

3 **Strain-specific alterations in gut microbiome and host immune responses**
4 **elicited by *Bifidobacterium pseudolongum***

5
6

7 Bing Ma^{1,2*}, Samuel J. Gavzy^{3,4}, Vikas Saxena⁴, Yang Song¹, Wenji Piao⁴, Hnin Wai
8 Lwin¹, Ram Lakan⁴, Jegan Lyyathurai⁴, Lushen Li⁴, Michael France^{1,2}, Christina
9 Paluskievicz⁴, Marina WillsonShirkey⁴, Lauren Hittle¹, Arshi Munawwar⁵, Emmanuel F.
10 Mongodin^{1,2,#}, Jonathan S. Bromberg^{2,3,4*}

11

12 ¹Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore,
13 MD 21201, United States; ²Department of Microbiology and Immunology, University of
14 Maryland School of Medicine, Baltimore, MD 21201, United States; ³Department of
15 Surgery University of Maryland Medical Center, Baltimore, MD 21201, United States;
16 ⁴Center for Vascular and Inflammatory Diseases, University of Maryland School of
17 Medicine, Baltimore, Maryland, Maryland, 21201, United States; ⁵Institute of Human
18 Virology, University of Maryland School of Medicine, Baltimore, Maryland, Maryland,
19 21201, United States

20

21 # Current affiliation: Division of Lung Diseases, National Heart, Lung, and Blood
22 Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA

23

24 * Corresponding authors

25 Bing Ma: bma@som.umaryland.edu

26 Jonathan S. Bromberg: JBromberg@som.umaryland.edu

27

28 **Key words:** *Bifidobacterium*, strain-specificity, RNA-seq, live biotherapeutics, gut

29 microbiome, immunomodulation

30 **ABSTRACT**

31 The beneficial effects attributed to *Bifidobacterium* are thought to arise from their
32 host immunomodulatory capabilities, which are likely to be species- and even strain-
33 specific. However, their strain-specificity in direct and indirect immune modulation
34 remain largely uncharacterized. We have shown that *B. pseudolongum* UMB-MBP-01, a
35 murine isolate, is capable of suppressing inflammation and reducing fibrosis *in vivo*. To
36 ascertain the mechanism driving this activity and to determine if it is specific to UMB-
37 MBP-01, we compared it to *B. pseudolongum* type strain ATCC25526 of porcine origin
38 using a combination of *in vitro* and *in vivo* experimentation and comparative genomics
39 approaches. Despite many shared features, we demonstrate that these two strains
40 possess distinct genetic repertoires in carbohydrate assimilation, differential activation
41 signatures and cytokine responses in innate immune cells, and differential effects on
42 lymph node morphology with unique local and systemic leukocyte distribution.
43 Importantly, the administration of each *B. pseudolongum* strain resulted in major
44 divergence in the structure, composition, and function of gut microbiota. This was
45 accompanied by markedly different changes in intestinal transcriptional activities,
46 suggesting strain-specific modulation of the endogenous gut microbiota as a key to host
47 responses of immune modulation and changes in intestinal *B. pseudolongum* strains.
48 These observations highlight the importance of strain-specificity characteristics of
49 *Bifidobacterium* for prophylactic supplementation for immune modulation and advance
50 our understanding of the mechanisms which drive the association between
51 *Bifidobacterium* and health benefit.

52 **Introduction**

53 *Bifidobacterium* spp. are naturally occurring residents within the gastrointestinal
54 (GI) tract of mammals and are typically considered beneficial [1, 2]. Due to their
55 purported health-promoting properties, *Bifidobacterium* spp. have been incorporated
56 into many live biotherapeutic (LBP) prophylactic formulations, mostly known for
57 applications in alleviating intestinal inflammatory conditions [3-7]. The potential
58 mechanisms underlying the health benefits of *Bifidobacterium* include the suppression
59 of growth of gut pathogens [8, 9], capabilities to alter gut metabolism and to enhance
60 epithelial barrier function [10, 11], and anti-inflammatory modulation of host immunity
61 [12-15]. In particular, their immunomodulatory properties are not limited to the direct
62 effects on GI tissues, but also indirect effects enacted through their influence on the gut
63 microbiota [16]. *Bifidobacterium* spp. are known to participate in mutualistic interactions
64 with endogenous intestinal microorganisms that can subsequently evoke both
65 immediate as well as delayed immune responses [17, 18]. However, the cellular and
66 molecular underpinnings *Bifidobacterium*'s biotherapeutic effects remain unclear with
67 contradictory findings reported [19]. Fundamentally important questions such as what
68 specific mechanisms through which they exert immunomodulatory effects, to what
69 extent the interactions with the gut microorganisms affect the immune responses, and
70 what are the roles of elicited intestinal responses in these processes remain
71 outstanding.

