunology Group, Nuffield Department of Surgical Sciences.
14 University of Oxford, Oxford, OX3 9DS, UK

15 ⁴German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im
16 Neuenheimer Feld 280, 69120 Heidelberg, Germany.

17 ⁵ Biosciences Faculty, University of Heidelberg, 69120 Heidelberg, Germany.

18
19 **Summary**

20
21 Low plasma iron (hypoferremia) induced by hepcidin is a conserved inflammatory response
22 that protects against infections but inhibits erythropoiesis. How hypoferremia influences
23 leukocytogenesis is unclear. Using proteomic data, we predicted that neutrophil production
24 would be profoundly more iron-demanding than generation of other white blood cell types.
25 Accordingly in mice, hepcidin-mediated hypoferremia substantially reduced numbers of
26 granulocytes but not monocytes, lymphocytes or dendritic cells. Neutrophil rebound after
27 anti-GR1-induced neutropenia was blunted during hypoferremia, but was rescued by
28 supplemental iron. Similarly, hypoferremia markedly inhibited pharmacologically-stimulated
29 granulopoiesis mediated by GCSF and inflammation-induced accumulation of neutrophils in
30 the spleen and peritoneal cavity. Furthermore, hypoferremia specifically altered neutrophil
31 effector functions, suppressing antibacterial mechanisms but enhancing mitochondrial ROS-
32 dependent NETosis associated with chronic inflammation. Notably, antagonising endogenous
33 hepcidin during acute inflammation enhanced production of neutrophils. We propose plasma
34 iron modulates the profile of innate immunity by controlling monocyte-to-neutrophil ratio
35 and neutrophil activity in a therapeutically targetable system.

36
37
38 **Introduction**

39 Iron is required for cellular biochemistry, supporting processes such as oxidative metabolism,
40 DNA synthesis and epigenetic remodelling (Andreini et al., 2018; Teh et al., 2021).
41 Sequestration of iron from plasma, termed hypoferremia, commonly occurs during the acute
42 phase of infection, driven by inflammatory induction of the iron regulatory hormone, hepcidin
43 (Drakesmith and Prentice, 2012). Hepcidin blocks iron recycling by haemophagocytic
44 macrophages and iron absorption by duodenal enterocytes, suppressing serum iron
45 concentrations (Drakesmith et al., 2015). This response can protect against certain
46 siderophilic bacterial pathogens, constituting an acute “nutritional immune” mechanism, but

47 if prolonged, leads to inflammatory anemia, and can inhibit proliferative lymphocyte
48 responses to immunization and infection (Arezes et al., 2015; Frost et al., 2021; Littwitz-
49 Salomon et al., 2021).

50 Of particular note, inflammatory hypoferremia during acute infection frequently coincides
51 with a need to remodel haematopoiesis (Boettcher and Manz, 2017), and to support
52 metabolically-demanding innate cell effector functions – both potentially iron-dependent
53 processes. Whilst studies have highlighted that the neutrophil oxidative burst is impaired by
54 iron deficiency, how cellular innate immunity is affected by plasma iron status and
55 extracellular iron availability more broadly remains unclear (Ahluwalia et al., 2004; Cronin et
56 al., 2019; Egeli et al., 1998; Hassan et al., 2016; Kurtoglu et al., 2003; Monteith and Skaar,
57 2021; Paino et al., 2009; Renassia et al., 2020). Here we show, via pharmacological
58 manipulation of plasma iron availability in mice, that neutrophil production and functionality
59 are highly iron-sensitive processes, thereby providing insights into how physiologically
60 relevant systemic shifts in nutrient availability modulate innate immunity.

61

62 **Results**

63

64 **Neutrophil production is iron-requiring and sensitive to low iron availability**

65

66 Erythropoiesis consumes ~25mg iron per day in humans (Muckenthaler et al., 2017).
67 However, the iron needs of leukocytes are unknown. Having previously modelled iron
68 demands during T cell activation (Teh et al., 2021), we applied the same method to a
69 published proteomic resource (Rieckmann et al., 2017) to estimate the iron content of resting
70 human peripheral blood leukocytes. We predict that neutrophils have significantly higher iron
71 content per cell than other leukocytes (1A). Moreover, a larger proportion of the neutrophil
72 and eosinophil proteomes is ‘iron-interacting’ compared to other leukocytes (1A). Using
73 estimates for the number of leukocytes generated per day (Cosgrove et al., 2021) we predict
74 neutrophil production uses ~100-fold more iron than B-cells, T-cells or monocytes and only
75 10-fold less iron than is estimated for erythropoiesis (1B) (Muckenthaler et al., 2017). Thus,
76 neutrophil production is likely to be particularly sensitive to changes in serum iron.

77

78 To evaluate the sensitivity of leukocyte subsets to physiological variation in plasma iron
79 availability experimentally, we administered a mimetic of the iron regulatory hormone
80 hepcidin – minihepcidin (mHep) – daily for four days to C57BL/6 mice (1C) (Frost et al., 2021).
81 This caused hypoferremia and suppressed endogenous hepatic hepcidin expression (S1A)
82 (Wang and Babitt, 2019). Mice given mHep had fewer neutrophils and eosinophils, but
83 unchanged Ly6C+ and Ly6C- monocyte frequency, in spleen and blood (1D/E, S1D). Splenic
84 basophils, dendritic cells and lymphocyte subsets (S1B, S1C), and bone marrow (BM) B cells
85 (S1C) were also unaffected. In addition, fewer mature neutrophils (CD101+ Ly6G+ (Evrard et
86 al., 2018)) and Siglec F+ eosinophils were present in the bone marrow after mHep-treatment
87 (1F); in contrast, mature BM monocytes (CXCR4- CD115+ (Chong et al., 2016)) were increased
88 in treated mice (1G). BM neutrophil and monocyte production are driven by highly
89 proliferative committed progenitors: Ly6C+ c-kit+ CD115- CXCR4+ granulocytic myeloblasts
90 and Ly6C+ c-kit+ CD115+ CXCR4+ committed monocyte progenitors (cMoPs) respectively
91 (Evrard et al., 2018; Hettinger et al., 2013). Following mHep-treatment, we observed no
92

Figure 1 Hepcidin reduces systemic neutrophil numbers

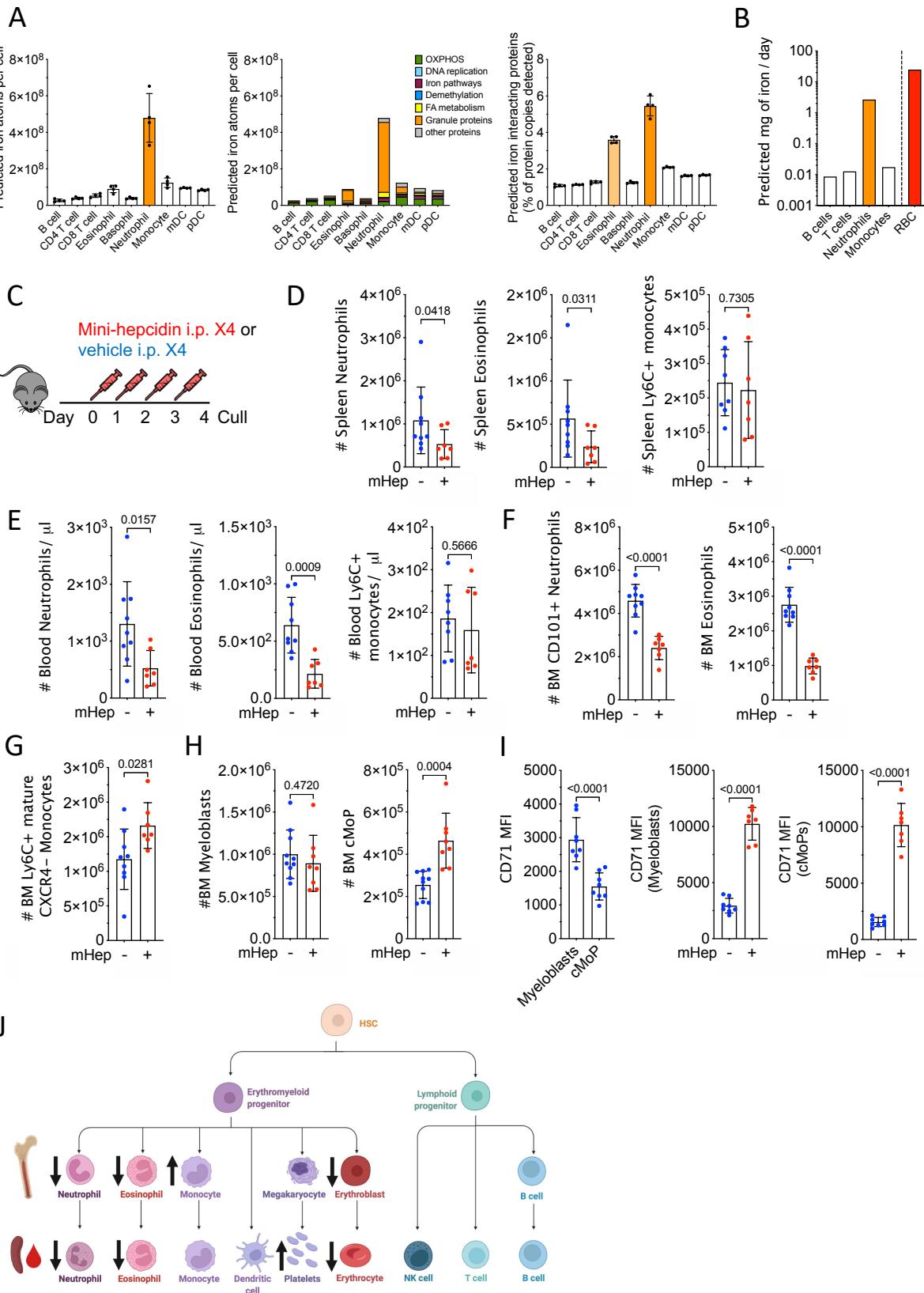


Figure 1

- A) Predicted absolute number of iron atoms in total and grouped by pathway, as well as percentage of detected proteins that are iron interacting proteins in resting human peripheral blood leukocytes. Mean \pm SD
- B) Predicted iron requirements (mg / day) for haematopoietic production of the specified lineage, compared to literature-derived value for RBC production.
- C) Experiment scheme to test effect of mHep on haematopoiesis
- D) Number of splenic myeloid subsets in experiment described in Fig 1C. Representative of three independent replicates. Neutrophils and Eosinophils Mann-Whitney Test. Monocytes unpaired T-test. Mean \pm SD.
- E) Blood myeloid subsets (numbers / μ l) in experiment described in Fig 1C. Representative of three independent replicates. Neutrophils, Welch's unpaired T-test. Eosinophils and monocytes, unpaired T-test. Mean \pm SD.
- F) Numbers of mature neutrophils and eosinophils in the bone marrow in the experiment described in Fig 1C. Representative of three independent replicates. Unpaired T-test. Mean \pm SD.
- G) Numbers of mature monocytes in the bone marrow in experiment described in Fig 1C. Representative to three independent replicates. Unpaired T-test. Mean \pm SD.
- H) Numbers of committed granulocyte progenitors and committed monocyte progenitors (cMoP) in experiment described in Fig 1C. Representative of three independent replicates. Unpaired T-test. Mean \pm SD.
- I) Comparison of CD71 expression between myeloblasts (granulocyte progenitors) and committed monocyte precursors (cMoP) in experiment described in Fig 1C. Paired T-test. Effect of mHep treatment on CD71 expression by myeloblasts and cMoPs. Unpaired T-test. Mean \pm SD.
- J) Graphical summary of changes in cell numbers observed after minihepcidin treatment.

