

- 1 [Title page](#)
- 2 Enhanced envelope coding following acoustic trauma is detrimental to neural coding of speech in noise
- 3 Authors: Satyabrata Parida^{1,2,3*} and Michael G. Heinz^{1,2}
- 4 ¹Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, 47907
- 5 USA
- 6 ²Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907 USA
- 7 ³(present address) Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, 15261 USA
- 8
- 9 *Correspondence: sap245@pitt.edu
- 10 Number of pages: 8
- 11 Number of figures: 3
- 12 Number of tables: 0
- 13 Number of words in abstract: 70/70
- 14 Number of words in main text: 1191/1500

15 **Abstract:** People with hearing loss struggle understanding speech in noisy backgrounds.
16 Speech-intelligibility models highlight the importance of slow-varying envelopes of speech and noise;
17 however, the physiological basis of impaired perception remains unclear. We provide neurophysiological
18 evidence that, although acoustic trauma enhances both speech and noise envelopes, disruptions in
19 cochlear tonotopy preferentially enhance neural responses to noise in noisy speech. These results
20 provide mechanistic insights into everyday-communication challenges created by hearing loss.

21 Listeners with noise-induced hearing loss (NIHL) struggle to understand speech in noisy environments
22 despite having little difficulty in quiet environments. These deficits most severely manifest in
23 fluctuating-noise environments, such as in restaurants amidst other talkers, and are not resolved even
24 using state-of-the-art hearing aids¹. Hearing aids, which are fit based on the audiogram (clinical gold-
25 standard), provide limited benefit in these noisy environments because audiograms measure hearing
26 sensitivity in quiet conditions and do not reflect suprathreshold deficits in daily communication. A better
27 understanding of the neural coding of real-world sounds following hearing loss will guide strategies to
28 mitigate suprathreshold hearing difficulties, which will ultimately lead to better clinical outcomes.

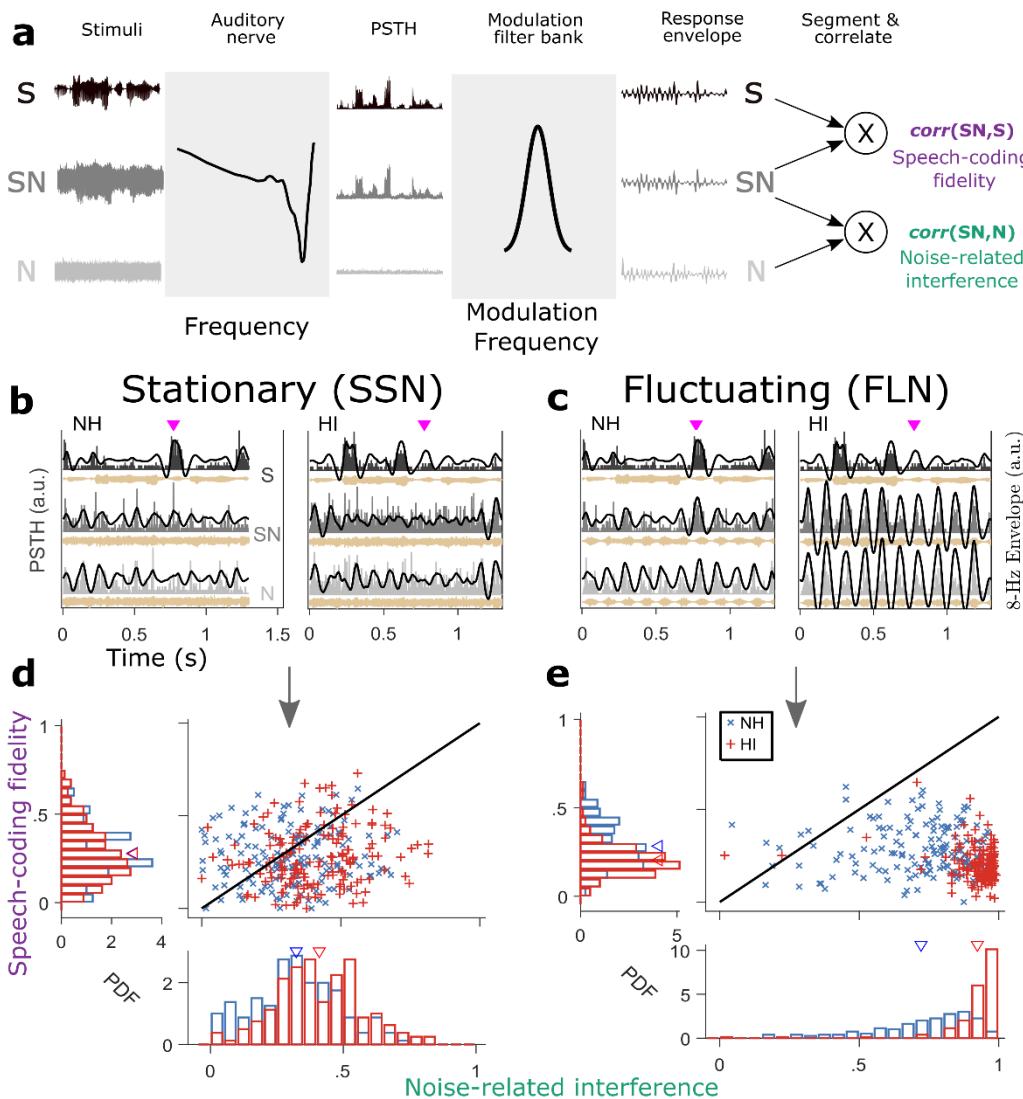
29 One such suprathreshold feature is the slowly varying envelope of speech, which is critical for speech
30 perception²⁻⁴. Previous neurophysiological studies have shown an enhancement in envelope coding of
31 various narrowband and broadband signals, including speech and noise when presented alone following
32 NIHL⁵⁻⁸. However, the effects of NIHL on speech and noise envelopes when presented simultaneously
33 (as in real-world scenarios) are unknown. Psychoacoustic studies suggest a detrimental role of enhanced
34 envelope coding on speech-in-noise representation⁹, but this hypothesis has not been tested in impaired
35 neural responses.

