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ABSTRACT 
 
 
Cell-free systems have great potential for delivering robust, cheap, and field-deployable 
biosensors. Many cell-free biosensors rely on transcription factors responding to small 
molecules, but their discovery and implementation still remain challenging. Here we report 
the engineering of PeroxiHUB, an optimized H2O2-centered sensing platform supporting cell-
free detection of different metabolites. H2O2 is a central metabolite and a by-product of 
numerous enzymatic reactions. PeroxiHUB uses enzymatic transducers to convert 
metabolites of interest into H2O2, enabling rapid reprogramming of sensor specificity using 
alternative transducers. We first screen several transcription factors and optimize OxyR for 
the transcriptional response to H2O2 in cell-free, highlighting the need for pre-incubation 
steps to obtain suitable signal-to-noise ratios. We then demonstrate modular detection of 
metabolites of clinical interest – lactate, sarcosine, and choline – using different transducers 
mined via a custom retro-synthesis workflow publicly available on the SynBioCAD Galaxy 
portal. We find that expressing the transducer during the pre-incubation step is crucial for 
optimal sensor operation. Finally, we show that different reporters can be connected to 
PeroxiHUB, providing high adaptability for various applications. Given the wide range of 
enzymatic reactions producing H2O2, the PeroxiHUB platform will support cell-free detection 
of a large number of metabolites in a modular and scalable fashion. 
 
 
 
 
Keywords: synthetic biology, cell-free systems, biosensor, hydrogen peroxide, H2O2, 
enzymatic transducer, Computer Aided Design 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2022. ; https://doi.org/10.1101/2022.03.16.484621doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.16.484621
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 
INTRODUCTION 
 
Detection and quantification of metabolites and other small molecules is an important area of 
research with applications in many fields, such as disease diagnostics and prognostics1, 
pollutant or pathogen detection, agricultural or industrial process monitoring, and 
fundamental research methodologies. Most of these challenges are currently being 
addressed by a combination of analytical physics and chemistry techniques, including 
chromatography, spectrometry, titrimetry, and optical and electrochemical methods2,3. 
 
Biological systems and related devices have the potential to replace some of these time-, 
cost- and equipment-expensive methods. Living cells enclose machinery capable of 
interacting with particular small molecules, including substrate specific enzymes or 
metabolite-binding transcriptional factors (TFs). These systems have been successfully 
repurposed into highly responsive whole-cell biosensors able to detect a wide diversity of 
molecules4. Cell-free transcription translation (TX-TL) systems are abiotic, cell-derived 
biological mixtures that are able to emulate some biological reactions and features in vitro. 
TX-TL systems have followed a continuous development since the 1960s, from their use in 
the deciphering of the genetic code5 to their repurposing into platforms integrating synthetic 
biology devices over the last two decades6. TX-TL systems can integrate various types of 
biosensors from riboswitches to TF-mediated systems7,8. 
 
Cell-free biosensors present a variety of advantages over whole-cell systems that support 
their broad use as point-of-use sensing devices. They are abiotic, and thus not subjected to 
the same GMO regulations as living sensors, and can be freeze-dried for long-term room 
temperature storage9. Moreover, the absence of an intact living and reproducing cellular 
compartment enables the sensing of molecules that are deleterious for cell growth or those 
that do not cross the cell membrane. 
 
Researchers have engineered cell-free biosensors to detect nucleic acids and small 
molecules10. While the modular nature of Watson-Crick base pairing supports the 
engineering of tailor-made sensors for different nucleic acid sequences, metabolite  
detection follows mostly an ad hoc approach, in which specific transcription factors known to 
respond to small-molecules are co-opted. Compared to other methods, sensing systems 
derived from transcription factors have multiple advantages, including good specificity and 
response versatility, thanks to the variety of possible gene expression outputs. They are also 
suited to carry out complex computational behavior and calculate an output as a function of 
the concentrations of multiple input molecules11. 
 
However, the development of new TF-based sensors in cell-free systems has been hindered 
by a variety of factors. First, the number of documented transcriptional effectors binding 
desired chemicals is limited; second, the complexity of their regulatory mechanisms 
sometimes prevents their implementation in a simplified cell-free system; and third, most 
cell-free systems use E. coli extracts, which can limit the effectiveness of transcription-
promoting mechanisms derived from other species.  
 
Recently, we devised an alternative approach to extend the number of potential cell-free 
metabolite biosensors by using enzymatic transducers to transform a non-detectable 
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molecule into a ligand for a known, characterized transcription factor12,13. Yet, even using 
metabolic transducers, the small number of TF-based sensors functional in cell-free, and the 
complexity of the molecules resulting from enzymatic reactions, limits the number of 
compounds detectable via this approach. In order to circumvent this issue, we aimed to 
design a signal integration system in which many metabolic transducers modifying several 
different molecules produce a common metabolite that can be detected by a single 
transcription factor. To develop this sensing “hub”, we chose hydrogen peroxide (H2O2), a 
central metabolism molecule and a ubiquitous product of several enzymatic reactions, as a 
common signaling molecule.  
 
