

1 **Title: Maintaining hypoxia environment of subchondral bone alleviates**
2 **osteoarthritis progression**

3 **Authors:** Hao Zhang^{1,2*}, Lipeng Wang^{2*}, Jin Cui^{1,2*}, Sicheng Wang^{2,3*}, Yafei Han², Hongda
4 Shao⁴, Cheng Wang⁴, Yan Hu², Xiaoqun Li^{1,5}, Qirong Zhou¹, Jiawei Guo^{1,2}, Xinchen Zhuang¹,
5 Shihao Sheng¹, Tao Zhang¹, Dongyang Zhou², Jiao Chen², Fuxiao Wang², Qianmin Gao²,
6 Yingying Jing^{2†}, Xiao Chen^{1†}, Jiacan Su^{1,2†}

7

8 **Affiliations:**

9 ¹Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai
10 200433, China.

11 ²Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.

12 ³Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai 200941, China.

13 ⁴Department of Nuclear Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of
14 Medicine, Shanghai 200127, China.

15 ⁵Department of Orthopedics, No. 929 Hospital, Naval Medical University, Shanghai 200433, China.

16 *These authors contributed equally to this work.

17 †Corresponding author. Email: jingy4172@shu.edu.cn (Y.Y.J.); sirchenxiao@126.com (X.C.);
18 drsujiacan@163.com (J.C.S.)

19

20 **Teaser:**

21 Inhibiting subchondral osteoclastogenesis alleviates OA progression via maintaining joint hypoxia
22 environment.

23

24 **Abstract:** Abnormal subchondral bone remodeling featured by over-activated osteoclastogenesis
25 leads to articular cartilage degeneration and osteoarthritis (OA) progression, but the mechanism is
26 still unclear. In this study, we used lymphocyte cytosolic protein 1 (*Lcp1*) knock-out mice to
27 suppress subchondral osteoclast formation in mice OA model with anterior cruciate ligament
28 transection (ACLT) and *Lcp1*^{-/-} mice showed decreased bone remodeling and sensory innervation
29 in subchondral bone accompanied by retarded cartilage degeneration. For mechanisms, in wildtype
30 mice with ACLT the activated osteoclasts in subchondral bone induced type-H vessels and elevated
31 oxygen concentration which ubiquitylated hypoxia-inducible factor 1α (HIF-1α), vital for
32 maintaining chondrocyte homeostasis in articular chondrocytes and led to cartilage degeneration.
33 Deletion of *Lcp1* impeded osteoclast-mediated angiogenesis, which maintained the low levels of
34 oxygen partial pressure (pO₂) in subchondral bone as well as the whole joint and delayed the OA
35 progression. Stabilization of HIF-1α delayed cartilage degeneration and knockdown of *Hif1a*
36 abolished the protective effects of *Lcp1* knockout. Notably, we identified a novel subgroup of
37 hypertrophic chondrocytes highly associated with OA by single cell sequencing analysis of human
38 articular chondrocytes. Lastly, we showed that Oroxylin A, an *Lcp1*-encoded protein L-plastin
39 (LPL) inhibitor, could alleviate OA progression. In conclusion, maintaining hypoxic environment
40 in subchondral bone is an attractive strategy for OA treatment.

41 **Key words:** Osteoarthritis, Chondrocytes, Osteoclasts, angiogenesis, Hypoxia-Inducible Factor 1.

42 **INTRODUCTION**

43 OA is a complex disease affecting the whole joint, characterized by cartilage degeneration,
44 aberrant bone remodeling, osteophyte formation and joint inflammation (1). As the leading cause
45 of disability and pain, OA affects over 300 million people worldwide (2, 3). The current treatment
46 algorithm including self-education and cyclooxygenase-2 (COX-2) inhibitors mainly helps symptom
47 alleviation and no disease-modifying osteoarthritis drug (DMOAD) is available due to the limited
48 understanding of OA pathogenesis (4).

49 OA is featured by subchondral bone changes in clinical findings (5). Subchondral bone subjacent
50 to cartilage provides nutritional and mechanical support for cartilage (6). Subchondral bone marrow
51 edema, formation of osteocysts and sclerosis could be found in most OA patients. Subchondral
52 bone marrow edema first appears in MRI images followed by osteocyst formation in early OA
53 patients and the subchondral bone marrow edema area in MRI corresponds to the degenerated
54 cartilage above (7, 8). The roles of subchondral bone in OA progression remain unclear.

55 Over-activated osteoclasts in subchondral bone are closely associated with OA progression (9).
56 Physiologically the bone remodeling activity and number of osteoclasts are strictly controlled in
57 the subchondral bone and the number of osteoclasts dramatically increases at the early stage of OA
58 mice model (10, 11). Several hypotheses regarding osteoclast roles in OA have been proposed.
59 Osteoclast precursors migrate into the cartilage layer and directly contact with hypertrophic
60 chondrocytes to degrade the osteochondral junction and articular cartilage (12). Growth factors
61 released from the bone matrix through osteoclastic bone resorption including transforming growth
62 factor beta 1 (TGF- β 1), insulin-like growth factor 1 (IGF-1), platelet-derived growth factor BB
63 (PDGF-BB) regulate chondrocyte metabolism (13, 14). Nevertheless, the number of osteoclasts
64 significantly drops after reaching the peak in OA model, the cartilage degeneration continuously
65 deteriorates. Thus, the roles of osteoclasts in crosstalk between subchondral bone and chondrocytes
66 remain mysterious.

67 Due to lack of blood vessels, subchondral bone and cartilage remain hypoxic, which is vital for
68 chondrocyte homeostasis (15). Hypervascularization in subchondral bone is the hallmark and drug
69 target of OA progression. Angiogenesis stimulated by elevated PDGF-BB in subchondral bone
70 contributes to osteoarthritis development (13). Administration of bevacizumab, a vascular
71 endothelial growth factor (VEGF) blocker, inhibits angiogenesis and mitigates OA (13). Thus, we
72 hypothesize that blood vessels formation induced by osteoclasts in subchondral bone in early stage
73 of OA alters the joint hypoxia environment and contributes to sustained cartilage degeneration.

74 In this study, we used *Lcp1* knockout mice with impaired osteoclast formation as we previously
75 reported and established OA model with ACLT (18). *Lcp1*^{-/-} mice after ACLT showed preserved
76 articular cartilage and delayed OA progression. Mechanistically, angiogenesis by osteoclast
77 activation elevated the concentration of O₂ in subchondral bone and cartilage. The disrupted joint
78 hypoxia environment with elevated oxygen partial pressure promoted chondrocytes degeneration
79 by abolishing HIF-1 α functions and stabilizing Hif-1 α functions prevented cartilage destruction.

80

81 **RESULTS**

82 **L-plastin upregulated in subchondral bone correlates with increased osteoclast activity in 83 early OA**

84 To investigate the involvement of osteoclasts and LPL in OA, we analyzed the Micro-CT and knee
85 section of wildtype (WT) mice after ACLT at different time points. During OA progression, the
86 thickness of hyaline cartilage (HC) decreased while the thickness of calcified cartilage (CC)
87 gradually duplicated and ratio of HC/CC decreased to average 0.81 at 8 weeks (Fig.1, A and B).
88 The cartilage degeneration kept progressing during 8 weeks with the arising Osteoarthritis Research
89 Society International (OARSI) grade (Fig.1, C and D). The bone mass of subchondral bone

90 decreased at 2 weeks after ACLT with bone volume/total volume (BV/TV) ranging from 34.3%-
91 55.8% but BV/TV increased to 56.6%-76.2% at 4 and 8 weeks after ACLT (Fig.1, E to G).
92 Correspondingly, the number of tartrate resistant acid phosphatase (TRAP) positive cells increased
93 rapidly during the first two weeks after ACLT to the peak of average 13.4 cells per mm² and
94 decreased after 2 weeks (Fig.1, H and I). LPL is exclusively expressed in myeloid lineage cells,
95 and vital for osteoclast fusion and mature osteoclast formation (18). Herein, the
96 immunohistochemistry (IHC) results showed that the number of LPL⁺ cells in subchondral bone
97 was consistent with that of TRAP⁺ cells, reaching the peak of average 10.8 cells/mm² (Fig.1, J and
98 K). No LPL⁺ cell was observed in cartilage, few were found surrounding subchondral trabecular
99 bone and abundant were detected around the primary spongiosa near epiphysis (fig.S1A). Two
100 weeks after ACLT, a significantly increased number of LPL⁺ cells were observed around the
101 subchondral trabecular bone, but not in cartilage (fig.S1B). Taken together, under physiological
102 condition, nearly no LPL⁺ or TRAP⁺ cells could be detected in subchondral bone, while 2 weeks
103 after ACLT the number of LPL⁺ and TRAP⁺ cells is significantly increased, indicating an
104 accelerated bone remodeling in subchondral bone in early stage of OA.

105

106 ***Lcp1* knockout reduces subchondral bone resorption and ameliorates articular cartilage
107 degeneration**

108 To explore the role of LPL in OA progression, we generated *Lcp1*^{-/-} mice. Micro-CT results showed
109 that the BV/TV in subchondral bone marrow of *Lcp1* deletion mice significantly increased to
110 average 75.1% and 81.9% compared to their littermate average 55.8% and 67.4% at 2 and 4 weeks
111 (Fig.2, A and B). There was no statistical difference of subchondral bone plate thickness between
112 the two groups (Fig.2C). As our previous study showed, the number of TRAP⁺ cells in subchondral

113 bone marrow in *Lcp1* deletion mice was almost half of numbers (53.7% and 54.2%) in WT group
114 at 2 and 4 weeks after ACLT (Fig.2, D and E). The results of Safranin O/Fast green staining showed
115 that the OARSI grade increased at 4 and 8 weeks after ACLT in WT mice. *Lcp1* knockout
116 significantly decreased 1.25 and 2.25 grade compared with WT mice (Fig.2, F and G). The ratio of
117 HC/CC was 1.42 and 1.71-fold increased in *Lcp1* knockout mice at 4 and 8 weeks after ACLT than
118 WT mice (fig.S2, A and B). The area of COL II⁺ (Fig.2, H and I) and ACAN⁺ region (fig.S2, C and
119 D) in *Lcp1* knockout mice were 10.5% to 21.6% higher than in WT mice. The area of MMP13⁺
120 (Fig.2, J and K), ADAMTS5⁺ (fig.S2, E and F) and COL X⁺ region (fig.S2, G and H) in *Lcp1*
121 knockout mice were 3% to 24.5% decreased compared to that of WT mice after ACLT. As
122 osteoclasts mediated sensory nerve infiltration in subchondral bone and pain in OA, we evaluated
123 the effects of *Lcp1* deletion in sensory innervation and pain (19). The results showed that the level
124 of NETRIN-1, an essential protein for neural development, increased at 2 weeks after ACLT in
125 WT mice. However, the expression of NETRIN-1 in subchondral area was not observed in *Lcp1*
126 knockout mice (fig.S3, A and B). Correspondingly, the number of CGRP⁺ nerve fibers in *Lcp1*^{-/-}
127 mice were 0.72 and 0.57-fold lower when compared to their littermates (fig.S3, C and D). The von
128 Frey test showed that the threshold of paw withdrawal was 1.7 to 2.6-fold increase in *Lcp1*
129 knockout mice than control mice 3 weeks after ACLT (fig.S3E). To sum up, *Lcp1* knockout
130 alleviates OA progression featured by retarded subchondral bone resorption, alleviated articular
131 cartilage degeneration, and improved pain.

132 ***Lcp1* knockout impairs angiogenesis and maintains a low pO₂ of subchondral bone and**
133 **cartilage**

134 Under physiological condition, due to lack of blood vessels, the O₂ concentration in cartilage is
135 strictly maintained at a very low level, for hypoxia was vital for chondrocyte survival and

136 homeostasis (20). As osteoclasts mediate type-H vessel formation in subchondral bone after ACLT
137 which provides high oxygen content (21). We hypothesized that *Lcp1* knockout inhibited
138 osteoclasts induced angiogenesis and blocked the diffusion of oxygen from subchondral bone to
139 cartilage. To test this hypothesis, we first performed the microangiography of subchondral bone
140 and the results showed that the volume of vessel increased 1.56 and 1.62-fold in WT mice at 4 and
141 8 weeks after ACLT. In contrast, the vessel volume did not change in *Lcp1*^{-/-} mice after ACLT
142 (0.95 and 1.14-fold compared to sham group) (Fig.3, A and B). Next, we evaluated the level of
143 CD31^{hi}EMCN^{hi} vessels. Consistent with the level of vessel volume, the number of CD31 and
144 EMCN positive cells significantly increased to average 20.4 and 23.1 per mm² in WT mice at 4 and
145 8 weeks after ACLT but increased to average 12.9 and 15.2 per mm² in *Lcp1* deletion after ACLT
146 (Fig.3, C and D). Next, we measured hypoxic status in subchondral bone and cartilage using
147 hypoxia probe. The results of pimonidazole immunostaining, an indicator of hypoxia, revealed that
148 the fluorescence intensity of pimonidazole decreased 33.2% and 81.0% in WT mice at 4 and 8
149 weeks after ACLT. The fluorescence intensity was maintained in *Lcp1*^{-/-} mice, remained 93.6%
150 and 56.4% intensity of sham group at 4 and 8 weeks (Fig.3, E and F). To further confirm these
151 results, we directly measured the O₂ levels in the joint in live mice with ¹⁸F-fluoromisonidazole(¹⁸F-
152 FMISO)-based PET/CT. Higher ¹⁸F-FMISO intake indicated lower partial pressure of oxygen (pO₂)
153 in tissue. The ratio of right (ACLT) and left knee (Sham) uptake of ¹⁸F-FMISO in WT mice was
154 lower than *Lcp1*^{-/-} mice from 2 weeks after ACLT. At 8 weeks, uptake of ¹⁸F-FMISO in WT right
155 knee were only 57% to 68% of left knee but ¹⁸F-FMISO uptake in *Lcp1*^{-/-} mice right knee was 76%
156 to 84% of normal side, indicating the upregulation of pO₂ in OA progression was retarded after
157 *Lcp1* knockout (Fig.3, G and H). Taken together, *Lcp1* knockout impedes the formation of type-H
158 vessels and maintain the hypoxic environment in subchondral bone and cartilage.