95 change in myeloblasts, but increased cMoP numbers (1H) which could be driving the
96 accumulation of mature BM monocytes.

97

98 To probe the differential sensitivity of neutrophil and monocyte lineages to low iron, we
99 quantified CD71 expression (transferrin receptor, which mediates cellular iron acquisition) on
100 committed progenitors. Myeloblasts had significantly higher CD71 expression than cMoPs in
101 control mice, consistent with our *in silico* prediction of greater neutrophil iron demand (1I).
102 Moreover, mHep-treatment markedly increased CD71 expression by both progenitor subsets,
103 likely indicating cellular iron deficiency (1L). A modest increase in the proportion of
104 myeloblasts in S phase was observed in mHep-treated animals, potentially indicating an iron-
105 associated cell cycle perturbation that could link to reduced BM neutrophil production (S1E)
106 (Yu et al., 2007). No difference in cMoP cell cycle profile was observed (S1E). Minihepcidin
107 also suppressed erythropoiesis and increased circulating platelet counts (S1F, S1G) as
108 previously described in low iron conditions (Xavier-Ferrucio et al., 2019).

109

110 Alongside a lineage-intrinsic dependence of granulopoiesis on iron, low iron could also
111 indirectly influence granulocyte production. Granulocyte colony stimulating factor (G-CSF)
112 and IL-5 are key cell-extrinsic hematopoietic cytokines controlling neutrophil and eosinophil
113 production respectively (Kopf et al., 1996; Lieschke et al., 1994). We found no evidence of
114 reduced serum G-CSF or IL-5 mHep-treated mice (S1H). In fact, G-CSF was elevated in
115 hypoferremic animals, consistent with the reduced peripheral neutrophil frequency (Stark et
116 al., 2005).

117

118 Together these data indicate that minihepcidin-induced hypoferremia associates with altered
119 hematopoietic output, particularly reduced circulating frequencies of neutrophils and
120 eosinophils (1J), in line with the predicted lineage-specific iron demands. In contrast, we
121 observed an expansion of monocytes and their precursors in the bone marrow.

122

123 **Hepcidin driven hypoferremia impairs enhanced granulopoiesis**

124

125 We next considered whether acute hypoferremia would affect the response to enhanced
126 granulopoiesis. We administered low dose anti-Gr1 to mice to transiently and selectively
127 deplete mature neutrophil numbers indicated by peripheral blood cell frequencies 24h after
128 antibody treatment (S2A), followed by 4 daily mHep doses to induce hypoferremia during
129 granulopoietic recovery (2A). Differentiation from committed granulocyte progenitor to
130 mature neutrophil can be defined by decreased C-kit and increased Ly6G expression (S2B)
131 (Riffelmacher et al., 2017). After 4 days of mHep administration, mature Ly6G-high BM
132 marrow neutrophil production was suppressed, while more immature cells accumulated (2B
133 and S2C); blood neutrophil counts were also reduced (S2D).

134

135 To test whether mHep-mediated suppression of neutrophil production was directly related
136 to iron limitation, mice were administered ferric ammonium citrate (FAC, an exogenous iron
137 source) concurrently with mHep following anti-GR1 treatment (2C). FAC rescued CD101+
138 Ly6G+ BM neutrophil numbers in mHep-treated mice and reduced myeloblast CD71
139 expression, suggesting cellular iron deficiency was ameliorated (2D); FAC also rescued splenic
140 eosinophil numbers (S2E). Therefore, suppression of granulopoiesis by mHep is iron-
141 dependent.

Figure 2 Control of enhanced myelopoiesis by hepcidin driven iron deficiency

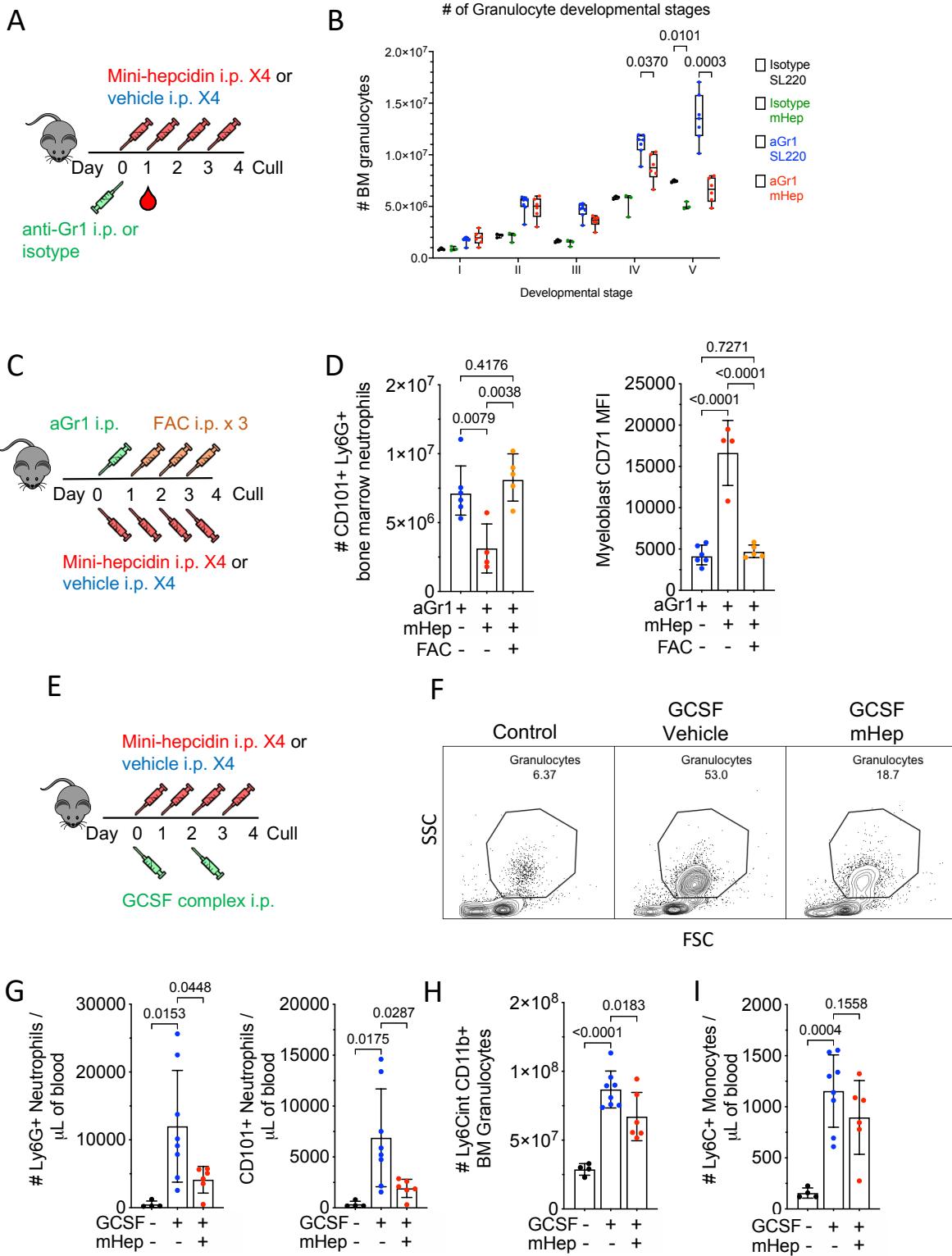


Figure 2

- A) Experimental scheme for effect of minihepcidin treatment on recovery after neutrophil depletion
- B) Bone marrow granulocyte differentiation trajectory in mice treated as in Fig. 2A, representative to two independent experiments. Two way ANOVA. Mean, quartiles and range.
- C) Experimental scheme for studying the effect of mHep-induced hypoferremia and its amelioration with ferric ammonium citrate (FAC) on recovery from aGr1-mediated neutrophil depletion. All mice received anti-Gr1.
- D) Number of mature bone marrow CD101+ neutrophils and myeloblast CD71 expression from mice treated as in Fig 2C. One way ANOVA. Mean \pm SD.
- E) Experimental scheme for studying the effect of mHep on GCSF complex driven granulocyte expansion
- F) Example flow cytometry scatter plot indicating frequency of neutrophils in the blood from experiment outlined in 2E.
- G) Number of blood neutrophils in the blood from experiment outlined in 2E. One way ANOVA. Mean \pm SD.
- H) Total bone marrow granulocytes and CXCR4+ C-kit+ granulocyte precursors in the bone marrow from experiment outlined in 2E. One way ANOVA. Mean \pm SD.
- I) Number of blood monocytes in the blood from experiment outlined in 2E. One way ANOVA. Mean \pm SD.

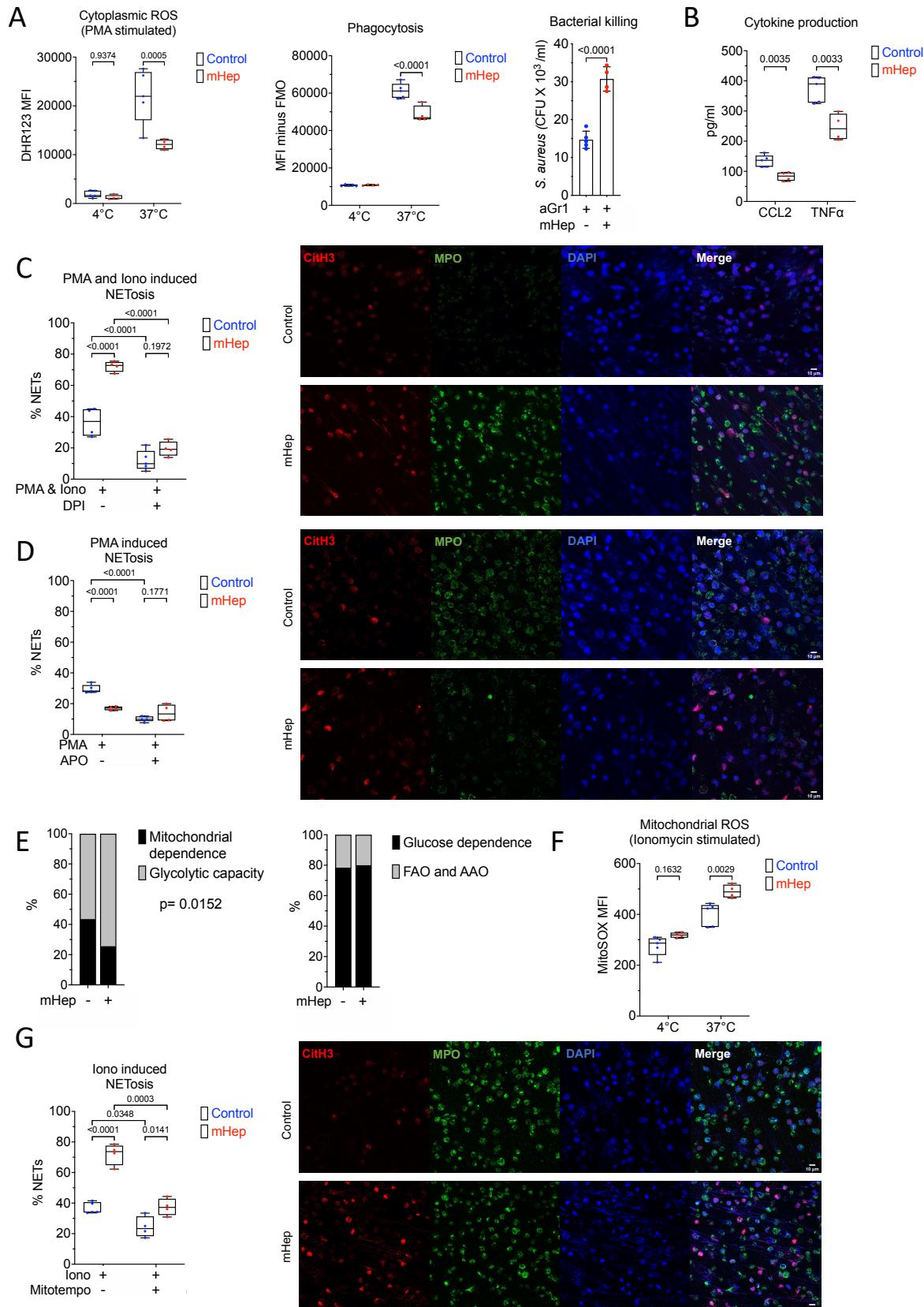
145 During inflammation, cytokines such as GCSF drive enhanced neutrophil production, termed
146 emergency granulopoiesis (Manz and Boettcher, 2014). GCSF is also used clinically to mobilize
147 neutrophils post-chemotherapy. We injected mice with GCSF/anti-GCSF complex (more
148 potent than GCSF alone (Rubinstein et al., 2013)) to stimulate granulopoiesis, with or without
149 mHep as above (2E). mHep-treated mice were hypoferremic, while mice treated with GCSF-
150 complex alone had elevated serum iron, likely due to granulopoiesis displacing more iron-
151 requiring erythropoiesis (S2F-G). The expansion of blood and splenic Ly6G+ and mature
152 CD101+ Ly6G+ neutrophils in GCSF-complex treated mice was suppressed by mHep (2F-G,
153 S2H). Although total circulating and bone marrow granulocytes were reduced by mHep-
154 treatment (2H, S2I), a greater proportion of blood granulocytes had an immature CXCR4+
155 phenotype, and the number of CXCR4+ c-kit+ BM progenitors was elevated (S2J-K) mHep-
156 treatment also led to a modest, but significant, accumulation of CXCR4+ c-kit+ BM
157 granulocyte progenitors in S-phase, which may contribute to reduced production (S2L). In
158 contrast, we found that mHep-treatment did not prevent the GCSF-complex-driven increase
159 of monocytes in blood, spleen and bone marrow (2I and S2M). Thus, mHep-mediated
160 granulopoietic suppression is still observed even in the presence of excess exogenous GCSF-
161 complex, further supporting the hypothesis that the suppressive effect is not due to inhibition
162 of inductive signals.

