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Abstract

Since Braak’s initial histological observations, it has been recognized that
Alzheimer’s disease (AD) neurofibrillary tangles (NFTs) appear in the
medial temporal lobe (MTL) of the brain very early in the disease course.
MRI-based shape diffeomorphometry markers have demonstrated pre-
clinical AD changes in the MTL but it has not been possible to confirm
that these MRI changes correspond to the presence of NFTs. Here, we
present a method termed Projective LDDMM for aligning sparse mea-
surement profiles of AD pathology (i.e., 2D digital histology images)
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with 3D MRI. We reconstruct measures of 2D NFT density in the dense
metric of 3D MRI, using the Mai Paxinos Atlas coordinates for two
cases of advanced AD. Analyses reveal the highest levels of NFT density
in the rostral third (10-15 mm) of the hippocampus and the adjoining
regions of the entorhinal cortex and amygdala. These findings emphasize
the selective vulnerability of MTL subregions in AD, and suggest that
high resolution MRI methods might benefit from focusing on the rostral
MTL to more closely link these MRI images to AD neuropathology.

Keywords: Projective LDDMM, Alzheimer’s disease, Tau Tangles,
Multimodal and Multiscale Image Registration

Alzheimer’s disease (AD) is the leading cause of dementia worldwide [1]. Diag-
nosis and characterization of AD in its early stages remain key challenges, as
existing technologies limit the identification of the neuropathological patterns
thought to emerge years before symptom onset [2, 3, 4]. In clinical practice, AD
is typically first characterized by progressive clinical changes in memory and
behavior, and subsequently through imaging changes that indirectly reflect AD
neuropathology (i.e. misfolded proteins, tau and amyloid-Beta (Aβ)) [5, 6, 7].
Efforts to identify and understand the spatiotemporal profile of AD in its early
stages have centered on these biomarkers [8]–measures that indirectly reflect
the underlying pathology, which are obtainable over the course of disease. Of
the methods used, neuroimaging has emerged as a prominent player with the
ability to localize pathology non-invasively (e.g. tau/amyloid PET) [9, 10],
and with proposed surrogates such as shape diffeomorphometric markers (e.g.
MRI) [11, 12, 13]. While these imaging measures have shown consistency with
Braak staging [5, 6], an accurate rendering of the 3D spatiotemporal profile
of tau and Aβ at the micron scale has not been achieved [9, 10]. The princi-
ple challenge has been integrating the 2D sparse measurements of histology,
which are direct measures of disease, to the MRI 3D markers which are at
much lower in-plane resolution.

This paper focuses on a new class of image-based diffeomorphometry meth-
ods which we term Projective LDDMM for aligning sparse 2D histological
profiles to 3D coordinate systems across micron and millimeter scales. The
3D MRI to 2D digital histology mapping is representative of a class of multi-
scale, multi-modality mapping in biomedical research including traditional
light microscopy mapping to dense reference atlases [14, 15, 16, 17], light sheet
methods [18, 19], and spatial transcriptomics [20, 21, 22, 23]. We formulate
the dense mapping of atlases to sparse images problem using the random orbit
model of computational anatomy [24, 25, 26, 27] in which the space of dense
anatomies I ∈ I is modelled as an orbit of a 3D template under the group
of diffeomorphisms. Projective LDDMM models the sparse 2D histological
observables not as an element of the orbit I but rather a random deformation
in dense 3D coordinates composed with a measurement projection to sparse
coordinates. While LDDMM provides the geodesic metric [28, 29] on the orbit
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of 3D anatomies, there is no symmetry between the observable and the tem-
plate, in general, and there should not be. This departs significantly from the
symmetric methods [30, 31].

Alignment specifically of the modes of histology to MRI warrants two exten-
sions of the basic model of Projective LDDMM. First, cross-modality similarity
modelling is essential. Several strategies for representing image similarity have
emerged including cross-correlation [32], mutual information [33], and local
textural characteristics [34]. Our approach is to extend previous work [35, 36]
by modelling a photometric transformation of histology to MRI with Mallat’s
Scattering Transform [37, 38] to represent local radiomic textures at histolog-
ical scales. Second, histological images carry large numbers of imperfections
with tears, image stitching, and lighting variations. Extending previous work
[15, 36], we introduce Gaussian mixtures models in the image plane of each his-
tological slice to interpret image locations as matching tissue, background, or
artifact. We proceed by way of the Expectation-Maximization (EM) algorithm
[39] in estimating deformations that prioritize image matching at locations
that are, in turn, estimated more likely to be matching tissue.

Here, we use Projective LDDMM to reconstruct the 3D geometries of two
sets of 2D histological sections taken from the medial temporal lobe (MTL) of
advanced cases of AD. As tau has exhibited stronger predisposition over Aβ
for segregating to particular brain regions (ERC, CA1, subiculum) and layers
(superficial) of cortex in AD [5], we use machine-learning based methods to
detect and quantify neurofibrillary tangles (NFTs) from histological images.
Modeling this data in a measure theoretic framework amenable to quantifying
trends at different scales [40], we transport these detections to the 3D space
via the correspondences yielded by Projective LDDMM.

1 Results

1.1 Projective LDDMM

In the random orbit model of computational anatomy [24], the hidden space
of human anatomical images is modelled I : R3 → Rr as an orbit under
diffeomorphisms of a template

I ∈ I := {φ · Itemp, φ ∈ Gdiff},

Gdiff the group of diffeomorphisms φ : R3 → R3. The observables J : R3 →
Rq are modelled as a random field with mean due to the randomness of dif-
feomorphic deformation and measurement process. For different problems of
interest, the atlas image is Rr-valued with, for instance, r = 1 corresponding
to single contrast MRI or r = 6 for diffusion tensor images (DTI) [41]. Like-
wise, observables are Rq-valued with q = 3 for traditional histological stains
or q >> 6 for alternative representations such as the scattering transform [37]
encoding the meso-scale radiomic textures in histology images (see Section
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2.2). In general, the range space of 3D templates versus targets do not have
the same dimension, so q ̸= r.

Projective LDDMM is characterized by the fact that the observable is not
dense in the 3D metric of the brain. Rather, the observable(s) result from
either optical or physical sectioning, as in histological slice preparation, taking
LDDMM into the projective setting akin to classical tomography [42, 43]. The
sample measured observables Jn(·), n = 1, 2, . . . are a series of projections Pn
of I(·) on the source space X ⊂ R3 to measurement space Y ⊂ R2 (or Z ⊂ R1)
defined through the class of point-spread functions associating source to target:

PnI(y) :=

∫
X

pn(y, dx)I(x), y ∈ Y , (1a)

with Jn = PnI ◦ φ−1 + noise . (1b)

We adopt measure theoretic notation, pn(y, dx) for describing point-spreads
to accommodate those taking the form of generalized functions, such as the
delta dirac. Density notation δ(x−x0)dx corresponds to the measure notation
δx0

(dx), each evaluated against a test function f(x) ∈ C0, yielding f(x0).
The diffeomorphism φ is generated as the solution to the flow

φ̇t = vt(φt), φ0 = Id, (2)

with velocity field vt, t ∈ [0, 1] controlling the flow constrained to be an element
of a smooth reproducing kernel Hilbert space (RKHS) (V, ∥·∥2V ) with the entire

path square integrable
∫ 1

0
∥vt∥2V dt <∞ ensuring smoothness and existence of

the inverse [44].
This gives us the first variational problem of Projective LDDMM.