72 The immunomodulatory properties of individual *Bifidobacterium* spp. are strain-
73 dependent, despite similar effects produced by closely related strains (i.e., alleviation of
74 lactose intolerance or improved host antimicrobial activity) [20-22]. In fact,

75 immunomodulatory effects are independent of microbial phylogeny [20]. Recent
76 investigations suggested that differences in cell wall composition and structure might be
77 responsible for strain-specific immunomodulatory effects [23]. Microorganism-
78 associated molecular patterns (MAMPs) possess variable biochemistry, even between
79 strains, serving as microbial stimuli that orchestrate molecular cascades in the host
80 immune response and mucosal homeostasis [24-26]. Exopolysaccharide (EPS) and pili
81 may play a role in *Bifidobacterium*'s strain-specific pro-homeostatic immunomodulation
82 [27, 28]. Other molecular mechanisms such as lipoteichoic acid and specific metabolites
83 such as acetate could also contribute to strain-specific immunity [26, 29, 30].
84 Comparisons of the immunomodulatory properties of closely related strains can be
85 leveraged to identify which are strain-specific and to characterize the microbial
86 determinants of specific host responses, which will provide the basis to rationally hone
87 biotherapeutics for prophylactic applications [15, 31, 32].

88 We previously showed, using a major histocompatibility complex (MHC)-
89 mismatched murine cardiac transplant model, that fecal microbiota transfer (FMT)
90 caused shifts in the gut microbiota which profoundly influenced allograft outcomes [33].
91 FMT using stool samples from healthy pregnant mice (immune suppressed) resulted in
92 improved long-term allograft survival and prevented inflammation and fibrosis in grafts,
93 as compared to FMT using stool samples from colitic or nonpregnant control mice [33].
94 *B. pseudolongum* was revealed as a microbial biomarker for the pregnant mouse gut
95 microbiota, from which we subsequently isolated and sequenced UMB-MBP-01 [34].
96 Importantly, gavage with UMB-MBP-01 alone reproduced the same improved graft
97 outcomes as FMT using whole stool of pregnant mice, implicating this strain as one of

98 the main responsible microbes [33]. Thus, the murine tropic strain UMB-MBP-01 may
99 serve as a model organism to investigate the mechanisms of microbe-driven
100 immunomodulation.

101 In this study, we performed a genome-wide comparison of UMB-MBP-01 to all
102 other *B. pseudolongum* genomes, including three additional *B. pseudolongum* strains
103 (E, EM10, EM13) isolated from the same feces sample of a pregnant mouse, as well as
104 to the porcine tropic type strain ATCC25526, in order to investigate the genetic
105 attributes underlying the immunomodulatory properties. Further, we revealed distinct
106 effects on local and systemic immunity induced by UMB-MBP-01 and ATCC25526,
107 using both *in vitro* and *in vivo* approaches. Importantly, the oral administration of the two
108 *B. pseudolongum* strains resulted in profound alterations in composition, structure and
109 function of the murine gut microbiome, accompanied with markedly different intestinal
110 transcriptome activities. These observations suggest that modulation of the endogenous
111 gut microbiome is a key element of *Bifidobacterium* immunomodulatory attributes. A
112 deeper understanding of the strain specificity and mechanisms of action through which
113 specific strains regulate host responses will facilitate the clinical translation of live
114 therapeutics and the development of potential immunomodulatory therapy targets.

115 **Results**

116 High genome plasticity of *B. pseudolongum* reflects strong host adaptability

117 The pangenome of *B. pseudolongum* was constructed using 79 strains including
118 the 4 strains sequenced as part of this study (**Supplemental Table 1A**). Homologous
119 gene clusters (HGCs) were identified in this set of genomes based on all-versus-all
120 sequence similarity (**Supplemental Table 1B**). A total of 4,321 *B. pseudolongum* HGCs
121 were revealed, among which 31.7% were core (present in almost all strains), 57.0%
122 were dispensable (singleton or present in very few genomes), and the remaining 11.3%
123 were considered accessory. *B. pseudolongum* demonstrated a smaller pangenome size
124 that was 87.8% of *B. breve* and 59.5% of *B. longum* pangenomes (**Supplemental**
125 **Figure 1**). *B. pseudolongum* had the fewest number of conserved HGCs (N=1,370) but
126 the largest proportion of dispensable pangenome (57.0%) compared to the two other
127 *Bifidobacterium* species *B. longum* and *B. breve* that were both human-associated. This
128 disproportionately large dispensable pangenome may be indicative of strong niche
129 adaptation capabilities of *B. pseudolongum*, reflecting its broad host range, being widely
130 distributed among mammals [35].