163

164 **Functional impairment of neutrophils by plasma iron deficiency**

165

166 To examine whether *in vivo* iron restriction influenced neutrophil effector functions, we
167 characterised isolated BM neutrophils (S3A) following anti-GR1 depletion/recovery with and
168 without mHep, as above (S2A). Isolated neutrophils from hypoferremic mice displayed
169 blunted PMA-induced ROS production, impaired phagocytosis of fluorescently-labelled
170 *Escherichia coli* and reduced *Staphylococcus aureus* killing (3A). Production of CCL2 and TNF-
171 alpha upon *ex vivo* stimulation with zymosan was also suppressed (3B).


172

173 We then evaluated NETosis, an important neutrophil effector function playing a central role
174 in both host defence and immunopathology (Papayannopoulos, 2018). NETosis was absent in
175 unstimulated neutrophils (S3B), but unexpectedly, given the reduced ROS production of PMA-
176 stimulated iron restricted neutrophils (3A), neutrophils from hypoferremic mice showed a
177 heightened propensity to undergo NETosis in response to PMA-ionomycin stimulation (3C).
178 We confirmed the ROS dependence of NETosis in our hands using combined cytoplasmic and
179 mitochondrial ROS inhibitor DPI (Li and Trush, 1998) (3C and S3C). Attempting to reconcile
180 these NETosis measurements with our observations of the reduced ROS production of PMA-
181 stimulated iron restricted neutrophils (3A), we measured NETosis after PMA stimulation
182 alone. Consistent with our PMA-induced ROS measurements and the known catalytic role of
183 iron in NADPH-oxidase (NOX; Sumimoto, 2008) and myeloperoxidase (Davies, 2011) function,
184 iron depleted neutrophils underwent NOX-dependent NETosis less efficiently in response to
185 PMA (3D and S3D).

186

187 Whilst PMA drives NOX-dependent ROS production and NETosis, ionomycin induces NETosis
188 dependent on mitochondrial ROS (mitoROS) (Douda et al., 2015). We evaluated whether
189 iron deficiency disrupted mitochondrial function by assessing neutrophil energy metabolism
190 *in vivo* using SCENITH (Single Cell Metabolism by Profiling Translation Inhibition) (Argüello et
191 al., 2020). Mitochondrial-dependent ATP production was reduced in Ly6G+ granulocytes from

Figure 3 Functional alteration of neutrophils in serum iron deficiency

193

Figure 3

- A) Phenotyping *ex vivo* of isolated bone marrow neutrophils (obtained from mice treated as in Figure 2A). DHR123 fluorescence as a reporter for cytoplasmic ROS in PMA stimulated cells. Phagocytosis of GFP labelled E.coli. Two way ANOVA. Mean, quartiles and range. Bacterial killing of *S. aureus*, resolved as CFU of *S. aureus* recovered after co-culture with neutrophils. Unpaired T-test. Mean \pm SD.
- B) Supernatant CCL2 and TNF levels produced by zymosan stimulated neutrophils measured by ELISA. Unpaired T-test. Mean, quartiles and range.
- C) NETosis was evaluated in isolated bone marrow neutrophils after stimulation *ex vivo* with PMA and ionomycin \pm diphenyleneiodonium chloride (DPI). A minimum of 250 cells from two replicates per sample counted. Two way ANOVA. Mean, quartiles and range. Representative microscopy images taken at 20X magnification.
- D) NETosis was evaluated in isolated bone marrow neutrophils after stimulation *ex vivo* with PMA \pm apocynin (APO). A minimum of 250 cells from two replicates per sample counted. Two way ANOVA. Mean, quartiles and range. Representative microscopy images taken at 20X magnification.
- E) SCENITH analysis of Ly6G+ bone marrow neutrophils from experiment described in 1A, analysing proportional shifts in OPP incorporation after *ex vivo* treatment with metabolic inhibitors as detailed in methods. Two way ANOVA with matching for sample. Reported p-value is the effect of mHep treatment. Mean.
- F) MitoSOX fluorescence as a reporter for mitochondrial ROS in ionomycin stimulated isolated bone marrow neutrophils. Two way ANOVA. Mean, quartiles and range.
- G) NETosis was evaluated in isolated bone marrow neutrophils after stimulation *ex vivo* with ionomycin (iono) \pm mitoTEMPO. A minimum of 250 cells from two replicates per sample counted. Two-way ANOVA. Mean, quartiles and range. Representative microscopy images taken at 20X magnification.

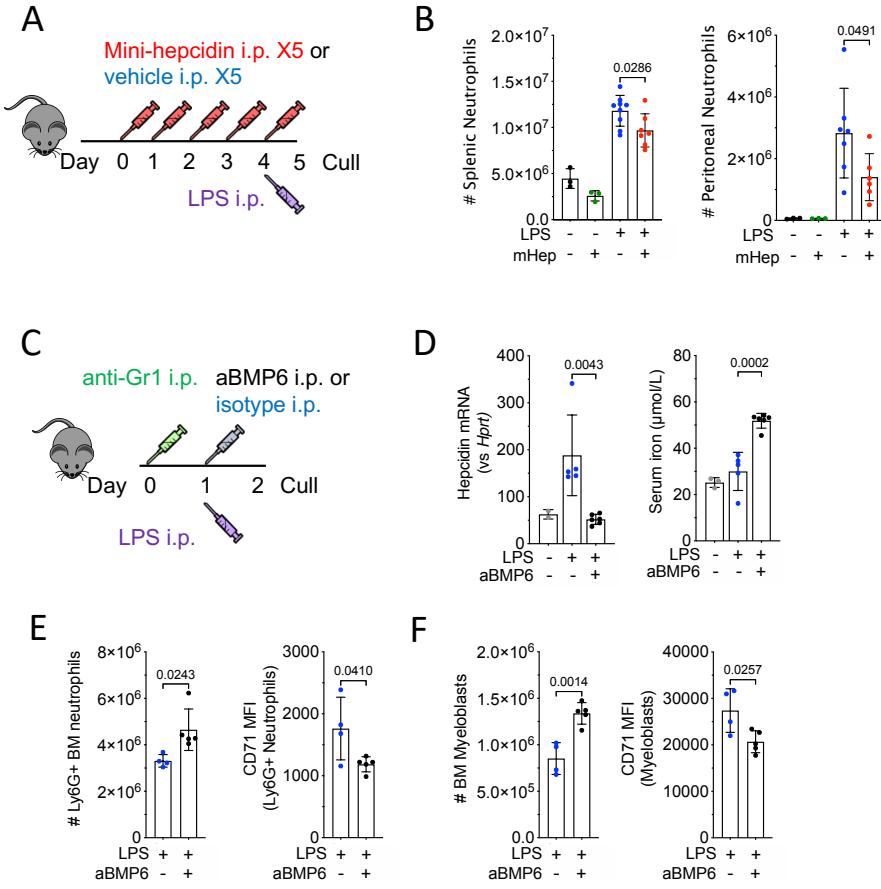
194

195 mHep-treated mice, whilst proportional glucose dependence was unaffected (3E). In parallel
196 to reduced mitochondrial ATP production, iron-restricted neutrophils produced greater
197 amounts of mitoROS (3F) and had an increased propensity to undergo mitoROS-dependent
198 NETosis in response to ionomycin (3G and S3E).

199
200 Monopoiesis is relatively resistant to perturbation by hypoferremia (Fig 1G-H). Therefore, we
201 asked whether monocyte function was also preserved. In splenic monocytes from mHep-
202 treated mice, secretion of IL-12, TNF and IL-6 in response to *ex vivo* LPS stimulation was
203 unchanged compared to monocytes from control mice (S3D).

204
205 **Counteracting inflammatory hepcidin induction improves neutrophil production**

206 Low plasma iron and raised hepcidin are commonly observed in the context of inflammation
207 (Weiss et al., 2019). Having demonstrated iron-dependent granulopoietic suppression under
208 non-inflammatory conditions, we challenged mice after 4 days of mHep treatment with
209 lipopolysaccharide (LPS) to interrogate how intensified hypoferremia alters the neutrophil
210 response in the context of inflammation (4A). Hypoferremia reduced inflammatory
211 accumulation of neutrophils in the spleen and peritoneal cavity (4B); however, no difference
212 in the number of Ly6G+ neutrophils remaining in the BM was observed (S4A). This is possibly
213 because inflammatory mobilisation out of the BM dominated over production in these
214 conditions.


215 We next considered whether endogenous hepcidin would suppress granulopoiesis during
216 inflammation. Hepatic hepcidin transcription is induced during inflammation by IL-6 via a
217 signalling axis that also requires sustained tonic BMP6/SMAD signalling (Wang and Babitt,
218 2019). After depleting neutrophils using anti-GR1 to enhance granulopoietic demand, we
219 administered mice with LPS as a hepcidin-stimulatory inflammatory signal, with or without
220 anti-BMP6 antibody (4C). As previously shown (Petzer et al., 2020), BMP6 neutralisation
221 suppressed the endogenous hepcidin response to inflammation and increased plasma iron at
222 24hrs post-LPS injection (4D). The LPS dose used here previously caused transient hepcidin-
223 dependent hypoferremia at 6hrs post-injection that was resolved by 24hrs (Armitage et al.,
224 2016). Accordingly, in the present experiment, although serum iron in animals treated with
225 LPS alone was similar to that of controls at 24hrs, these mice had likely experienced transient
226 inflammatory hypoferremia (4D). Although anti-BMP6 increased serum iron, it did not alter
227 other aspects of systemic LPS-mediated inflammation, as determined by weight loss (S4B),
228 liver *Saa1* and *Fga* mRNA expression (S4C) and serum cytokine levels (S4D).