Variational Problem 1 (Projective LDDMM)

φ̇t = vt ◦ φt, φ0 = Id (3)

Pn : I 7→ PnI(y) =

∫
X

pn(y, dx)I(x), n = 1, . . . , N (4)

inf
(vt)0≤t≤1∈L2([0,1],V )

∫ 1

0
∥vt∥2V dt+

N∑
n=1

∥Jn − Pn I ◦ φ−1
1 ∥2 (5)

The model specific to our histology images projects the volumes I(·) on
X ⊂ R3 to parallel sections Jn(·) on Y ⊂ R2, along the third (z) dimension,
with coordinates, zn, n = 1, · · · , N . For this, we define ‘Dirac’ point-spreads
from δx applying to infinitesimal volumes in space (dx) with δx(dx) equal to
1 if x ∈ dx, and 0, otherwise. Our Dirac point-spreads pn(y, dx) = δy,zn(dx)
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with (y, zn) = (y(1), y(2), zn) ∈ R3 concentrate on the planes:

Pn : I 7→ PnI(y) =

∫
X

δy,zn(dx)I(x), y ∈ Y ⊂ R2 , n = 1, 2, . . . .

1.2 Histological Sectioning: Crossing Modality and
Projective Plane Distortions

Because of tissue section preparation, we attach two transformations on the
target planes. Deformation of the tissue section geometry associates diffeomor-
phisms to the histology, ϕn ∈ Φ : R2 → R2 both rigid and high-dimensional,
expanding the dimensions first used in [14] for block sectioning.

For crossing from the range space of histology contrast to MRI we intro-
duce a complete expansion, reparameterizing the histology with 48 dimensions
via Mallat’s Scattering Transform [37, 38], and solve for the optimal linear pre-
dictor fωn

, matching the scattering transform output to the scalar MRI. Via a
subsampled Scattering Transform, color histology images Jn : Y → R3, Y ⊂ R2

are resampled at the resolution of MRI to 48-valued vector fields through alter-
nating wavelet convolutions and nonlinear modulus operators across scales (see
Appendix C):

S : Jn(·) → Ĵn(·) = (Ĵn,1(·), . . . , Ĵn,48(·))T .

The linear predictor introduces the parametric class of contrast variations
(fω, ω ∈ Ω) : R48 → R via polynomials with coefficients, ω (e.g. ω ∈ R49),
defined on the scattering output (e.g. 48-valued vector field) and constant
offset. This gives Variational Problem 2.

Variational Problem 2

φ̇t = vt ◦ φt, φ0 = Id

Pn : I 7→ I(·, zn) , n = 1, . . . , N .

S : Jn 7→ Ĵn(·), n = 1, . . . , N

fωn : Ĵn 7→ fωn(Ĵn)(·), n = 1, . . . , N

inf
(vt)0≤t≤1∈L2([0,1],V ),
ωn∈Ω,ϕn∈Φ,n=1,...,N

∫ 1

0
∥vt∥2V dt+

N∑
n=1

∥fωn(Ĵn ◦ ϕn)(·)− PnI ◦ φ−1
1 (·, zn)∥2 (6)

For non-rigid modeling of ϕn, a penalty term
∫ 1

0
∥un,t∥2Udt is added to (6),

with ϕ̇n,t = un,t ◦ ϕn,t, ϕn,0 = Id. For estimating the cross-modality dimen-
sions ωn, we have not mapped a large enough empirical sample to build an
informative prior πω on those high dimensions. Therefore, we treat them in a
maximum-likelihood setting, optimizing them with initial conditions of defor-
mation and image plane dimensions fixed, then solve the variational problem
over all of the other dimensions with the ωn estimates fixed (see Section
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2.2). This avoids collapse of the variational problem in these high dimensional
settings.

1.3 Optical Sectioning, PET, and Parallel Beam
Tomography: Ideal and Non-Ideal Planar and Linear
Projections

Confocal optical sectioning reconstruct volumes X ⊂ R3 with models that
are fundamentally 3-D point-spreads pn(x̄, dx), X̄ ⊂ R3 [45, 46], with imaging
focused to n = 1, . . . , N measurement planes with significant blur out of plane.
The mean field of the measurement volume Jn(x̄), x̄ ∈ R3 are given by the
projections PnI(x̄), x̄ ∈ R3 of (4).

Two-dimensional (2D) positron emission tomography (PET) introduces
point-spreads pn(y, dx) for reconstruction which are less idealized supported
over planes Y ⊂ R2 with uncertainty perpendicular to the line of flight but
as well a second measurement the time-of-flight of the annihilating protons to
the detectors [47]. Generally the point-spreads are modelled as cigar shaped
two-dimensional Gaussians in the plane oriented by N angles θn, n = 1, . . . , N ,
with high fidelity systems having N > 96, with standard deviation of uncer-
tainty significantly larger along the lines of flight than perpendicular to them.

Classical parallel beam projection tomography reconstructs image planes
Y ⊂ R2 via the Radon transform generated from sinograms indexed over a
single space dimension dimension Z ⊂ R1 arising from idealized line integrals
[48]. Define the set of oriented lines in R2 parametetrized by their angles (θ)
and offsets from the origin (z), Lθ(z) = {(y(1), y(2))} ⊂ R2 with

y(1) = z̄ sin(θ) + z cos(θ)

y(2) = −z̄ cos(θ) + z sin(θ)
,

for z̄ ∈ R1. The mean field of the measurements Jn(z), z ∈ R1 are given by
the line integrals

∫
Lθn (z)

I(y)dy. To satisfy the basic sampling theorems for

tomographic reconstruction [49], N sampling angles θn, n = 1, . . . , N , akin
to N slices in histology, are selected determined by the resolution required
for the reconstruction. The point-spreads corresponding to the line integrals
becomes pn(z, dy) :=

∫
Lθn (z)

δȳ(dy)dȳ, n = 1, . . . , N , with the projections

PnI(z), z ∈ R1 of (4), (see Appendix A).

1.4 Biological Results: Multi-scale Maps of Tau Tangles
in 3D

We present, in this section, the geometric and neuropathological results for
corresponding pairs of histology images and MRI, taken postmortem, of MTL
tissue from two cases of advanced AD. To acquire these data, several steps
are required (see Section 2). Solutions to Variational Problem 2 (Equation 6)
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yield geometric reconstruction of histologically stained tissue in 3D. Figure
1 illustrates the two sets of 35 individual digitized sections on which NFTs
were detected and geometric mappings to 3D were estimated. Subsequent
coordination of both MRI and mapped histology with the Mai Paxinos Atlas
is demonstrated in Figure 2, with coronal Mai views shown for an example
intersecting histological slice.

Fig. 1 Complete datasets of PHF-1 stained histology sections for 3 blocks of MRI for
each brain sample. 3D MRI shown with manual segmentations of MTL subregions (left).
Boundary of each histological section on right sketched in position following transformation
to 3D space (left). Detected tau tangles plotted over each histology slice (right).
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Fig. 2 3D Reconstruction (left) of 4 MTL subregions for two advanced AD brains in the
coordinate space of the Mai Paxinos Atlas. Corresponding section of histology and MRI (top
right) shown and intersecting coronal planes taken from the pages of the Mai Atlas (bottom
right).

Figure 3 illustrates 4 representative samples of manual segmentations
compared between histology and MRI deformed to 2D. The protocol for seg-
mentation is described in section 2.5. Alignment accuracy was measured from
these comparisons with Dice overlap and 95th percentile Hausdorff distance
for MTL subregions of interest (see Appendix B). The latter measure ranged
from 1.0 mm to 2.0 mm across amygdala, ERC, CA1, and subiculum.
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Fig. 3 Selected histology slices with 2D segmentations (top row) ordered left to right
as rostral to caudal. Corresponding MRI slices with 3D segmentations mapped to 2D via
transformations φ, ϕn (bottom row).