131 Whole genome sequencing was performed on three *B. pseudolongum* strains (E,
132 EM10, and EM13) isolated from the same pregnant mice feces as UMB-MBP-01
133 (sequencing statistics in **Supplemental Table 2A**). Comparison among the four murine
134 strains revealed 1,520 shared coding DNA sequence (CDS), which comprised 97.2% of
135 UMB-MBP-01 coding genes (**Supplemental Table 1C**). 107 CDS were conserved in at
136 least two but not in all four genomes, and 37 CDS were strain-specific. Most of these
137 genes had unknown functions, and those with known functions related to bacteriophage

138 assembly and function (i.e., capsid protein, integrase, transposes, bacteriophage
139 replication gene, cell lysis protein, microvirus H protein) or carbohydrate hydrolysis and
140 transport (glycosyl hydrolases, ABC transporter permease). On the other hand,
141 comparison between UMB-MBP-01 and ATCC25526 revealed 1,351 shared CDS
142 (86.4% of UMB-MBP-01 coding genes), and 157 genes that belonged to one strain but
143 not the other (**Supplemental Table 1D**). Interestingly, most of these strain-specific
144 genes also belonged to the categories of bacteriophage assembly and functions as well
145 as carbohydrate hydrolysis and transport, in addition to genes with unknown function.
146 Together these data suggested bacteriophage-mediated transduction was a major
147 contributor to dissemination of carbohydrate metabolism capabilities, potentially through
148 horizontal gene transfer among closely related murine-derived strains, as well as more
149 distantly related *B. pseudolongum* strains.

150 Whole genome Average Nucleotide Identity (ANI) clustering suggested two
151 subspecies, *B. pseudolongum* subsp. *pseudolongum* clade that contained ATCC25526,
152 and *B. pseudolongum* subsp. *globosum* clusters that had three distinct clades I-III
153 (**Figure 1**). Subspecies *globosum* clade III had the largest number of coding genes
154 (1,642+/-70) among all clades and contained UMB-MBP-01 and the three isolates from
155 the source stools of pregnant mice. The subspecies *pseudolongum* clade had the
156 smallest number of coding genes among all clades (1,519+/-35.6). Overall, 1,599 HGCs
157 accounted for 37.0% of *B. pseudolongum* pangenome were identified as clade-specific
158 (>90% genes belonging to the same clade), and the majority originated from *globosum*
159 clade III (N=648), while clade *pseudolongum* provided the fewest (N=130). The large
160 number of clade-specific genes found in *globosum* clade III genomes suggested a high

161 degree of genome plasticity to facilitate adaptation to cope with environmental
162 heterogeneity. Further functional enrichment analyses revealed *globosum* cluster III-
163 specific HGCs were mostly involved in periplasmic transport systems, permeases and
164 glycoside hydrolases (GHs), particularly the families GH29 (α -L-fucosidase), GH3 (β -
165 glucosidase) and GH31 (α -glucosidase) (**Supplemental Table 1E**). No GH families
166 were enriched in any of the other clades. Together, UMB-MBP-01 and ATCC25526
167 belonged to two different subspecies, each of which comprises considerable genetic
168 variation. The genome of UMB-MBP-01 contained more clade-specific genes and was
169 enriched for genetic features in carbohydrate metabolism to assimilate greater varieties
170 of glycans, presumably facilitating its niche adaptive capabilities in the glycan-rich gut
171 environment.

172 Specialized carbohydrate metabolizing capabilities of UMB-MBP-01 and ATCC25526

173 The abundance of *Bifidobacterium* glycolytic features is reflective of their
174 metabolic adaptation to the complex carbohydrate-rich GI tract [36, 37]. We performed
175 *in silico* prediction of the carbohydrate fermentation capabilities to comprehensively
176 investigate glycan-assimilation capabilities for all 79 *B. pseudolongum* genomes, using
177 with the Carbohydrate-Active enZYmes Database (CAZy) database [38]. This analysis
178 revealed 236 genes of *B. pseudolongum* pangenome encoding predicted carbohydrate-
179 active enzymes from 34 glycosyl hydrolase families, 14 glycosyl transferase families
180 and eight carbohydrate esterase families (**Supplemental Table 4A**). Only 33.5% of the
181 carbohydrate-active enzyme coding genes belonged to the core pangenome. Core GHs
182 included those mostly responsible for the breakdown of plant-derived polysaccharides
183 (i.e., starch) and a wide range of other carbohydrates, such as GH13 (glycosidase),