159

160 **Hypoxic environment is vital for cartilage maintenance**

161 Next, we explored the mechanism of how pO₂ affects cartilage degeneration. We hypothesized that
162 the O₂ affected cartilage chondrocytes through *Hif1-α*, a vital transcriptional factor regulated by
163 oxygen for chondrocytes homeostasis. Tang *et al.* performed single-cell RNA sequencing of human
164 OA cartilage and identified seven chondrocyte populations (22). We reanalyzed the database and
165 further divided those cells into six groups (Fig.4A), including fibrocartilage chondrocytes (FCs),
166 OA-associated hypertrophic chondrocytes (OA-HTC), regulatory hypertrophic chondrocytes
167 (rHTC), prehypertrophic chondrocytes (preHTC), homeostatic chondrocytes (HomCs) and
168 proliferative chondrocytes (ProC). We further divided HTC into four clusters (fig.S4A). The results
169 showed that cluster 3 expressed several genes that were responsible for matrix degeneration and
170 endochondral ossification, including *MMP13*, *COL1A1*, *COL10A1*, *RUNX2*, *VEGFC* and *WNT10B*
171 (fig.S4, B-F). Thus, cluster 3 was termed as OA-associated HTC (OA-HTC) which highly
172 expressed *MMP13* and *COL10A1* compared to other subgroups (Fig.4, B and C). GO analysis
173 results showed that OA-HTC participated in replacement ossification, endochondral bone
174 morphogenesis, bone trabecula morphogenesis, embryonic skeletal system development and
175 cartilage development involved in endochondral bone morphogenesis (fig.S5A). KEGG pathway
176 analysis revealed that ECM receptor interaction signaling, and protein digestion and absorption
177 were activated in OA-HTC (fig.S5B). Other clusters of HTCs were defined as regulatory HTC
178 (rHTC) as GO analysis results showed that rHTC regulated calcium channel activity and fatty acid
179 transport (fig.S5A). The GSVA score of different subsets further confirmed that the OA signaling
180 pathway was significantly activated in OA-HTC, more than 1-fold higher than other four groups
181 (Fig.4D). Notably, the HIF1 signaling pathway was downregulated 50% in OA-HTC and FC

182 compared to rHTC, preHTC and ProC, indicating that the downregulation of HIF1 signaling
183 pathway is correlated with OA (Fig.4E).

184 To further confirm that, we collected human articular cartilage in different OARSI grade from
185 patients (Fig.4F). HIF-1 α was abundant in superficial and deep zone in S0 cartilage (80.6% and
186 75.5%), however, the level substantially decreased when OA progressed (Fig.4, G and H). In S2-
187 S4 phases, HIF-1 α expression were hardly detected in cartilage. Similarly, the level of HIF-1 α also
188 decreased after ACLT in WT mice and the knockout of *Lcp1* could alleviate this decline. Positive
189 area of HIF-1 α in *Lcp1* knockout mice were 1.26 and 1.36-fold higher than WT mice at 4 and 8
190 weeks after ACLT (Fig.4, I and J). To sum up, the cartilage degeneration is accompanied by the
191 destruction of hypoxia environment and reduced HIF-1 α functions and we report a new subtype of
192 HTCs associated with OA.

193

194 **Knockdown *Hif 1a* in articular cartilage abolishes protective effect of *Lcp1* knockout**

195 Next, we explored whether *Lcp1* knockout relieved OA progression through inhibiting HIF-1 α
196 degradation. We first confirmed that intra-articular injection of adeno-associated virus (AAV)
197 carrying *Hif1a* knockdown shRNA was capable of knocking down *Hif1a* in WT and *Lcp1*^{-/-} mice
198 with 79.2% to 87.6% rate (Fig.5, A and B). After *Hif1a* knocked down, the OARSI grade
199 significantly increased 1.8 and 2.1-fold compared to negative control (NC) in *Lcp1*^{-/-} mice after
200 ACLT (Fig.5, C and D). The ratio of HC/CC decreased 1.1 and 1.2-fold in *Hif1a* AAV mice at 4
201 and 8 weeks after ACLT compared with NC group (fig.S6, A and B). The area of COL II $^+$ (Fig.5,
202 E and F) and ACAN $^+$ region (fig.S6, C and D) in *Hif1a* AAV mice substantially decreased 7.9% to
203 21.3% compared to NC mice, while the area of MMP13 $^+$ (Fig.5, G and H), ADAMTS5 $^+$ (fig.S6, E
204 and F) and COL X $^+$ region (fig.S6, G and H) raised 1.44 to 1.93-fold compared to NC mice after

205 operation, indicating destruction of hyaline cartilage greater in *Hif1a* AAV group. Then we checked
206 whether *Hif1a* knockdown in cartilage had effects on subchondral bone. The micro-CT results
207 showed that there was no significant difference of the bone volume or subchondral bone plate
208 thickness between *Hif1a* AAV and negative control mice after ACLT (fig.S7, A to C). Also, there
209 was no statistical difference of the number of TRAP⁺ cells in subchondral bone between two groups
210 (fig.S7, D and E), indicating *Hif1a* knockdown in cartilage did not affect protective effect of
211 subchondral bone in *Lcp1* knockout mice. To sum up, silencing HIF-1 α in cartilage abolishes the
212 protective effects of OA progression by *Lcp1* knockout, indicating that inhibiting subchondral bone
213 remodeling alleviates cartilage degeneration through maintaining HIF-1 α functions in
214 chondrocytes.

215

216 **Stabilizing HIF-1 α protects articular cartilage in OA**

217 As HIF-1 α deficiency worsens OA progression, we speculated that stabilizing HIF-1 α could have
218 therapeutic effects on OA. We first confirmed that dimethyloxallyl glycine (DMOG) could
219 preserve 49% to 74% of HIF-1 α in ACLT mice at 4 and 8 weeks (Fig.6, A and B). After
220 intraperitoneal injection of DMOG, the OARSI grade significantly decreased 1.6 and 2.1-fold
221 compared to the vehicle group at 4 and 8 weeks after ACLT (Fig.6, C and D). The ratio of HC/CC
222 increased 1.2 and 1.9-fold in DMOG treatment mice at 4 and 8 weeks compared to the vehicle
223 group after ACLT (fig.S8, A and B). Also, the area of COL II⁺ (Fig.6, E and F) and ACAN⁺ region
224 (fig.S8, C and D) in DMOG group substantially increased 2.6% to 18.1% compared to the vehicle
225 group, and the area of MMP13⁺ (Fig.6, G and H), ADAMTS5⁺ (fig.S8, E and F) and COL X⁺
226 (fig.S8 G and H) decreased 4.7% to 34.7% compared to vehicle mice after operation. Next, we
227 explored whether DMOG had effects on subchondral bone. The results of Micro-CT revealed that

228 there was no significant difference of the bone volume or subchondral bone plate thickness between
229 DMOG and vehicle mice (fig.S9, A to C). Besides, there was no statistical difference of the number
230 of TRAP⁺ cells in subchondral bone between DMOG and vehicle mice with average 7.6 and 8 per
231 mm² at 4 weeks after ACLT (fig.S9, D and E), indicating DMOG had no effects on abnormal bone
232 remodeling in subchondral bone. Above all, stabilizing HIF-1 α in chondrocytes could prevent
233 cartilage degeneration in OA regardless of subchondral bone alterations.

234

235 **Oroxylin A alleviates OA progression in WT mice**

236 As *Lcp1* knockout could inhibit OA progression, we then explored whether LPL could serve as a
237 target for OA treatment. Previously, we found that Oroxylin A (Oxy A) was a specific agent
238 targeting LPL (18). Therefore, we checked if Oxy A could alleviate OA. After Oxy A treatment,
239 the OARSI grade significantly decreased 1.5 and 2.5-fold compared to the vehicle group at 4 and
240 8 weeks after ACLT (Fig.7, A and D). The ratio of HC/CC increased 1.3 and 1.7-fold in Oxy A
241 treatment mice at 4 and 8 weeks compared to the vehicle group after ACLT (fig.S10, A and E).
242 Also, the area of COL II⁺ (Fig.6, B and E) and ACAN⁺ region (fig.S10, B and F) in Oxy A group
243 were improved 11.8%-23.1% compared to the vehicle group. The area of MMP13⁺ region (Fig.7,
244 C and F), ADAMTS5⁺ region (Fig.S10, C and G) and COL X⁺ region (Fig.S10, D and H) decreased
245 4.9% to 37.0% compared to vehicle mice after operation. Next, we explored whether Oxy A had
246 effects on subchondral bone. The results of micro-CT revealed that the bone volume and
247 subchondral bone plate thickness increased at 2 and 4 weeks after ACLT between Oxy A and
248 vehicle mice (fig.S11, A, C and D). The number of TRAP⁺ cells in subchondral bone after Oxy A
249 treatment were 44.8% and 57.1% of vehicle group at 4 and 8 weeks after ACLT (fig.S11 B and E).
250 We evaluated the effects of Oxy A on sensory innervation and pain. The results showed that the

251 level of NETRIN-1 increased at 2 weeks after ACLT in vehicle mice and Oxy A decreased 1.2-
252 fold of the expression of NETRIN-1 at same time (fig.S12, A and C). Consequently, the number of
253 CGRP⁺ nerve fibers decreased 1.3 and 1.4-fold in Oxy A mice compared to the vehicle (fig.S12, B
254 and D). The von Frey test showed that the threshold of paw withdrawal was higher in Oxy A mice
255 than vehicle mice from 4 weeks to 7 weeks (fig.S12E). Above all, targeting LPL is a promising
256 manner to protect subchondral bone and cartilage in OA.

257

258 **DISCUSSION**

259 Subchondral bone and cartilage are tightly integrated to form osteochondral units and the
260 relationship between subchondral bone destruction and cartilage degeneration has always been a
261 controversial issue (23). Under physiological conditions, subchondral bone maintains a low bone
262 turnover rate and stable microstructure to bear joint load through strictly inhibiting osteoclast
263 formation (24). In early OA, abnormal biomechanical and biochemical factors recruit and promote
264 osteoclast differentiation, which results in enhanced bone turnover rate with subchondral bone plate
265 thinning and trabecular bone thickness decreasing (25). Conversely, the late OA shows subchondral
266 bone sclerosis characterized by subchondral bone plate and trabecular bone thickening due to
267 excess bone formation (26). It is very mysterious and intriguing that the osteoclast shows and
268 disappears, but the cartilage continuously undergoes degeneration. Based on the above, we first
269 hypothesized that osteoclasts introduced certain factors which contribute to sustained cartilage
270 deterioration even without osteoclasts.

271 Studies showed that targeting osteoclast abnormal activation could block abnormal subchondral
272 bone remodeling in the very beginning and protect articular cartilage degeneration (27-30).
273 Previously we reported that LPL, an actin-bundling protein, is indispensable for osteoclast fusion

274 and resorption (18). In this study, we first used *Lcp1* knockout mice and performed ACLT to
275 observe whether *Lcp1* knockout could prevent OA progression. Interestingly, although *Lcp1*
276 knockout significantly increased bone volume in bone marrow cavity, it did not affect subchondral
277 bone due to the very low bone turnover rate. To exclude the possible interference of chondrocytes,
278 we showed that LPL was not expressed by chondrocytes. As previously reported, retarding
279 osteoclastogenesis in subchondral bone inhibited the bone turnover rate in early stage of OA and
280 protected the cartilage from degeneration.

281 How osteoclasts initiate cartilage degeneration is still unclear. In early OA subchondral bone
282 shows increased bone resorption but in advanced OA it shows abnormal bone formation closely
283 correlated to cartilage degeneration believed similar to endochondral ossification (31, 32). Dou *et*
284 *al.* proposed the conception of ‘Osteoclast (OC)-Chondrocyte (CC) crosstalk’ and described
285 several pathways by which these cells might communicate: 1) OC and CC interact via secreted
286 cytokines crossing microsplits and vessels. 2) OC precursors could migrate to the cartilage by
287 invasive vascularization. 3) Mature OC move into subchondral bone and overlying cartilage and
288 interplay with CC in the cartilage area. 4) Subchondral bone deterioration mediated by OC transfers
289 shear forces to the cartilage and subsequently results in aberrant chondrocyte metabolism (33).
290 However, no hypothesis could fully explain all. As type-H vessel couples bone resorption and
291 formation (34), we considered that subchondral bone type-H vessels could link osteoclasts,
292 osteoblasts, and articular chondrocytes. But insufficient experimental evidence limits further
293 understandings.

294 Type H vessel, which is rare in normal subchondral bone, is significantly increased in OA
295 induced by osteoclasts (13, 21, 35). Type H vessels not only bring secreted mediators and
296 mononuclear cells, but introduce abundant oxygen, an important small molecule in cartilage

297 homeostasis. Normally, the subchondral bone and cartilage are very hypoxic. Level of oxygen is
298 1~5% in cartilage and 7% in subchondral bone (20). Several invasive tests of subchondral bone
299 local pO₂ based on mass spectrometry reported various value of pO₂ from 30-39 mmHg (36-39).
300 However, using of oxygen electrode assessment was deficient in spatial resolution, and the implant
301 of the needle electrode may destroy the microvasculature. A direct *in vivo* measurement of pO₂
302 using two-photon phosphorescence lifetime microscopy reported the pO₂ in bone marrow, but data
303 of subchondral bone was absent (40). Thus, we determined the pO₂ of subchondral bone with a
304 noninvasive and *in vivo* hypoxia probe.