36 We recorded spike-train data from single auditory-nerve (AN) fibers of anesthetized male chinchillas
37 that either had normal hearing (NH) or mild-to-moderate hearing loss (Fig. S1), the most clinically
38 prevalent degree of hearing loss¹⁰. As expected, AN fibers from NIHL animals had elevated threshold,
39 broader bandwidth, and reduced tip-to-tail ratio (TTR) in frequency tuning curves, as well as reduced
40 spontaneous rate¹¹⁻¹³. Spike-train data were recorded in response to a naturally uttered speech
41 sentence (*S*), a stationary speech-shaped noise (SSN; Fig. 1B), and a fluctuating noise that had 8-Hz
42 sinusoidal amplitude modulation (FLN; Fig. 1C). Spike-train data were also collected in response to noisy-
43 speech mixtures (*SN*) at three (-10, -5, and 0 dB) different perceptually relevant signal-to-noise ratios
44 (SNRs) that were chosen to leverage the substantial difference in speech intelligibility across maskers
45 and between listeners with and without hearing loss¹⁴. Specifically, NH listeners (but not listeners with

46 hearing loss) can take advantage of fluctuations in maskers within this SNR range. Envelope coding was
47 significantly enhanced for HI AN-fiber responses to all stimulus types (Fig. S2), extending previous
48 reports of post-NIHL envelope enhancement to several new stimuli (natural speech, SSN, and FLN).
49 Notably, this enhancement was greater for FLN than for SSN.

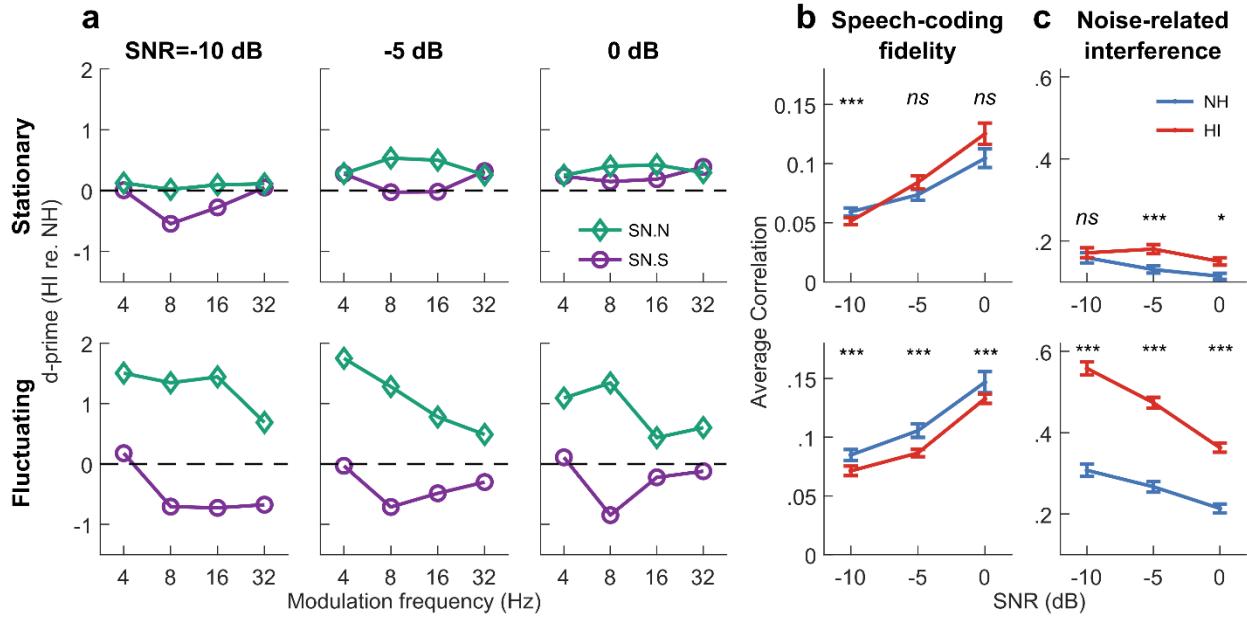
50 To test whether these individual enhancements were detrimental to overall speech-in-noise coding, the
51 relative contributions of speech (*S*) and noise (*N*) to noisy speech (*SN*) responses were quantified using a
52 speech-intelligibility model¹⁵ (Fig. 1). In this framework, AN spike trains were used to construct
53 peristimulus time histograms (PSTHs), which were further filtered by a modulation filter-bank that
54 mimics properties of midbrain neurons¹⁶. The center frequencies of these modulation filters spanned 4
55 to 32 Hz, frequencies most important for speech perception¹⁷. Speech contributions to *SN* responses,
56 termed *speech-coding fidelity*, were quantified as the correlation between response envelopes of *SN*
57 and *S* [$\text{corr}(\text{SN}, \text{S})$]. Similarly, noise contributions to *SN* responses, termed *noise-related interference*,
58 were quantified as the correlation between *SN* and *N* response envelopes [$\text{corr}(\text{SN}, \text{N})$]. Note that
59 $\text{corr}(\text{SN}, \text{N})$ quantifies the salience of unwanted distracting modulations due to background noise
60 (known as modulation detection interference¹⁸), and captures important aspects of speech-in-noise
61 coding that are complementary to *speech-coding fidelity* captured by $\text{corr}(\text{SN}, \text{S})$. Speech-coding
62 fidelity and noise-related interference were estimated for individual AN fibers at each modulation
63 frequency. These estimates were used to construct probability density functions (PDFs) for each
64 hearing-status group (e.g., Fig. 1d-e).

65 For each correlation metric, a diagnostic d-prime was used to quantify the distance between the HI and
66 NH group PDFs (Fig. 2a). d-prime for $\text{corr}(\text{SN}, \text{S})$ was often negative (especially for negative SNRs),
67 indicating poorer speech-coding fidelity for the HI group compared to NH, especially for FLN.
68 Surprisingly, d-prime for $\text{corr}(\text{SN}, \text{N})$ was always positive, indicating more severe noise interference for
69 the HI group, especially for FLN.