Here we develop an optimized, TF-based, cell-free H2O2 sensing platform that, coupled with 
computer-predicted enzymatic transducers, is able to detect a wide range of small molecules 
through the activation of various reporter genes. We identify TFs and promoter combinations 
with the best response to H2O2 in a cell-free environment and optimize the reaction 
conditions for high-signal/low-noise hydrogen peroxide detection. We then build a 
computational tool implemented as a Galaxy workflow to help identify enzymatic transducer 
candidates for custom metabolite sensing. We determine and optimize key factors enabling 
these enzymes to mediate the sensor response in the cell-free reaction. As a proof-of-
concept, we built sarcosine, lactate and choline biosensors. Importantly, connecting the 
metabolic transducers to our cell-free H2O2 sensing hub requires little additional optimization. 
In addition, we show that our platform can accommodate various output modalities, 
expanding the range of possible applications. The highly modular sensing platform 
presented here will enable fast development of new biosensors for custom metabolite 
detection with reduced screening efforts. 
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RESULTS 
 
H2O2 is a suitable candidate to act as a metabolic hub for several reasons. First, multiple 
H2O2-responsive transcription factors and target promoters have been identified, providing 
an appropriate space for exploring and optimizing an H2O2 transcriptional response system. 
Second, unlike many other metabolites(e.g. amino acids) or cofactors (e.g.NAD, Coenzyme 
A), H2O2 is not part of the cell-free buffer, limiting interference with the sensor. Finally, H2O2 
is a central metabolite and a byproduct of many enzymatic reactions, which enables 
connection with many metabolites. This is demonstrated by the Rhea database14 that 
documents more than 350 different enzymatic reactions producing H2O2. 
 
 
A Galaxy webtool for custom H2O2 transducer mining 
 
 

 
Figure 1: Development and evaluation of a Galaxy workflow for predicting H2O2-producing reactions. (A) 
Principle of the workflow for custom H2O2-producing transducer mining. M: Metabolites of interest; E: enzymatic 
transducers. (B) Results of the Biosensor Galaxy workflow for the prediction of metabolic pathways connecting 
disease-related molecules to H2O2. 
 
 

To map the space of molecules potentially detectable through enzymatic reactions producing 
H2O2, we developed a Galaxy workflow, named BioSensor (Figure 1A, Supplementary 
Figure S1), combining the RetroPath2.0 software with rp2biosensor, a new bioinformatic 
tool. The BioSensor workflow can be used on the SynBioCAD Galaxy platform15 (accessible 
at https://galaxy-synbiocad.org/workflows/list_published). It is also available on the Galaxy 
ToolShed, which enables its installation on any other Galaxy server. 
 
The BioSensor workflow enables the prediction of metabolic reactions connecting any query 
metabolite to H2O2. When given the InChI identifier of the molecule to detect, the workflow 
returns an interactive web page showing, if they are known, the potential pathways 
connecting the target to the chosen detectable molecule and provide additional information, 
such as MetaNetX16 reaction IDs or EC numbers, to facilitate the identification of potentials 
enzymatic transducers (Supplementary Figure S2). 
 
A new feature of this newly developed tool over the previously released biosensor prediction 
tool, SensiPath17, is the integration of potential promiscuous activity of the predicted 
enzymatic transducers. 
 
Formalization of enzyme promiscuity using reaction rules has previously been described with 
RetroPath18 and RetroRules19. Briefly, promiscuity is modeled by the atomic environment 
around reaction centers. Increasing the scope of this description -- the diameter surrounding 
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reaction centers -- leads to a more restrictive description about what the substrate should 
look like, hence increasing the modeled enzyme specificity. 
 
By reducing the diameter constraint of the reaction in the query panel, it is possible to 
identify new potential sensing routes that take advantage of potential promiscuous activities 
of enzymes to expand the solution space. 
 
As a pilot study, we used the Galaxy Biosensor workflow to identify molecules of interest that 
could be converted to H2O2 with 1 or 2 enzymatic steps, focusing on disease-associated 
metabolites according to the HMDB database20 (Figure 1B). We found that of a total of 2490 
molecules, 2105 were potentially detectable through enzymatic reactions producing H2O2, 
973 with one step and 1132 with two enzymatic steps. Another encouraging metric is that 
out of the 1965 sensing enabling metabolic pathways, 1788 rely on reactions with a diameter 
at least equal to 12, the highest one tested, which suggest good specificity and applicability 
of them as metabolic transducers. Together these numbers confirm the high connectivity of 
H2O2 in metabolic reactions networks. Convinced by this large potential sensing space, we 
then started to develop the PeroxiHUB platform, a cell-free H2O2 biosensor able to detect this 
large variety of compounds on demand through the production of various output signals 
(Figure 2A). 
 