305 In this study we used ¹⁸F-FMISO as a hypoxia probe and detected the hypoxia status of
306 subchondral bone and cartilage through PET-CT *in vivo*. ¹⁸F-FMISO based on the nitroimidazole
307 structure, is the first hypoxia PET tracer used in clinical studies (41-43). ¹⁸F-FMISO is reduced and
308 covalently bound to intracellular macromolecules in hypoxic cells and will not escape from those
309 cells (44). Its binding is inversely proportional to the level of oxygen and substantial retention
310 occurs in tissue where oxygen levels below 10 mmHg. We found that in early stage of OA, uptake
311 of ¹⁸F-FMISO decreased and pressure of O₂ increased in the ACLT joint. Pimonidazole
312 immunostaining further confirmed the results that pO₂ increased in early stage of OA. Combining
313 with the results of increased type-H vessels in OA, we believed that type-H vessels induced by
314 osteoclasts altered the hypoxia environment of subchondral bone and cartilage.

315 Then we explored how increased oxygen affected chondrocytes. HIF-1 α is of critical
316 significance in cartilage energy metabolism, differentiation fate and matrix homeostasis. HIF-1 α
317 serves as a pivotal factor for chondrocytes by strengthening anaerobic glycolysis and impeding
318 apoptosis via mitophagy (45, 46). As a vital chondrocyte marker, SOX9 is regulated by HIF-1 α and
319 could inhibit hypertrophic alterations of chondrocytes (15, 47, 48). Hypoxia and HIF-1 α induce

320 extracellular matrix synthesis through promoting the expression of *COL2A1*, and *ACAN*, and
321 inhibiting the expression of *COL1A1*, *COL1A2*, *COL10A1* and *MMP13*, which renew articular
322 cartilage matrix in a harmonious and stable rate (49-52).

323 To further testify the roles of HIF-1 α in OA, we reanalyzed the single cell RNA-sequencing data
324 of OA human chondrocytes from Tang (GSE104782) (22). Tang obtained cartilage samples from
325 knee joints of 16 patients with trauma and 16 with rheumatoid arthritis. They empirically defined
326 4 populations of chondrocytes: ProCs, preHTCs, HTCs, FCs and three novel populations, effector
327 chondrocytes (ECs), regulatory chondrocytes (RegCs) and HomCs. We focused on HTCs, a group
328 of cells involved in endochondral ossification and calcified cartilage duplication in OA progression.
329 We found that HTCs had two different subgroups. A subgroup of HTCs which expressed high
330 levels of *MMP13*, *RUNX2*, *COL1A1* and *COL10A1* was named OA-associated HTC. KEGG and
331 GO enrichment analysis indicated that OA-associated HTC were involved in endochondral
332 ossification, ossification replacement and endochondral bone morphogenesis, while another
333 subgroup of HTCs was named regulatory HTC involved in regulation of calcium channel activity,
334 AMPA receptor activity and circadian sleep wake cycle. Next, we used GSVA analysis to compare
335 the signal pathway activation in different cell types. OA-associated HTC showed highest score in
336 OA signaling pathway and the second lowest score in HIF-1 pathway. Immunofluorescence of HIF-
337 1 α in human knee articular cartilage at different stages of OA and PTOA mice showed that HIF-
338 1 α in deep layer was degraded.

339 We used *Hif1a* knockdown AAV and HIF-1 α stabilizer DMOG in *Lcp1* knockout and WT OA
340 mice to verify that HIF-1 α can influence articular cartilage independently from subchondral bone
341 alteration. Though *Lcp1* knockout reduced the bone remodeling in subchondral bone, silencing
342 HIF-1 α mediated by *Hif1a* AAV could still cause articular cartilage degeneration and abolish the

343 protective effect in *Lcp1*^{-/-} ACLT mice. On the other hand, although subchondral bone remodeling
344 was not inhibited in WT ACLT mice, but DMOG stabilized HIF-1 α and retarded OA progression
345 in a non-hypoxic environment, consistent with a previous study by Hu *et.al* (46). HIF-1 α could be
346 a potential target in middle or late stages of OA and has wider treatment timing than drugs which
347 target bone remodeling only.

348 Oxy A could target LPL (18). We showed that intraperitoneal injection of Oxy A could inhibit
349 osteoclast formation in OA subchondral bone, reduce cartilage degradation, inhibit CGRP⁺ sensory
350 nerve fiber invasion and relieve joint pain, indicating that Oxy A could be a DMOAD.

351 Some limitations of this study should be addressed. First, we unveiled the role of HIF-1 α
352 stabilizer in OA treatment in rodents, however, its therapeutic effect in human should be further
353 explored. Besides, systemic administration of HIF-1 α stabilizer may lead to off-target effect. Local
354 injection with suitable drug delivery system would further improve the outcomes. The last, Oxy A
355 is hydrophobic small molecule which decrease the bioavailability via systematic administration.
356 Several biological materials including hydrogels, nanozyme and nanoparticle has been reported as
357 promising carriers in OA treatment (53-56). Thus, we have developed a long stranded, cartilage
358 targeted and enzyme responded biological materials contain a DMOAG to improve the therapeutic
359 effects on cartilage protection in the further study.

360 **The highlights of this study are as follow:**

- 361 1. In subchondral bone, type H vessels induced by osteoclasts in early OA elevate pO₂ levels.
- 362 2. Increased pO₂ levels abolish HIF-1 α functions of maintaining chondrocytes homeostasis.
- 363 3. A new subgroup of HTCs with decreased HIF-1 α activity is highly associated with OA
364 progression.

365

366 **MATERIALS AND METHODS**

367 **Study design**

368 This study was performed to explore the roles and mechanisms of osteoclasts in subchondral bone
369 area in articular chondrocyte degeneration in OA. First, we used *Lcp1* knockout mice with inhibited
370 osteoclastogenesis in subchondral bone to establish ACLT OA model. We compared the difference
371 of cartilage degeneration, subchondral bone remodeling, angiogenesis and hypoxia environment
372 change in subchondral bone between *Lcp1* knockout mice and WT mice in ACLT model through
373 immunofluorescence and histomorphometric analyses. ¹⁸F-FMISO PET/CT analysis was used to
374 detect hypoxic environment of knee joint *in vivo* at different time after ACLT. The vital role of
375 HIF-1 α in maintaining chondrocyte stability and preventing hypertrophy was verified by single-
376 cell RNA-sequencing. *Hif1a* knock down AAV and HIF-1 α stabilizer were used to confirm that
377 *Lcp1* knockout protected cartilage through stabilizing HIF-1 α in chondrocytes. Potentiality of LPL
378 as a therapeutic target of OA was testified by systematic administration of Oxy A, which was
379 proved as an LPL specific inhibitor in our former study. Samples were randomly assigned into
380 distinct intervention groups and littermates were included in the control group. Five samples were
381 used for statistical analysis in each experiment. The study was approved by Shanghai Model
382 Organisms (SCXK [Shanghai] 2017-0010 and SYXK [Shanghai] 2017-0012) and IACUC
383 guidelines were followed for animal experiments.

384 **Mouse models**

385 *Lcp1* knockout mice on C57BL/6 background were created by the Shanghai Model Organisms in
386 our former study (18). Male C57 mice (8-week-old) were got from Weitonglihua Corporation
387 (Beijing, China). The rodent researches were carried out in the pathogen-free environment.

388 Laboratory conditions for mice were listed below. Temperature: 22°C; humidity: 50%; light-dark
389 cycle: 12h; water and food: available. In line with our previous protocol, ACLT surgery was
390 performed to generate OA mouse model. Briefly, after anesthesia with pentobarbital sodium, a
391 longitudinal cutaneous incision was made at medial side of the right knee. The ACL was transected
392 after open knee joint through medial approach of ligamentum patellae under a surgical microscope.
393 The rodents were randomly divided into different groups: Sham (performed the incision without
394 ACL transection), ACLT, group of different intervention (ACLT mice intraarticularly injected with
395 *Hif1a* AAV and DMOG or Oxy A intraperitoneally), and vehicle (ACLT mice injected with saline).

396 **Human samples**

397 Human samples of medial tibia plateau were collected during total knee arthroplasty operations.
398 Subchondral bone and articular cartilage samples were cut into 1–2 cm pieces and fixed in 4% PFA
399 solution (G1101-500ML Servicebio, Wuhan, China) for 2 days and decalcify in 10% EDTA
400 (G1105-500ML, Servicebio, Wuhan, China) for 6 mouths. Samples were embedded in paraffins or
401 optimal cutting temperature compound (OCT) and cut into 5 μ m sections. The experiments were
402 approved by Shanghai University (ECSHU 2021-146).

403 ***Hif1a* knockdown AAV construction**

404 Recombinant AAV particles were produced using the AAV Helper-Free System (57). Step 1: The
405 cloning of the exogenous gene inserted into a suitable vector. In most cases, the exogenous gene
406 was cloned into a vector containing the ITR/MCS vector. The inverted terminal repeat (ITR)
407 sequences in these vectors provided all the cis-acting elements necessary for AAV replication and
408 packaging. Step 2: The recombinant expression plasmids were co-transfected with pHelper
409 (bearing the adenovirus-derived gene) and pAAV-RC (maintaining the AAV replication and capsid
410 genes) into AAV-293 cells (providing the trans-acting elements required for AAV replication and

411 packaging). After 2 to 3 days of transfection, recombinant AAV was assembled in packaging cells.
412 Step 3: AAV particles were collected from infected AAV-293 cells. Step 4: Concentrate and purify
413 the virus from step 3. Step 5: The titer of the resulting virus is determined by quantitative PCR,
414 which gives the physical titer of the AAV genome packaged into the pellet. *Hif1a* knockdown
415 shRNA sequence: 5'-GUGGAUAGCGAUAUGGUCAUU-3' (58).

416 **¹⁸F-FMISO PET/CT analyses**

417 ¹⁸F-FMISO construction: ¹⁸F-FMISO was synthesized as stated by the means proposed by Yu and
418 He (44, 59). The 1-(2-nitro-1'-imidazolyl)-2-O-tetrahydropyranyl-3-O-
419 toluenesulfonylpropanediol precursor was obtained from ABX GmbH (Radeberg, Germany), and
420 ¹⁸fluoride was got from BV Cyclotron VU (Amsterdam, Netherlands). Radio synthesis was
421 completed in an automated synthesizer. Male mice of the same age were intravenous injected with
422 100 MBq ¹⁸F-FMISO in 0.2 ml normal saline. Mice were detected in PET/CT 1 h after the injection
423 of ¹⁸F-FMISO. Images were collected and analyzed by Bee DICOM Viewer.

424 **Micro-CT analyses**

425 Tibia subchondral bone vasculature was evaluated by Micro-CT as reported earlier (30). Mice were
426 anesthetized with pentobarbital sodium, tibia subchondral bone vessels were washed with normal
427 saline solution, 4% PFA solution and normal saline solution through heart in proper sequence. Then
428 the intravascular contrast media (MICROFIL, MV-120, Flow Tech) was injected. The mice were
429 preserved at 4°C for 12 h before the knee joints were harvested. The knee joints were fixed for 3
430 days in 4% PFA and decalcified in 10% EDTA for 21 days prior to scan. The vascular volume in
431 subchondral bone was analyzed. The region of interest was central of medial tibia plateau.

432 **Microangiography**

433 Tibia subchondral bone vasculature was evaluated by Micro-CT as reported earlier (30). Mice were
434 anesthetized with pentobarbital sodium, tibia subchondral bone vessels were washed with normal
435 saline solution, 4% PFA solution and normal saline solution through heart in proper sequence. Then
436 the intravascular contrast media (MICROFIL, MV-120, Flow Tech) was injected. The mice were
437 preserved at 4°C for 12 h before the knee joints were harvested. The knee joints were fixed for 3
438 days in 4% PFA and decalcified in 10% EDTA for 21 days prior to scan. The vascular volume in
439 subchondral bone was analyzed. The region of interest was central of medial tibia plateau.

440 **Histological analysis**

441 Knee joints were collected and fixed in 4% PFA for 2 d, and decalcified in 10% EDTA for 14 d.
442 Next, the joints were embedded in paraffin or OCT and serially sectioned 5-μm in the sagittal plane
443 of in central the medial compartment of the joints. Then, hematoxylin and eosin (H&E, G1005-
444 500ML, Servicebio, Wuhan, China), Safranin O and fast green (G1053-100ML Servicebio, Wuhan,
445 China), and TRAP staining (G1050-50T, Servicebio, Wuhan, China) were done according to
446 regular procedures (18,30). A light microscope (Olympus BX53) was used for imaging. The
447 tidemark line labeled the bound between HC and CC. H&E staining image was employed to
448 evaluate the thickness of HC and CC. The OARSI grade was used to analyze the degradation of
449 tibial plateau cartilage. The TRAP staining was used to count osteoclasts in subchondral bone (60).

450 **Immunofluorescence and histomorphometry**

451 Antibodies against ACAN (1:500; Servicebio, GB11373) and COLII (1:500; Servicebio, GB11021)
452 were obtained from Servicebio (Wuhan, China). MMP13 (1:200; Proteintech, 18165-1-AP) was
453 purchased from Proteintech (Wuhan, China). LPL (1:200; Thermo, PA5-85216) and ADAMTS5
454 (1:500; Thermo, PA5-27165) were obtained from Thermo (Waltham, USA). COLX (1:500; Abcam,
455 ab260040), CD31 (1:200; Abcam, ab182981) and CGRP (1:200; Abcam, ab36001) were obtained

456 from Abcam (Cambridge, UK). EMCN (1:50; Santa Cruz, sc-65495) was obtained from Santa Cruz
457 (Dallas, USA). HIF-1 α (1:50; Novus, NB100-105) and NETRIN-1 (1:100; Novus, NB100-1605)
458 were purchased from Novus (Littleton, USA). Paraffins sections were dewaxed in dimethylbenzene
459 for 10 min twice and dehydration was performed in 100%, 100%, 95%, 80% and 75% ethanol for
460 5 min each time. Antigen retrieval was performed in EDTA (9.0 pH) or citrate (6.0 pH) at 95°C for
461 20 min. Until sections cooled down to room temperature, 3% H₂O₂ was used to block peroxidase
462 for 15 min. 10% goat serum was employed to block sections for 1 h. Primary antibody were diluted
463 into appropriate concentration according to instructions and incubated for 12 h at 4°C. After
464 primary antibody was washed three times, HRP conjugated secondary antibody or fluorescein
465 conjugated secondary antibody was incubated for 30-60 min at room temperature according to the
466 manual. DAB kit and hematoxylin were used in immunohistochemistry staining. DAPI was used to stain
467 nucleus in immunofluorescence. A light microscope (Olympus BX53) was used for section
468 imaging. The number of positive cells or area in sections were quantified using ImageJ.