229 Focusing on granulopoiesis, anti-BMP6 increased numbers of mature Ly6G+ neutrophils and
230 CD115-ve c-kit+ neutrophil progenitors in the bone marrow of inflamed mice (4E and 4F).
231 Furthermore, CD71 expression by both Ly6G+ cells and progenitors was decreased in anti-
232 BMP6 treated mice, indicating that improved iron acquisition by granulopoiesis during
233 inflammation was associated with increased production of neutrophils (4E and 4F).

234 **Discussion**

235 Systemic hypoferremia is a feature of the acute phase response of human infections
236 (Armitage et al., 2014; Darton et al., 2015; Shah et al., 2020; Williams et al., 2019) and likely
237 protects against extracellular siderophilic infections. However, beyond the well-characterised

Figure 4 Modulation of hepcidin during inflammation alters neutrophil production

Figure 4

- Experimental scheme for investigation of effect of sustained hypoferremia on neutrophil response to sterile inflammatory challenge.
- Number of mature Ly6G+ neutrophils in the spleen and peritoneal cavity in mice treated as in 4A. t-test. Mean \pm SD.
- Experimental scheme for investigation of effect of endogenous hepcidin response on granulopoiesis.
- Liver hepcidin expression (Mann-Whitney test) and serum iron from mice treated as in 4C. Mean \pm SD. Non LPS treated control group was treated with aGr1 24hrs prior to culling to reflect the systemic iron environment prior to LPS injection. Representative of two independent experiments
- Number of bone marrow Ly6G+ neutrophils and CD71 MFI on Ly6G+ neutrophils in mice treated as in 4C. t-test. Mean \pm SD. Representative of three independent experiments.
- Number of BM c-kit+ CD115- Ly6G- myeloblasts and CD71 MFI on c-kit+ myeloblasts in mice treated as in 4C. t-test. Mean \pm SD. Representative of three independent experiments.

239 anaemia of inflammation (Weiss et al., 2019), further consequences of hypoferremia for host
240 physiology are poorly defined. We show that granulopoiesis is particularly sensitive to iron
241 availability, commensurate with the relatively high production of neutrophils containing a
242 relatively iron-rich proteome.

243 In contrast to granulopoiesis, steady-state and GCSF-stimulated monocyte production
244 appeared resistant to hypoferremia, with evidence of increased numbers of bone marrow
245 monocyte and their progenitors in resting mice. Monocyte cytokine production *ex vivo* was
246 also preserved. This is a striking result as, like neutrophils, monocytes are an innate cell type
247 exhibiting rapid turnover *in vivo* (Evrard et al., 2018; Yona et al., 2013), supporting our
248 hypothesis that iron may be particularly important to neutrophils beyond the requirement to
249 support the production of a cell type with a short half-life. Notably the ‘iron resistance’ of the
250 monocyte lineage is supported by observations of normal NO₂ production by LPS stimulated
251 monocytes from iron deficient individuals (Paino et al., 2009).

252 Our results suggest that neutrophil progenitors have higher baseline iron requirements than
253 monocyte progenitors, and that iron restriction does not perturb monocyte progenitor cell-
254 cycle profiles. Functionally, hypoferremia could modulate the overall profile of innate
255 immunity at baseline and during stress myelopoiesis by controlling the ratio of monocytes to
256 neutrophils. Interestingly, in addition to these systemic effects, local skin derived hepcidin
257 also influences innate immunity by facilitating mature neutrophil chemotaxis (Malerba et al.,
258 2020).

259 We found that neutrophils produced during hypoferremia exhibited reduced ability to
260 phagocytose fluorescent *Escherichia coli*, produce cytokines and kill *Staphylococcus aureus*.
261 We also observed suppression of NOX-dependent NETosis, linking systemic nutrient
262 availability to NETosis and building on previous reports of inhibited NOX-dependent ROS
263 production during iron deficiency (Ahluwalia et al., 2004; Kurtoglu et al., 2003; Paino et al.,
264 2009). Although non-physiological iron chelation has previously been linked to NETosis with
265 conflicting results (Kono et al., 2016; Völlger et al., 2016), we observe that physiological iron
266 restriction greatly enhanced mitoROS production and mitoROS dependent NETosis. The
267 importance of different NETosis pathways in response to different stimuli is complex and an
268 ongoing area of study (Kenny et al., 2017). However, notably, mitoROS-dependent NETosis
269 may play a dominant role in immune complex driven NETosis during Lupus-like autoimmunity
270 (Lood et al., 2016), where NETs play a key role in driving pathology (Gupta and Kaplan, 2021).
271 Such patients frequently present with raised hepcidin and low serum iron (Kunireddy et al.,
272 2018). Our results prompt the question of whether prolonged iron restriction due to raised
273 hepcidin under chronic inflammatory conditions contributes to neutrophil dysfunction,
274 NETosis and propagation of immunopathology in autoimmunity.

275 Consistent with our observations in T cells (Frost et al., 2021), we show that iron restriction
276 changes haematopoietic cell metabolism *in vivo*, suppressing oxidative mitochondrial
277 metabolism in bone marrow granulocytes. Disrupted mitochondrial metabolism may be
278 linked to increased mitoROS production. Whilst mature neutrophils are extremely reliant on
279 glycolysis for ATP production (Borregaard and Herlin, 1982), oxidative mitochondrial
280 metabolism – which is a highly iron dependent process - has been suggested to be important
281 for neutrophil differentiation and development in the bone marrow (Riffelmacher et al.,
282 2017). The impaired metabolism, differentiation and function of iron deficient neutrophils in

283 our study is consistent with this. Further studies will be required to elucidate how iron
284 mechanistically supports neutrophil differentiation, biosynthesis of effector proteins,
285 metabolism and progenitor proliferation.

286 Blocking hepcidin and increasing serum iron in a mouse model of acute inflammatory
287 hypoferremia increased the number of bone marrow granulocytes without altering markers
288 of inflammation. We hypothesise that therapeutic hepcidin suppression could be leveraged
289 to control neutrophil numbers and functionality during infection with pathogens insensitive
290 to hepcidin-mediated hypoferremia (Stefanova et al., 2017) or during autoimmunity where
291 raised hepcidin might contribute to neutrophil dysfunction and pro-inflammatory NETosis.

292 Relatively little is known regarding how changes in systemic nutrient availability, including
293 hypoferremia, modulates innate immune cell function *in vivo*. Our results highlight that
294 neutrophil production is a particularly iron-dependent aspect of haematopoiesis, sensitive to
295 rapid physiological changes in serum iron concentration. We propose that hepcidin-mediated
296 hypoferremia is a novel immune axis regulating myelopoiesis, specifically negatively
297 regulating granulopoiesis, resulting in fewer neutrophils with altered effector functions. In
298 contrast, monopoiesis is unscathed by hypoferremia. These findings have implications for
299 understanding inflammatory pathology and for the clinical use of granulopoiesis-mobilising
300 agents in patients at risk of infection and iron deficiency.

301 **Acknowledgements**

302 The authors thank the staff of the University of Oxford Department of Biomedical Services for
303 animal husbandry, Yi-Ling Chen for assistance running the Luminex assay; Goran Mohammad
304 and Samira Lakhal-Littleton for assistance with serum iron measurements.

305
306 This work and J.N.F., A.E.P., A.E.A. and H.D. was supported by the UK Medical Research
307 Council (MRC Human Immunology Unit core funding to HD, award no. MC_UU_12010/10).
308 S.K.W. was supported by the Wellcome Trust Infection, Immunology & Translational Medicine
309 doctoral programme (grant no. 108869/Z/15/Z). M.R.T. was supported by the Clarendon Fund
310 and the Corpus Christi College A. E. Haigh graduate scholarship.

311 A.C. was supported by an Oxford-BMS Fellowship. B.G. is supported by grants from the
312 Deutsche Forschungsgemeinschaft (GA2075/5-1, GA2075/6.1). A.J.C. is supported by the
313 Wellcome Trust (211072/Z/18/Z). This work was supported by the Novo Nordisk Foundation
314 (Tripartite Immunometabolism Consortium to L.W. and MeRIAD Consortium to I.A.U.),
315 Chinese Science Council (to Z.A.), and the Wellcome Trust (Investigator Award 209422/Z/17/Z
316 to I.A.U.).

317
318

319 **Methods**

320
321 **Resource availability**

322
323 **Lead contact**
324 Further information and requests for resources and reagents should be directed to and will
325 be fulfilled by the Lead Contact, Hal Drakesmith (alexander.drakesmith@imm.ox.ac.uk)

326

327 **Materials availability**

328 This project did not generate new unique reagents

329

330 **Data and code availability**

331 This project did not generate any new code or novel datasets

332

333 **Experimental models and subject details**

334 **Mice**

335 Unless otherwise stated, animal procedures were performed under the authority of UK Home
336 Office project and personal licenses in accordance with the Animals (Scientific Procedures)
337 Act 1986, and were approved by the University of Oxford ethical review committee. Mice
338 were housed in individually ventilated cages and fed ad-libitum with a standard diet
339 containing 188ppm iron (SDS Dietex Services, diet 801161). Mice were euthanised in
340 increasing CO₂ concentrations. All mice were sex matched and age matched (to within 2-
341 weeks) within individual experiment. WT C57BL/6J OlaHsd mice were ordered from Envigo.
342 Mice were used between 6-10 weeks of age when initiating each experiment. Female mice
343 were used for all experiments, aside from experiment described in figure 4C where male mice
344 were used because of their lower liver iron stores and more pronounced acute phase
345 response. Within each experiment mice were randomly allocated to treatment groups such
346 that an equal number of mice in each cage received each treatment.

347

348 **Injected substances**

349 Minihepcidin: An appropriate mass of mini-hepcidin PR73 (da-TH-Dpa-bhPro-RCR-bhPhe-
350 Ahx-Ida(Hexadecylamine)-NH₂) was dissolved in 80% ethanol and then mixed with 60mg of
351 Purebright SL220/ Sunbright DSPE-020CN (NOF). The control solution was Purebright SL220
352 dissolved in ethanol. The ethanol was evaporated off using a vacuum chamber warmed to
353 50°C. The resultant gel was stored up to 24 hours at 4°C and re-dissolved in an appropriate
354 volume of water to give a mHep concentration of 1mM: 100nMoles of mini-hepcidin in 100μl
355 of water was injected per mouse per dose.

356 Ferric ammonium citrate (FAC) (F5879 Sigma Aldrich) was dissolved to 3mg/ml in PBS. 150μl
357 was injected intraperitoneally into mice. Anti-Gr1-mediated neutrophil depletion: 10μg
358 (female mice) or 20μg (male mice) of anti-Gr1/mouse (Ultra-LEAF, clone RB6-8C5, Biolegend,
359 108436) diluted in sterile low endotoxin PBS was injected intraperitoneally into mice. *E.coli*
360 LPS-055:B5 (Sigma, L2880) was injected at a dose of 1mg/kg body weight diluted in sterile low
361 endotoxin PBS (Armitage et al., 2016) and injected intraperitoneally into mice. Anti-BMP6 and
362 isotype control were injected at a dose of 10mg/kg body weight diluted in sterile low
363 endotoxin PBS and injected intraperitoneally into mice. G-CSF complexes were prepared as
364 described in (Rubinstein et al., 2013) using human G-CSF (Filgrastim) and anti-human G-CSF
365 (Clone BVD11-37G10, Southern biotech, Cat. No. 10128-0). 7.5μg of anti-G-CSF and 1.5μg of
366 G-CSF were complexed, diluted in sterile low endotoxin PBS and injected intraperitoneally.
367 7.5μg of aG-CSF alone was used as the control injection to control for trace endotoxin
368 contamination of the antibody and direct effects of the antibody.