 
Implementation and optimization of an H2O2 biosensor in cell-free 
 
To implement an H2O2 transcriptional biosensor operating in cell-free, we adapted the design 
from Rubens et al.21 previously used in bacterial cells. This biosensor relies on the OxyR 
transcription factor, a master regulator involved in the response to oxidative stress in multiple 
bacterial species, including E. coli. OxyR switches from an inactive, reduced state to an 
active, oxidized one upon reaction with H2O2, becoming a transcriptional activator22. To 
implement OxyR in a cell-free environment, we used a two-plasmid design (Figure 2B): one 
expressing the OxyR gene under the control of a strong constitutive promoter J23101 
(available as a biobrick in the iGEM repository), the other expressing sfGFP under the 
control of an OxyR-responsive promoter. 
 
Initial implementation of the biosensor according to the reported in vivo design21 showed no 
significant response to H2O2 (Supplementary Figure S3), mostly because of a high 
transcriptional noise, even in the absence of the inducer. We thus focused on identifying and 
optimizing the parameters influencing the sensor response for a cell-free reaction.  
 
We hypothesized that the high background was due to endogenous H2O2 production in the 
cell-free reaction coming from the catabolism of buffer components by enzymes present in 
the extract. With H2O2 being an unstable molecule, a pre-incubation step could help reduce 
this noise. By pre-incubating the cell-free extract with only the buffer at 37°C before adding 
the plasmid DNA and the inducer, we observed a strong drop in total fluorescence but an 
increase in the response fold change at 100 µM H2O2, from 1.1- to more than 4-fold (Figure 
2C). The optimal signal-to-noise ratio was observed after a 1 hour preincubation using the 
OxyR-expressing plasmid combined with the pAhpC reporter plasmid. All subsequent 
experiments include this preincubation step.  
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We then screened multiple promoters described in the literature: pOxyS, pKatG and pAhpC 
coming from the in vivo sensor design21 and the promoters pZinT and pYjjZ activated by the 
OxyR in vivo. All the promoters produced GFP in the cell-free mix but only the first three 
demonstrated a noticeable response to 100µM of H2O2 (Figure 2D).  
 

 

 
Figure 2: Implementation and optimization of an H2O2 sensor in cell-free systems. (A) Concept of the 
PeroxiHUB sensor: an optimized cell-free H2O2 biosensor is used as a hub to detect various molecules with 
custom output. (B) Implementation of an H2O2 sensor in cell-free. The sensor is composed of two plasmids: one 
constitutively producing the transcription factor OxyR that reacts with H2O2 before activating an inducible 
promoter producing the reporter on the second plasmid. (C) Preincubation of cell-free extract and buffer alone at 
37 °C for various times before addition of the other components (DNA and inducer) strongly modulates the 
sensor response, increasing the fluorescence fold-change represented by the number above bars. pAhpC-GFP 
and J23101-OxyR plasmids were used at a concentration of 10 nM. (D) Screening of multiple OxyR interacting 
promoters reveals various responses to H2O2 induction after 8h of incubation at 37°. (E) DNA concentration 
gradient test for the transcription factor and the reporter expressing plasmids enables fine tuning of these protein 
expression levels and optimizes the response of the sensor by increasing the fold change of fluorescence 
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between 0 and 100µM of H2O2 to more than 7 after 8h of incubation at 37° . (F) Final H2O2 sensing dose 
response curve evaluated after 8h of incubation at 37° using all the previously optimized conditions(1 hour 
preincubation, [J23101-OxyR DNA] at 24nM and [pAhpC-sfGFP DNA] at 12 nM, .The fit of the curve was 
obtained from the mean of three different cell-free reactions.  Boxes in (C)-(E) indicated the selected optimized 
condition. Error bars represent the standard deviation calculated from 3 individual cell-free reactions. MEF (Mean 
Equivalent Fluorescence) quantifies the fluorescence measured by the plate reader as equal to the one 
generated by a certain amount of FITC. 

 
pAhpC was identified as the optimal candidate with which to build a biosensor due to its 
large fold-change and high expression level upon activation. We then evaluated the best 
combination of expression levels for reporter and TF by measuring the fold-change of the 
biosensor in the presence of concentration gradients of the two plasmids (Figure 2E). An 
optimum was found at [pAhpC-GFP DNA] = 12nM and [J23101-OxyR DNA] = 24 nM. In 
these conditions, the fold-change in response to 100 µM H2O2 was increased to more than 
7-fold. Using these calibrated parameters, the biosensor was capable of detecting H2O2 over 
several orders of magnitude, from micromolar to millimolar concentrations, with a fold-
change up to 10.8, and an EC50 of 75 µM, a relatively low leakage and a high swing (Figure 
2F, Table 1). 
 