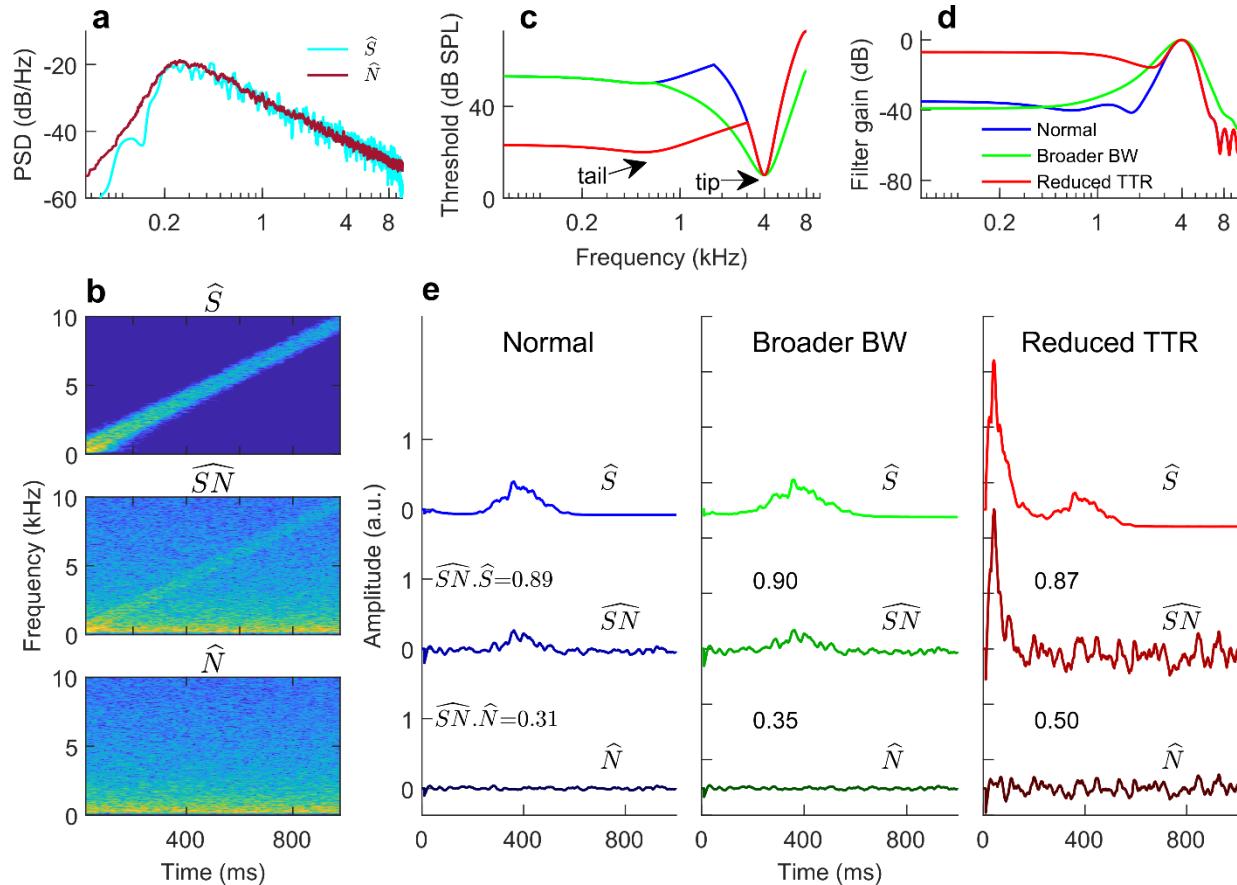

70 Another way of considering the perceptual relevance of these data is to estimate the average (*rms*)
71 correlation across modulation frequencies for each group, which can be treated as a neural estimate of
72 speech intelligibility¹⁵ (Fig. 2b-c). These results reiterate the same key points as in Fig. 2a, i.e., that: (1)
73 speech-coding fidelity was poorer and noise-related interference was greater for the HI group, and (2)
74 these degradations were worse for FLN than SSN. These neural results are strikingly parallel to
75 psychoacoustic results where listeners with hearing loss struggle more in fluctuating-masker conditions
76 than in stationary-masker conditions¹⁴.

77 Although consistent with psychoacoustics, these results are counterintuitive as speech and noise are
78 simply two signals to the cochlea, and an asymmetric enhancement of one signal in response to their
79 mixture is unexpected. What mechanism is responsible for this asymmetric enhancement of N ? The
80 usual suspect is broadened frequency-tuning bandwidth, which regularly accompanies NIHL^{12,19} (Fig.
81 S1d). Alternatively, our recent studies show that disruption in cochlear tonotopy, the functional
82 connectivity between sound frequency and cochlear place, which occurs following NIHL can play a key
83 role in speech-in-noise coding²⁰⁻²². To evaluate the relative contributions of these two factors (i.e.,
84 bandwidth and tonotopy), a toy model was created. The stimuli input to the model were a swept
85 narrowband “signal” (\hat{S}) and a broadband noise (\hat{N}), which mimic key spectrotemporal properties of
86 speech (spectrally sparse over short time scales) and noise (broadband), respectively (Fig. 3a-b). Model
87 responses to $\hat{S} + \hat{N}$ (at -5 dB SNR) were also simulated. Responses of three model AN fibers were
88 investigated: a normal-hearing fiber (narrow bandwidth and high TTR), an impaired fiber with broad
89 bandwidth but high TTR, and an impaired fiber with narrow bandwidth but low TTR (Fig. 3c-d). For these
90 systems, $\text{corr}(\hat{S}\hat{N}, \hat{S})$ and $\text{corr}(\hat{S}\hat{N}, \hat{N})$ were estimated to quantify signal-coding fidelity and noise-
91 related interference. Results showed that only the low-TTR system displayed degradations similar to
92 those observed in our neural speech-in-noise data [e.g., >50% increase in $\text{corr}(SN, N)$ following HL, Fig.
93 2c]. Overall, temporal responses of the low-TTR model fiber replicated the key results in the neural data:
94 (1) a reduced-TTR system over-represents low-frequency energy, thus rendering responses to be
95 non-tonotopic, (2) $\text{corr}(\hat{S}\hat{N}, \hat{S})$ is weakly affected suggesting that $\text{corr}(\hat{S}\hat{N}, \hat{S})$ is driven by common
96 non-tonotopic (low-frequency) components in $\hat{S}\hat{N}$ and \hat{S} , and (3) $\text{corr}(\hat{S}\hat{N}, \hat{N})$ is substantially enhanced,
97 suggesting that noise with substantial low-frequency energy can be particularly distracting.

98 In summary, these results show that enhanced envelope coding following acoustic trauma is detrimental
99 to the neural coding of speech-in-noise. This degradation was particularly strong in fluctuating
100 backgrounds, consistent with the inability of listeners with NIHL to benefit from masker fluctuations¹⁴.
101 These results also emphasize the importance of considering both tonotopic speech-coding fidelity and
102 enhanced noise-related interference in accounting for speech perception by listeners with hearing loss
103 (e.g., in speech-intelligibility models)²³. Because distorted tonotopy, the degree of which varies across
104 hearing-loss etiologies²¹, is the dominant contributor to these degradations in speech-in-noise coding
105 following NIHL, this understudied suprathreshold deficit likely contributes to individual differences in
106 speech perception among listeners with sensorineural hearing loss. Further studies are warranted to
107 establish the relation between speech perception and noninvasive assays of distorted tonotopy²²,


108 especially in real-world listening conditions since environmental noises have substantial low-frequency
109 energy, which can exacerbate the effects of distorted tonotopy^{20,22}.