Accuracy of tau tangle detections was evaluated both at intermediate and
final steps of our detection algorithm. Estimates of accuracy in per pixel tau
probabilities were computed using 10-fold cross validation on the entire train-
ing dataset for each brain sample. Table F3 (see Appendix F) shows accuracy
metrics for one brain sample, with mean AUC and of 0.9860 and accuracy of
0.9729.

Accuracy of individual counts of NFTs as output following segmentation
by the watershed algorithm (see Section 2.6) were estimated by comparison
to manually annotated patches of ERC tissue reserved for validation. Between
5 and 20 mm2 patches in the region of the ERC on 10 roughly consecutive
slices of one brain were selected for annotation. Per pixel annotations were
completed by a single individual over the course of 2-3 weeks. Each patch
totaled approximately 2, 500, 000 pixels, yielding a total of 25 million for the
10 patches–on the order of the number of voxels for 20 whole brain MRIs at
1 mm resolution. Densities of NFTs (counts per cross-sectional tissue area)
for each patch were computed using counts of manually annotated tangles vs.
algorithmic output and rescaled to the range, [0, 1], for accurate comparison.
Slice-by-slice relative densities are illustrated in Figure 4, exhibiting high levels
of similarity between human and machine generated NFT densities.
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Fig. 4 Tau tangle densities within patches of ERC computed from manual annotations
(red) and machine prediction (blue), normalized to [0, 1] in each case (left). Outlined sections
of histology from which validation set of ERC patches was taken. Sections plotted post
transformation in coordinate space of Mai atlas with 3D reconstruction of total ERC (right).
Example patches in ERC (white) with NFTs annotated (red) for five slices (bottom).

Counts of detected NFTs, cross-sectional tissue area, and MTL subregion
(from MRI deformed to 2D) were computed in the space of histology slices.
Average NFT densities per MTL subregion, tallied from all histology slices per
brain sample, showed highest amounts of NFTs in amygdala, ERC, CA1, and
subiculum for both advanced AD samples (see Figure 5,7).

Histological data was modeled as discrete particle measures and subse-
quently transported to the 3D space of the Mai Paxinos atlas via estimated
transformations, ϕn, φ (see Section 2.7). Diverse modes of resampling yielded
distributions of NFT density within, over, and between MTL subregions (see
Appendix G). Resampling via Gaussian kernels yielded smoothed NFT densi-
ties computed within the dense metric of the brain at approximate resolutions
of MRI. Resampling via nearest neighbor kernels projected particle measures
to the surface of segmented MTL subregions, such as amygdala, ERC, CA1,
and subiculum for visualization in 3D. These are both shown in Figure 5.
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Fig. 5 Reconstructed NFT densities in 3D MTL of advanced case of AD. Densities within
subset of MTL (amygdala, ERC, CA1, and subiculum) computed over surface of each struc-
ture (left) and within the dense metric of the 3D MRI (right). MRI slices correspond to
coronal slices in Mai Paxinos atlas.

Average NFT densites per region are summarized in Figure 7. Tau pathol-
ogy localized not just to particular regions (e.g. amygdala, ERC, CA1,
subiculum), but within them. As illustrated in Figure 6, high densities of NFTs
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in amygdala and ERC concentrated particularly at the border between the two
structures, with tau migrating to the inferior, medial boundary of the amyg-
dala. NFT density also appeared to segregate within the hippocampus with
highest densities achieved in the anterior third of the hippocampus in both
brain samples (see Figure 7).

Fig. 6 Posterior view of amygdala-ERC boundary in brain sample 1 (top) and brain sam-
ple 2 (bottom). NFT densities projected to and smoothed over surface of each structure
independently. Outline of CA1 and subiculum surfaces shown in black mesh.
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Fig. 7 NFT densities along Mai Z axis (rostral to caudal) in two cases of advanced AD.
First two rows illustrate NFT densities within 2 mm sliding window along Mai Z axis for
amygdala and whole hippocampus (top) and amygdala and ERC (middle). Bottom row
illustrates global average NFT density within each MTL subregion. All densities calibrated
against simultaneously stained slices from both brains (see Section 2.6).
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2 Methods

2.1 Algorithm for Solving Projective LDDMM with In
Plane Transformation

To solve the Variational Problem 2 for 3D atlas, I, and set of 2D targets (Jn,
for n = 1, ..., N) we formulate an algorithm that alternately optimizes for the
deformation in 3D space and the geometric transformation in 2D space, while
holding the other fixed. The algorithm can be implemented to incorporate
increasing complexity as needed first for crossing modalities and second for
crossing resolutions, as needed, for instance, to map 3D MRI to 2D histological
slices, as is presented here. In its simplest form, I and J are of the same
modality, yielding fωn

fixed as identity, and ϕn is modeled as a rigid motion
in plane, as in Lee et. al mapping histological sections to an atlas of the mouse
brain [14]. Transformations φ, ϕn for n = 1, · · · , N are estimated following
Algorithm 1.

Algorithm 1

Initialize: φ0 = Id, ϕn, n = 1, . . . , N

A: Solve for φ:

1. Update and fix ϕn’s.
2. Solve Projective LDDMM, optimizing Equation (6) with respect to vector

field vt, t ∈ [0, 1].

3. Solve for φ1, integrating O.D.E φ1 =
∫ 1

0
vt ◦ φtdt.

B: Solve for ϕn’s:

1. Update and fix φ1.
2. Optimize Equation (6) with respect to ϕn, n = 1, . . . , N .

Return to A

When ϕn’s are broadened to non-rigid diffeomorphisms, as in [15], each ϕn
is estimated in step B via a separate iteration of LDDMM for each target Jn.
Here, ϕn’s encapsulate both rigid and non-rigid components. Separate gradient
based methods are used to update each component in step B with velocity
fields updated using Hilbert gradient descent as in [50] and linear transform
parameters updated by Gauss-Newton [51].

2.2 Optimization Algorithm for Solving Projective
LDDMM Crossing Modalities and Resolutions via
Scattering Transform

Crossing modalities at similar resolution (e.g. 3D MRI and downsampled
2D histology slices) requires re-introduction of fωn as a polynomial mapping
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between range spaces of template and target, giving a similar formulation
to that used in Tward et. al [15]. In this work, we introduce the Scattering
Transform [37] for crossing modalities at differing resolution. We model con-
trast variations between histology and MRI by (i) representing local radiomic
textures via 48 dimensions of histological scales using Mallat’s Scattering
Transform [37, 38], (ii) dimension reduction projecting the 48 dimensional
scattering transform onto a 6-dimensional PCA basis, and (iii) solving for the
optimal linear predictor fωn

matching the scattering transform 6-dimensions
to the scalar MRI.