 
Table 1:  Performance of the H2O2 sensor 
Metrics of the hydrogen peroxide sensor were calculated on the data presented on figure 2B. The max  fold 
change is the fluorescence in non induced and induced state, the leakage is the fluorescence in the non induced 
state, the swing is the difference of fluorescence between the non induced and induced state. EC50 is the half-
maximal effective concentration. MEF (Mean Equivalent Fluorescence) quantifies the fluorescence measured by 
the plate reader as equal to the one generated by a certain amount of FITC. 
 
 

Metric H2O2 sensor 

Max fold change 11 ± 2 

Leakage MEF (FITC) 0.03 ± 0 

Max swing MEF (FITC) 0.30 ± 0.05 

EC50 (µM) 75 

 

 
 
Optimizing enzymatic conversion of custom metabolites into hydrogen peroxide 
 
In order to demonstrate the PeroxiHUB concept and its potential for future applications, we 
used the BioSensor workflow to identify candidate enzymatic transducers for three central 
metabolites: sarcosine, choline, and lactate. These molecules are all central metabolites, 
identified as disease biomarkers but also of potential interest in other fields. As an example, 
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they all have been described being of potential interest for diagnostic or prognostic of 
prostate cancer23–25 
 
Pathways and enzymes producing H2O2 directly from sarcosine and choline were identified 
using the Galaxy workflow. For lactate processing, the workflow suggested several different 
enzymes, but for the biosensor implementation we opted for one previously validated from 
the literature26. Consistent with our modularity objective, the transducers were implemented 
by supplementing the optimal, two-plasmid H2O2 transcription biosensor with an additional 
plasmid expressing the specific enzyme under the control of a constitutive promoter (Figure 
3A). 
 

 
Figure 3: Computer predicted enzymatic transducers with optimized expression conditions enable 
custom metabolite sensing. (A) Implementation of enzyme-mediated biosensors: a plasmid expressing the 
enzyme predicted to generate H2O2 from the target is added to the optimized H2O2 sensor. (B) optimization of 
enzyme expression conditions for sarcosine transducer: expression of the enzyme under a T7 promoter added 
before the preincubation step maximizes sarcosine sensing. Fold-change is calculated as the ratio of 
fluorescence produced between 1mM of sarcosine and no sarcosine. (C) Fine tuning of enzyme expression using 
a DNA concentration gradient is necessary to identify the best condition for the sarcosine transducer. Data for the 
other transducers can be found in Supplementary Figure S4. (D) Dose response curve of optimized SoxA-
mediated sarcosine biosensor. (E) Dose response curve of optimized CodA-mediated choline biosensor. (F) 
Dose response curve of optimized lox-mediated lactate biosensor. Error bars represent the standard deviation 
calculated from 3 replicates. 

 
Initial assays in which the transducer SoxA was cloned into the same backbone as the 
plasmid used to express OxyR with the strong constitutive bacterial promoter J23101 were 
unsuccessful, with no detectable response to sarcosine even at high plasmid concentrations 
in the cell-free mix (Figure 3B). We reasoned that expression of the enzyme in this 
configuration was too low for sensor function, potentially because of insufficient promoter 
strength and resource limitations. Using sarcosine oxidase (SoxA) as a model, we thus 
tested if switching from J23101 to the strong T7 promoter, which relies on a different 
polymerase pool than the other expressed components, could help solve our issue and limit 
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resource competition. Finally, we also increased the total pool of available transducers at the 
beginning of the detection reaction by expressing enzymes during the 1h preincubation. 
 
For SoxA, these optimizations drastically increased the fold-change of the biosensor to ~10 
at 1 mM of sarcosine (Figure 3B). Fine-tuning the level of expression of the enzyme by 
varying the concentration of the DNA template also had a major impact on the response of 
the sensor. The optimal transducer plasmid concentration was variable between different 
transducers (10 nM for soxA, 24 nM for codA, and 1 nM for lox) (Figure 3C, Supplementary 
Figure S4) highlighting the need for DNA concentration gradient screening for each new 
transducer developed. Final sensors for sarcosine, lactate and choline were characterized 
over a gradient of inducer concentrations, showing good response over several orders of 
magnitude (Figure 3D-F, Table 2, Supplementary Figure S5).  
 
 
 
Table 2: Performance of the sarcosine, choline and lactate sensor.  
Metrics of the Sarcosine, Choline and Lactate sensor were calculated on the data presented on figure 3D 3E & 
3F. The max fold change is the ratio of fluorescence between the uninduced and the induced states, the leakage 
is the fluorescence measured in the uninduced state, the swing is the difference of fluorescence between the 
uninduced and induced states. EC50 is the half-maximal effective concentration. MEF (Mean Equivalent 
Fluorescence) quantifies the fluorescence measured by the plate reader as equal to the one generated by a 
certain amount of FITC. 
 