110


112 **Figure 1. Exemplar neural data highlight the deleterious effects of a fluctuating masker on speech-in-noise envelope coding**
113 **for the hearing-impaired group, consistent with perception.** **a**, Framework to quantify *speech-coding fidelity* [$\text{corr}(\text{SN}, \text{S})$] and
114 *noise-related interference* [$\text{corr}(\text{SN}, \text{N})$]. **b-c**, Exemplar PSTHs from one NH (CF = 4.7 kHz) and one HI AN fiber (CF = 4.6 kHz) for
115 SSN (**b**) and FLN (**c**) at -5 dB SNR. Black trace = 8-Hz envelope. While the NH fiber responded strongest to a (high-frequency)
116 fricative (magenta triangles near 0.8 s) in S (as expected based on tonotopic coding), the HI fiber over-responded to (low-
117 frequency) voiced speech (0.3 – 0.7 s) and responded weakly to the fricative. Furthermore, HI-fiber envelopes are enhanced
118 relative to the NH fiber, particularly for the fluctuating-masker condition (both SN and N). **d-e**, Probability density functions
119 (PDF) for $\text{corr}(\text{SN}, \text{N})$ and $\text{corr}(\text{SN}, \text{S})$ for SSN (**d**) and FLN (**e**) at 0-dB SNR for the 8-Hz modulation filter. Triangles represent
120 group means. Noise-related interference was substantially higher for the HI group, especially for the fluctuating masker. NH,
121 normal hearing; HI, hearing impaired; a.u., arbitrary units; CF, characteristic frequency; PSTH, peristimulus time histogram.

122

123

124 **Figure 2. Noise-related envelope was preferentially enhanced following acoustic trauma in neural responses to noisy speech,**
125 **especially for the fluctuating masker.** **a**, A diagnostic d-prime metric indicates that $\text{corr}(SN, N)$ was regularly enhanced (>0)
126 following NIHL, whereas $\text{corr}(SN, S)$ was sometimes degraded (<0). **b**, Speech-coding fidelity was reduced for the HI group,
127 particularly for the fluctuating masker. **c**, Noise-related interference was significantly enhanced for the HI group, especially for
128 the fluctuating masker. This enhanced $\text{corr}(SN, N)$ highlights the distracting nature of fluctuating noise, the condition where
129 listeners with NIHL struggle the most during everyday communication. Error bars represent s.e.m.

131 **Figure 3. Toy model suggests that the preferential enhancement of noise-related envelopes results from distorted tonotopy**
132 **following NIHL. a–b,** The two signals used in the toy model had similar long-term spectrum (a), but different short-term
133 spectrotemporal properties (b). Over short time scales, the swept narrowband “signal” (\hat{S}) is bandlimited but \hat{N} is broadband.
134 $\hat{S}\hat{N}$ was generated by mixing \hat{S} and \hat{N} at -5 dB SNR. **c,** Frequency-tuning curves for three model AN fibers that help disentangle
135 the effects of broader tip bandwidth from distorted tonotopy (i.e., reduced TTR). **d,** Transfer functions for the model fibers. **e,**
136 Response envelopes of the model fibers (with correlation values shown as in-panel text) suggest that distorted tonotopy is
137 more detrimental to speech-in-noise coding than broader bandwidth (BW).

138 **Methods**

139 All experimental procedures followed PHS-issued guidelines and were approved by Purdue Animal Care
140 and Use Committee (Protocol No: 1111000123). Data were collected from young (< 1 year old, weighing
141 between 400 and 700 g) male chinchillas (189 AN fibers from 12 normal-hearing chinchillas; 132 AN
142 fibers from 7 hearing-impaired chinchillas) using standard procedures in our laboratory^{5,6,21}. Animals
143 were socially housed in pairs until they went through a procedure involving anesthesia. Housing was
144 maintained in a 12-hour light /12-hour dark cycle. All animals received daily nonauditory environmental
145 enrichment (chewing toys and dietary treats).

146 **Noise exposure and electrophysiological recordings**

147 Animals were exposed to 116 dB SPL (C-weighted) octave-band noise centered at 500 Hz for two hours
148 using an enclosed subwoofer (Selenium 10PW3, Harman), which was placed ~30 cm above the animal's
149 head. Exposure level was calibrated near the animal's ear canal using a sound-level meter (886-2,
150 Simpson, Elgin, IL, USA). Animals were anesthetized using xylazine (2 to 3 mg/kg, subcutaneous) and
151 ketamine (30 to 40 mg/kg, subcutaneous) prior to their noise exposure. Animals' vital signs were
152 monitored throughout all procedures using a pulse oximeter (Nonin 8600V, Plymouth, MN). An oxygen
153 tube was placed near the animals' nostrils. A xylazine-reversal agent (Atipamezole, 0.4 to 0.5 mg/kg,
154 intraperitoneal) was used after the procedure to facilitate speedy recovery from anesthesia. Animals
155 were given warm lactated Ringer's solution (before and after the procedure, 6 cc each, subcutaneous)
156 and a high-calorie diet (after the procedure for three days, DietGel Criticare, ClearH2O, Portland, ME,
157 US). Animals were allowed at least a two-week recovery period following noise exposure before any
158 electrophysiological recordings were obtained. The animal's rectal temperature was maintained at 37 °C
159 using a feedback-controlled heating pad (50-7053F, Harvard Apparatus) and the room temperature was
160 kept elevated at 24°C during any anesthetic procedure.

161 Animals were screened with hearing assessments before and after (the two-week recovery period) noise
162 exposure. The same anesthetic and recovery procedures were followed as noise exposure. A transducer-
163 microphone pair (Etymotic ER-2, Etymotic ER-10B, Etymotic Research, Elk Grove Village, IL, USA) was
164 used for acoustic calibration and sound presentation with a foam ear tip inserted into the external ear
165 canal.

166 Auditory brainstem responses (ABRs) were recorded using subdermal needle electrodes in a vertical
167 montage (differential mode; active electrodes near the vertex and mastoid and common ground near

168 the nose). ABRs were band-pass filtered (0.3–3 kHz, $\times 20,000$ gain) using analog filters/amplifiers (ISO-80,
169 World Precision Instruments, Sarasota, FL; SR560, Stanford Research Systems, Sunnyvale, CA; 2400A,
170 Dagan, Minneapolis, MN). ABRs were collected in response to tone pips (5-ms duration, 0.5-ms on and
171 off ramp, 31-ms repetition period, 500 repetitions per polarity) at five frequencies (0.5, 1, 2, 4, and 8
172 kHz) from 0 to 80 dB SPL in 10 dB steps. ABRs for another intensity (odd multiple of five) near the
173 preliminary threshold estimate were also collected to fine-tune final threshold estimate. Threshold was
174 estimated based on a cross-correlation analysis^{22,24}. Briefly, the ABR at a high intensity (60/80 dB SPL for
175 normal-hearing/noise-exposed animals) was used as the template and was cross-correlated with ABRs at
176 lower intensities (response correlation) or physiological noise in the same session (correlation noise
177 floor). Threshold was estimated as the intensity at which linear regression of response correlation
178 crossed three standard deviations above the correlation noise floor.