469 **Hypoxia probe detection**

470 Hypoxyprobe green kit (hpi, HP6-100) was purchased from Hypoxyprobe. Pimonidazole 60 mg/kg
471 was intraperitoneal injected into mice 1 hour before sacrifice. Paraffin sections were prepared as
472 described above. Primary antibody conjugated with FITC in kit was used to detect pimonidazole at
473 1:100 dilution.

474 **Single-cell RNA-seq data analyses**

475 We downloaded Single-cell RNA-seq data from NCBI (GSE10478) and processed the unique
476 molecular identifier (UMI) count matrix with the R package Seurat (version 3.1.1) (61). 1600 cells
477 were obtained for following evaluation. Library size normalization was done using Normalize Data
478 function in Seurat to acquire normalized number.

479 Top variable genes were verified by the means reported by Macosko *et al.* (62). The most
480 variable genes were collected using Find Variable Genes function in Seurat. Principal component
481 analysis (PCA) was done to depress the dimensionality with RunPCA function in Seurat (61). To
482 cluster cells, graph-based clustering was done based on each cell gene expression profile via the
483 Find Clusters function. Visualization of cells were done by a 2-dimensional t-distributed stochastic
484 neighbor embedding (t-SNE) algorithm using the RunTSNE function in Seurat. Find All Markers
485 function were used to verify marker genes of each cluster. Find All Markers determined positive
486 markers compared to other cells.

487 Differentially expressed genes (DEGs) were established via the Find Markers function in Seurat
488 (58). Significant DEGs threshold were P value < 0.05 and $|\log_2 \text{fold change}| > 0.5$. GO enrichment
489 and KEGG pathway enrichment analysis of DEGs were respectively carried out by R based on the
490 hypergeometric distribution.

491 **Von Frey test**

492 Von Frey filaments (Touch test, USA) were used to measure the 50% paw withdrawal threshold
493 (50% PWT) as our previous study. Briefly, mice were put into cages for 30 min to adapt. Von Frey
494 hairs with different forces (gram=0.04, 0.07, 0.16, 0.4, 0.6, 1.0, 1.4, 2.0) were used in this test, and
495 2.0 g was served as the cutoff threshold. Mechanical allodynia was analyzed based the up-down
496 theory from Dixon and was performed each week (63). The filament was stabbed under the middle
497 plantar area of the right hind paw. Negative response was record as “o” and higher force was used
498 in next test. Positive response was record as “x”, and next lower force was employed. When the
499 difference of response occurred (“ox” or “xo”), four more experiments were done to get six results.
500 The interval between neighboring stab was 6 min. 50% PWT was analyzed by the formula: $10[X_f$

501 $+ k\delta] / 10^4$, where X_f is the value of the last force applied is a constant of serial force and k is derived
502 from response pattern.

503 **Statistical analyses**

504 All data were presented as the mean \pm SD or SEM. Comparisons between two groups were
505 performed by the two-tailed Student's t test. Comparisons among multiple groups were analyzed
506 by the one-way analysis of variance (ANOVA). The results were visualized and analyzed by the
507 GraphPad PRISM software, and a $P < 0.05$ implied differences were statistically significant.

508

509 **Supplementary Materials**

510 **Fig.S1 L-plastin positive cells distribution in proximal tibia of sham and ACLT mice**

511 **Fig.S2 Calcified cartilage duplication is retarded in Lcp1 knockout mice.**

512 **Fig.S3 Lcp1 knockout mice show decreased NETRIN-1 and CGRP+ sensory nerves in the
513 subchondral bone and pain amelioration.**

514 **Fig.S4 HTC subsets definition and characteristic of OA-associated HTC.**

515 **Fig.S5 KEGG and GO analysis of ProC, PreHTC, rHTC, OA-HTC and FC.**

516 **Fig.S6 Knockdown Hif-1a abolishes cartilage protective effects in Lcp1-/- mice.**

517 **Fig.S7 Knockdown Hif-1a in Lcp1-/- mice shows no effects on subchondral bone.**

518 **Fig.S8. DMOG prevents calcified cartilage duplication.**

519 **Fig.S9 DMOG does not affect subchondral bone in OA.**

520 **Fig.S10. Calcified cartilage duplication retarded after Oroxylin A injection.**

521 **Fig.S11 Oroxylin A inhibits subchondral bone remodeling via inhibiting osteoclast formation.**

522 **Fig.S12. Oroxylin A decreases Netrin-1 and CGRP+ sensory nerves in the subchondral bone
523 and ameliorates pain in WT mice.**

524 **Movies S1 Video of ¹⁸F-FMISO PETCT in *Lcp1*^{-/-} mice 4 weeks after ACLT**

525 **Movies S2 Video of ¹⁸F-FMISO PETCT in WT mice 4 weeks after ACLT**

526

527 **References and Notes**

- 528 1. J. N. Katz, K. R. Arant, R. F. Loeser, Diagnosis and Treatment of Hip and Knee
529 Osteoarthritis: A Review. *Jama*. **325**, 568-578 (2021).
- 530 2. C. G. Boer, K. Hatzikotoulas, L. Southam, L. Stefansdottir, Y. Zhang, D. A. R. Coutinho,
531 T. T. Wu, J. Zheng, A. Hartley, M. Teder-Laving, A. H. Skogholt, C. Terao, E. Zengini,
532 G. Alexiadis, A. Barysenka, G. Bjornsdottir, M. E. Gabrielsen, A. Gilly, T. Ingvarsson,
533 M. B. Johnsen, H. Jonsson, M. Kloppenburg, A. Luetge, S. H. Lund, R. Magi, M.
534 Mangino, R. Nelissen, M. Shivakumar, J. Steinberg, H. Takuwa, L. F. Thomas, M.
535 Tuerlings, G. C. Babis, C. J. Yin, J. H. Kang, P. Kraft, S. A. Lietman, D. Samartzis, P. E.
536 Slagboom, K. Stefansson, U. Thorsteinsdottir, J. H. Tobias, A. G. Uitterlinden, B.
537 Winsvold, J. A. Zwart, G. D. Smith, P. C. Sham, G. Thorleifsson, T. R. Gaunt, A. P.
538 Morris, A. M. Valdes, A. Tsezou, K. Cheah, S. Ikegawa, K. Hveem, T. Esko, J. M.
539 Wilkinson, I. Meulenbelt, L. M. Michael, J. van Meurs, U. Styrkarsdottir, E. Zeggini,
540 Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. *Cell*.
541 **184**, 6003-6005 (2021).
- 542 3. D. J. Hunter, S. Bierma-Zeinstra, Osteoarthritis. *Lancet*. **393**, 1745-1759 (2019).
- 543 4. A. Latourte, M. Kloppenburg, P. Richette, Emerging pharmaceutical therapies for
544 osteoarthritis. *Nat. Rev. Rheumatol.* **16**, 673-688 (2020).

545 5. L. A. Holzer, M. Kraiger, E. Talakic, G. A. Fritz, A. Avian, A. Hofmeister, A. Leithner,
546 G. Holzer, Microstructural analysis of subchondral bone in knee osteoarthritis.
547 *Osteoporosis. Int.* **31**, 2037-2045 (2020).

548 6. Y. Hu, X. Chen, S. Wang, Y. Jing, J. Su, Subchondral bone microenvironment in
549 osteoarthritis and pain. *Bone. Res.* **9**, 20 (2021).

550 7. S. Akhavan, S. C. Martinkovich, C. Kasik, P. J. DeMeo, Bone Marrow Edema, Clinical
551 Significance, and Treatment Options: A Review. *J. Am. Acad. Orthop. Sur.* **28**, e888-e899
552 (2020).

553 8. C. K. Kwoh, Clinical relevance of bone marrow lesions in OA. *Nat. Rev. Rheumatol.* **9**, 7-
554 8 (2013).

555 9. F. Zhou, X. Han, L. Wang, W. Zhang, J. Cui, Z. He, K. Xie, X. Jiang, J. Du, S. Ai, Q.
556 Sun, H. Wu, Z. Yu, M. Yan, Associations of osteoclastogenesis and nerve growth in
557 subchondral bone marrow lesions with clinical symptoms in knee osteoarthritis. *J.*
558 *Orhtop. Transl.* **32**, 69-76 (2022).

559 10. G. Zhen, C. Wen, X. Jia, Y. Li, J. L. Crane, S. C. Mears, F. B. Askin, F. J. Frassica, W.
560 Chang, J. Yao, J. A. Carrino, A. Cosgarea, D. Artemov, Q. Chen, Z. Zhao, X. Zhou, L.
561 Riley, P. Sponseller, M. Wan, W. W. Lu, X. Cao, Inhibition of TGF-beta signaling in
562 mesenchymal stem cells of subchondral bone attenuates osteoarthritis. *Nat. Med.* **19**, 704-
563 712 (2013).

564 11. M. Huang, J. Zhao, Y. Huang, L. Dai, X. Zhang, Meta-analysis of urinary C-terminal
565 telopeptide of type II collagen as a biomarker in osteoarthritis diagnosis. *J. Orthop.*
566 *Transl.* **13**, 50-57 (2018).

567 12. H. Lofvall, H. Newbould, M. A. Karsdal, M. H. Dziegieł, J. Richter, K. Henriksen, C. S.
568 Thudium, Osteoclasts degrade bone and cartilage knee joint compartments through
569 different resorption processes. *Arthritis. Res. Ther.* **20**, 67 (2018).

570 13. W. Su, G. Liu, X. Liu, Y. Zhou, Q. Sun, G. Zhen, X. Wang, Y. Hu, P. Gao, S. Demehri,
571 X. Cao, M. Wan, Angiogenesis stimulated by elevated PDGF-BB in subchondral bone
572 contributes to osteoarthritis development. *JCI. Insight*. **5**, e135446 (2020).

573 14. P. I. Croucher, M. M. McDonald, T. J. Martin, Bone metastasis: the importance of the
574 neighbourhood. *Nat. Rev. Cancer*. **16**, 373-386 (2016).

575 15. J. Fernández-Torres, G. A. Martínez-Navia, M. C. Gutiérrez-Ruiz, L. E. Gómez-Quiroz,
576 M. Gutiérrez, Role of HIF-1 α signaling pathway in osteoarthritis: a systematic review.
577 *Rev. Bras. Reumatol. Engl. Ed.* **57**, 162-173 (2017).

578 16. S. G. Romeo, K. M. Alawi, J. Rodrigues, A. Singh, A. P. Kusumbe, S. K. Ramasamy,
579 Endothelial proteolytic activity and interaction with non-resorbing osteoclasts mediate
580 bone elongation. *Nat. Cell. Biol.* **21**, 430-441 (2019).

581 17. C. Barranco, Osteoarthritis: Animal data show VEGF blocker inhibits post-traumatic OA.
582 *Nat. Rev. Rheumatol.* **10**, 638 (2014).

583 18. X. Li, L. Wang, B. Huang, Y. Gu, Y. Luo, X. Zhi, Y. Hu, H. Zhang, Z. Gu, J. Cui, L. Cao,
584 J. Guo, Y. Wang, Q. Zhou, H. Jiang, C. Fang, W. Weng, X. Chen, X. Chen, J. Su,
585 Targeting actin-bundling protein L-plastin as an anabolic therapy for bone loss. *Sci. Adv.*
586 **6**, eabb7135 (2020).

587 19. S. Zhu, J. Zhu, G. Zhen, Y. Hu, S. An, Y. Li, Q. Zheng, Z. Chen, Y. Yang, M. Wan, R. L.
588 Skolasky, Y. Cao, T. Wu, B. Gao, M. Yang, M. Gao, J. Kuliwaba, S. Ni, L. Wang, C. Wu,
589 D. Findlay, H. K. Eltzschig, H. W. Ouyang, J. Crane, F. Q. Zhou, Y. Guan, X. Dong, X.

590 Cao, Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. *J.*
591 *Clin. Invest.* **129**, 1076-1093 (2019).

592 20. J. E. Lafont, Lack of oxygen in articular cartilage: consequences for chondrocyte biology.
593 *Int. J. Exp. Pathol.* **91**, 99-106 (2010).

594 21. Z. Cui, J. Crane, H. Xie, X. Jin, G. Zhen, C. Li, L. Xie, L. Wang, Q. Bian, T. Qiu, M.
595 Wan, M. Xie, S. Ding, B. Yu, X. Cao, Halofuginone attenuates osteoarthritis by inhibition
596 of TGF- β activity and H-type vessel formation in subchondral bone. *Ann. Rheum. Dis.* **75**,
597 1714-1721 (2016).

598 22. Q. Ji, Y. Zheng, G. Zhang, Y. Hu, X. Fan, Y. Hou, L. Wen, L. Li, Y. Xu, Y. Wang, F.
599 Tang, Single-cell RNA-seq analysis reveals the progression of human osteoarthritis. *Ann.*
600 *Rheum. Dis.* **78**, 100-110 (2018).