 

Metric Sarcosine sensor Choline sensor Lactate sensor 

Max fold change 13.5 ± 4.0 9.3 ± 0.5 42 ± 4.5 

Leakage MEF (FITC) 0.00 ± 0 0.01 ± 0 0.00 ± 0 

Max swing MEF 

(FITC) 

0.16 ± 0.05 0.18 ± 0.01 0.27 ± 0.04 

EC50 (µM) 1933 1535 934 

 
To simplify the future use of such biosensors, we evaluated the possibility to flash freeze 
preincubated batches of cell-free mix in liquid nitrogen, enabling their storage at -80°C and 
immediate later use without any additional preincubation steps. The experimental results 
showed few differences in response between frozen and unfrozen preincubated extracts, 
opening the way for broad use of these sensors without an increase in detection time from 
the incubation step  (Supplementary Figure S6). 
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Expanding the range of detectable reporter outputs 
 
One advantage of cell-free biosensors producing a transcriptional response is that their 
output can be easily changed according to the final application needs (such as read-out 
modality, timing, or signal processing). To expand the potential of the PeroxiHUB sensing 
platform, we connected the H2O2 biosensor to different reporter genes. Colorimetry and 
luminescence were chosen as they represent classical signals used in sensing devices, with 
the potential for naked-eye detection and faster measurements (Figure 4A). The colorimetric 

output was implemented using lacZ as a reporter gene in an extract made from a ∆lacZ 

BL21 strain. The cell-free mix was then supplemented with CPRG (Chlorophenol red-β-D-
galactopyranoside), which is converted from yellow to the purple-colored CPR (Chlorophenol 
red) by LacZ (Figure 4B). The resulting output can be either identified visually or quantified 
by monitoring absorbance of the reaction at 574 nm. Using an internal ladder for 
quantification, previous work has demonstrated the feasibility of robust cell-free biosensors 
in low-resource conditions using this output27. We explored various CPRG and reporter DNA 
concentrations to obtain the best differentiation of colorimetric output inside the H2O2 
sensing range. Time progression of the absorbance at 574 nm followed a sigmoidal function 
with a maximum principally dependent upon the initial CPRG concentration and a kinetic 
component governed by the reporter DNA concentration. The ideal conditions were 
determined to be [CPRG] = 100 µM and [pAhpC-LacZ DNA] = 6 nM (Supplemental Figures 
S7 & S8). These conditions brought the direct sensing of H2O2 with the colorimetric output to 
a lower limit of detection than when using GFP, with detectable concentrations at the 
micromolar level (Figure 4C). Sarcosine sensing was also demonstrated to be possible over 
a wide range of concentrations, although without the increase in sensitivity observed for the 
H2O2 sensor (Figure 4D). 
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Figure 4: Luminescent and colorimetric modular reporters for PeroxiHUB platform. (A) Experimental 
workflows followed for each reporter. (B) Design and implementation of the colorimetric reporter. (C) Colorimetric 
hydrogen peroxide sensor dose response curve. (D) Colorimetric sarcosine sensor dose response curve. (E) 
Design and implementation of the luminescent reporter. (F) Luminescent hydrogen peroxide sensor dose 
response curve. (G) Luminescent sarcosine sensor dose response curve. (H) Comparison of potentialities and 
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limits of each reporting system developed. All error bars represent the standard deviation calculated from 3 
replicates. 
 
 

Similar to the development of the colorimetric reporter, the luciferase-based output was 
adapted from a previous design implemented in cell-free12. The luciferase enzyme produced 
in response to H2O2 reacts with the luciferin reagent to generate a detectable light output 
(Figure 4E). After the incubation step, the 20 µL reaction mix is supplemented with the 
luciferin-containing reagent and luminescence intensity was measured (see Figure 4A). 
Unlike the fluorescent and colorimetric outputs, this system showed no background in the 
absence of the reporter plasmid, confirming that the cell-free mix has no endogenous 
luminescence (Supplementary Figure S9). We tested different durations for the detection 
step to maximize the sensor’s response to H2O2 and identified a ten minute incubation time 
as optimal before measuring luminescence. Indeed, ten minutes were sufficient for the 
sensor to generate a significant signal, while longer incubation resulted in increased noise, 
thus decreasing the signal-to-noise ratio (Supplementary Figure S10). Using these 
parameters, the H2O2 response of the sensor was much higher than what was observed with 
the other reporters, with response going up to 150-fold-change between non-induced and 
induced states (Figure 4F). When testing this reporter for enzyme-mediated detections with 
the example of sarcosine, the output observed was generally in the same range of fold-
change as what was observed with the GFP reporter (Figure 4G). However, even if the 
highest observed fold-change was slightly lower with the luciferase output (8.6-fold)  than the 
one observed with GFP (13.5-fold), the luminescent output was found to be better at low 
concentration (1.7-fold vs 3.0-fold between GFP and Luciferase at a concentration of 100 
µM) which supports its use for low-concentration inducer detection. Due to its much faster 
reaction time, the luciferase output presents a convenient redout for the PeroxiHUB platform 
(Figure 4H). 
 