Histology images Jn : Y → R3, Y ⊂ R2 are color images resampled to
48-valued vector fields via the Scattering Transform (see Appendix C): S :
Jn(·) → Jsn(·) = (Jsn,1(·), . . . , Jsn,48(·))T , defined at the resolution of MRI. A
basis, b1, · · · , b48, is computed offline for the space of Scattering coefficients
using PCA. A 6-valued vector image is generated from Jsn as the projection
onto the 6 largest eigenvalue basis elements, yielding the predictor, fωn

as
affine including a constant offset:

Ĵn(·) =


⟨Jsn(·), b1(·)⟩R48b1(·)

...
⟨Jsn(·), b6(·)⟩R48b6(·)

1

 . (7a)

The mean field histology fω parameterized by linear weights ω ∈ R7 becomes:

fωn(Ĵ ◦ ϕn(·)) = ⟨Ĵ ◦ ϕn(·), ωn⟩R7 , n = 1, . . . , N . (7b)

Figure 8 shows a mean field section using the scattering transform. These linear
weights ωn are estimated from initialized ϕn’s and φ following Algorithm 2.
Initializations of ϕn and φ are estimated following the approach in Tward et. al
[36] in which cubic polynomials are used to match MRI range space to histology
range space. Solutions for ωn are then obtained using the pseudo-inverse:

ωn(φ, ϕn) = arg max
ωn∈R7

−∥⟨Ĵ ◦ ϕn(·), ωn⟩R7 − I ◦ φ−1
1 (·, zn)∥2 (8a)

=

∫
R2

I ◦ φ−1
1 (·, zn)K−1

ϕn

(
Ĵ ◦ ϕn(·)

)
dy (8b)

where Kϕn
=

∫
R2

(
Ĵ ◦ ϕn(·)

)(
Ĵ ◦ ϕn(·)

)T
dy
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Algorithm 2

A: Solve for ωn’s:

1. Initialize φ1, ϕn, n = 1, . . . , N .
2. Compute Scattering transform

Ĵn(·) = [⟨Jsn(·), b1(·)⟩R48b1(·), . . . , ⟨Jsn(·), b6(·)⟩R48b6(·), 1]T .

3. Compute ωn, n = 1, · · · , N using the pseudo-inverse (Equation 8b).
4. Fix ωn’s.

B: Solve for φ:

1. Update ϕn’s and calculate mean-field predictors (7b) of MRI from histology,
fωn

(Ĵ ◦ ϕn(·)), n = 1, . . . , N .
2. Solve Projective LDDMM, optimizing Equation (6) with respect to vector

field vt, t ∈ [0, 1].

3. Solve for φ1, integrating O.D.E φ1 =
∫ 1

0
vt ◦ φtdt.

C: Solve for ϕn’s:

1. Update and fix φ1.
2. Optimize Equation (6) with respect to ϕn, n = 1, . . . , N .

Return to B

Fig. 8 Initial histology image Jn at 2 µm resolution (left). First three coefficents of scat-
tering image Js

n projected to 6-dimensional PCA basis (center). Output of linear predictor

mapping deformed image Ĵn ◦ ϕn to grayscale MRI intensity range (right).

2.3 Algorithm for Solving Projective LDDMM With
Distortions and Missing data via EM Algorithm

The last element of complexity we introduce aims to account for the many
distortions and subsampled missing data sections not wholly accounted for by
geometric transformations, ϕn. We formulate a weighted, least-squares prob-
lem by introducing weights representing different model interpretations of the
pixels in each histology tissue section: measurements (e.g. tissue foreground),



Springer Nature 2021 LATEX template

Projective LDDMM 17

artifacts (e.g. tears and distortion), or background, following the example in
Tward et. al [36]. Each model is characterized as a Gaussian with standard
deviation, σM , σA, σB and mean:

µθnk (y) =


fωn

(Ĵn ◦ ϕn)(y) if k = 1

µA if k = 2

µB if k = 3

, (9a)

with µA and µB representing artifacts and background. Weighted least-squares
interprets the images weighing each model πjn,k(·), with

∑3
k=1 πk = 1, giving

θj+1
n = arg max

θn∈Θ
−

3∑
k=1

1

2σ2
k

∥(πjn,k)
1
2 (·)

(
µθnk (·)− I ◦ φ−1

1 (·, zn)
)
∥2 . (9b)

The weights arise from the E-step of an Expectation-Maximization (EM) algo-
rithm [39], that we use for estimation of parameters θn = ϕn in step C of our
Algorithm 2. Weights are a function of the previous parameters θjn = ϕjn hence
giving the iteration: selecting at each point in the image the appropriate model
for giving the spatial field of weights. This iteration corresponds to a Gen-
eralized EM (GEM) algorithm [39] (see Appendix D for proof). The results
highlighted in Section 1.4 were generated following the approach of this section.
For select slices in each brain sample, in plane ϕn’s were estimated in step C
of Algorithm 2 as spline transformations via manual landmark placement.

2.4 Specimen Preparation and Imaging

Brain tissue samples were prepared by the Johns Hopkins Brain Resource
Center. The demographics and pathological staging of each sample analyzed
are summarized in Table E, Appendix E. From each formalin immersion fixed
brain, a portion of the MTL including entorhinal cortex, amygdala, and hip-
pocampus, was excised in 3-4 contiguous blocks of tissue, sized 20-30 mm in
height and width, and 15 mm rostral-caudal (see reconstructed MRI of tissue
blocks, Figure 1).

Each block was imaged with an 11T MR scanner at 0.125 mm isotropic
resolution and then cut into two or three sets of 10 micron thick sections,
spaced 1 mm apart. Each block yielded between 7 and 15 sections per set.
Sets of sections were stained with PHF-1 for tau tangle detection, 6E10 for
Aβ plaque detection, or Nissl, and digitized at 2 micron resolution.

2.5 Segmentations of MTL Subregions

In all brains, MTL subregions were manually delineated using Seg3D [52].
Individual block MRIs were rigidly aligned using an in-house manual align-
ment tool, and per voxel labels were saved for the composite MRI for each
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brain. Delineations were deduced from patterns of intensity differences, com-
bined with previously published MR segmentations [53, 54, 55] and expert
knowledge on the anatomy of the MTL. The established borders were applied
in three other brains, showing consistent results (in preparation, EX, CC,
SM, DT, JT, Alesha Seifert, Tilak Ratnanather, MA, MW, and MM). In one
brain sample, corresponding regional delineations were drawn on all histology
sections stained with PHF-1 (see Figure 3). Delineations were based on visi-
ble anatomical markers and were afterwards confirmed with a corresponding
Nissl-stained set of sections. In each of these sections, cytoarchitectonic bor-
ders between areas of interest were indicated, independently from the other
datasets, using an previously published cytoarchitectonic accounts of the MTL
[56, 57, 58, 59, 60, 61]. Labels were assigned per pixel to 4x-downsampled his-
tology images at a resolution of 32 microns and used to evaluate accuracy of
registration (see Section 1.4). Regions of interest include amygdala, entorhinal
cortex (ERC), cornu ammonis fields (CA1, CA2, CA3), and subiculum (see
Figure 1).

2.6 Density Determination of NFTs

Patterns of tau pathology are summarized as total counts of tau tangles
(NFTs) per mm2 of cross-sectioned tissue. NFT counts were computed using
a 2-step algorithm: (1) prediction of per pixel probabilities of tau and (2)
segmentation of these probability maps into discrete NFTs.

As described previously [62, 36], we used a convolutional neural network to
model and predict probabilities of being part of a tau tangle for each pixel in
a digital histology image. To capture larger contextual features as well as local
information for producing per pixel probabilities at high resolutions, we trained
UNETs [63] with the architecture described in Table F2 (see Appendix F).
Given differences in staining intensity between brain samples, we trained sepa-
rate UNETs, each with the same architecture, for each brain sample. Training
data per brain was generated on every third slice of histology. Between 8
and 24 sample zones, sized 200-by-200 pixels were selected at random until 8
zones covered tissue (not background). Every pixel in each zone was manually
annotated, 1 or 0, as part of a tau tangle or not.