601 23. T. Hodgkinson, D. C. Kelly, C. M. Curtin, F. J. O'Brien, Mechanosignalling in cartilage:
602 an emerging target for the treatment of osteoarthritis. *Nat. Rev. Rheumatol.* **18**, 67-84
603 (2022).

604 24. A. Bertuglia, M. Lacourt, C. Girard, G. Beauchamp, H. Richard, S. Laverty, Osteoclasts
605 are recruited to the subchondral bone in naturally occurring post-traumatic equine carpal
606 osteoarthritis and may contribute to cartilage degradation. *Osteoarthr. Cartilage.* **24**, 555-
607 566 (2016).

608 25. H. Fang, L. Huang, I. Welch, C. Norley, D. W. Holdsworth, F. Beier, D. Cai, Early
609 Changes of Articular Cartilage and Subchondral Bone in The DMM Mouse Model of
610 Osteoarthritis. *Sci. Rep.* **8**, 2855 (2018).

611 26. G. O. M. Azzini, G. S. Santos, S. B. C. Visoni, V. O. M. Azzini, R. G. D. Santos, S. C.
612 Huber, J. F. Lana, Metabolic syndrome and subchondral bone alterations: The rise of
613 osteoarthritis – A review. *J. Clin. Orthop. Trauma.* **11**, S849-S855 (2020).

614 27. J. H. Duarte, Alendronate treatment improves pathology in animal model of OA by
615 blocking osteoclastic bone resorption. *Nat. Rev. Rheumatol.* **10**, 446 (2014).

616 28. M. Siebelt, J. H. Waarsing, H. C. Groen, C. Müller, S. J. Koelewijn, E. de Blois, J. A. N.
617 Verhaar, M. de Jong, H. Weinans, Inhibited osteoclastic bone resorption through
618 alendronate treatment in rats reduces severe osteoarthritis progression. *Bone*. **66**, 163-170
619 (2014).

620 29. W. Yajun, C. Jin, G. Zhengrong, F. Chao, H. Yan, W. Weizong, L. Xiaoqun, Z. Qirong,
621 C. Huiwen, Z. Hao, G. Jiawei, Z. Xinchen, S. Shihao, W. Sicheng, C. Xiao, S. Jiacan,
622 Betaine Attenuates Osteoarthritis by Inhibiting Osteoclastogenesis and Angiogenesis in
623 Subchondral Bone. *Front. Pharmacol.* **12**, 723988 (2021).

624 30. C. Fang, J. Guo, Y. Wang, X. Li, H. Zhang, J. Cui, Y. Hu, Y. Jing, X. Chen, J. Su,
625 Diterbutyl phthalate attenuates osteoarthritis in ACLT mice via suppressing ERK/c-
626 fos/NFATc1 pathway, and subsequently inhibiting subchondral osteoclast fusion. *Acta.
627 Pharmacol. Sin.* Papers in Press, published 2021 Aug 11 as doi: 10.1038/s41401-021-
628 00747-9.

629 31. S. R. Goldring, M. B. Goldring, Changes in the osteochondral unit during osteoarthritis:
630 structure, function and cartilage-bone crosstalk. *Nat. Rev. Rheumatol.* **12**, 632-644 (2016).

631 32. L. G. Cox, C. C. van Donkelaar, B. van Rietbergen, P. J. Emans, K. Ito, Alterations to the
632 subchondral bone architecture during osteoarthritis: bone adaptation vs endochondral
633 bone formation. *Osteoarthritis. Cartilage.* **21**, 331-338 (2013).

634 33. W. Hu, Y. Chen, C. Dou, S. Dong, Microenvironment in subchondral bone: predominant
635 regulator for the treatment of osteoarthritis. *Ann. Rheum. Dis.* **80**, 413-422 (2021).

636 34. A. P. Kusumbe, S. K. Ramasamy, R. H. Adams, Coupling of angiogenesis and
637 osteogenesis by a specific vessel subtype in bone. *Nature*. **507**, 323-328 (2014).

638 35. Y. Hu, H. Wu, T. Xu, Y. Wang, H. Qin, Z. Yao, P. Chen, Y. Xie, Z. Ji, K. Yang, Y. Chai,
639 X. Zhang, B. Yu, Z. Cui, Defactinib attenuates osteoarthritis by inhibiting positive
640 feedback loop between H-type vessels and MSCs in subchondral bone. *J. Orthop. Transl.*
641 **24**, 12-22 (2020).

642 36. H. Kofoed, Hemodynamics and metabolism in arthrosis. Studies in the rabbit knee. *Acta.*
643 *Orthop. Scand.* **57**, 119-122 (1986).

644 37. E. Svalastoga, J. Gronlund, H. Kofoed, Subchondral PO₂ and PCO₂ are unaffected in
645 experimental arthrosis. *Acta. Orthop. Scand.* **55**, 514-516 (1984).

646 38. H. Kofoed, Synovitis causes hypoxia and acidity in synovial fluid and subchondral bone.
647 *Injury.* **17**, 391-394 (1986).

648 39. J. Gronlund, H. Kofoed, E. Svalastoga, Effect of increased knee joint pressure on oxygen
649 tension and blood flow in subchondral bone. *Acta. Physiol. Scand.* **121**, 127-131 (1984).

650 40. J. A. Spencer, F. Ferraro, E. Roussakis, A. Klein, J. Wu, J. M. Runnels, W. Zaher, L. J.
651 Mortensen, C. Alt, R. Turcotte, R. Yusuf, D. Côté, S. A. Vinogradov, D. T. Scadden, C.
652 P. Lin, Direct measurement of local oxygen concentration in the bone marrow of live
653 animals. *Nature.* **508**, 269-273 (2014).

654 41. G. Ruiz De Garibay, E. García De Jalón, E. Stigen, K. B. Lund, M. Popa, B. Davidson,
655 M. M. Safont, C. B. Rygh, H. Espedal, T. M. Barrett, B. E. Haug, E. McCormack,
656 Repurposing ¹⁸F-FMISO as a PET tracer for translational imaging of nitroreductase-based
657 gene directed enzyme prodrug therapy. *Theranostics.* **11**, 6044-6057 (2021).

658 42. M. Quintela-Fandino, A. Lluch, L. Manso, I. Calvo, J. Cortes, J. A. Garcia-Saenz, M. Gil-
659 Gil, N. Martinez-Janez, A. Gonzalez-Martin, E. Adrover, R. de Andres, G. Vinas, A.
660 Llombart-Cussac, E. Alba, J. Guerra, B. Bermejo, E. Zamora, F. Moreno-Anton, S. S.
661 Pernas, A. Carrato, A. Lopez-Alonso, M. J. Escudero, R. Campo, E. Carrasco, J. Palacios,

662 F. Mulero, R. Colomer, ¹⁸F-fluoromisonidazole PET and Activity of Neoadjuvant
663 Nintedanib in Early HER2-Negative Breast Cancer: A Window-of-Opportunity
664 Randomized Trial. *Clin. Cancer. Res.* **23**, 1432-1441 (2017).

665 43. E. R. Gerstner, Z. Zhang, J. R. Fink, M. Muzi, L. Hanna, E. Greco, M. Prah, K. M.
666 Schmainda, A. Mintz, L. Kostakoglu, E. A. Eikman, B. M. Ellingson, E. Ratai, A. G.
667 Sorensen, D. P. Barboriak, D. A. Mankoff, ACRIN 6684: Assessment of Tumor Hypoxia
668 in Newly Diagnosed Glioblastoma Using ¹⁸F-FMISO PET and MRI. *Clin. Cancer. Res.*
669 **22**, 5079-5086 (2016).

670 44. W. Yu, F. Qiao, X. Su, D. Zhang, H. Wang, J. Jiang, H. Xu, ¹⁸F-HX4/¹⁸F-FMISO-based
671 micro PET for imaging of tumor hypoxia and radiotherapy-associated changes in mice.
672 *Biomed. Pharmacother.* **119**, 109454 (2019).

673 45. K. Okada, D. Mori, Y. Makii, H. Nakamoto, Y. Murahashi, F. Yano, S. H. Chang, Y.
674 Taniguchi, H. Kobayashi, H. Semba, N. Takeda, W. Piao, K. Hanaoka, T. Nagano, S.
675 Tanaka, T. Saito, Hypoxia-inducible factor-1 alpha maintains mouse articular cartilage
676 through suppression of NF-κB signaling. *Sci. Rep.* **10** (2020).

677 46. S. Hu, C. Zhang, L. Ni, C. Huang, D. Chen, K. Shi, H. Jin, K. Zhang, Y. Li, L. Xie, M.
678 Fang, G. Xiang, X. Wang, J. Xiao, Stabilization of HIF-1 α alleviates osteoarthritis via
679 enhancing mitophagy. *Cell. Death. Dis.* **11** (2020).

680 47. C. E. Yellowley, D. C. Genetos, Hypoxia Signaling in the Skeleton: Implications for Bone
681 Health. *Curr. Osteoporos. Rep.* **17**, 26-35 (2019).

682 48. B. D. Markway, H. Cho, B. Johnstone, Hypoxia promotes redifferentiation and suppresses
683 markers of hypertrophy and degeneration in both healthy and osteoarthritic chondrocytes.
684 *Arthritis. Res. Ther.* **15**, R92 (2013).

685 49. S. Stegen, K. Laperre, G. Eelen, G. Rinaldi, P. Fraisl, S. Torrekens, R. Van Looveren, S.
686 Loopmans, G. Bultynck, S. Vinckier, F. Meersman, P. H. Maxwell, J. Rai, M. Weis, D. R.
687 Eyre, B. Ghesquière, S. Fendt, P. Carmeliet, G. Carmeliet, HIF-1 α metabolically controls
688 collagen synthesis and modification in chondrocytes. *Nature*. **565**, 511-515 (2019).

689 50. W. Bouaziz, J. Sigaux, C. S. Devignes, T. Funck-Brentano, K. Ea, D. Modrowski, S.
690 Provot, M. Cohen-Solal, E. Hay, HIF1 α protects from osteoarthritis by inhibiting MMP13
691 expression through WNT/ β -catenin signaling. *Osteoarthr. Cartilage*. **24**, S138 (2016).

692 51. W. Bouaziz, J. Sigaux, D. Modrowski, C. Devignes, T. Funck-Brentano, P. Richette, H.
693 Ea, S. Provot, M. Cohen-Solal, E. Hay, Interaction of HIF1 α and β -catenin inhibits matrix
694 metalloproteinase 13 expression and prevents cartilage damage in mice. *Proc. Natl. Acad.
695 Sci. U.S.A.* **113**, 5453-5458 (2016).

696 52. B. L. Thoms, K. A. Dudek, J. E. Lafont, C. L. Murphy, Hypoxia Promotes the Production
697 and Inhibits the Destruction of Human Articular Cartilage. *Arthritis. Rheum.* **65**, 1302-
698 1312 (2013).

699 53. W. Wei, Y. Ma, X. Yao, W. Zhou, X. Wang, C. Li, J. Lin, Q. He, S. Leptihn, H. Ouyang,
700 Advanced hydrogels for the repair of cartilage defects and regeneration. *Bioact. Mater.* **6**,
701 998-1011 (2021).

702 54. Y. Han, J. Yang, W. Zhao, H. Wang, Y. Sun, Y. Chen, J. Luo, L. Deng, X. Xu, W. Cui,
703 H. Zhang, Biomimetic injectable hydrogel microspheres with enhanced lubrication and
704 controllable drug release for the treatment of osteoarthritis. *Bioact. Mater.* **6**, 3596-3607
705 (2021).

706 55. W. Hou, C. Ye, M. Chen, W. Gao, X. Xie, J. Wu, K. Zhang, W. Zhang, Y. Zheng, X. Cai,
707 Excavating bioactivities of nanozyme to remodel microenvironment for protecting
708 chondrocytes and delaying osteoarthritis. *Bioact. Mater.* **6**, 2439-2451 (2021).

709 56. S. Chen, X. Chen, Z. Geng, J. Su, The horizon of bone organoid: A perspective on
710 construction and application. *Bioact. Mater.* Papers in Press, published 2022 Feb 5 as
711 10.1016/j.bioactmat.2022.01.048.

712 57. T. Kimura, B. Ferran, Y. Tsukahara, Q. Shang, S. Desai, A. Fedoce, D. R. Pimentel, I.
713 Luptak, T. Adachi, Y. Ido, R. Matsui, M. M. Bachschmid, Production of adeno-associated
714 virus vectors for in vitro and in vivo applications. *Sci. Rep.* **9**, 13601 (2019).

715 58. M. Barben, D. Ail, F. Storti, K. Klee, C. Schori, M. Samardzija, S. Michalakis, M. Biel, I.
716 Meneau, F. Blaser, D. Barthelmes, C. Grimm, Hif1a inactivation rescues photoreceptor
717 degeneration induced by a chronic hypoxia-like stress. *Cell. Death. Differ.* **25**, 2071-2085
718 (2018).

719 59. S. He, M. Wang, Z. Yang, J. Zhang, Y. Zhang, J. Luo, Y. Zhang, Comparison of 18F-
720 FES, 18F-FDG, and 18F-FMISO PET Imaging Probes for Early Prediction and
721 Monitoring of Response to Endocrine Therapy in a Mouse Xenograft Model of ER-
722 Positive Breast Cancer. *Plos. One.* **11**, e159916 (2016).

723 60. K. P. Pritzker, S. Gay, S. A. Jimenez, K. Ostergaard, J. P. Pelletier, P. A. Revell, D.
724 Salter, W. B. van den Berg, Osteoarthritis cartilage histopathology: grading and staging.
725 *Osteoarthritis. Cartilage.* **14**, 13-29 (2006).

726 61. A. Butler, P. Hoffman, P. Smibert, E. Papalexi, R. Satija, Integrating single-cell
727 transcriptomic data across different conditions, technologies, and species. *Nat. Biotechnol.*
728 **36**, 411-420 (2018).