 
 
DISCUSSION 
 
Here we developed a cell-free, modular sensing hub that generates a transcriptional output 
using H2O2  as a common signaling currency. The PeroxiHUB platform enables the detection 
of different molecules via the use of metabolic transducers producing H2O2  as a by-product 
of their enzymatic reaction. Because of the large number of enzymatic reactions producing 
H2O2, PeroxiHUB is highly-modular and allows detection of new molecules of interest by 
simply switching enzymatic transducers. We used PeroxiHUB to detect three different 
metabolites and found that only a one-step enzymatic transducer plasmid concentration 
tuning was necessary, while all the other reaction parameters could be kept constant.  The 
core of the method includes the H2O2 sensor with invariant optimal conditions, the T7-
containing backbone for the transducer enzyme cloning and the preincubation conditions.   
 
Among the parameters shown to impact the response of the H2O2 sensor, the most 
important one is the preincubation step, which is necessary for both the sensing of the H2O2 
and for the proper expression of enzymatic transducers. These two effects seem 
independent as a preincubation step with extract and buffer only is sufficient to improve the 
behavior of the H2O2 sensor to work, but using that preincubation step to also produce the 
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enzyme has a major impact on the performance of transducer-mediated sensors. The 
improvement in H2O2 sensor performance is in part due to the overall reduction of the 
reporter expression after preincubation, reducing background noise. One hypothesis to 
explain the high background of non-preincubated reactions is the presence of endogenous 
H2O2 produced by enzymatic reactions originating from the extract. Pre-incubating the cell-
free reaction then allows endogenous catalase activities to degrade that initial pool of H2O2, 
reducing the noise and increasing the fold-change of the biosensor. 
 
The other beneficial impact of preincubation, an increase in enzymatic transducer activity, is 
most likely expression-related. Preincubation likely allows the transducer to be synthesized 
at high level and available before the start of the detection reaction. The higher limit of 
detection observed for enzyme mediated sensors compared to the H2O2 sensor suggests 
that the enzymatic activity is the key bottleneck limiting the efficiency of transducer-based 
sensors. The importance of enzyme concentration is also evidenced by the effects of 
changes in the promoter driving enzyme expression and in DNA template concentration.  
 
Enzyme expression likely has two opposite effects: on the one hand, their expression by the 
cell-free system leads to a reduction in the overall expression levels for other proteins by 
resource competition. On the other hand, they increase the H2O2 pool and the biosensor’s 
response. These effects, vary between the tested transducer, and affect both sensor signal 
level of signal and background noise in non-induced condition (Supplementary Figure S5). 
Consequently, the various transducers have differential apparent efficiencies, the Lox-based 
sensor producing a 3- to 5-times higher max fold-change compared to the SoxA- and CodA-
based ones (Table 2).  
 
We have not investigated at this stage the source of variations in transducers behaviors. 
Many parameters could be involved, including enzyme kinetic, expression levels, folding, 
stability, or the presence of potential inhibitors within the extract. Future studies might 
improve a particular transducer by testing different homologs28, or using directed evolution to 
reach higher enzymatic activity. 
 
With efficient enzymes and optimized expression conditions, it should also be possible to 
extend the range of detectable molecules by using multiple, successive enzymatic 
conversions leading to H2O2. These multi-step enzymatic conversions can be identified using 
the BioSensor Galaxy workflow. Indeed, as demonstrated by the metrics coming from the 
HMDB panel (Figure 1B), the already high number of potentially detectables molecules 
through 1-step enzymatic conversions can be greatly expanded by plugging in an additional 
reaction step. 
 
We also demonstrated that the platform is amenable to the use of different reporter systems, 
expanding the range of application contexts. Together, the various reporting possibilities 
expand the range of applications for which PeroxiHub can be used. They all present some 
advantages and drawbacks that promote or discourage their use for a specific application in 
different contexts. GFP is the simplest and cheapest reporting system as it doesn’t require 
any additional chemicals and shows a relatively good response. The LacZ/CPRG-mediated 
colorimetric output is faster and does not require equipment for qualitative measurement, 
which makes it a good reporting system for portable and low-resource detection problems. 
Finally, the luciferase output is the fastest and the most sensitive to low inducer 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2022. ; https://doi.org/10.1101/2022.03.16.484621doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.16.484621
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

concentrations (Figure 4H), and could still be associated with portable readout systems 
such as smartphone based platforms29. The platform could also be expanded to additional 
outputs by expanding its connectivity with existing or newly-developed detection and 
monitoring systems. For example, the recently implemented glucose/glucometer cell-free 
reporting system30 could be modularly adapted to the platform to provide a cheap digital 
readout of measured concentrations. 