179 Distortion product otoacoustic emissions (DPOAEs) were collected in response to tone-pairs at f_1 (at 75
180 dB SPL) and f_2 (at 65 dB SPL, ranging from 0.5 to 12 kHz) with $f_2/f_1 = 1.2$ using the same transducer-
181 microphone pair. DPOAE level was defined as the peak (in dB SPL) at $2f_1 - f_2$ in the response spectrum.

182 [Surgical preparation](#)

183 Anesthesia was induced using the same xylazine/ketamine doses as for noise exposure. A tracheostomy
184 was performed to allow low-resistance air pathway to minimize breathing-related acoustic artifacts. The
185 cartilaginous portions and muscles near the external ear were dissected to allow insertion of
186 custom-made hollow brass ear bars into the external auditory meatus. After stereotaxic positioning of
187 the animal, a posterior fossa approach was used for craniotomy until the brainstem was visible,
188 following which, cotton pellets were used to push the brainstem away from the lateral wall to reveal the
189 exit of the 8th cranial nerve from the internal auditory meatus. The posterior bulla was vented with a 30-
190 cm long polyethylene tube to maintain middle-ear pressure. High impedance (10–50 M Ω) glass
191 micropipettes filled with 3M NaCl were used as electrodes. Animals were supplemented with lactated
192 Ringer's throughout the experiment (~1 ml/hour). The room temperature, additional oxygen, the
193 animal's rectal temperature and vitals were maintained as described previously. Experiments usually
194 lasted for 18–24 hours and terminated if sudden changes in frequency-tuning-curve thresholds were
195 detected for two or more consecutive auditory-nerve fibers, following which a lethal barbiturate dose (2
196 cc intraperitoneal, Euthasol, Virbac Corporation, Westlake, TX) was administered.

197 [Neurophysiological recordings and stimuli](#)

198 Recordings were amplified (2400A, Dagan Corporation, Minneapolis, MN) and filtered (0.03 to 6 kHz;
199 3550, Krohn-Hite Corporation, Brockton, MA), and isolated spikes were identified using an amplitude-
200 window discriminator (BAK Electronics, Mount Airy, MD, USA). Single fibers were identified by
201 looking/listening for sound evoked activity to broadband noise as the search stimulus (~20 dB re 20 μ Pa/
202 $\sqrt{\text{Hz}}$ for normal-hearing animals, and higher as required for hearing-impaired animals) while advancing
203 the electrode in 2-3 μ m steps. When a fiber was encountered, an automated frequency tuning curve
204 (FTC) was generated²⁵, followed by routines to estimate its spontaneous rate (over a 30-s silence period)
205 and rate-level function at its CF (CF estimated from the FTC). The CF for individual fibers was estimated
206 as the local minimum closest to the high-frequency-side slope of FTCs; this approach offers a close
207 estimate of the CF for an auditory-nerve fiber appropriate for its cochlear location²⁶. Local 10-dB quality
208 factor or Q_{10} was estimated as the 10-dB bandwidth relative to the threshold at CF. For W-shaped FTCs,
209 the narrowest 10-dB bandwidth near CF was considered for local Q_{10} , which is similar to psychoacoustic
210 approaches for estimating tuning²⁷ and disentangles broadened bandwidth effects from distorted
211 tonotopy²⁰.

212 Next, SNR-specific routines were employed to collect spike-train data for relevant speech, noise, and
213 noisy-speech files. A naturally spoken sentence was used as the speech stimulus (list #3, sentence #1 of
214 the Danish speech intelligibility test)²⁸. Two types of noises were used: steady-state noise (SSN) and 8-Hz
215 sinusoidally amplitude modulated (fluctuating) noise (FLN). Both noises were frozen (i.e., a single
216 instance was used for all AN fibers) and were spectrally matched to ten sentences spoken by the same
217 speaker as the speech sentence. Overall speech level was set to 65- and 80-dB SPL for normal-hearing
218 and hearing-impaired chinchillas, respectively. Noise was scaled and added to speech to achieve a
219 desired SNR (either -10, -5, or 0 dB). The order of SNR conditions during the experiment was pseudo-
220 random. For each SNR-specific routine, stimuli (speech, noises, and their mixtures) were presented in an
221 interleaved manner. Following data collection, spike data were screened to remove any (artifactual)
222 spikes that rarely (< 0.1% for most units) occurred before the absolute refractory period (0.6 ms)
223 following the previous spike.

224 [Envelope-correlation analyses](#)

225 Components of speech and noise in responses to noisy speech were quantified using correlational
226 analyses on the response envelopes using a multi-resolution framework¹⁵. Recorded AN-fiber spike

227 trains were used to construct peristimulus time histograms (PSTH) with 0.5 ms bin resolution. This PSTH
228 was processed through a modulation filter bank (four filters) with center frequencies = 4, 8, 16, and 32
229 Hz. Filters were fourth order, octave wide, and zero phase. Contributions of speech and noise to
230 noisy-speech responses were quantified using correlational analyses. Envelope correlation between
231 responses to speech (S) and noisy speech (SN) is termed *speech-coding fidelity* and is denoted by
232 $corr(SN, S)$. Similarly, envelope correlation between responses to noise (N) and noisy speech is termed
233 *noise-related interference* and is denoted by $corr(SN, N)$. These correlation metrics were estimated as
234 follows.

235 For each AN fiber (f_c) and modulation filter (f_m) combination for each noise condition, the output of the
236 modulation filter for all stimuli (i.e., S , N , and SN) were divided into segments of $2/f_m$, and correlation
237 metrics [i.e., $corr(SN, S)$ and $corr(SN, N)$] were estimated for each segment. These segment
238 correlation values were rectified (i.e., set to zero if negative). The final correlation value for that AN fiber
239 at that modulation frequency was estimated as the average of the rectified correlation values across all
240 segments. For each group, these final correlation values were pooled to construct probability density
241 functions at each modulation frequency per noise condition (e.g., Fig. 1d-e). Only AN fibers with
242 $f_c < 5$ kHz were considered to avoid major sampling biases in f_c between groups.