729 62. E. Z. Macosko, A. Basu, R. Satija, J. Nemesh, K. Shekhar, M. Goldman, I. Tirosh, A. R.
730 Bialas, N. Kamitaki, E. M. Martersteck, J. J. Trombetta, D. A. Weitz, J. R. Sanes, A. K.
731 Shalek, A. Regev, S. A. McCarroll, Highly Parallel Genome-wide Expression Profiling of
732 Individual Cells Using Nanoliter Droplets. *Cell.* **161**, 1202-1214 (2015).

733 63. W. J. Dixon, Efficient analysis of experimental observations. *Annu. Rev. Pharmacol.*
734 *Toxicol.* **20**, 441-462 (1980).

735

736

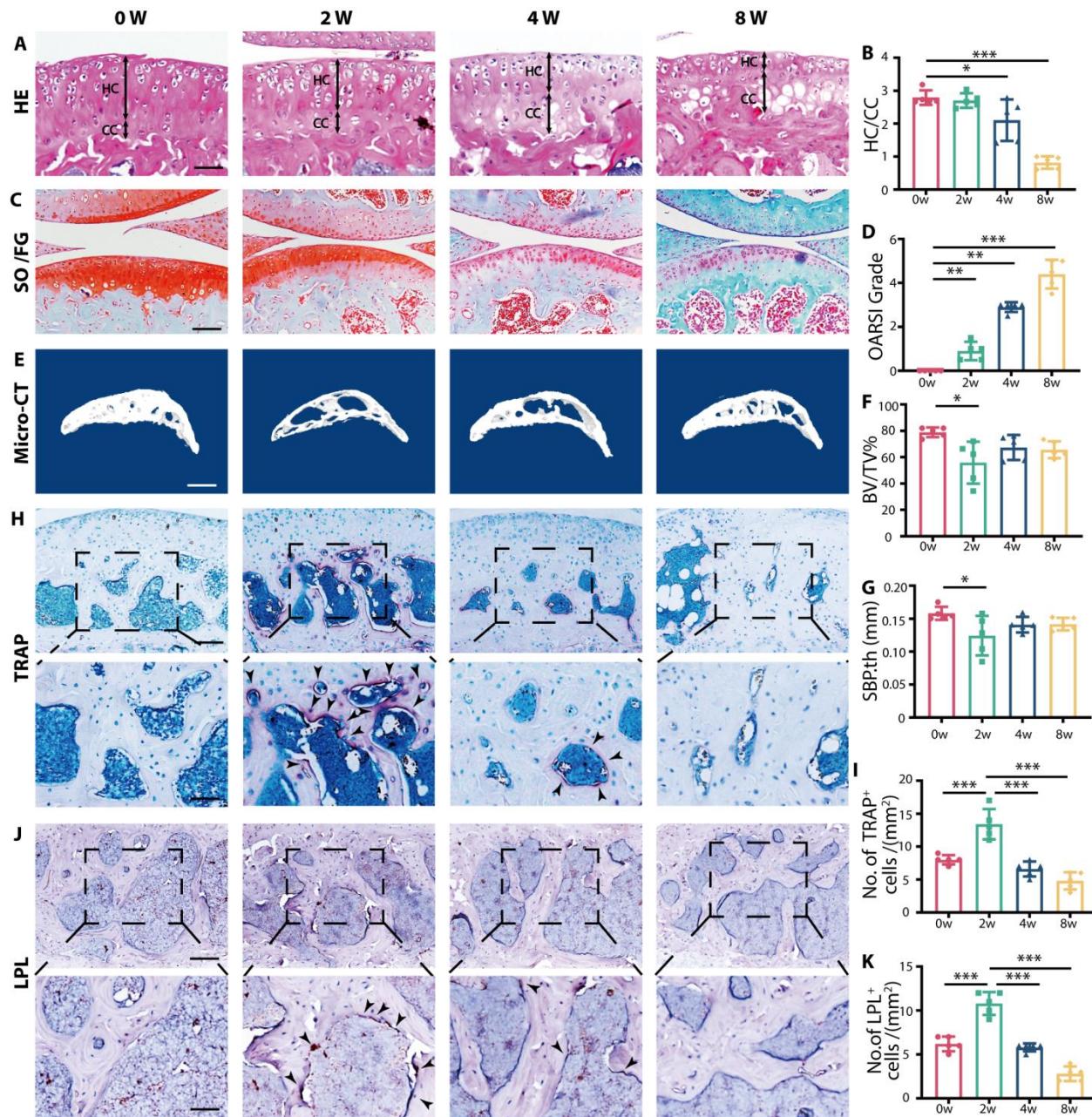
737

738

739 **Acknowledgments:**

740 We thank the Shanghai Model Organisms for constructing *Lcp1* knockout mice. We thank
741 department of nuclear medicine of Renji hospital affiliated to Shanghai JiaoTong University school
742 of Medicine for providing ¹⁸F-FMISO and PET/CT. We thank OBiO Technology (Shanghai) for
743 constructing *Hif1a* knockdown AAV. We thank OE biotech company (Shanghai, China) for the
744 supporting of bioinformatics analysis. **Fundings:** This work was supported by National Key R&D
745 Program of China (2018YFC2001500), National Natural Science Foundation of China (82172098),
746 National Natural Science Foundation of China (81972254), National Natural Science Foundation
747 of China (81871099), Shanghai Rising Star Program (21QA1412000). **Author contributions:**
748 Conceptualization: H.Z, LP.W, J.C,X.C., Methodology: H.Z, HD.S, C.W, J.C. Investigation: H.Z,
749 SC.W, QR.Z, JW.G, XC.Z, SH.S, T.Z. Visualization: H.Z, SC.W, DY.Z, YF.H, J.C, FX.W, QM.G.
750 Funding acquisition: YY.J, X.C, JC.S. Project administration: YY.J, X.C. Supervision: YY.J, X.C,
751 JC.S. Writing – original draft: H.Z, LP.W. Writing – review & editing: YY.J, X.C, JC.S.
752 **Competing interests:** The authors declare that they have no competing interests. **Data and**
753 **materials availability:** All data associated with this study are present in the paper and/or the
754 Supplementary Materials. Additional data related to this paper may be requested from the authors.

755


756

757

758

759

760 **Figures**

761

762 **Fig.1. L-plastin upregulated in subchondral bone correlates with increased osteoclast activity**
 763 **in early stage of OA.**

764 **(A)** Representative images of Hematoxylin and eosin staining of proximal tibia articular cartilage
 765 at 0,2,4 and 8 weeks after ACLT. Double-headed arrows label range of HC and CC. Scale bar,
 766 50 μm. **(B)** Ratio of HC and CC thickness quantitative analysis. **(C)** Safranin O/Fast Green staining
 767 of knee articular cartilage at 0,2,4 and 8 weeks after operation. Scale bar 100 μm. **(D)** OARSI grade

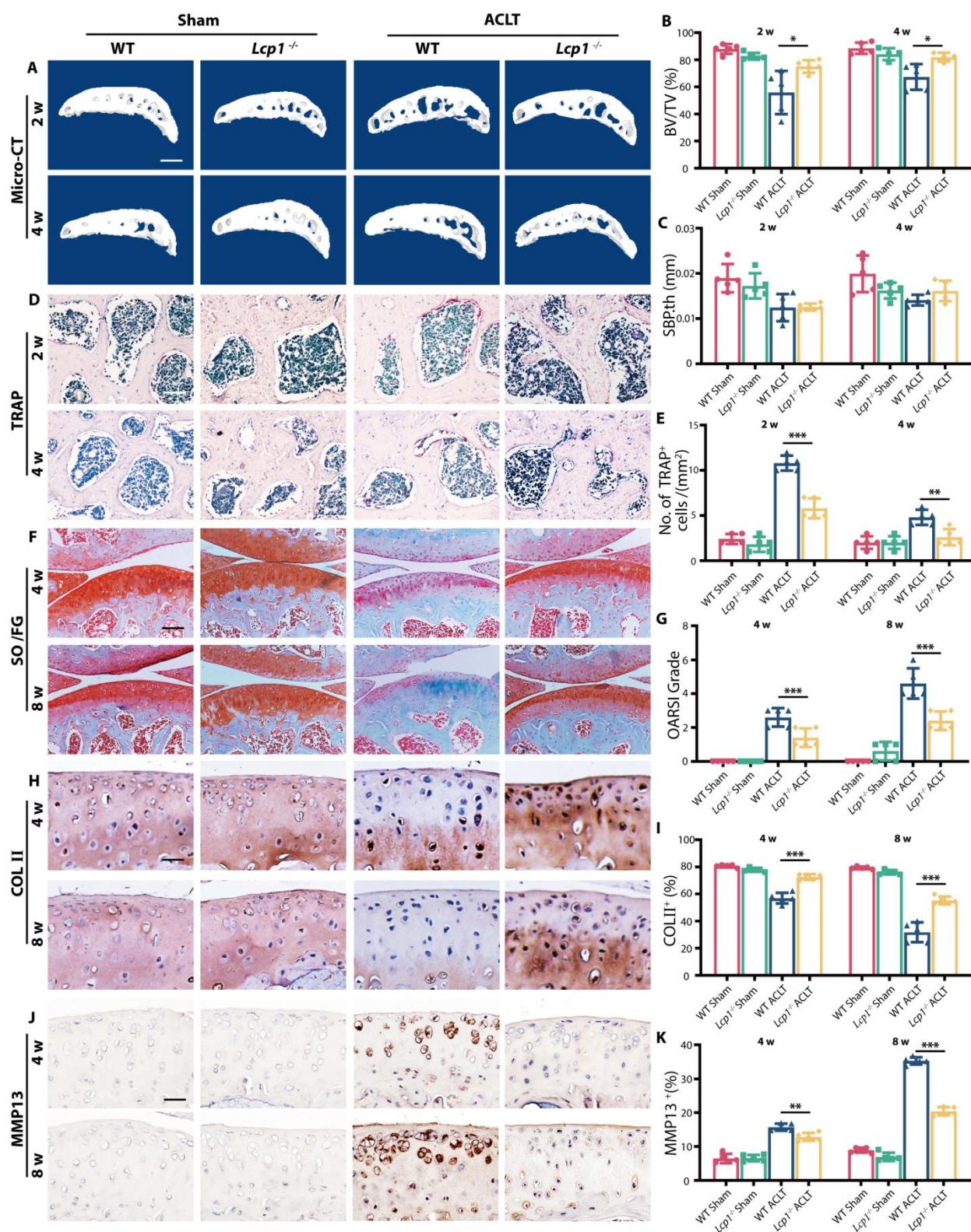
768 of knee articular cartilage. **(E)** Three-dimensional images of the sagittal plane of medial tibial
769 subchondral bone at 0,2,4 and 8 weeks after ACLT. Scale bar, 500 μ m. **(F-G)** Micro-CT quantitative
770 analysis of tibial subchondral bone, bone volume/tissue volume (BV/TV, %) (F), and subchondral
771 bone plate thickness (SBP. th, mm) (G). **(H)** TRAP staining image of tibial subchondral bone at
772 0,2,4 and 8 weeks after ACLT. Scale bar, 100 μ m (top). Scale bar, 50 μ m (bottom) **(I)** Quantitative
773 analysis of TRAP-positive cells in subchondral bone marrow. **(J)** Representative images of LPL
774 protein immunohistochemistry in tibial subchondral bone at 0,2,4 and 8 weeks after ACLT. Scale
775 bar =100 μ m (top). Scale bar, 50 μ m (bottom) **(K)** Quantitative analysis of LPL positive osteoclast
776 in subchondral bone marrow. Statistical analysis was performed using one-way ANOVA analysis;
777 n=5 per group; Data are presented as means \pm SEM. *P < 0.05, **P < 0.01, and ***P < 0.001.

778

779

780

781


782

783

784

785

786

787

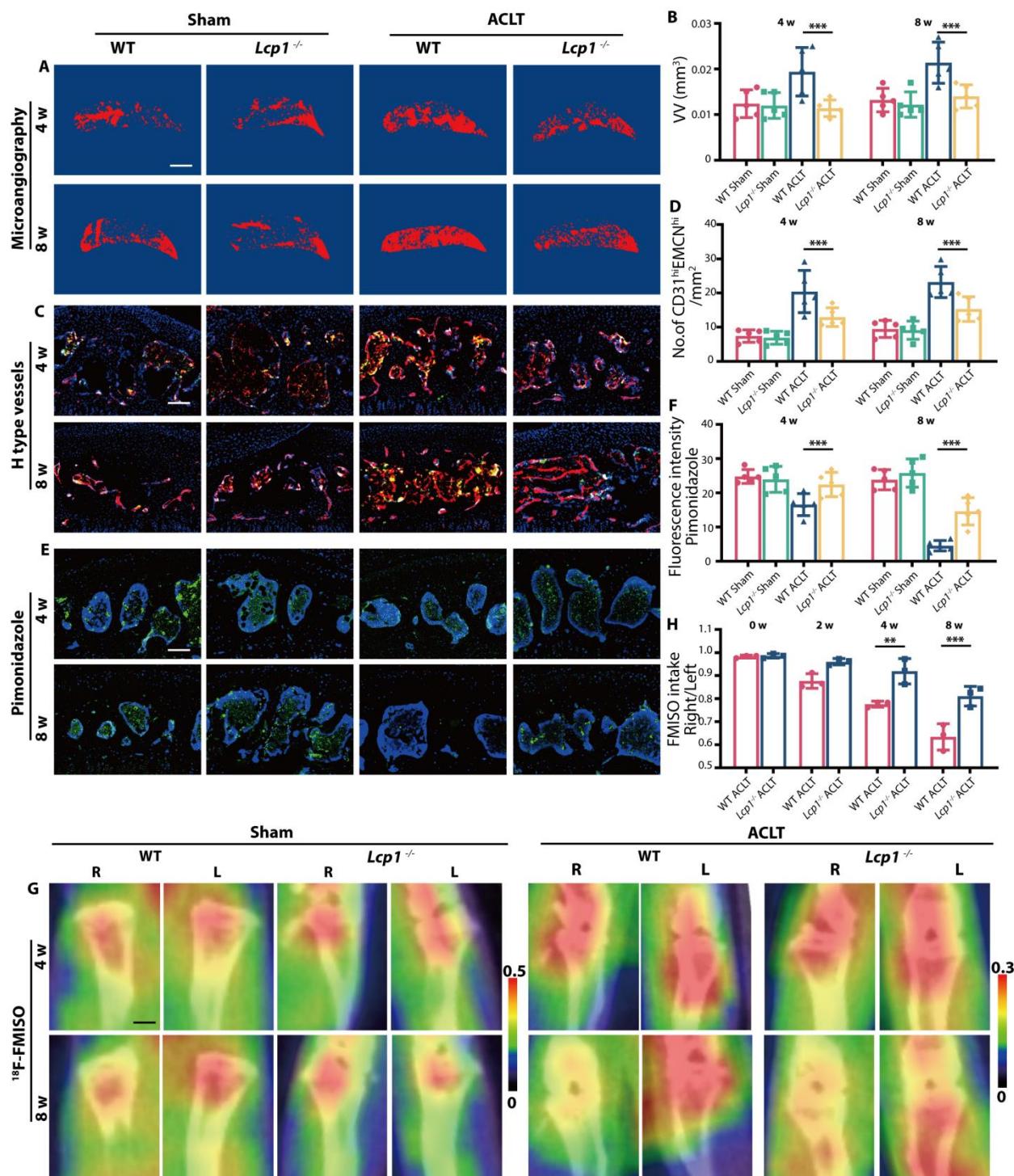
788 **Fig.2. Subchondral bone resorption and articular cartilage degeneration are retarded in *Lcp1*
789 knockout mice.**