369

370

371

372

373 **Flow cytometry staining**

374

375 Single cell suspensions of spleen were made by mechanical dissociation through a 40 μ m cell
376 strainer. Red cells were lysed in spleen suspensions using Tris ammonium chloride (ACT) red
377 cell lysis buffer (2.06g/L Tris base and 7.47g/L NH₄Cl, 1L H₂O, adjusted to pH 7.2). Bone marrow
378 was flushed through a 70 μ m filter to make a single cell suspension. Peritoneal lavage was
379 obtained by flushing the peritoneal cavity with a 23g needle and syringe filled with 8ml of cold
380 PBS.

381 For analysis of murine peripheral blood leukocytes, 50-100 μ l of whole blood collected by tail
382 bleed into a BD microtainer EDTA tube was mixed with 1ml of ACT red cell lysis buffer and
383 incubated at room temperature for 20 minutes. The blood solution was spun down at 400g
384 for 5 minutes, supernatant removed, and the leukocyte pellet transferred to a round bottom
385 96 well plate for flow cytometric staining.

386 Tissue cell suspensions or *in vitro* activated cells at appropriate time points after activation
387 cells were transferred to a 96 well round bottom plate, spun down and washed with 200 μ l of
388 PBS. Cells were stained with appropriate concentrations of FC receptor block, fluorophore
389 conjugated antibodies and a fixable live dead dye in 40 μ l of PBS for 20 minutes at 4°C in the
390 dark. Cells were washed and ran directly on an Invitrogen Attune or BD LSR Fortessa. For some
391 experiments, cells were fixed for 10 minutes in 100 μ l of 4% paraformaldehyde at 4°C in the
392 dark before washing and resuspension for analysis or resuspended in saponin based perm
393 buffer to stain intracellular antigens. Intracellular Ly6G staining was used 24hrs after aGr1
394 treatment to accurately resolve neutrophil depletion despite masking of surface epitopes
395 (Gael Boivin 2020).

396 DAPI (1 μ g/ml) was added prior to running, to fixed and permeabilised cells, for DNA content
397 staining.

398 **Cell culture**

399 All cells were cultured at 37°C, 20% O₂ and 5% CO₂.

400 For monocyte intracellular cytokine production 2 million whole splenocytes (in a round
401 bottom 96 well plate) were activated for 3 hours in the presence of Brefeldin A (5 μ g/ml)
402 with/without LPS (5ng/ml) in iron free medium . Iron free medium: RPMI, glutamine (2mM),
403 penicillin (100U/ml), streptomycin (0.1mg/ml) and Beta-mercaptoethanol (55 μ M), to
404 preserve *in vivo* iron status FCS was replaced with 10% v/v Pannexin NTS serum substitute
405 (P04-95080; Pan Biotech, custom order). Splenocytes were then washed and stained for
406 surface epitopes and intracellular cytokines as described in flow cytometry.

407

408 **Neutrophil isolation**

409 Neutrophils were negatively-isolated from whole bone marrow of minihepcidin treated and
410 control treated animals as per the manufacturer's instructions (Neutrophil Isolation Kit, 130-
411 097-658, miltenyi biotec).

412

413 **Flow cytometric ROS measurement**

414 To identify DHR123 staining of predominantly cytoplasmic ROS, isolated neutrophils were
415 incubated with 2.5 μ g/mL (7 μ M) Dihydrorhodamine 123 (DHR123) (ThermoFisher Scientific)
416 in complete RPMI 1640 medium, and stimulated by 50nM Phorbol 12-Myristate 13-Actetate

417 (PMA) (Sigma-Aldrich) for 20 minutes at 37°C. Cells were subsequently washed with PBS and
418 the fluorescence intensities of each subset/cells were measured by flow cytometry. 4°C
419 incubation was used as controls.

420
421 Mitochondrial ROS (mitoROS) was measured using mitoSOX™ red (ThermoFisher Scientific).
422 isolated neutrophils in complete RPMI 1640 medium were incubated with 5µM mitoSOX red
423 for 20 minutes at 37°C in the presence of 10 µM ionomycin. Cells were subsequently washed
424 with PBS and the fluorescence intensity as the indicator of mitoROS generation were
425 measured by FACS. 4°C incubation was used as controls.
426

427
428 **Bacterial killing assay**
429 Bacterial killing assay was performed with *S. aureus* (NCTC 6571), which was used at a MOI of
430 10. For the bacterial killing assay, isolated neutrophils were interacted with *S. aureus* for **2**
431 **hours** at 37 °C in 5% CO² tissue culture incubator and then lysed in 1% triton buffer. The
432 lysates were then plated on agar plates. Bacterial culture plates were incubated at 37 °C
433 overnight, and the colony number on each plate was counted the following morning as an
434 absolute CFU count.
435

436 **Measurement of cytokine production**
437 For the cytokine array, 2x10⁶ isolated neutrophils seeded in 2ml RPMI were stimulated with
438 50ug/ml Zymosan or DMSO vehicle for two hours. After incubation, Mouse CCL2 DuoSet Elisa
439 (R&D Systems, catalog# DY479-05), Mouse TNF-alpha DuoSet Elisa (R&D Systems, catalog
440 MTA00B) were used to detect the levels of CCL2 and TNF-alpha, respectively, in the
441 supernatants of stimulated isolated neutrophils, following the manufacturer's instruction. For
442 readout, signals were detected by chemical luminescence and subsequently measured with
443 Microplate Reader.
444

445 **NETosis**
446 To induce NETosis, isolated neutrophils were seeded into 8 well lab-Tek II chamber slide (VWR
447 international) coated with 2% poly-lysine (Sigma-Aldrich) at a volume of 100 µL at the density
448 of 1x10⁶/mL. Neutrophils were stimulated with 10 µM ionomycin and 10 µM PMA together
449 or individually, overnight at 37°C in 5% CO² tissue culture incubator and were subsequently
450 fixed with 4% paraformaldehyde (Sigma-Aldrich) in DPBS for 30 minutes at RT. To investigate
451 the effect of ROS on NETosis, different ROS inhibitors were used. 25 µM diphenyleneiodonium
452 chloride (DPI) was used to block total ROS generation from ionomycin and PMA, 100 µM
453 apocynin was used to block ROS generation via NOX2 complex by PMA and 5 µM mitoTEMPO
454 (Cayman Chemical) was used to inhibit mitoROS production. Afterwards, cells were washed
455 three times with DPBS, and incubated with blocking buffer (2% BSA in TBST) for 20minutes.
456 Following blocking, primary antibodies: rabbit anti-citrullinated histone 4 (Abcam, ab5103)
457 and mouse anti-mouse MPO (Hycult, HM1051BT) at 1:100 dilution in blocking buffer, were
458 added and incubated for 2 hours at RT or overnight at 4°C. Cells were washed with DPBS
459 before adding secondary antibodies: mouse anti rabbit DyLight 647 conjugated secondary
460 antibody (ThermoFisher Scientific) and rabbit anti mouse IgG secondary antibody conjugated
461 with Alexa fluor 488 (ThermoFisher Scientific) at 1:300 dilution in blocking buffer for an 1h
462 incubation at RT in the dark. Subsequently, cells were washed with DPBS. Before imaging, the

463 chambers were removed from the slides and cells were covered with ProLongTM gold antifade
464 mounting media with DAPI (ThermoFisher Scientific). Images were obtained by Zeiss LSM 980
465 confocal microscope. Neutrophils with a clear formation of fibres, together with a diffuse
466 nucleus stained by DAPI and colocalization with MPO and citrullinated-histone 3, were
467 counted as neutrophils under NETosis. For each condition, 100-200 cells of each sample have
468 been counted from three different fields of two independent experiments. ImageJ was used
469 for image analysis and presentation.

470

471 **SCENITH analysis**

472 SCENITH is a flow cytometry approach in which translation rate is quantified by measuring
473 puromycin incorporation into protein (Argüello et al., 2020; Lopes et al., 2021). Translation is
474 highly ATP dependent. Therefore, changes in the rate of translation after the addition of
475 different metabolic inhibitors can be used to estimate cellular glucose dependence,
476 mitochondrial dependence, glycolytic capacity and fatty acid / amino acid oxidation capacity.
477 The SCENITH protocol was adapted from the original method designed by Arguello et al.
478 (Argüello et al., 2020) for use with the Invitrogen Click-iT Plus OPP protein synthesis assay kit
479 (C10456, Invitrogen). To prevent cells from iron loading *ex vivo* during short term culture, all
480 steps were conducted in iron free media. Bone marrow cells were plated at 3x10⁶ cells per
481 well in a 96 well plate. Matched samples were treated in parallel with 100 µL of iron free
482 media at 37°C, 5% CO₂ with 5 different conditions: media alone, 2-DG (100mM), oligomycin
483 (1 µM), 2-DG (100mM) + oligomycin (1 µM), and harringtonin (2 µg/mL). 30 minutes into
484 inhibitor treatment, 100 µL of O-propargyl-puromycin (OPP) was added on top for a final OPP
485 dilution of 1:1000 and incubated for a further 30 minutes at 37°C, 5% CO₂. Cells were then
486 washed, surfaced stained, fixed and permeabilised as described in flow cytometry. Following
487 permeabilization, intracellular OPP was labelled according to the manufacturer's instructions
488 in the the Invitrogen Click-iT Plus OPP protein synthesis assay kit (C10456, Invitrogen).
489 Analysis was conducted as described by Arguello et al.

490

491 **Blood measurements**

492 Full murine red blood cell indices and platelet counts were performed on 100µl of cardiac
493 whole blood taken into a BD EDTA microtainer (Beckton Dickinson) and measured on a
494 Sysmex KN-21 blood analyser.

495

496 For serum analysis of murine samples up to 400µl of blood obtained by cardiac puncture was
497 placed in a BD microtainer SST tube (Beckton Dickinson). Serum was obtained by spinning the
498 clotted blood sample was spun at 8,000g for 5 minutes and stored at -80°C. Iron
499 measurements were determined using an ABX Pentra instrument. Serum cytokine levels were
500 measured by Luminex (IL-5, GM-CSF and G-CSF, life technologies) or Legendplex (M1
501 macrophage panel, with added G-CSF capture beads, 740848, Biolegend) in accordance with
502 the manufacturer's instructions.