Counts of NFTs in each histology slice were generated by segmenting the
probability maps output from the trained UNET. Segmentations were com-
puted using an opensource implementation of the watershed algorithm [64] to
extract connected components with “high probability” of tau. Each component
was defined as an individual NFT, with center, area, and roundness computed
as features.

In the results above (Figures 4,5,6), NFT densities are reported on different
scales for each brain sample as differences in staining intensity, timing, and
handling of tissue samples for each brain resulted in different scales of absolute
counts of NFTs. To compare NFT densities across brain samples, subsets of 4-
5 additional sections from each brain were selected in the rostral hippocampus
at approximate locations of original sections. These two subsets were stained
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simultaneously to achieve consistency between them. A UNET was trained
on the original training data from both brains and NFTs were detected and
summed across each of original and new sets of histology slices. Ratios of tau
tangles detected on the original vs. new version of each section were computed,
yielding average ratios of 4.4 and 1.7 for brain samples from subjects 1 and 2,
respectively. Finally, assuming consistent overestimation in tau tangle density
measures across sets of slices, measures along the rostral-caudal axis and in
MTL subregions were rescaled in each brain according to the average ratio
factor to produce comparable NFT densities (see Figure 7).

2.7 Particle Representation of Histological Data

We model histology data at the microscopic scale following the generalized
measure approach in [40] where each particle of tissue carries a weighted Dirac
measure over histology image space and a Dirac measure over the feature space
wiδyi⊗δfi , yi ∈ Y ⊂ R2 and F = R2ℓ. Weights reflect sampled tissue area cap-
tured in each particle measure, defined at the finest scale (µ0) as cross-sectional
area in the histology plane wi ∈ {2µm2, 0}, computed with thresholding using
Otsu’s method [65]. The first ℓ dimensions of fi ∈ F denote the number of
tau tangles in each of ℓ MTL subregions. The second ℓ dimensions denote the
fraction of sampled tissue area (wi) within each of ℓ MTL subregions. At the
finest scale,

fi ∈ {{0, 1}2ℓ
∣∣ ℓ∑
j=1

f ji ≤ 1,

2ℓ∑
j=ℓ+1

f ji ≤ 1}.

We transfer measures via diffeomorphisms ϕn and φ and rigid transforma-
tion to the space of template I and the Mai Paxinos Atlas. Discrete weights
wi adjust according to in plane expansion/contraction of cross-sectional tissue
area, with adjustment at the fine scale by ϕn given by the varifold action:

µ0
n(dy, df) =

∑
i∈I

wiδyi(dy)⊗ δfi(df) (10a)

ϕn · µ0
n(dy, df) =

∑
i∈I

wi|dϕn|δϕn(yi)(dy)⊗ δfi(df). (10b)

To cross scales we use the fundamental decomposition of the particle
measures

µ(dx, df) = ρ(dx)µx(df) , (11)

with ρ being the density of the model and µx the field of conditional proba-
bilities on the features. Our tranformation across scales non-linearly rescales
space and smooths the empirical feature distributions on the features. Spatial
resampling is determined by π(x, x′), the fraction that the particle at x assigns
to the particle at x′, with

∫
Rd π(x, x

′)dx′ = 1. The smoothing on the field of
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conditional probabilities occurs according to choice of kernel k((y, αy), ·):

T : µ0 → µ1 =

∫
Rd

w1(y)k((y, αy), ·)dy, (12a)

with

{
w1(y) =

∑
i∈I wiπ(xi, y)

αy = 1
w1(y)

∑
i wiπ(xi, y)δfi

. (12b)

Spatial resamplings at MRI resolutions (0.125 mm) and over surface bound-
aries of MTL subregions were achieved through isotropic Gaussian resampling
and nearest neighbor resampling, respectively, through choice of π (see
Appendix G). Feature reduction occurs via maps β 7→ ψ(β) ∈ F ′, for
probability measures β with k((y, αy), ·) = δy ⊗ δψ(αy)(·) giving

µ1 =

∫
Rd

w1(y)δy ⊗ µ1
y dy with

{
ρ1 =

∫
Rd w

1(y)δydy

µ1
y = δψ(αy)

(13)

Here, ψ(·) reduces feature dimension by taking empirical distributions αy
over each of 2ℓ dimensions to expected first moments for each corresponding
dimension, giving F ′ = R2ℓ with:

ψ(β) :=

(∫
F
fjβ(df)

)
1≤j≤2ℓ

.

Total NFT density is computed from the sum of the first ℓ features while NFT
density per region is computed from the ratio of feature value j to ℓ + j for
any of j = 1, · · · , ℓ MTL subregions.

2.8 Surface Smoothing using Laplace Beltrami Operator
Basis

Spatial variations in NFT density within MTL subregions are visualized as
smooth functions over the surface of each corresponding region. Particle mass
belonging to a given subregion volume is “projected” to the surface boundary
using a nearest neighbor kernel for π, as defined in Equation 12b (see Section
2.7):

π(x, x′) :=

{
1 if x′ = argminX′ ∥x− x′∥2

0 otherwise

We construct functions, gτ (x) and ga(x), to represent the total number of NFTs
and cross-sectional area of tissue from discrete particle measures of particles
projected to the surface vertices xi ∈ V . We generate smooth representations

of NFT density ( ĝτ (·)ĝa(·) ) using Laplace-Beltrami on each surface [66]:

ĝ = argmin
ĝ

∥ĝ − g∥22 + k∥∇ĝ∥22 (14)
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=

N∑
i=1

⟨g, βi⟩V βi(·)
1− kλiw(·)

, with ⟨g, βi⟩V :=
∑
y∈V

β∗
i (y)g(y)w(y)

for both gτ (·) and ga(·), where B := {β1, · · · , βN} is a basis for the Laplace-
Beltrami operator, and k the smoothing constant (see Appendix H).

3 Discussion

These findings demonstrate that 3D maps of tau tangle density at mm and
micron resolution show a strong spatial predominance of tau in the rostral
third of the MTL, with especially high densities measured in the amygdala.
They can be considered a ‘proof of concept’ of an approach comprised of three
key components. (1) The definition of Projective LDDMM is the key contri-
bution of this work, as a class of image-based diffeomorphometry methods for
reconstructing sparse and irregularly sampled data in the dense metric of the
3D brain. (2) The coupling of geometric and contrast transformations gener-
alizes these methods further to images of different modalities. (3) The use of
a measure theoretic framework to model data following reconstruction (i) pre-
serves data mass and values and (ii) allows for resampling the dense metric to
generate statistical distributions at arbitrary resolution. Evidence of sparsity
in original data measurements is maintained in the preservation of data mass
while reconstruction and resampling within the dense metric offers smooth
interpolation between the data values.

We demonstrate the success of this approach at reconstructing spatial pro-
files of tau tangle density in two MTL samples from individuals with advanced
AD. By computing NFT “density” as counts of tau tangles per cross-sectional
area, we maintain data values reflective of the original 2D histological space in
which they were measured. Reconstruction within the dense 3D metric of the
brain allows for resampling of these measures at micron and mm resolution
along both regular and irregular sampling ”grids”, such as over surface bound-
aries of MTL structures. Reconstruction within the spatial coordinate system
of a well-known atlas (e.g. Mai atlas) allows for consistent resampling across
brain samples, such as along the rostral-caudal axis, for comparing profiles of
pathology.