790 (A) Representative Micro-CT 3D images of tibia subchondral bone of *Lcp1*^{-/-} mice and WT
791 littermates at 2 and 4 weeks after ACLT. Scale bar, 500 μ m. (B-C) Micro-CT quantitative analysis
792 of tibial subchondral bone, bone volume/tissue volume (BV/TV, %) (B), and subchondral bone
793 plate thickness (SBP. th, mm) (C). (D) TRAP staining image of tibial subchondral bone of *Lcp1*^{-/-}
794 mice and WT littermates at 2 and 4 weeks after ACLT. Scale bar, 50 μ m. (E) Quantitative analysis
795 of TRAP-positive cells in subchondral bone marrow between *Lcp1*^{-/-} mice and WT littermates. (F)
796 Safranin O/Fast Green staining of *Lcp1*^{-/-} mice and WT littermates' knee articular cartilage. Scale
797 bar, 100 μ m. (G) OARSI grade of knee articular cartilage. (H) Representative images of COLII
798 protein immunohistochemistry in tibial articular cartilage of *LPL*^{-/-} mice and WT littermates at 4
799 and 8 weeks after ACLT. Scale bar, 20 μ m. (I) Quantitative analysis of COLII protein positive area
800 in articular cartilage. (J) Representative images of MMP13 protein immunohistochemistry in tibial
801 articular cartilage of *Lcp1*^{-/-} mice and WT littermates at 4 and 8 weeks after ACLT. Scale bar, 20 μ m.
802 (K) Quantitative analysis of MMP13 protein positive area in articular cartilage. n=5 per group. *P
803 < 0.05, **P < 0.01, and ***P < 0.001.

804

805

806


807

808

809

810

811

812

813 **Fig.3. *Lcp1* knockout impairs angiogenesis maintain a low pO2 of subchondral bone and**
814 **cartilage**

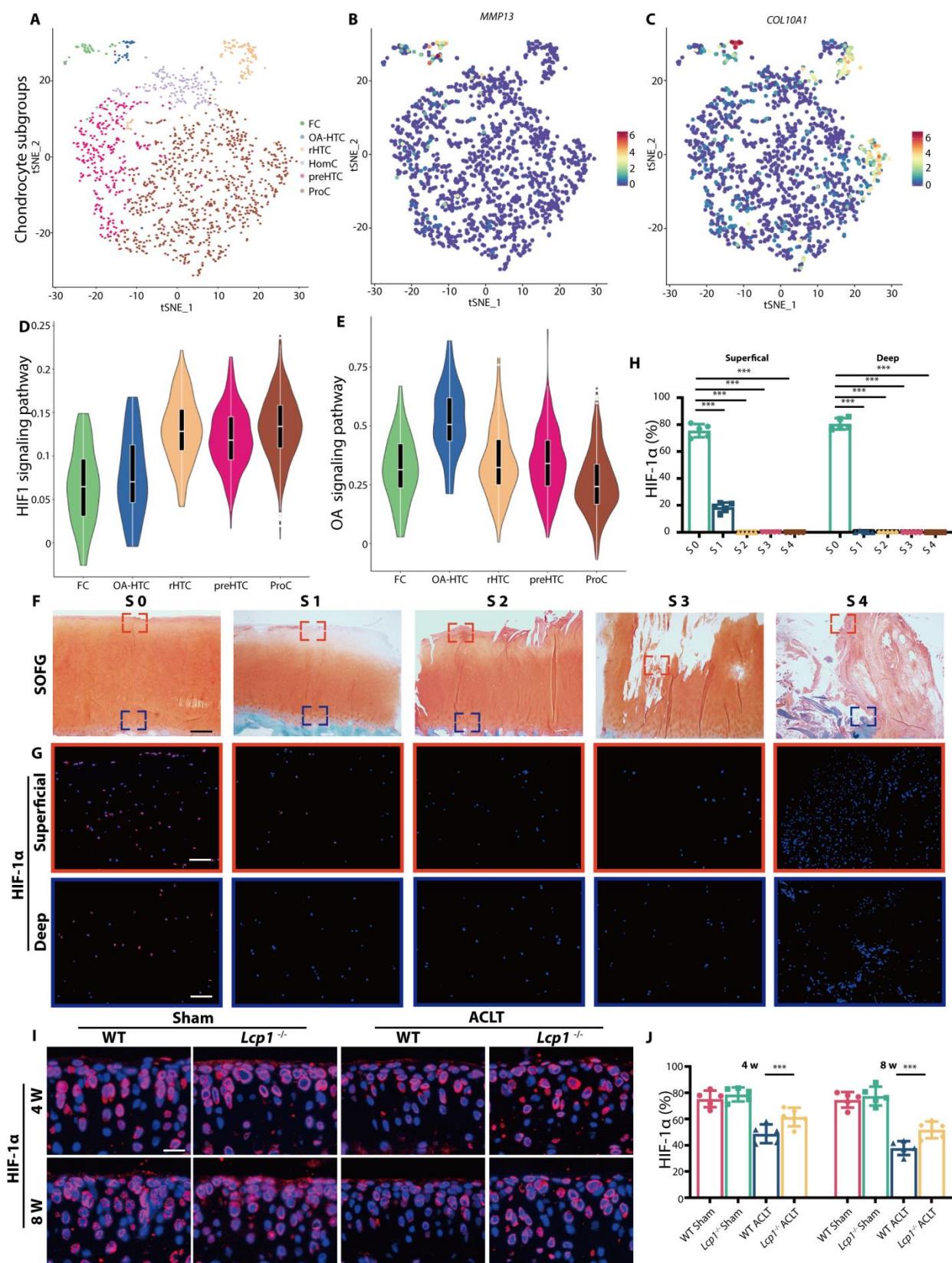
815 (A) Three-dimensional image of the sagittal plane of CT-based microangiography in medial tibial
816 subchondral bone of *Lcp1*^{-/-} mice and WT mice at 4 and 8 weeks post operation. Scale bar, 500 μ m.
817 (B) Quantification of vessel volume (VV) in medial tibial subchondral bone. (C) Maximum
818 intensity projections of immunostaining of endomucin (EMCN) (red), CD31 (green), and
819 Emcn^{hi}CD31^{hi} (yellow) cells in medial tibial subchondral bone of *Lcp1*^{-/-} mice and WT mice at 4
820 and 8 weeks post operation. Scale bar, 100 μ m. (D) Quantification of CD31 and Emcn positive cells
821 in subchondral bone marrow. (E) Immunostaining of pimonidazole (green) in medial tibial
822 subchondral bone of *Lcp1*^{-/-} mice and WT mice at 4 and 8 weeks post operation. Scale bar, 100 μ m.
823 (F) Quantification of pimonidazole fluorescence intensity in subchondral bone marrow. (G) ¹⁸F-
824 FMISO-based PET/CT images of *Lcp1*^{-/-} mice and WT mice at 4 and 8 weeks post operation. Scale
825 bar, 10mm. (H) Quantification of right knee maximum ¹⁸F-FMISO uptake/left knee maximum ¹⁸F-
826 FMISO uptake. n=5 per group. *P < 0.05, **P < 0.01, and ***P < 0.001.

827

828

829

830


831

832

833

834

835

838 (A) Visualization of t-SNE colored according to cell types for human OA cartilage single-cell
839 transcriptomes. (B-C) Dot plots showing the expression of *MMP13* and *COL10A1* for OA-
840 associated HTC on the t-SNE map. (D-E) Violin plots showing the GSVA score of HIF1 and OA
841 signaling pathway in five major cell types. (F) Safranin O/Fast Green staining of different OARSI
842 grade human tibia articular cartilage. Scale bar, 400 μ m. (G) Immunofluorescence staining of HIF-
843 1 α protein in different OARSI grade human tibia articular cartilage. Scale bar, 100 μ m. (H)
844 Quantitative analysis of HIF-1 α fluorescence intensity in different OARSI grade human articular
845 cartilage. (I) Immunofluorescence staining of HIF-1 α protein in tibial subchondral bone of *Lcp1*^{-/-}
846 mice and WT littermates at 4 and 8 weeks after ACLT. Scale bar, 20 μ m. (J) Quantitative analysis
847 of HIF-1 α fluorescence intensity in *Lcp1*^{-/-} and WT mice articular cartilage. n=5 per group. *P <
848 0.05, **P < 0.01, and ***P < 0.001.

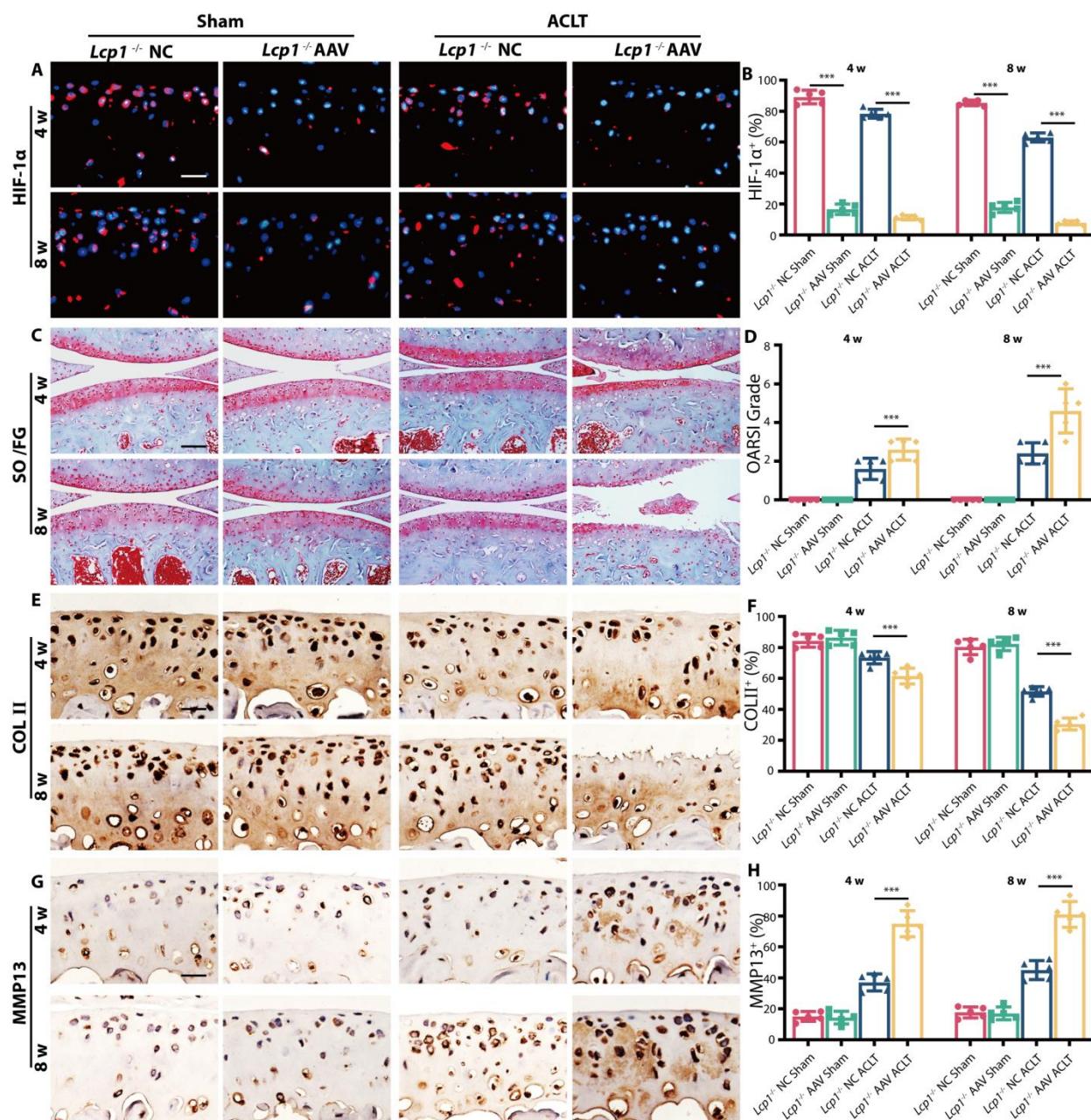
849

850

851

852

853


854

855

856

857

858

866 cartilage. **(E)** Representative images of COLII protein immunohistochemistry in articular cartilage
867 of *Lcp1*^{-/-} mice with Hif-1 α AAV or negative control at 4 and 8 weeks after ACLT. Scale bar
868 =20 μ m. **(F)** Quantitative analysis of COLII protein positive area in articular cartilage. **(G)**
869 Representative images of MMP13 protein immunohistochemistry in tibial articular cartilage of
870 *Lcp1*^{-/-} mice with *Hif1a* AAV or negative control at 4 and 8 weeks after ACLT. Scale bar, 20 μ m.
871 **(H)** Quantitative analysis of MMP13 protein positive area in articular cartilage. n=5 per group. *P
872 < 0.05, **P < 0.01, and ***P < 0.001.