184 GH77 (α -amylase), GH43 (β -xylosidase), GH36 (α -galactosidase), GH2 (β -
185 galactosidase), GH3, and GH6 (cellobiohydrolases). Notably, GH13 is the enzyme
186 family known to be most commonly found in *Bifidobacterium* genomes and active on a
187 wide range of carbohydrates including the plant-derived starch and the related
188 substrates of trehalose, stachyose, raffinose, and melibiose [37, 39]. Conversely, 47.9%
189 of the identified carbohydrate-active enzymes genes were found in the dispensable
190 pangenome. The *globosum* clade II (N=72) and III (N=58) encoded most of these
191 enzymes, while the *pseudolongum* clade encoded the least (N=13). These results
192 demonstrated the highly specialized carbohydrate assimilation gene repertoires of
193 different strains, particularly in *globosum* clade II and III.

194 Using UMB-MBP-01 as the reference for all other *B. pseudolongum* strains, both
195 conserved and specific glycohydrolases capabilities were revealed (**Supplemental**
196 **Figure 2, Supplemental Table 1F, 4B**). Interestingly, the clusters based on GH are
197 mostly in agreement with the clades generated based on ANI, suggesting distinct
198 carbohydrates assimilation capabilities of different *B. pseudolongum* clades. GH29,
199 GH31, GH42 (β -galactosidase), and ABC-type polysaccharide transport permease
200 genes were most prevalent in *globosum* clade III that contained UMB-MBP-01. Further,
201 GH36, GH2, and GH94 (cellobiose phosphorylase) were found absent in subspecies
202 *pseudolongum* clade but prevalent in *globosum* clade III. In particular, an uncommon
203 GH23 family (peptidoglycan lyses) was only observed in UMB-MBP-01 and the three
204 other isolates from the pregnant mouse. Overall UMB-MBP-01 and ATCC25526 share
205 some enzymatic capabilities in metabolizing dietary polysaccharides and host-derived
206 glycogens, while also having specialized glycohydrolases genes.

207 We further characterize the carbohydrate utilization capabilities of UMB-MBP-01
208 and ATCC25526 using anaerobic microplates pre-coated with various carbon sources.
209 Out of the 95 carbon sources tested, the two strains demonstrated the same capabilities
210 on 86 (90.5%) (**Supplemental Table 3**), including key carbon sources N-acetyl-D-
211 glucosamine, D-fructose, L-fucose, α -D-glucose, glucose-6-phosphate, maltose,
212 maltotriose, D-mannose, D-sorbitol, and pyruvic acid. Two relatively uncommon sugars
213 D-melibiose and D-raffinose could be metabolized by ATCC25526 but not UMB-MBP-
214 01. On the other hand, D-galactose, D-gluconic acid, D-glucosaminic acid, glycerol, D-
215 mannitol, α -ketovaleric acid, and D, L-lactic acid were uniquely metabolized by UMB-
216 MBP-01. This result is in principle in an agreement of the specific GH families
217 predicated *in silico*. Together these data indicated a wide range of carbohydrate
218 metabolizing capabilities ranging from dietary to host-derived glycans for both strains,
219 while UMB-MBP-01 had specialized capabilities to metabolize galacto-oligosaccharides.

220 We sought to characterize the secretome of *B. pseudolongum* by examining
221 protein localization based on the presence of a signal peptide [40]. Proteins which are
222 secreted extracellularly have the potential to directly interact with the other gut
223 microorganisms and with host tissues [27, 41] (**Supplemental Table 5A**). Overall, the
224 sec-dependent secretion machinery, but not the twin-arginine (Tat) system, was
225 conserved in all *B. pseudolongum* strains, indicating protein translocation function was
226 conserved but likely occurs only in the unfolded state [42]. Secreted proteins were more
227 likely to be part of the dispensable genome (73% of secreted proteins versus 53% of
228 cytoplasmic proteins; **Supplemental Table 5B**), indicating a high degree of diversity in
229 the secretome among strains of *B. pseudolongum*. Proteins which were predicted to be