Both reconstructions illuminate AD as a spatially-oriented disease, which
further motivates the need for generating such 3D spatial reconstructions
to uncover these significant patterns. Specifically, two main patterns in tau
pathology emerged for both brain samples: (1) high levels of NFT density in
amygdala and ERC, and (2) a high-to-low gradient of NFT density along the
rostral-caudal axis of the hippocampus (see Figure 7), localizing NFT density
to the regions where it abuts the Amygdala and ERC. Though both samples
reflect end-stage pathology, the rostral-caudal gradient is consistent with the
spread of tau outlined in Braak staging [5, 6], and supports recent work by
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Yushkevich et. al that found similar segregation of tau pathology in the ante-
rior vs. posterior portions of hippocampal structures in cases of earlier stage
disease [35].

The role of the amygdala in AD has historically been under less investiga-
tion than the MTL subregions initially highlighted by Braak (e.g. TEC, ERC,
CA fields, and Subiculum) [5]. Nevertheless, a number of studies have sug-
gested its involvement not just with AD but other neurodegenerative diseases
involving misfolded proteins [67, 68, 69]. Its emergence here as a key reser-
voir of tau pathology complements these studies as well as Yushkevich et. al,
who found high burdens of tau pathology in the amygdala [35]. Furthermore,
previous work from our group in MRI diffeomorphometry suggested a similar
effect of AD pathology in the amygdala as in the ERC based on shape mark-
ers reflective of atrophy [70, 71]. Both basolateral and basomedial regions of
the amygdala demonstrated significant atrophy, consistent with the appear-
ance of higher tau densities, here, in the amygdalar regions adjacent to the
ERC (Figure 6).

Though this work has been limited to the analysis of two brain samples,
the methods we’ve described and the distributions of tau pathology that have
emerged suggest a number of avenues for expanding on these efforts. Projec-
tive LDDMM, as we’ve formulated it here, can easily see value in applications
to light sheet microscopy, spatial transcriptomics, and other emerging imag-
ing modalities in which sparsely sampled data sets must be reconstructed in
the dense space of some atlas for full appreciation of the spatiotemporal res-
olution of these modalities. Within the realm of AD research, we foresee its
use in drawing additional correspondances between microscopic neuropathol-
ogy and imaging modalities, such as MRI, PET and DTI, in the validation
and development of biomarkers.

The segregation of tau pathology to the rostral most third of the hippocam-
pus, the amygdala, and the ERC also suggests direction of future study in
AD. First, MRI images that routinely capture the entirety of the hippocampus
might be refined to target this smaller section of the hippocampus, amygdala
and ERC, offering greater specificity to AD and sensitivity to neuropathologi-
cal changes, as higher resolutions could be achieved with a narrower region of
capture. Second, the spatiotemporal distribution of neuropathology at the ear-
liest stages of AD remains evasive and yet most significant in efforts to achieve
earlier diagnosis. Emerging evidence of the neuropsychiatric syndromic com-
plex known as Mild Behavioral Impairment (MBI) amongst individuals prior
to the onset of AD [72, 73] suggests a role for the amygdala, as an emotional
and behavioral organ of the brain, particularly in these early stages. Hence, we
are currently using our methods to reconstruct the distributions of tau pathol-
ogy in earlier cases of AD to elucidate whether the amygdala shows similarly
high levels of tau in these stages.

In summary, AD research, like so many other fields of neurodegeneration
and neurobiology, harbors a disparity between knowledge, communication, and
scientists working at the microscopic level and those at the macroscopic level.
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This disparity manifests prominently in incomplete understanding of the 3D
spatiotemporal progression of pathology (tau and Aβ) in AD. This, in turn,
has prohibited the progression of MRI biomarkers for earlier diagnosis of AD,
as they have not been adequately linked to corresponding 3D patterns of neu-
ropathology. We have developed the method we call Projective LDDMM to
address this gap.

Supplementary information. This manuscript is accompanied by a set of
Supplementary Notes (Appendices) (referenced A-H in the main text).
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Appendix A Classical Tomography

The Radon Transform is used in classical tomography [48] to describe the
generation of sinograms as projected images at different angles. The transform
is typically written in functional notation as an integral along one dimension,
with Lebesgue measure as:

RθI(z) =

∫
R

I(z̄ sin(θ) + z cos(θ),−z̄ cos(θ) + z sin(θ))dz̄.

It can also be modeled as the integral over the line parametrized by two
dimensions, an angle θ and affine offset z from the origin:

RθI(z) =

∫
Lθ(z)

I(y)dy, y ∈ R2 (A1)

with the line defined by the paired angle and affine offset (θ, z) given explicitly
by all y ∈ R2 such that:

Lθ(z) :=
{
(y(1), y(2)) : y(1) = z̄ sin(θ)+z cos(θ), y(2) = −z̄ cos(θ)+z sin(θ), for z̄ ∈ R

}
.

In the notation introduced in Section 1.1, we extend this to an integral
over all of R2, using Dirac delta measures that assign nonzero measure only
to lines in this same set:

RθI(z) =

∫
R2

I(y)δLθ(z)(dy), y ∈ R2.

https://github.com/twardlab/ADproject
https://github.com/kstouff4/projective-lddmm
https://github.com/kstouff4/projective-lddmm
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The line integral indexed by (θ, z) is modeled as a single projection PnI(z), z ∈
R indexed by a set of n = 1, ..., N and is given as in, equation 4, with point
spread, pn(z, dy) =

∫
Lθn (z)

δȳ(dy)dȳ, as defined in section 1.2. We show below

its equivalence to the line integral as defined in above (A1).

PnI(z) =

∫
Y

pn(z, dy)I(y)

=

∫
Y

∫
Lθn (z)

δȳ(dy)dȳI(y)

=

∫
Lθn (z)

∫
Y

δȳ(dy)I(y)dȳ, by Fubini’s Theorem

=

∫
Lθn (z)

I(ȳ)dȳ, ȳ ∈ R2

Appendix B Registration Accuracy

Similar to other groups [35], we evaluated accuracy of alignment between 2D
histology and 3D MRI by looking at sets of discrete points (pixels) labeled
in 2D versus corresponding voxels labeled in 3D and subsequently deformed
to 2D (see Figure 3). Here, our sets of points were the sets of pixels (voxels)
within a particular MTL subregion as delineated on 2D histology images and
3D MRI (see Section 2.5). We restricted our attention to particular subre-
gions of interest (amygdala, ERC, CA1, subiculum), and measured accuracy
by Dice Score and 95th Percentile Hausdorff distance for each region on each
slice of one brain. Average overlap scores were 0.85, 0.82, 0.74, 0.65 for amyg-
dala, ERC, CA1, and subiculum, respectively, while average 95th percentile
Hausdorff distance was 1.886 mm, 1.039 mm, 1.972 mm, and 1.746 mm for
amygdala, ERC, CA1, and subiculum, respectively.

Appendix C Scattering Transform

The Scattering Transform, by Mallat and Bruna [37, 38], defines a cascade
of alternating non-linear and non-commuting operators that map functions
Jn(·) ∈ L2(Rd) to representations, J ′

n(·). A scattering propogator takes signals
down a path of alternating convolutions with wavelets (localized waveforms)
and modulus operations. The path, p, is defined by a set of parameters λ ∈ 2Z

that scale a mother wavelet, ψ, so as to capture lower and lower frequencies.

p = (λ1, λ2, · · · , λℓ)
J ′
n = U [p]Jn = ||Jn ⋆ ψλ1 | ⋆ ψλ2 · · · | ⋆ ψλs | (C2)

We compute a subsampled Scattering Transform Jsn(·) of each of our histol-
ogy images, using an algorithm similar to the “Filterbank” algorithm [74, 75]
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in which images are downsampled in parallel with scattering.