243 Group differences were quantified from the distance between these correlation distributions (Fig. 2a) at
244 each modulation frequency, estimated by the following diagnostic d-prime metric:

$$245 \quad d\text{-prime} = \frac{(\mu_{HI} - \mu_{NH})}{(\sigma_{HI}^2 + \sigma_{NH}^2)/2},$$

246 where μ and σ denote the mean and standard deviation of the probability density function. Note that
247 negative d-prime for $corr(SN, S)$ indicates poorer *speech-coding fidelity* for the HI group. Similarly,
248 positive d-prime for $corr(SN, N)$ indicates greater *noise-related interference* for the HI group.

249 Average correlation values in Fig. 2b-c were estimated as the root-mean-square (*rms*) of the correlation
250 value across f_m for each AN fiber, as done in speech-intelligibility modeling^{15,29}. Mean and standard
251 error for each group are based on these final correlation values across AN fibers.

252 **AN-fiber modelling**

253 To disentangle the effects of broader tuning bandwidth from distorted tonotopy, a toy model was
254 created with simplified stimuli and model AN fibers. Two signals, a broadband noise (\hat{N}) and a swept
255 narrowband-noise signal (\hat{S}), both with *red long-term spectrum* (i.e., $1/f^2$ spectrum) were used as
256 stimuli to mimic the spectrotemporal properties of noise (broadband over short time scales) and speech
257 (narrowband over short time scales), respectively. Red spectrum was used because it is closer to the
258 long-term spectrum of speech than pink or white noise³⁰. \hat{S} was designed by first generating red noise,
259 then applying frequency demodulation (linear trajectory from 200 Hz to Nyquist frequency – 200 Hz)
260 and low-pass filtering (bandwidth = 400 Hz, fourth order), and finally applying frequency modulation (to
261 invert the initial frequency demodulation)³¹. Thus, \hat{S} was a swept narrowband noise with a bandwidth of
262 400 Hz at any single instance. \hat{N} was 5 dB higher in level than \hat{S} ; therefore, signal to noise ratio for $\hat{S}\hat{N}$
263 was -5 dB. All signals were high-pass filtered at 250 Hz.

264 Responses of three model AN fibers were investigated: (1) a normal-hearing fiber with a narrow
265 bandwidth ($Q_{10} = 2.3$) and high (40 dB) TTR, (2) an impaired fiber with a broad bandwidth ($Q_{10} = 1.5$)
266 but high (40 dB) TTR, and (3) an impaired fiber with a narrow bandwidth ($Q_{10} = 2.3$) but low (10 dB)
267 TTR. To design the system function for each model fiber, first an FTC was designed with a tip (fourth
268 order gammatone filter) and a tail (first order gammatone filter centered at 500 Hz with five times the
269 equivalent rectangular bandwidth for humans at 500 Hz²⁷). System transfer functions were derived from
270 inverted FTCs with maximum gain set to 0 dB. Filtered signals were half-wave rectified. Response
271 envelope was obtained by lowpass filtering this rectified output (cut-off = 16 Hz, fourth order, zero
272 phase). Response envelope correlation was estimated for this one envelope filter because of the
273 simplified nature of \hat{S} .

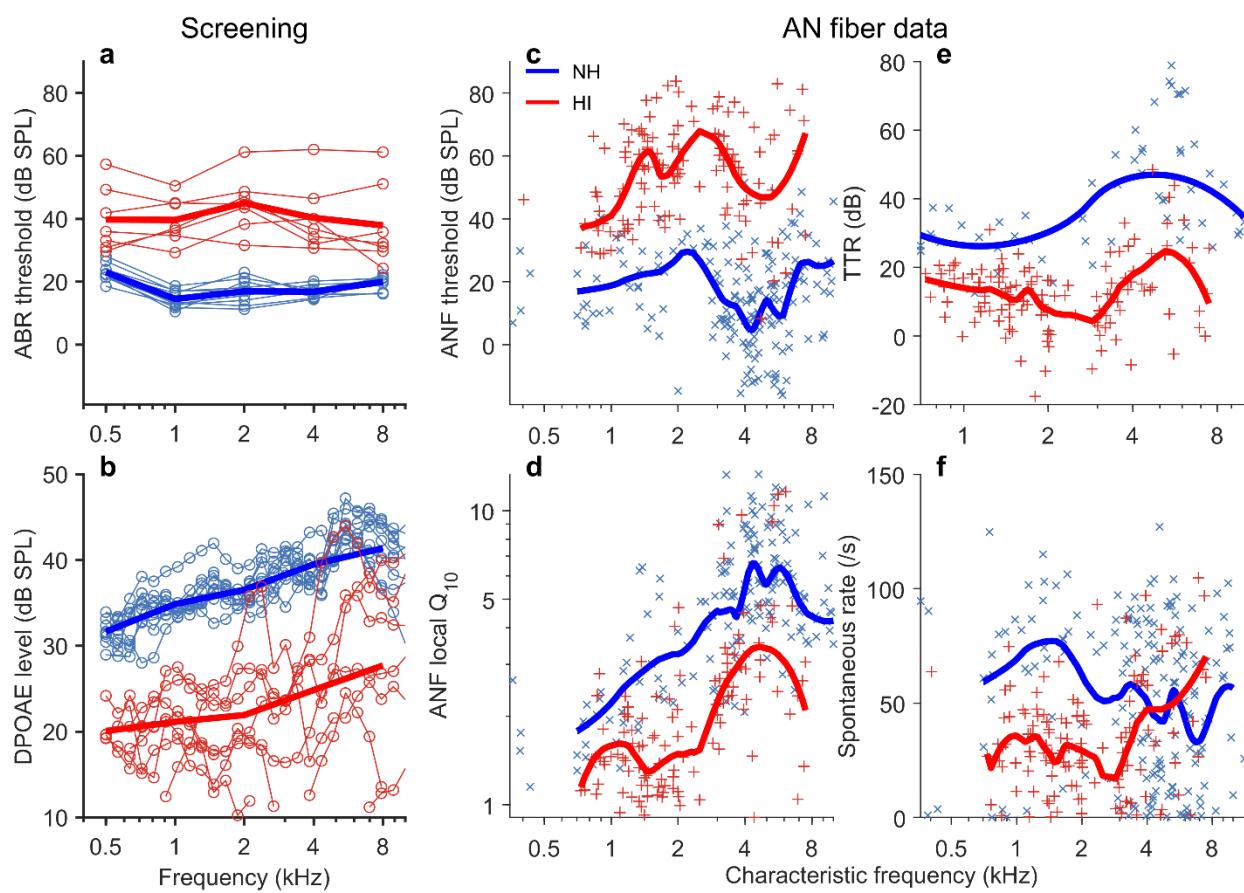
274 **Statistical analysis**

275 Statistical analyses were performed in R (version 4.0.3) using linear mixed-effects models (lme4
276 package³²) to report the effects of *group* (normal-hearing or hearing-impaired). Reported p- and F-
277 values are based on Type II Wald F tests³³. Log-transformed CF was included in all statistical models for
278 AN data. CF was log-transformed because of the approximate logarithmic spacing of frequency in the
279 cochlea. A p-value of 0.05 was used as the threshold for significance. Significance codes in Fig. 2: 0 ‘***’
280 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘ns’ 1. In Fig. S2, statistical analysis of envelope coding for noise-alone is based on
281 a single model consisting of group, noise type (SSN or FLN), and SNR as the fixed effects, and AN fiber

282 identifier as a random effect; interactions were included between fixed effects and dropped when not
283 significant ($p > 0.05$) in order of decreasing p-value.