503

504 **Mathematic modelling**

505 Iron counts per cell were calculated using the method described in Teh et al. (Teh et al., 2021).
506 Human iron interacting proteins were identified in human immune cell proteomes (Derived
507 from (Rieckmann et al., 2017)) by cross-referencing against the list of human iron interacting
508 proteins identified by Andreini et al. (Andreini et al., 2018)). Hemoglobin proteins (HBA1,

509 HBB, HBD, HBG1, HBG2, HBM, HBQ1, and HBZ) were removed as these proteins should not
510 be expressed in immune cells and their presence is likely indicative of red cell contamination.
511 Protein copy number values for each iron interacting protein species was multiplied against
512 the protein:iron atom stoichiometry values previously curated in Teh et al. (Teh et al., 2021)
513 to give the number of iron atoms per protein species. Total cellular iron counts were
514 calculated as the sum of iron atoms attributed across all detected iron interacting protein
515 species.

$$516 \frac{\text{Iron atoms}}{\text{Cell}} = \sum [(\text{Protein species copy number}) \times (\frac{\text{Iron atoms}}{\text{protein}})]$$

517 We assigned iron-interacting protein species to pathways using pre-established GO and
518 Reactome gene sets. OXPHOS: GOBP_AEROBIC_RESPIRATION; DNA replication:
519 GOBP_DNA_REPLICATION; iron pathways: pooled
520 GOBP_CELLULAR_IRON_ION_HOMEOSTASIS and
521 GOBP_IRON_SULFUR_CLUSTER_ASSEMBLY; demethylation: GOBP_DEMETHYLATION; Fatty
522 Acid metabolism: GOBP_FATTY_ACID_METABOLIC_PROCESS; Granule proteins:
523 REACTOME_NEUTROPHIL_DEGRANULATION. Where overlaps in gene sets were present, we
524 assigned pathways according to best fit given the current literature (see scripts for specific
525 designations). Atoms attributed to protein species were in turn assigned to each protein's
526 corresponding pathway.

527

528

529 **References**

530

531

532 Ahluwalia, N., Sun, J., Krause, D., Mastro, A., and Handte, G. (2004). Immune function is
533 impaired in iron-deficient, homebound, older women. *The American Journal of Clinical
534 Nutrition* 79, 516–521.

535 Andreini, C., Putignano, V., Rosato, A., and Banci, L. (2018). The human iron-proteome.
536 *Metalomics* 10, 1223–1231.

537 Arezes, J., Jung, G., Gabayan, V., Valore, E., Ruchala, P., Gulig, P.A., Ganz, T., Nemeth, E., and
538 Bulut, Y. (2015). Hepcidin-induced hypoferremia is a critical host defense mechanism
539 against the siderophilic bacterium *Vibrio vulnificus*. *Cell Host Microbe* 17, 47–57.

540 Argüello, R.J., Combes, A.J., Char, R., Gigan, J.-P., Baaziz, A.I., Bousiquot, E., Camossetto, V.,
541 Samad, B., Tsui, J., Yan, P., et al. (2020). SCENITH: A Flow Cytometry-Based Method to
542 Functionally Profile Energy Metabolism with Single-Cell Resolution. *Cell Metabolism* 32,
543 1063–1075.e7.

544 Armitage, A.E., Stacey, A.R., Giannoulatou, E., Marshall, E., Sturges, P., Chatha, K., Smith,
545 N.M.G., Huang, X., Xu, X., Pasricha, S.-R., et al. (2014). Distinct patterns of hepcidin and iron
546 regulation during HIV-1, HBV, and HCV infections. *Proc. Natl. Acad. Sci. U.S.A.* 111, 12187–
547 12192.

548 Armitage, A.E., Lim, P.J., Frost, J.N., Pasricha, S.-R., Soilleux, E.J., Evans, E., Morovat, A.,
549 Santos, A., Diaz, R., Biggs, D., et al. (2016). Induced Disruption of the Iron-Regulatory
550 Hormone Hepcidin Inhibits Acute Inflammatory Hypoferraemia. *J Innate Immun.*

551 Boettcher, S., and Manz, M.G. (2017). Regulation of Inflammation- and Infection-Driven
552 Hematopoiesis. *Trends in Immunology* 38, 345–357.

553 Borregaard, N., and Herlin, T. (1982). Energy metabolism of human neutrophils during
554 phagocytosis. *J Clin Invest* 70, 550–557.

555 Chong, S.Z., Evrard, M., Devi, S., Chen, J., Lim, J.Y., See, P., Zhang, Y., Adrover, J.M., Lee, B.,
556 Tan, L., et al. (2016). CXCR4 identifies transitional bone marrow premonocytes that
557 replenish the mature monocyte pool for peripheral responses. *Journal of Experimental
558 Medicine* 213, 2293–2314.

559 Cosgrove, J., Hustin, L.S.P., de Boer, R.J., and Perié, L. (2021). Hematopoiesis in numbers.
560 *Trends in Immunology*.

561 Cronin, S.J.F., Woolf, C.J., Weiss, G., and Penninger, J.M. (2019). The Role of Iron Regulation
562 in Immunometabolism and Immune-Related Disease. *Frontiers in Molecular Biosciences* 6,
563 116.

564 Darton, T.C., Blohmke, C.J., Giannoulatou, E., Waddington, C.S., Jones, C., Sturges, P.,
565 Webster, C., Drakesmith, H., Pollard, A.J., and Armitage, A.E. (2015). Rapidly Escalating
566 Hepcidin and Associated Serum Iron Starvation Are Features of the Acute Response to
567 Typhoid Infection in Humans. *PLoS Negl Trop Dis* 9, e0004029.

568 Davies, M.J. (2011). Myeloperoxidase-derived oxidation: mechanisms of biological damage
569 and its prevention. *J Clin Biochem Nutr* 48, 8–19.

570 Douda, D.N., Khan, M.A., Grasemann, H., and Palaniyar, N. (2015). SK3 channel and
571 mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx.
572 *PNAS* 112, 2817–2822.

573 Drakesmith, H., and Prentice, A.M. (2012). Hepcidin and the iron-infection axis. *Science* 338,
574 768–772.

575 Drakesmith, H., Nemeth, E., and Ganz, T. (2015). Ironing out ferroportin. *Cell Metab* 22,
576 777–787.

577 Egeli, A.K., Framstad, T., and Morberg, H. (1998). Clinical biochemistry, haematology and
578 body weight in piglets. *Acta Vet Scand* 39, 381–393.

579 Evrard, M., Kwok, I.W.H., Chong, S.Z., Teng, K.W.W., Becht, E., Chen, J., Sieow, J.L., Penny,
580 H.L., Ching, G.C., Devi, S., et al. (2018). Developmental Analysis of Bone Marrow Neutrophils
581 Reveals Populations Specialized in Expansion, Trafficking, and Effector Functions. *Immunity*
582 48, 364-379.e8.

583 Frost, J.N., Tan, T.K., Abbas, M., Wideman, S.K., Bonadonna, M., Stoffel, N.U., Wray, K.,
584 Kronsteiner, B., Smits, G., Campagna, D.R., et al. (2021). Hepcidin-Mediated Hypoferremia
585 Disrupts Immune Responses to Vaccination and Infection. *Med (N Y)* 2, 164-179.e12.

586 Gupta, S., and Kaplan, M.J. (2021). Bite of the wolf: innate immune responses propagate
587 autoimmunity in lupus. *J Clin Invest* 131.

588 Hassan, T.H., Badr, M.A., Karam, N.A., Zkaria, M., El Saadany, H.F., Abdel Rahman, D.M.,
589 Shahbah, D.A., Al Morshedy, S.M., Fathy, M., Esh, A.M.H., et al. (2016). Impact of iron
590 deficiency anemia on the function of the immune system in children. *Medicine (Baltimore)*
591 95, e5395.

592 Hettinger, J., Richards, D.M., Hansson, J., Barra, M.M., Joschko, A.-C., Krijgsveld, J., and
593 Feuerer, M. (2013). Origin of monocytes and macrophages in a committed progenitor. *Nat*
594 *Immunol* 14, 821–830.

595 Kenny, E.F., Herzig, A., Krüger, R., Muth, A., Mondal, S., Thompson, P.R., Brinkmann, V.,
596 Bernuth, H. von, and Zychlinsky, A. (2017). Diverse stimuli engage different neutrophil
597 extracellular trap pathways. *ELife* 6, e24437.

598 Kono, M., Saigo, K., Yamamoto, S., Shirai, K., Iwamoto, S., Uematsu, T., Takahashi, T., Imoto,
599 S., Hashimoto, M., Minami, Y., et al. (2016). Iron-chelating agent, deferasirox, inhibits
600 neutrophil activation and extracellular trap formation. *Clin Exp Pharmacol Physiol* 43, 915–
601 920.

602 Kopf, M., Brombacher, F., Hodgkin, P.D., Ramsay, A.J., Milbourne, E.A., Dai, W.J., Ovington,
603 K.S., Behm, C.A., Köhler, G., Young, I.G., et al. (1996). IL-5-Deficient Mice Have a
604 Developmental Defect in CD5+ B-1 Cells and Lack Eosinophilia but Have Normal Antibody
605 and Cytotoxic T Cell Responses. *Immunity* 4, 15–24.

606 Kunireddy, N., Jacob, R., Khan, S.A., Yadagiri, B., Sai Baba, K.S.S., Rajendra Vara Prasad, I.,
607 and Mohan, I.K. (2018). Hepcidin and Ferritin: Important Mediators in Inflammation
608 Associated Anemia in Systemic Lupus Erythematosus Patients. *Indian J Clin Biochem* 33,
609 406–413.

610 Kurtoglu, E., Ugur, A., Baltaci, A.K., Mogolkoc, R., and Undar, L. (2003). Activity of neutrophil
611 NADPH oxidase in iron-deficient anemia. *Biol Trace Elem Res* 96, 109–115.

612 Li, Y., and Trush, M.A. (1998). Diphenyleneiodonium, an NAD(P)H oxidase inhibitor, also
613 potently inhibits mitochondrial reactive oxygen species production. *Biochem Biophys Res*
614 *Commun* 253, 295–299.

615 Lieschke, G.J., Grail, D., Hodgson, G., Metcalf, D., Stanley, E., Cheers, C., Fowler, K.J., Basu,
616 S., Zhan, Y.F., and Dunn, A.R. (1994). Mice lacking granulocyte colony-stimulating factor
617 have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and
618 impaired neutrophil mobilization. *Blood* 84, 1737–1746.

619 Littwitz-Salomon, E., Moreira, D., Frost, J.N., Choi, C., Liou, K.T., Ahern, D.K., O'Shaughnessy,
620 S., Wagner, B., Biron, C.A., Drakesmith, H., et al. (2021). Metabolic requirements of NK cells
621 during the acute response against retroviral infection. *Nat Commun* 12, 5376.

622 Lood, C., Blanco, L.P., Purmalek, M.M., Carmona-Rivera, C., De Ravin, S.S., Smith, C.K.,
623 Malech, H.L., Ledbetter, J.A., Elkon, K.B., and Kaplan, M.J. (2016). Neutrophil extracellular
624 traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like
625 disease. *Nat Med* 22, 146–153.

626 Lopes, N., McIntyre, C., Martin, S., Raverdeau, M., Sumaria, N., Kohlgruber, A.C., Fiala, G.J.,
627 Agudelo, L.Z., Dyck, L., Kane, H., et al. (2021). Distinct metabolic programs established in the
628 thymus control effector functions of $\gamma\delta$ T cell subsets in tumor microenvironments. *Nat*
629 *Immunol* 22, 179–192.

630 Malerba, M., Louis, S., Cuvellier, S., Shambat, S.M., Hua, C., Gomart, C., Fouet, A., Ortonne,
631 N., Decousser, J.-W., Zinkernagel, A.S., et al. (2020). Epidermal hepcidin is required for
632 neutrophil response to bacterial infection. *J Clin Invest* 130, 329–334.

633 Manz, M.G., and Boettcher, S. (2014). Emergency granulopoiesis. *Nat Rev Immunol* 14, 302–
634 314.

635 Monteith, A.J., and Skaar, E.P. (2021). The impact of metal availability on immune function
636 during infection. *Trends in Endocrinology & Metabolism*.

637 Muckenthaler, M.U., Rivella, S., Hentze, M.W., and Galy, B. (2017). A Red Carpet for Iron
638 Metabolism. *Cell* 168, 344–361.