230 extracellularly secreted include solute-binding proteins of ABC transporter systems,
231 amidases related to the peptidoglycan hydrolysis, glycosyl hydrolyses, cell surface
232 proteins that make up pilus subunits, and cell wall-degrading peptidases. Interestingly,
233 the secretome of the clade containing ATCC25526 was enriched for collagen adhesion
234 proteins (**Supplemental Table 5C**) but lacked multiple secreted GH25 extracellular
235 proteins. These proteins are prevalent in the clade which includes UMB-MBP-01 and
236 are involved in the binding and hydrolysis of peptidoglycan (**Supplemental Table 5D**).
237 As peptidoglycan components were implicated in important aspects of mucosal
238 immunological signaling [43], this may contribute to varied immunomodulatory
239 capabilities between UMB-MBP-01 and ATCC25526.

240 Differential activation and cytokine responses in dendritic cells and macrophages
241 induced by *B. pseudolongum* strains ATCC25526 and UMB-MBP-01

242 To understand the immunomodulatory impact of the two *B. pseudolongum*
243 strains, bone marrow derived dendritic cells (BMDC) and peritoneal macrophages (MΦ)
244 were treated with UV-killed whole bacteria (cells) or isolated *Bifidobacterium*
245 exopolysaccharide (EPS). We first examined the effect of these treatments on
246 expression of costimulatory receptors. For BMDCs, treatment with either *B.*
247 *pseudolongum* strain stimulated increased CD40 and CD86 expression, although CD86
248 expression was significantly greater after treatment by ATCC25526 than UMB-MBP-01
249 (P < 0.01) (**Figure 2A-D**). Treatment with ATCC25526 cells stimulated increased MHC
250 class II, while treatment with UMB-MBP-01 cells stimulated increased CD80 expression.
251 Neither UMB-MBP-01 EPS nor ATCC25526 EPS altered expression of these surface
252 receptors on BMDCs. For MΦ, ATCC25526 cells stimulated increased CD40, while

253 ATCC25526 EPS did not (**Figure 2E-G**). The other cell surface receptors were not
254 affected by treatment with bacterial cells or EPS for MΦ. Overall, ATCC25526 and
255 UMB-MBP-01 bacterial cells, but not EPS, triggered activation of important
256 costimulatory receptors on innate myeloid cells *in vitro*, and these bacterial strains
257 differed in these activities.

258 We next examined the effect of *Bifidobacterium* and EPS alone on cytokine
259 production in innate immune cells. Both BMDC and MΦ showed increased secretion of
260 IL-6, TNF α , and IL-10 when stimulated with UMB-MBP-01 and ATCC25526 strains.
261 Induction of cytokine expression was also strain-specific as ATCC25526 cells
262 stimulated a greater increase in IL-6 and IL-10 than UMB-MBP-01 cells in BMDCs
263 (**Figure 3A, 3C**); and TNF α expression was also increased to a greater extent by
264 ATCC25526 compared to UMB-MBP-01 with a borderline statistical significance (p =
265 0.059, **Figure 3B**). For MΦ, treatment with ATCC25526 cells increased TNF α compared
266 to UMB-MBP-01 (**Figure 3E**), whereas there were no strain-specific differences in IL-6
267 or IL-10 (**Figure 3D, 3F**). *B. pseudolongum* EPS did not stimulate cytokine production in
268 either BMDC or MΦ. Similar to activation of co-stimulatory receptors, UMB-MBP-01 and
269 ATCC25526 cells elicited unique myeloid cell cytokine responses that differed from one
270 another and were not recapitulated by EPS.

271 *Bifidobacterium* strains induce distinct changes in local and systemic leukocyte
272 distribution and lymph node morphology

273 We next assessed whether *Bifidobacterium* strains differentially induced changes
274 in immune cell distribution and lymph node (LN) architecture *in vivo* using a mouse
275 model. As illustrated in **Figure 4A**, mice received broad spectrum antibiotics for 6 days,

276 a regimen that depleted endogenous microbiota [44], followed by oral gavage with each
277 bacterial strain or their EPS, and then daily immunosuppression with tacrolimus (3
278 mg/kg/d s.c.). Two days after gavage, mesenteric and peripheral LNs (MLN and PLN)
279 and intestinal tissues were harvested, and the intraluminal fecal content was collected
280 for gut microbiome characterization. The effect of these microbiota on the distribution of
281 immune cell populations was assessed by immunohistochemistry of intestinal segments
282 and flow cytometry and immunohistochemistry of LNs.