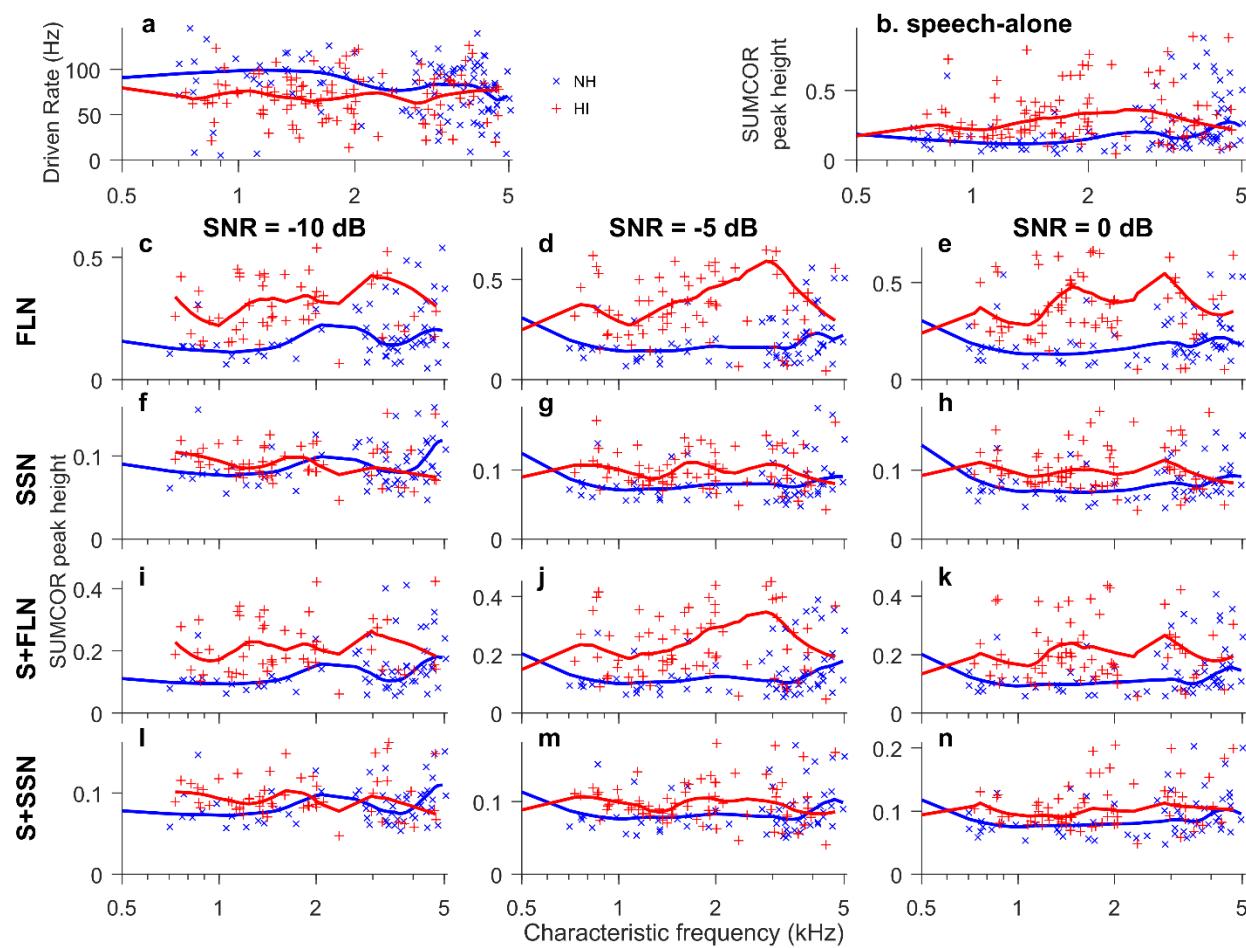
284 **Acknowledgement**

285 We thank Vibha Viswanathan, François Deloche, and Ivy Schweinzer for providing valuable feedback on
286 earlier versions of the manuscript. This work was supported by the National Institute of Health (R01-
287 DC009838) and an International Grant (G72) from Action in Hearing loss (UK).


288 **Author contributions**

289 All authors contributed to the experimental design and writing of the paper. SP performed the
290 experiments and formal analyses. MGH acquired funding.

291 **Competing interests**


292 The authors declare no competing interests.

293 Supplemental Information

295 **Figure S1. Acoustic trauma caused mild-moderate hearing loss resulting in reduced audibility, broadened frequency tuning,**
296 **and reduced tonotopicity.** **a**, Auditory brainstem response (ABR) thresholds were elevated on average by ~ 20 dB for the HI
297 animals (main effect of group, $F = 252.8$, $p < 2.2 \times 10^{-16}$). Thin lines with symbols represent individual animals ($n=9/7$, NH/HI);
298 thick lines represent group averages. **b**, Similarly, distortion product otoacoustic emission (DPOAE) levels were decreased,
299 which indicates substantial outer-hair-cell damage ($F = 1153.8$, $p < 2.2 \times 10^{-16}$). **c-f**, For auditory-nerve fibers, frequency-tuning
300 curve (FTC) threshold was elevated (**c**; $F = 68.3$, $p = 8.5 \times 10^{-7}$), frequency tuning was broadened near the FTC-tip as quantified by
301 local Q_{10} (**d**; $F = 11.6$, $p = 3.0 \times 10^{-3}$). Tip-to-tail ratio (TTR), which is the difference in threshold at the tail and the tip, was also
302 consistently reduced (**e**; $F = 111.4$, $p = 1.7 \times 10^{-9}$). Trend lines were computed by locally robust loess regression (smoothing
303 window span = 40%). Spontaneous rate was also reduced for the HI group (**f**; $F = 8.7$, $p < 8.5 \times 10^{-3}$), suggesting substantial inner-
304 hair-cell dysfunction¹³. ANF, auditory nerve fiber.