 
Finally, another promising application of the PeroxiHUB platform is its use as a signal 
integrator for cell-free computational devices, such as analog computing systems. We 
previously built a 4-input metabolic perceptron classifying samples in a binary manner on the 
basis of their concentration of four different metabolites. To do so, metabolites underwent 
enzyme-mediated conversion into a single detectable molecule, in this case benzoate11. The 
key bottleneck in the generalization of such computing devices is the identification of central 
“hub” molecules detectable in cell-free systems and in which several metabolites of interest 
could be converted. The PeroxiHub platform appears as an attractive candidate for such a 
task. 
 
 
 
MATERIALS and METHODS 
BioSensor Galaxy workflow development and node description 
 
The new Biosensor workflow was developed within the Galaxy SynBioCAD portal following 
the general methodology described in the original paper establishing the platform15. 
It is also released on the Galaxy ToolShed31, which enables its installation on any other 
Galaxy server. Existing nodes present within the SynBioCAD environment were connected 
to the custom, newly developed rp2biosensor node. Below is the description of the main 
nodes composing the Biosensor workflow. 
 
RetroPath2.0 is an open-source tool designed to build a retrosynthesis network linking a 
compound of interest to one or more other compounds18. The compound of interest is 
provided by its structure, and chemical transformations formalized by reaction rules are 
applied, which predict newly formed products of the simulated reactions. For two or more 
steps of exploration, new products of the previous step are used as substrates and reaction 
rules are applied again. This operation is performed until the number of steps is reached or 
no new products are found. RetroPath2.0 is available at myExperiment.org 
(https://www.myexperiment.org/workflows/4987.html), as a conda package on anaconda.org 
(https://anaconda.org/conda-forge/retropath2_wrapper), as well as a Galaxy node on the 
Galaxy ToolShed (https://toolshed.g2.bx.psu.edu/view/tduigou/retropath2/9c8ac9980bd6). 
RetroPath2.0 release r20220104 was used. 
 
rp2biosensor is an open-source Python software that extracts from the retrosynthetic 
network generated by RetroPath2.0 the subnetwork of interest, linking the biosensor to the 
compound to be detected, and produce an interactive web page showing the transducing 
reactions. Briefly, rp2biosensor parses the retrosynthesis network outputted by 
RetroPath2.0, completes the predicted reactions by putting back co-substrates and co-
products omitted during the retrosynthesis using the rxn_rebuild 
(https://github.com/brsynth/rxn_rebuild) Python package, enumerates the shortest path 
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linking the compound of interest, i.e. the biosensor, to the compound to be detected, e.g. 
lactate, and finally outputs the resulting subnetwork as an interactive web page to let the 
user browse the results. rp2biosensor source code is available on GitHub 
(https://github.com/brsynth/rp2biosensor) , is released as a conda package on anaconda.org 
(https://anaconda.org/conda-forge/rp2biosensor), and as a Galaxy node on the Galaxy 
ToolShed (https://toolshed.g2.bx.psu.edu/view/tduigou/rp2biosensor/b0efd4b2ffba). 
rp2biosensor version 3.0.0 was used. 
 
BioSensor Galaxy workflow executions 
 
The typical use case requires the user to input the chemical structure of a compound to be 
detected and eventually the chemical structure of a TF effector (prefilled with the structure of 
H2O2 by default). Structures should be provided using the InChI standard format. The output 
is an interactive web page that can be opened within the Galaxy environment. Thanks to the 
Galaxy workflow system, all intermediate and final outputs can be easily downloaded for 
later usages. 
 
For the prediction of reactions enabling the detection of (S)-lactate, choline and sarcosine, 
their standard InChIs have been used as input for the “Molecule to be detected parameter” 
(see Supplementary Table S1). The BioSensor workflow was launched for one step of 
exploration, using reaction rules precompiled for both “reverse” and “forward” usage, with 
diameters ranging from 2 to 12, the default values of the workflow. 
 
For the efficiency assessment of the developed tool, the HMDB database version 5.0 was 
used to explore detectable compounds from H2O2. Only compounds fulfilling the following 
criteria have been kept: compounds should be associated with at least one disease, have a 
valid InChI structure, contain at least one carbon, and have a molecular weight of at most 1 
kDa. RetroPath2.0 was set for a 2-step exploration using both forward and retro reaction 
rules with diameters ranging from 2 to 12. If both 1- and 2-step pathways exist for a given 
compound, only shortest paths are reported by rp2biosensor. 
 