639 Paino, I.M.M., Miranda, J.C., Marzocchi-Machado, C.M., Cesarino, E.J., de Castro, F.A., and
640 de Souza, A.M. (2009). Phagocytosis, oxidative burst, and produced reactive species are
641 affected by iron deficiency anemia and anemia of chronic diseases in elderly. *Biol Trace*
642 *Elem Res* 129, 116–125.

643 Papayannopoulos, V. (2018). Neutrophil extracellular traps in immunity and disease. *Nat*
644 *Rev Immunol* 18, 134–147.

645 Petzer, V., Tymoszuk, P., Asshoff, M., Carvalho, J., Papworth, J., Deantonio, C., Bayliss, L.,
646 Wake, M.S., Seifert, M., Brigo, N., et al. (2020). A fully human anti-BMP6 antibody reduces
647 the need for erythropoietin in rodent models of the anemia of chronic disease. *Blood* 136,
648 1080–1090.

649 Renassia, C., Louis, S., Cuvellier, S., Boussetta, N., Deschemin, J.-C., Borderie, D., Bailly, K.,
650 Poupon, J., Dang, P.M.-C., El-Benna, J., et al. (2020). Neutrophils from hereditary
651 hemochromatosis patients are protected from iron excess and are primed. *Blood Adv* 4,
652 3853–3863.

653 Rieckmann, J.C., Geiger, R., Hornburg, D., Wolf, T., Kveler, K., Jarrossay, D., Sallusto, F., Shen-
654 Orr, S.S., Lanzavecchia, A., Mann, M., et al. (2017). Social network architecture of human
655 immune cells unveiled by quantitative proteomics. *Nat Immunol* 18, 583–593.

656 Riffelmacher, T., Clarke, A., Richter, F.C., Stranks, A., Pandey, S., Danielli, S., Hublitz, P., Yu,
657 Z., Johnson, E., Schwerd, T., et al. (2017). Autophagy-Dependent Generation of Free Fatty
658 Acids Is Critical for Normal Neutrophil Differentiation. *Immunity* 47, 466-480.e5.

659 Rubinstein, M.P., Salem, M.L., Doedens, A.L., Moore, C.J., Chiuzan, C., Rivell, G.L., Cole, D.J.,
660 and Goldrath, A.W. (2013). G-CSF/anti-G-CSF antibody complexes drive the potent recovery
661 and expansion of CD11b+Gr-1+ myeloid cells without compromising CD8+ T cell immune
662 responses. *Journal of Hematology & Oncology* 6, 75.

663 Shah, A., Frost, J.N., Aaron, L., Donovan, K., Drakesmith, H., McKechnie, S.R., Stanworth, S.J.,
664 and Collaborators (2020). Systemic hypoferremia and severity of hypoxic respiratory
665 failure in COVID-19. *Critical Care* 24, 320.

666 Stark, M.A., Huo, Y., Burcin, T.L., Morris, M.A., Olson, T.S., and Ley, K. (2005). Phagocytosis
667 of Apoptotic Neutrophils Regulates Granulopoiesis via IL-23 and IL-17. *Immunity* 22, 285–
668 294.

669 Stefanova, D., Raychev, A., Arezes, J., Ruchala, P., Gabayan, V., Skurnik, M., Dillon, B.J.,
670 Horwitz, M.A., Ganz, T., Bulut, Y., et al. (2017). Endogenous hepcidin and its agonist mediate
671 resistance to selected infections by clearing non-transferrin-bound iron. *Blood* 130, 245–
672 257.

673 Sumimoto, H. (2008). Structure, regulation and evolution of Nox-family NADPH oxidases
674 that produce reactive oxygen species. *The FEBS Journal* 275, 3249–3277.

675 Teh, M.R., Frost, J.N., Armitage, A.E., and Drakesmith, H. (2021). Analysis of Iron and Iron-
676 Interacting Protein Dynamics During T-Cell Activation. *Frontiers in Immunology* 12, 2943.

677 Völlger, L., Akong-Moore, K., Cox, L., Goldmann, O., Wang, Y., Schäfer, S.T., Naim, H.Y.,
678 Nizet, V., and von Köckritz-Blickwede, M. (2016). Iron-chelating agent desferrioxamine
679 stimulates formation of neutrophil extracellular traps (NETs) in human blood-derived
680 neutrophils. *Biosci Rep* 36, e00333.

681 Wang, C.-Y., and Babitt, J.L. (2019). Liver iron sensing and body iron homeostasis. *Blood* 133,
682 18–29.

683 Weiss, G., Ganz, T., and Goodnough, L.T. (2019). Anemia of inflammation. *Blood* 133, 40–50.

684 Williams, A.M., Ladva, C.N., Leon, J.S., Lopman, B.A., Tangpricha, V., Whitehead, R.D.,
685 Armitage, A.E., Wray, K., Morovat, A., Pasricha, S.-R., et al. (2019). Changes in micronutrient
686 and inflammation serum biomarker concentrations after a norovirus human challenge. *Am J*
687 *Clin Nutr.*

688 Xavier-Ferrucio, J., Scanlon, V., Li, X., Zhang, P.-X., Lozovatsky, L., Ayala-Lopez, N., Tebaldi, T.,
689 Halene, S., Cao, C., Fleming, M.D., et al. (2019). Low iron promotes megakaryocytic
690 commitment of megakaryocytic-erythroid progenitors in humans and mice. *Blood* 134,
691 1547–1557.

692 Yona, S., Kim, K.-W., Wolf, Y., Mildner, A., Varol, D., Breker, M., Strauss-Ayali, D., Viukov, S.,
693 Guilliams, M., Misharin, A., et al. (2013). Fate Mapping Reveals Origins and Dynamics of
694 Monocytes and Tissue Macrophages under Homeostasis. *Immunity* 38, 79–91.

695 Yu, Y., Kovacevic, Z., and Richardson, D.R. (2007). Tuning cell cycle regulation with an iron
696 key. *Cell Cycle* 6, 1982–1994.

697

698

699

Figure S1

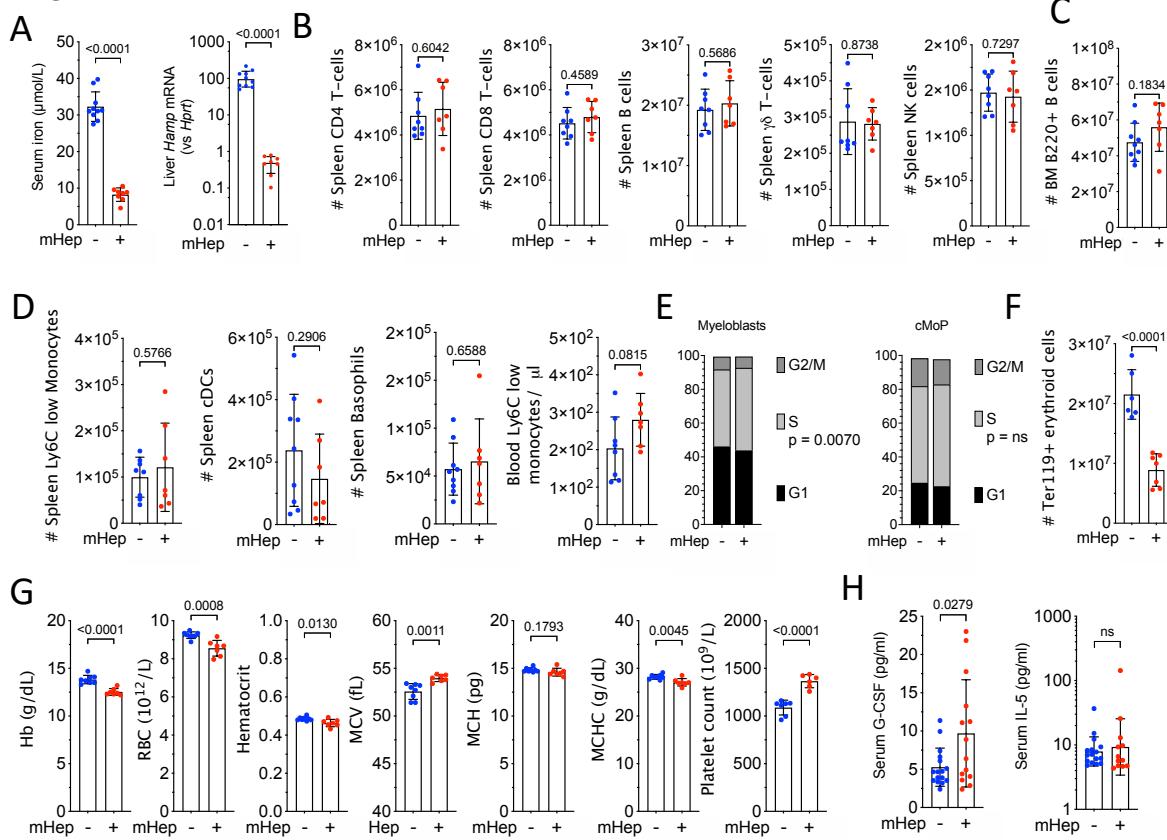
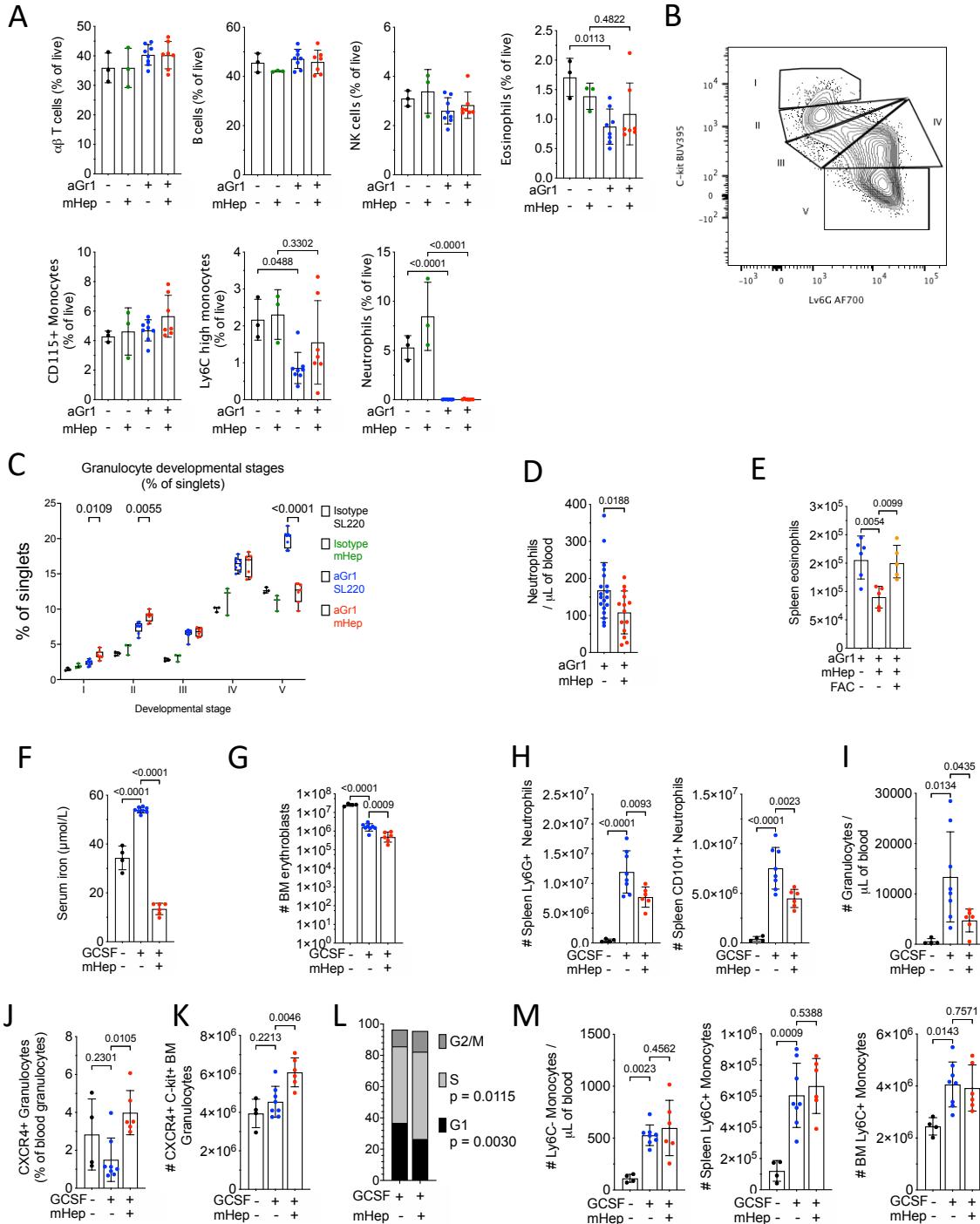