Us[P ] : Jn(·) → Jsn(·) (C3)

Jn : R2 → Rq, Jsn : R2 → R16·q

P = (p1, p2, · · · , p16), ℓ ∈ {1, 2}, λi ∈ {20, 21, 22, 23, 24, 25}

We use 16 paths, pi ∈ P of length 1 or 2 and a high pass Gaussian filter, with
width dilated according to λi, in place of a traditional wavelet to achieve a
representation both translation and rotation invariant in addition to Lipschitz
continuous to small deformations. Each of the R,G,B channels of histology
images are propagated independently along the same paths. Histology images
are downsampled by a factor of 32 to reach the approximate resolution of MRI.
Together, the subsampling and scattering of each channel yield a total of 48
scattering coefficients for each pixel in the downsampled histology image.

Appendix D EM Algorithm for Optimization

The iterative algorithm in step C (Algorithm 2) is based on the EM algorithm
implying it is monotonic in the cost. The complete-data likelihood for each
histology plane n = 1, 2, . . . N as a function of parameters, θ = ϕn is

∏
y∈Y

3∏
k=1

1

2πσ2
k

(
exp

(
− 1

2σ2
k

|µθk(y)− I ◦ φ−1
1 (y, zn)|2

))1k(L(y))

(D4a)

with µθk(y) =


fωn

(Jn ◦ ϕn)(y) if k = 1

µA if k = 2

µB if k = 3

, (D4b)

where µA and µB represent artifact and background. The E-step takes the
conditional expectation of the complete data log-likelihood with respect to the
incomplete data, and the previous parameters θold. The M -step generates our
sequence of parameters:

E-step Q(θ; θold) = −
3∑
k=1

1

2σ2
k

∥π
1
2

n,k(·)
(
I ◦ φ−1

1 (·, zn)− µθk(·)
)
∥2 (D5a)

with πn,k(·) = E
(
1k(L(·))|I ◦ φ−1

1 (·, zn), θold
)
; .

The spatial field of weights πn,k(·) is the conditional expectation of the indica-
tor 1k(L(·)). We implement the Generalized EM (GEM) algorithm (see [39])
solving the maximization step:

M-step θnew = argmax
θ∈Θ

Q(θ; θold) ,
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which generate a sequence with increasing log-likelihood:

Q(θ; θold) < Q(θnew; θold) .

Appendix E Dataset Demographics

Category Subject 1 Subject 2
Age 93 87
Gender M F
Clinical Diagnosis Dementia Dementia
Braak NFT stage VI/VI VI/VI
CERAD Neuritic
Plaque Score [76]

B B

TDP-43 - +
Pathologic Diagnosis
[7]

High level AD patho-
logic change; multiple
cerebral infarcts

High level AD patho-
logic change

Table E1 Donor demographics and pathological staging.

Appendix F UNET Details

To identify individual tau tangles in histology images, we trained a UNET to
predict per pixel probabilities of tau and subsequently segmented probability
maps into discrete “tangles” using opencv’s implementation of the watershed
algorithm [64]. The architecture is summarized in table E. 10-fold cross valida-
tion was used to estimate the accuracy of UNET probability predictions prior
to segmentation with the watershed algorithm. Table F3 demonstrates per-fold
and average performance for the trained UNET for one of our brain samples.
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Table F2 Structure of UNET trained to detect tau tangles. Contraction layers are shown
in the left 3 columns, and expansion layers in the right 3 columns. Number of parameters
listed correspond to linear filters + bias vector .Conv: 3× 3 Convolution with stride 1, MP:
2× 2 max pool, ReLU: Rectified Linear Unit , ConvT: 2× 2 transposed convolution with
stride 2. Note number of features doubles in the expansion layers due to concatenation
with the contraction layers (skip connections).

No. Contract Parameters No. Expand Parameters
1 Conv 8× 3× 3× 3 + 8 18 ConvT 32× 64× 2× 2 + 32
2 Conv 8× 8× 3× 3 + 8 19 Conv 32× 64× 3× 3 + 32
3 MP 0 20 ReLU 0
4 Conv 16× 8× 3× 3 + 16 21 Conv 32× 32× 3× 3 + 32
5 ReLU 0 22 ReLU 0
6 Conv 16× 16× 3× 3 + 16 23 ConvT 16× 32× 2× 2 + 16
7 ReLU 0 24 Conv 16× 32× 3× 3 + 16
8 MP 0 25 ReLU 0
9 Conv 32× 16× 3× 3 + 32 26 Conv 16× 16× 3× 3 + 16
10 ReLU 0 27 ReLU 0
11 Conv 32× 32× 3× 3 + 32 28 ConvT 8× 16× 2× 2 + 8
12 ReLU 0 29 Conv 8× 16× 3× 3 + 8
13 MP 0 30 ReLU 0
14 Conv 64× 32× 3× 3 + 64 31 Conv 8× 8× 3× 3 + 8
15 ReLU 0 32 ReLU 0
16 Conv 64× 64× 3× 3 + 64 33 Linear 2× 8 + 2
17 ReLU 0

Total 120,834

Table F3 10-fold cross validation accuracy statistics for training data of single brain
sample.

Trial AUC Precision Recall Accuracy
1 0.9997 0.0455 1.0000 0.9928
2 0.9983 0.0938 0.9917 0.9829
3 0.9963 0.1148 0.9846 0.9706
4 0.9984 0.2079 0.9971 0.9877
5 0.9796 0.3010 0.9242 0.9543
6 0.9915 0.0500 0.9620 0.9597
7 0.9865 0.2462 0.9031 0.9899
8 0.9239 0.0081 0.7079 0.9520
9 0.9989 0.1714 1.000 0.9939
10 0.9867 0.0255 0.9406 0.9454
Average 0.9860 0.1264 0.9411 0.9729

Appendix G Resampling in Mai Atlas Space

To compute and compare NFT density measures across brain samples, we
rigidly aligned all samples to the reference brain in the Mai Paxinos Atlas
[77]. We used a manual alignment tool, created in-house, to select optimal
alignments between surface renderings of the Hippocampus, Amygdala, and
ERC of our brain samples and that of the Mai brain.

Distributions of NFT density were computed in the coordinates of the
Mai atlas, according to choice of π(x, x′) governing physical spatial spread,
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and k((y, αy), ·) governing smoothing over conditional feature distributions
(Equation 12b). In all cases, total mass (2D cross-sectional tissue area of his-
tological images) and total number of NFTs were conserved. To achieve this,
initial NFT feature values (counts per MTL subregion) were reformulated fol-
lowing physical transformation (Equation 10b) as counts of NFTs per MTL
subregion per weight of particle (i.e. total cross-sectional area):

f ji 7→

{
fj
i

wi
for 1 ≤ j ≤ ℓ

f ji for ℓ+ 1 ≤ j ≤ 2ℓ

We highlight three different modes of resampling. Volumetric resampling
(e.g. at mm resolution) was computed with a 3D isotropic Gaussian kernel
with width, σ, and with new particles in a regular lattice, x′ ∈ X ′.

π(x, x′) :=
1

ζ
exp

(
− ∥x− x′∥2

2σ2

)
(G6)

ζ :=
∑
x′∈X′

π(x, x′) = 1

Resampling over 2D manifolds (e.g. the surface of ERC, Amygdala, CA1,
or Subiculum) was computed using a nearest neighbor kernel, assigning all
weight (tissue area) and NFTs from a particle at the fine scale to a single
particle on the 2D manifold (e.g. vertex of a triangular mesh).