Plasmid construction and purification 
 
Plasmids used in this study were constructed using Gibson assembly method with pBEAST 
as a vector backbone12 and inserts either amplified from the E. coli genome (for the OxyR 
gene, the AhpC, OxyS and KatG promoters) or from existing plasmids (for Luciferase gene 
amplified from pBen-Luc used in Voyvodic et al.12)  or synthesized as gene fragments  (IDT, 
for the soxA, codA, lox and  genes and the ZinT and YjjZ promoters, Twist Bioscience for 
LacZ gene). All genes synthesized were codon-optimized for E. coli. 
 
Bacterial strains and growth conditions 
 
Clonings and plasmid amplifications were made using the classical E. coli cloning strain 
DH5α or the commercially available NEB® Turbo strain. Liquid cultures were made at 37°C 
using LB media with 100 µg mL-1 ampicillin for the maintenance of the pBEAST derived 
plasmids. For solid cultures 1.5 % agar w/v was added. 
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For cell-free extract preparation, the strain BL21 (DE3) Gold dLacZ (a gift from Jeff Hasty 
(Addgene plasmid # 99247)) was grown in 2-YTP media supplemented with 50 µg mL-1 

tetracycline. 
 
Cell-free reaction mix preparation 
 
Cell-free TX-TL extract was prepared following a protocol adapted from Sun et al.32 
previously used in other work from our lab12. Cultures were grown to an OD600 of 2.0 and 
centrifuged at 5000xg for 12 min at 4°C. The pellets were washed several times by 
resuspension/centrifugation cycles before being weighed and stored overnight in 50 mL 
tubes at -80°C. The pellets were then resuspended in 1 mL S30A buffer (14 mM Mg-
glutamate, 60 mM K-glutamate, 50 mM Tris pH 7.7) per gram of pellet, thawed, and lysed by 
a single pass through an Avestin EmulsiFlex-C3 homogeniser at 15000-20000 psi. The 
resultant lysate was centrifuged at 12000xg for 30 min at 4°C, then incubated 1 h at 37°C 
before being centrifuged again with the same settings. Finally, the supernatant was dialysed 
overnight inside a 12-14 kDa molecular weight cut-off (MWCO) dialysis tubing inS30B buffer 
(14 mM Mg-glutamate, 60 mM K-glutamate, ~5 mM Tris pH 8.2) before being centrifuged 
one final time at 12000xg for 30 min, aliquoted in 1.5 ml tubes, flash frozen in liquid nitrogen 
and stored at -80°C until use. 
One aliquot was used for buffer calibration in order to determine the best concentrations of 
Mg-glutamate, K-Glutamate and DTT to maximize protein production. Consecutive cell-free 
experiments were run expressing constitutive GFP in the presence of gradients of these 
three components, following the methodology described in Sun et al.32. After the ideal 
conditions were determined, a batch of buffer was prepared in a single Falcon tube to 
ensure homogeneity, before being aliquoted in 2 mL tubes, flash frozen in liquid nitrogen and 
stored at -80 °C until use. 
 
Cell-free reaction preparation 
 
For cell-free reactions, buffer and extract aliquots were thawed on ice. Each reaction was 
prepared in individual PCR tubes containing 22 µL total mix: 7.33 µL extract, 9.17 µL buffer 
and 5.5 µL of other components (DNA, inducer, water and any additional chemicals). Once 
all the components added to the PCR tubes the mixes were briefly vortexed and spun down, 
20 µL were pipetted into a 384-round-well non-binding plate for reporter gene expression 
measurement. In some cases, a master mix containing all the components present at the 
same level in all the conditions tested (e.g. extract, buffer, DNA) was prepared prior to 
pipetting into the individual PCR tubes. All the experiments were run in triplicate. 
 
Reporter signal measurements 
 
To measure GFP fluorescence, 8 hour kinetics were performed at 37°C with either a 
Cytation 3 a Synergy HTX plate reader (Biotek Instruments) using excitation/emission 
settings of 485 nm and 528 nm, respectively. 
Collected data were normalized by FITC Mean Equivalent Fluorescence (MEF) through 
conversion factors that were established for each plate reader using fluorescein standards 
with the same plates and machine settings as the ones used in the experiments, as per Jung 
et al.33 & Batista et al.28. For CPRG reporter measurement, OD574 was measured. Data 
were normalized by subtracting a blank sample containing everything but reporter DNA. 
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For the luciferase reporter, after the 37°C incubation step, 20 µL of the final cell-free 
reactions mix were added to a white 96-well plate. 50 µL of Luciferin reagent mix (Promega, 
Luciferase Assay Reagent) were then added to each well, mixed by pipetting up and down, 
and the plate was immediately inserted inside the plate reader to capture luminescence. 
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