305

306

307 **Figure S2. Envelope coding was significantly enhanced for speech, noise, and noisy speech following NIHL, especially for the**
 308 **fluctuating masker.** **a**, Driven rate was significantly (group, $F = 10.98$, $p = 0.011$) reduced following hearing loss. **b**, Sumcor peak
 309 height, a metric for envelope-coding strength, shows significant envelope enhancement for the hearing-impaired (HI) group for
 310 speech-alone but only at lower frequencies (CF < 3.5 kHz: group, $F = 6.4$, $p = 0.012$; CF < 5 kHz: group, $F = 0.92$, $p = 0.34$). **c-h**,
 311 Same format as **b**. Envelope coding was also enhanced for noise-alone stimuli, including both FLN and SSN (group, $F = 28.1$, $p =$
 312 2.5×10^{-7}). Envelope coding was particularly enhanced for the fluctuating noise (group \times noise type, $F = 224.8$, $p < 2.2 \times 10^{-16}$;
 313 noise, $F = 1191$, $p < 2.2 \times 10^{-16}$). **i-n**, Same format as **b**. Envelope coding was also significantly enhanced for noisy-speech stimuli,
 314 particularly for S+FLN (group, $F = 6.3$, $p = 0.012$; group \times noise, $F = 102.2$, $p < 2.2 \times 10^{-16}$, noise, $F = 620.2$, $p < 2.2 \times 10^{-16}$). Sumcors
 315 were filtered between 4/V2 Hz to 32×V2 Hz to emphasize important modulation bands for speech (same bandwidth as in Fig. 2).
 316 Trend lines were computed by locally robust loess regression (smoothing window span = 40%). NIHL, noise-induced hearing
 317 loss; S, speech-alone; SSN, stationary noise; FLN: 8-Hz sinusoidally amplitude modulated (fluctuating) noise.

318 References

- 319 1. Lesica, N.A. *Trends Neurosci.* (2018).
- 320 2. Shannon, R.V., Zeng, F.-G., Kamath, V., Wygonski, J. & Ekelid, M. *Science* **270**, 303–304 (1995).
- 321 3. Smith, Z.M., Delgutte, B. & Oxenham, A.J. *Nature* **416**, 87 (2002).
- 322 4. Viswanathan, V., Bharadwaj, H.M., Shinn-Cunningham, B.G. & Heinz, M.G. *J. Acoust. Soc. Am.* **150**,
323 2230–2244 (2021).
- 324 5. Kale, S. & Heinz, M.G. *J. Assoc. Res. Otolaryngol.* **11**, 657–673 (2010).
- 325 6. Henry, K.S., Kale, S. & Heinz, M.G. *J. Neurosci.* **36**, 2227–2237 (2016).
- 326 7. Goossens, T., Vercammen, C., Wouters, J. & van Wieringen, A. *Hear. Res.* **370**, 189–200 (2018).
- 327 8. Millman, R.E., Mattys, S.L., Gouws, A.D. & Prendergast, G. *J. Neurosci.* **37**, 7727–7736 (2017).
- 328 9. Moore, B.C.J., Glasberg, B.R. & Vickers, D.A. *Br. J. Audiol.* **29**, 131–143 (1995).
- 329 10. Goman, A.M. & Lin, F.R. *Am. J. Public Health* **106**, 1820–1822 (2016).
- 330 11. Miller, R.L., Schilling, J.R., Franck, K.R. & Young, E.D. *J. Acoust. Soc. Am.* **101**, 3602–3616 (1997).
- 331 12. Henry, K.S. & Heinz, M.G. *Nat. Neurosci.* **15**, 1362–1364 (2012).
- 332 13. Liberman, M.C. & Dodds, L.W. *Hear. Res.* **16**, 43–53 (1984).
- 333 14. Festen, J.M. & Plomp, R. *J. Acoust. Soc. Am.* **88**, 1725–1736 (1990).
- 334 15. Relaño-Iborra, H., May, T., Zaar, J., Scheidiger, C. & Dau, T. *J. Acoust. Soc. Am.* **140**, 2670–2679
335 (2016).
- 336 16. Joris, P.X., Schreiner, C.E. & Rees, A. *Physiol. Rev.* **84**, 541–577 (2004).
- 337 17. Drullman, R., Festen, J.M. & Plomp, R. *J. Acoust. Soc. Am.* **95**, 2670–2680 (1994).
- 338 18. Yost, W.A. & Sheft, S. *J. Acoust. Soc. Am.* **85**, 848–857 (1989).
- 339 19. Glasberg, B.R. & Moore, B.C.J. *J. Acoust. Soc. Am.* **79**, 1020–1033 (1986).
- 340 20. Parida, S. & Heinz, M.G. *J. Neurosci.* **42**, 1477–1490 (2022).
- 341 21. Henry, K.S., Sayles, M., Hickox, A.E. & Heinz, M.G. *J. Neurosci.* **39**, 6879–6887 (2019).
- 342 22. Parida, S. & Heinz, M.G. *J. Assoc. Res. Otolaryngol.* (2021).doi:10.1007/s10162-020-00755-2
- 343 23. Jørgensen, S. & Dau, T. *J. Acoust. Soc. Am.* **130**, 1475–1487 (2011).
- 344 24. Henry, K.S., Kale, S., Scheidt, R.E. & Heinz, M.G. *Hear. Res.* **280**, 236–244 (2011).
- 345 25. Chintanpalli, A. & Heinz, M.G. *J. Acoust. Soc. Am.* **122**, EL203–EL209 (2007).
- 346 26. Liberman, M.C. *Hear. Res.* **16**, 33–41 (1984).
- 347 27. Glasberg, B.R. & Moore, B.C.J. *Hear. Res.* **47**, 103–138 (1990).
- 348 28. Nielsen, J.B. & Dau, T. *Int. J. Audiol.* **48**, 729–741 (2009).
- 349 29. Jørgensen, S., Ewert, S.D. & Dau, T. *J. Acoust. Soc. Am.* **134**, 436–446 (2013).
- 350 30. Byrne, D. et al. *J. Acoust. Soc. Am.* **96**, 2108–2120 (1994).
- 351 31. Parida, S., Bharadwaj, H. & Heinz, M.G. *PLOS Comput. Biol.* **17**, e1008155 (2021).
- 352 32. Bates, D., Mächler, M., Bolker, B. & Walker, S. *J. Stat. Softw.* **67**, 1–48 (2015).
- 353 33. Kenward, M.G. & Roger, J.H. *Biometrics* **53**, 983–997 (1997).

354