π(x, x′) :=

{
1 if x′ = argminX′ ∥x− x′∥2

0 otherwise
(G7)

Finally, resampling to a regular 1D lattice (e.g. the rostral-caudal axis
of the human brain) was computed using an anisotropic Gaussian kernel to
spread particle mass widely in two dimensions and narrowly in the third, with
dimensions treated independently.

π(x, x′) :=
1

ζ
exp

(
− (x− x′)TΣ−1(x− x′)

2

)
(G8)

ζ :=
∑
x∈X′

π(x, x′) = 1

Σ :=

σ2
a 0 0
0 σ2

a 0
0 0 σ2

b

 , σa >> σb

In each case, feature reduction occurred via computation of expected first
moments, as described in section 2.7.
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Appendix H Laplace Beltrami Smoothing
Solution

The variational solution to Equation 14 is given by:

(Id− k∆)ĝ = g (H9)

where ∆ is a Laplacian operator. Here, we take ∆ as the Laplace Beltrami
operator and compute an eigenbasis (B = {β1, · · · , βN}) and eigenvalues
({λ1, · · · , λN}) via the Finite Elements Method (FEM) [66]. Expansion of (H9)
in this eigenbasis yields smoothed ĝa(·), ĝτ (·) for choice of parameter k:

ĝ(y) =

N∑
i=1

⟨g, βi⟩V βi(y)
1− kλiw(y)

(H10)

with ⟨g, βi⟩V :=
∑
y∈V

ϕ∗i (y)g(y)w(y)

Both ĝa(·) and ĝτ (·) are normalized independently so total cross sectional
area and numbers of NFTs projected to the surface are conserved before and
after smoothing. NFT densities are computed as the ratio of the normal-

ized, smoothed functions: ĝτ (·)
ĝa(·) and plotted over the surfaces of given MTL

subregions (see Figure 5).
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Wolfs, L., Mancuso, R., Salta, E., Balusu, S., Snellinx, A., Munck, S.,
Jurek, A., Fernandez Navarro, J., Saido, T.C., Huitinga, I., Lundeberg,
J., Fiers, M., De Strooper, B.: Spatial Transcriptomics and In Situ
Sequencing to Study Alzheimer’s Disease. Cell 182(4), 976–99119 (2020).
https://doi.org/10.1016/j.cell.2020.06.038

[22] Miller, M.I., Fan, J., Tward, D.J.: Multi scale diffeomorphic metric map-
ping of spatial transcriptomics datasets. In: IEEE Computer Society
Conference on Computer Vision and Pattern Recognition Workshops, pp.
4467–4475. IEEE, ??? (2021). https://doi.org/10.1109/CVPRW53098.
2021.00504

[23] Palla, G., Fischer, D.S., Regev, A., Theis, F.J.: Spatial components of

https://doi.org/10.1371/journal.pcbi.1006610
https://doi.org/10.1007/978-3-030-33226-6_18
{arXiv:arXiv:1805.04975v2}
{arXiv:arXiv:1805.04975v2}
https://doi.org/10.1002/cne.24946
{arXiv:1806.08634}
https://doi.org/10.1016/j.neuroimage.2018.08.012
https://doi.org/10.1016/j.neuroimage.2018.08.012
https://doi.org/10.1007/s12021-020-09490-8
https://doi.org/10.1007/s12021-020-09490-8
https://doi.org/10.1146/annurev-neuro-070918-050357
https://doi.org/10.1146/annurev-neuro-070918-050357
https://doi.org/10.1186/s12864-020-06832-3
https://doi.org/10.1186/s12864-020-06832-3
https://doi.org/10.1016/j.cell.2020.06.038
https://doi.org/10.1109/CVPRW53098.2021.00504
https://doi.org/10.1109/CVPRW53098.2021.00504


Springer Nature 2021 LATEX template

REFERENCES 33

molecular tissue biology. Nature Biotechnology (2022). https://doi.org/
10.1038/s41587-021-01182-1

[24] Grenander, U., Miller, M.I.: Computational Anatomy: An Emerging
Discipline. Applied Mathematics 56(4), 617–694 (1998)

[25] Grenander, U., Miller, M.I.: Pattern Theory: From Representation to
Inference. OUP Oxford, ??? (2006). https://books.google.com/books?id=
rQlREAAAQBAJ

[26] Miller, M.I., Younes, L., Trouvé, A.: Diffeomorphometry and geodesic
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[29] Miller, M.I., Trouvé, A., Younes, L.: On the metrics and Euler-Lagrange
equations of computational anatomy. Annual Review of Biomedical
Engineering 4, 375–405 (2002). https://doi.org/10.1146/annurev.bioeng.
4.092101.125733

[30] Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeo-
morphic image registration with cross-correlation: Evaluating automated
labeling of elderly and neurodegenerative brain. Medical Image Analysis
12(1), 26–41 (2008). https://doi.org/10.1016/j.media.2007.06.004

[31] Christensen, G.E., Johnson, H.J.: Consistent image registration. IEEE
Transactions on Medical Imaging 20(7), 568–582 (2001). https://doi.org/
10.1109/42.932742

[32] Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric
Diffeomorphic Image Registration with Cross-Correlation: Evaluating
Automated Labeling of Elderly and Neurodegenerative Brain

[33] Pluim, J.P.W., Maintz, J.B.A.A., Viergever, M.A.: Mutual-information-
based registration of medical images: A survey. IEEE Transactions on
Medical Imaging 22(8), 986–1004 (2003). https://doi.org/10.1109/TMI.
2003.815867

[34] Heinrich, M.P., Jenkinson, M., Bhushan, M., Matin, T., Gleeson, F.V.,
Brady, S.M., Schnabel, J.A.: MIND: Modality independent neighbour-
hood descriptor for multi-modal deformable registration. Medical Image
Analysis 16(7), 1423–1435 (2012). https://doi.org/10.1016/j.media.2012.
05.008

[35] Yushkevich, P.A., de Onzoño Martin, M.M.I., Ittyerah, R., Lim, S., Lav-
ery, M., Wang, J., Hung, L.Y., Vergnet, N., Ravikumar, S., Xie, L., Dong,
M., DeFlores, R., Cui, S., McCollum, L., Ohm, D.T., Robinson, J.L.,
Schuck, T., Grossman, M., Tisdall, M.D., Prabhakaran, K., Mizsei, G.,

https://doi.org/10.1038/s41587-021-01182-1
https://doi.org/10.1038/s41587-021-01182-1
https://books.google.com/books?id=rQlREAAAQBAJ
https://books.google.com/books?id=rQlREAAAQBAJ
https://doi.org/10.1142/s2339547814500010
https://doi.org/10.1002/wsbm.1425
https://doi.org/10.1146/annurev.bioeng.4.092101.125733
https://doi.org/10.1146/annurev.bioeng.4.092101.125733
https://doi.org/10.1016/j.media.2007.06.004
https://doi.org/10.1109/42.932742
https://doi.org/10.1109/42.932742
https://doi.org/10.1109/TMI.2003.815867
https://doi.org/10.1109/TMI.2003.815867
https://doi.org/10.1016/j.media.2012.05.008
https://doi.org/10.1016/j.media.2012.05.008


Springer Nature 2021 LATEX template

34 REFERENCES

Das, S.R., Artacho-Pérula, E., del Mar Arroyo Jiménez, M., López, M.M.,
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