873

874

875

876

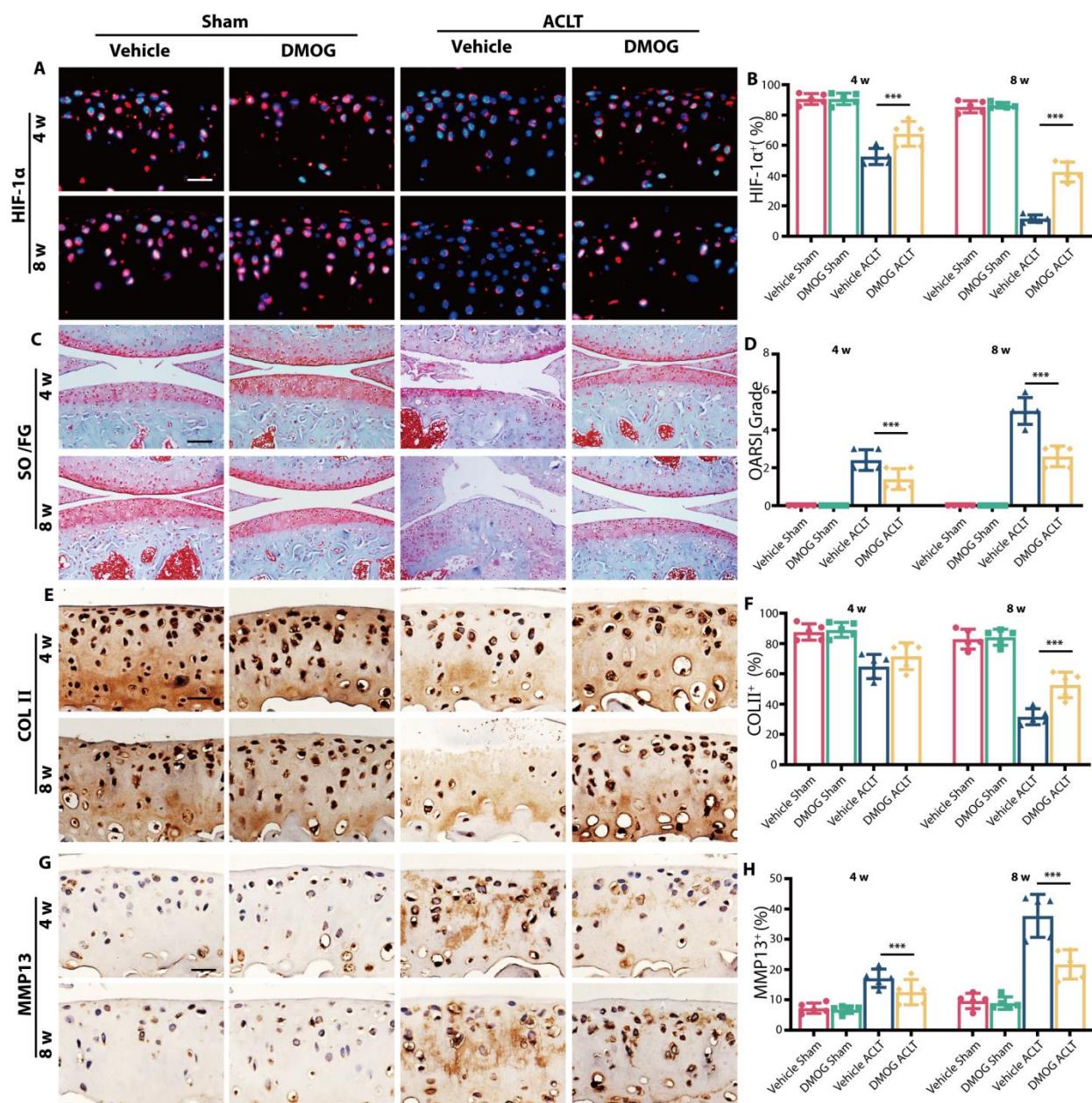
877

878

879

880

881


882

883

884

885

886

888 **Fig.6. HIF-1 α stabilizer DMOG protects articular cartilage in OA**

889 **(A)** Immunofluorescence staining of HIF-1 α protein in tibial articular cartilage of WT mice with
890 DMOG or normal saline at 4 and 8 weeks after ACLT. Scale bar, 20 μ m. **(B)** Quantitative analysis
891 of HIF-1 α fluorescence intensity of mice articular cartilage. **(C)** Knee articular cartilage Safranin
892 O/Fast Green staining of WT mice with DMOG or normal saline at 4 and 8 weeks after ACLT.
893 Scale bar, 100 μ m. **(D)** OARSI grade of knee articular cartilage. **(E)** Representative images of

894 COLII protein immunohistochemistry in articular cartilage of WT mice with DMOG or normal
895 saline at 4 and 8 weeks after ACLT. Scale bar, 20 μ m. **(F)** Quantitative analysis of COLII protein
896 positive area in articular cartilage. **(G)** Representative images of MMP13 protein
897 immunohistochemistry in tibial articular cartilage of WT mice with DMOG or normal saline at 4
898 and 8 weeks after ACLT. Scale bar, 20 μ m. **(H)** Quantitative analysis of MMP13 protein positive
899 area in articular cartilage. n=5 per group. *P < 0.05, **P < 0.01, and ***P < 0.001.

900

901

902

903

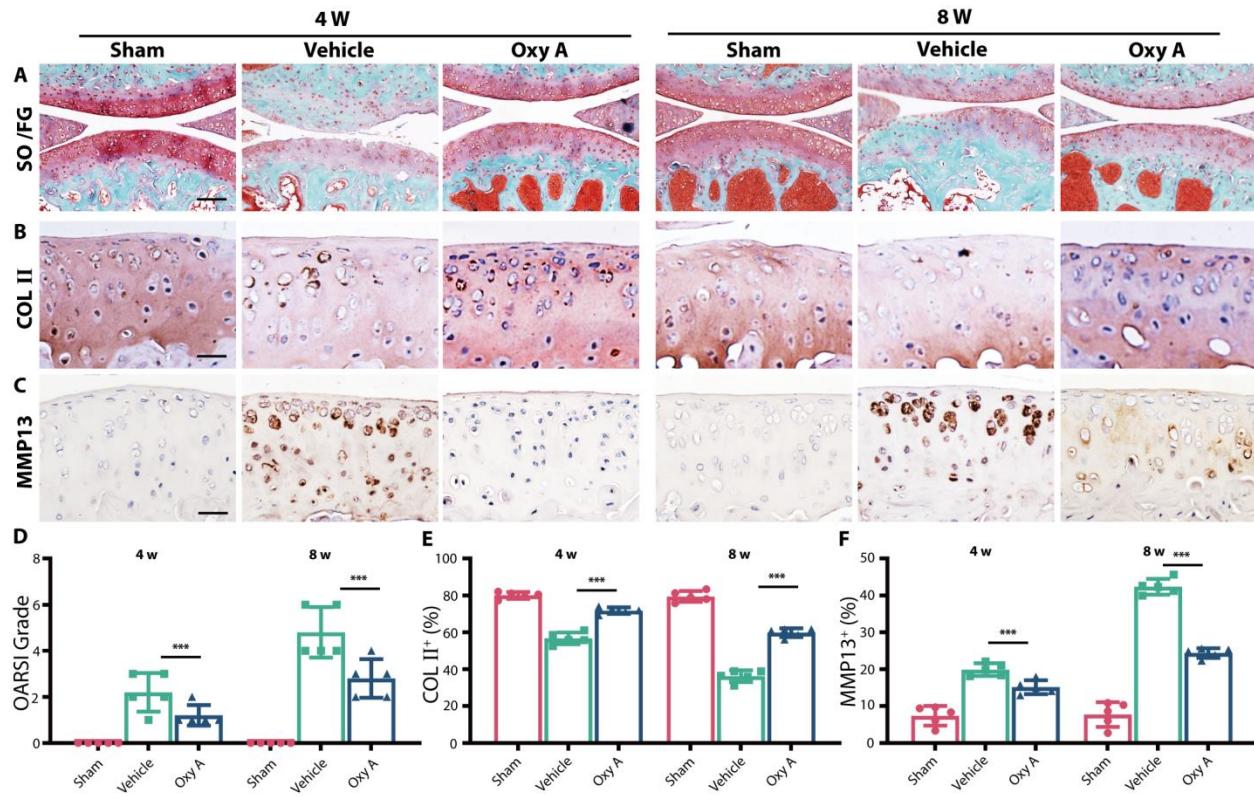
904

905

906

907

908


909

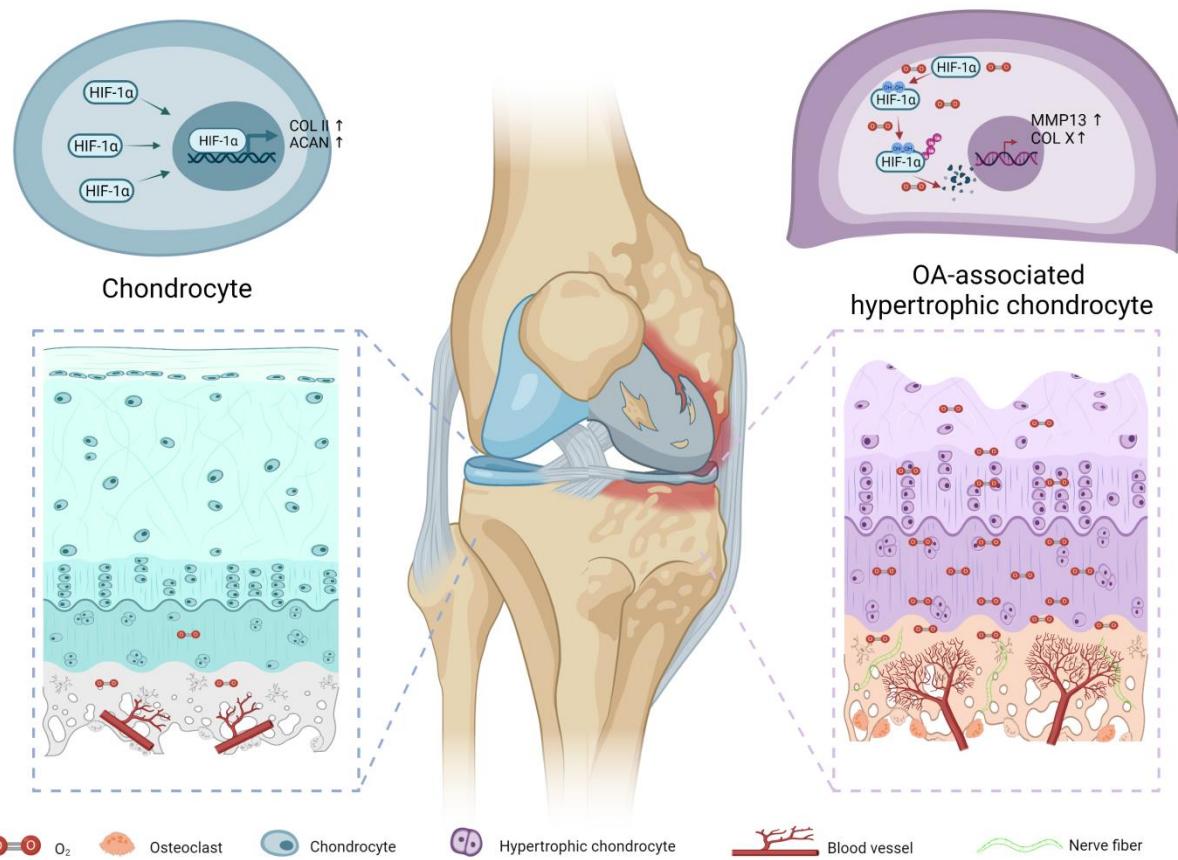
910

911

912

913

914


915 **Fig. 7. Oroxylin A alleviates OA progression in WT mice**

916 (A) Knee articular cartilage Safranin O/Fast Green staining of WT mice with Oxy A or normal
917 saline. Scale bar, 100 μ m. Representative images of COLII protein immunohistochemistry in tibial
918 articular cartilage of WT mice with Oxy A or normal saline at 4 and 8 weeks after ACLT. Scale
919 bar, 20 μ m. (C) Representative images of MMP13 protein immunohistochemistry in tibial articular
920 cartilage of WT mice with Oxy A or normal saline at 4 and 8 weeks after ACLT. Scale bar, 20 μ m.
921 (D) OARSI grade of knee articular cartilage. (E) Quantitative analysis of COLII protein positive
922 area in articular cartilage. (F) Quantitative analysis of MMP13 protein positive area in articular
923 cartilage. n=5 per group. *P < 0.05, **P < 0.01, and ***P < 0.001.

924

925

926

927

928 **Figure 8** Hypoxic environment is altered by type-H vessel recruited by osteoclasts and high-level
929 oxygen contributes to cartilage degeneration by degrading HIF-1 α .

930