Figure S1

- Serum iron and liver hepcidin mRNA in experiment described in Fig 1C, Representative of two independent experiments. Unpaired T-test. Serum iron, mean ± SD. Hepcidin mRNA, geometric mean ± geometric SD.
- Number of splenic lymphocyte in experiment described in Fig 1C. Representative of two independent experiments. Unpaired T-test. Mean ± SD.
- Number of B220+ B cells in the bone marrow in experiment described in Fig 1C. Unpaired T-test. Mean ± SD.
- Number of specified splenic and blood myeloid cells in experiment described in Fig 1C. Representative of two independent experiments. Unpaired T-test. Mean ± SD.
- Cell cycle distribution of myeloblast and cMoP in experiment described in Fig 1C. Representative of two independent experiments. Two way ANOVA, mean proportions of the whole.
- Number of Ter119+ erythroid cells in the bone marrow in experiment described in Fig 1C. Unpaired T-test. Mean ± SD.
- Red cell indices and platelet count were measured by sysmex in experiment described in Fig 1C. Unpaired T-test. Mean ± SD.
- Serum G-CSF and IL-5 were measured by Luminex in experiment described in Fig 1C. 2-way ANOVA blocking on experimental repeat and reporting p-value treatment effect, combination of two independent experiments. G-CSF, mean ± SD. IL-5, geometric mean ± geometric SD.

Figure S2

Figure S2

- A) Frequency of blood leukocyte subsets as a % of live events 24hrs after 10 μ g of aGr1 or isotype control as part of experiment outlined in Fig 2A. Two way ANOVA. Mean \pm SD
- B) Gating scheme to delineate stages of granulocyte differentiation (gated on Ly6C+, CD11b+, CD115- cells) in Fig 2B. From stage I (myeloblasts) to stage IV (mature neutrophils).
- C) Bone marrow granulocyte differentiation trajectory in mice treated as in Fig S2A, representative to two independent experiments. Two way ANOVA. Mean, quartiles and range.
- D) Blood neutrophil numbers in mice treated as in scheme 2A (combined from three independent experiments). Unpaired T-test. Mean \pm SD
- E) Spleen Eosinophil numbers in mice treated as in scheme 2C. One way ANOVA. Mean \pm SD
- F) Serum iron concentrations in experiment scheme 2E. One way ANOVA. Mean \pm SD
- G) Bone marrow CD71+ TER119+ erythroblast numbers in scheme 2E. One way ANOVA. Geo Mean \pm GeoSD
- H) Spleen Neutrophil numbers in experiment scheme 2E. One way ANOVA. Mean \pm SD
- I) Blood Ly6C int CD11b+ granulocyte numbers in experiment scheme 2E. One way ANOVA. Mean \pm SD
- J) % of granulocytes showing an immature CXCR4+ phenotype in experiment scheme 2E. One way ANOVA. Mean \pm SD
- K) Number of Bone marrow CXCR4+ c-kit+ neutrophil progenitors in experiment scheme 2E. One way ANOVA. Mean \pm SD
- L) Cell cycle distribution of CXCR4+ c-kit+ neutrophil progenitors in experiment scheme 2E. Two way ANOVA. Mean proportion of whole.
- M) Monocyte numbers in blood, spleen and bone marrow in experiment scheme 2E. One way ANOVA. Mean \pm SD

Figure S3 Functionality of myeloid cells in serum iron deficiency

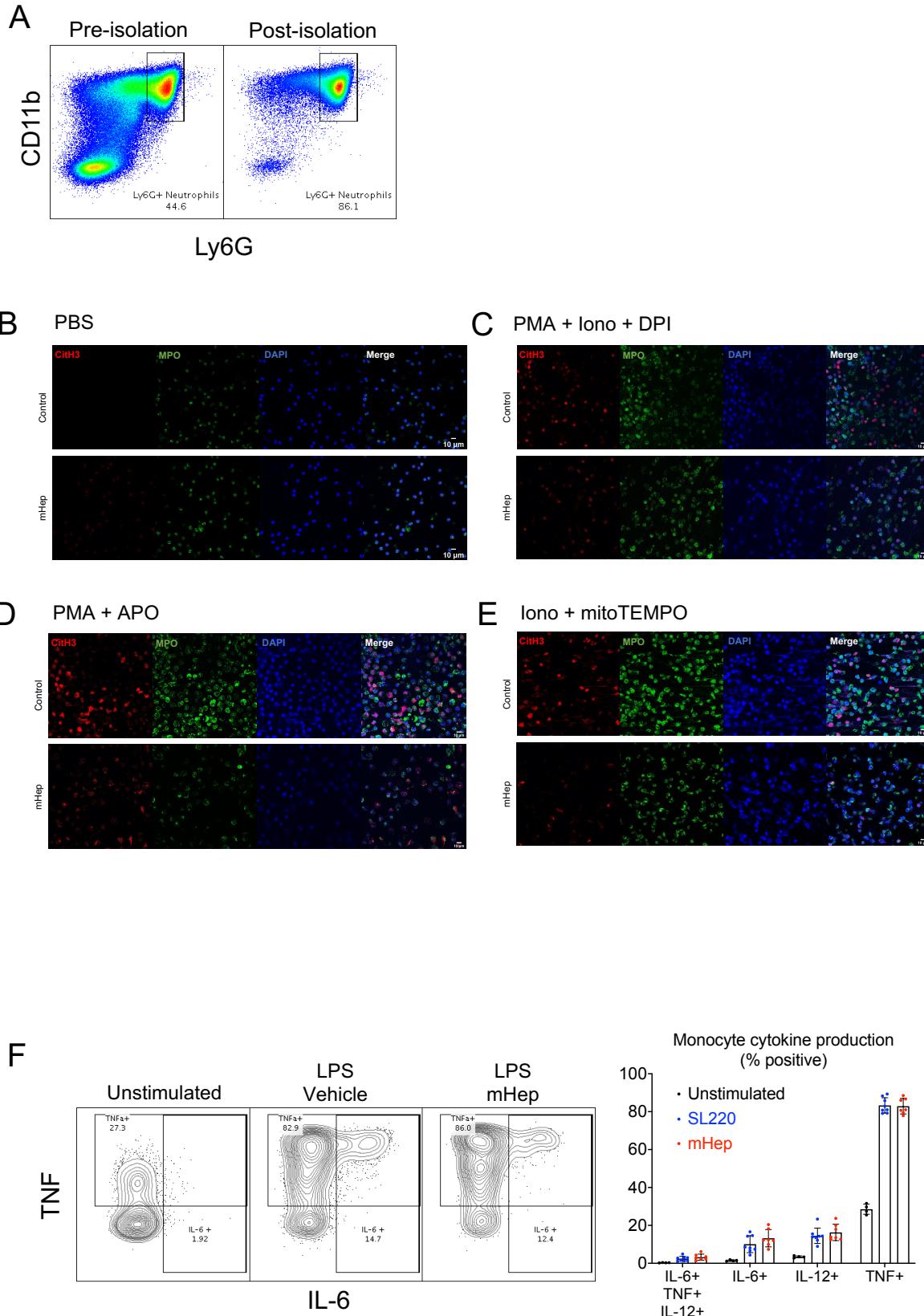


Figure S3

A) Enrichment purity of bone marrow Ly6G+ neutrophils (obtained from mice treated as in experiment scheme Fig 2A)

Representative microscopy images of NETosis taken at 20X for the following conditions

- B) PBS treatment
- C) PMA, Ionomycin and DPI
- D) PMA and apocyanin (APO)
- E) Ionomycin and mitoTEMPO

B) Intracellular cytokine staining within Ly6C+ CD11b+ monocytes after *ex vivo* LPS stimulation of whole splenocytes from mice treated as in experiment scheme 1C. One way ANOVA. Mean \pm SD

711

Figure S4 Counteracting inflammatory hepcidin induction improves neutrophil production

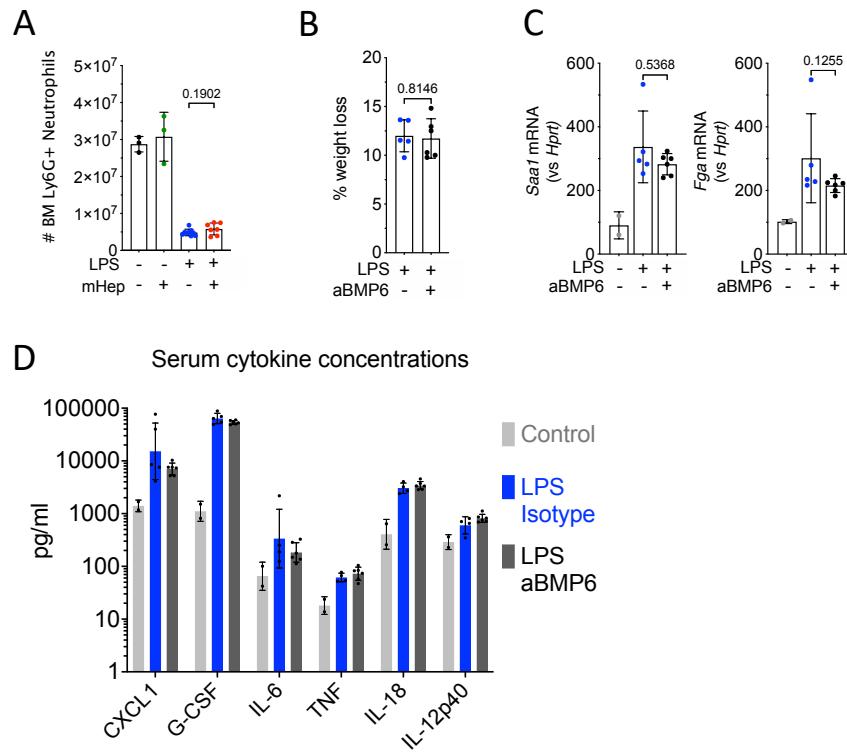


Figure S4

- A) BM neutrophil numbers from mice treated as in 4A. t-test. Mean \pm SD.
- B) LPS induced weight loss from mice treated as in 4C. t-test. Mean \pm SD. Representative of three independent experiments
- C) Liver *Saa1* and *Fga* expression (Mann-Whitney test) from mice treated as in 4C. Mean \pm SD. Non LPS treated control group was treated with aGr1 24hrs prior to culling to reflect the systemic iron environment prior to LPS injection. Representative of two independent experiments.
- D) Serum cytokines measured by Legendplex from mice treated as in 4C. Mixed-effects model. Geometric Mean \pm Geo SD.

712