283 Within the small intestine, both UMB-MBP-01 and ATCC25526 cells resulted in
284 significantly more Foxp3+ regulatory T cells (Treg) compared to PBS control, while
285 UMB-MBP-01 resulted in significantly more Treg compared to ATCC25526 (**Figure 4B**,
286 flow cytometry gating protocol listed in **Supplemental Figure 3**). Gavage with UMB-
287 MBP-01 EPS, but not ATCC25526 EPS, resulted in increased Treg compared to control
288 (**Figure 4B**). ATCC25526 and UMB-MBP-01 cells resulted in more DC compared to
289 PBS control, while ATCC25526 cells also resulted in more DC compared to UMB-MBP-
290 01 cells (**Figure 4C**). UMB-MBP-01 and ATCC25526 EPS resulted in increased DC
291 compared to PBS control, while UMB-MBP-01 EPS also resulted in more DC compared
292 to ATCC25526 EPS (**Figure 4C**). Intestinal MΦ did not significantly change after whole
293 bacteria or EPS gavage.

294 By flow cytometry, we observed decreased MLN Treg in UMB-MBP-01 EPS
295 treated animals, but otherwise there were no other differences in the number and
296 proportion of innate myeloid (DC, MΦ) or adaptive lymphoid (CD4 T cells, CD8 T cells,
297 Treg, and B cells) cells in the MLN or PLN of mice treated with the *B. pseudolongum*

298 strains compared to those treated with antibiotics alone or untreated controls

299 **(Supplemental Figure 4A-L).**

300 For LN immunohistochemistry, we focused on the LN cortex because our

301 previous work showed that architectural and cellular changes within this zone were

302 most critical in mediating immune tolerance and suppression [45]. Within the MLN and

303 PLN T cell cortex, neither gavage with whole bacteria nor EPS affected the number of

304 Treg present, as measured by immunohistochemistry. This contrasts with the flow

305 cytometry results above which showed that UMB-MBP-01 EPS caused a decrease in

306 MLN Treg **(Supplemental Figure 4D).** The difference between the flow cytometry and

307 histologic results for Treg is likely due to the focus of histology analysis only on cells in

308 the cortex while the flow cytometry summates all the cells in the entire LN. Gavage with

309 whole bacteria and EPS from both strains increased DCs in the cortex of MLN

310 compared to control **(Figure 4D)**, while the number of DC enumerated by flow

311 cytometry did not change in MLN or PLN **(Supplemental Figure 4 E, K)**, with these

312 differences again likely due to the factors noted above. MΦ increased in the cortex of

313 MLN after whole bacteria or EPS treatments from both strains **(Figure 4E)**, but not in

314 PLN **(Supplemental Figure 4N).** ATCC25526 cells also resulted in a greater increase

315 in MLN MΦ compared to UMB-MBP-01 cells **(Figure 4E).** This result contrasts with flow

316 cytometry data where there was no difference in MΦ populations in MLN or PLN after

317 treatment.

318 Overall, gavage with whole bacteria and EPS altered gut associated innate

319 myeloid cells and Tregs without affecting systemic distribution, as evidenced by

320 unchanged PLN populations **(Supplemental Figure 4 M, N).** Gavage with whole

321 *Bifidobacterium* cells led to increased intestinal Treg and DCs as well as increased MLN
322 MΦ and DCs compared to controls. EPS also produced most of these effects apart from
323 ATCC25526 EPS lack of effect on intestinal Treg compared to control. UMB-MBP-01
324 cells led to increased intestinal Treg compared to ATCC25526 cells. In contrast,
325 ATCC25526 cells led to increased DC in both intestine as well as increased cortical
326 MLN MΦ compared to UMB-MBP-01 cells. UMB-MBP-01 EPS caused increased
327 intestinal DC compared to ATCC25526 EPS. In contrast to the *in vitro* findings where
328 EPS was generally inactive, *in vivo* treatment with EPS alone stimulated similar innate
329 myeloid cell and Treg increases in gut and MLN compared to increases induced by live
330 bacterial cells.

331 Since LN stromal fiber structures are important mediators of immune responses
332 [46], we next assessed LN architecture using the ratio of laminin $\alpha 4$ to laminin $\alpha 5$ in the
333 LN T cell cortex of the cortical ridge (CR) and around the high endothelial venules
334 (HEV). An increased laminin $\alpha 4:\alpha 5$ ratio is indicative of immune tolerance and
335 suppression [45]. In the MLN CR, both UMB-MBP-01 and ATCC25526 increased the
336 laminin $\alpha 4:\alpha 5$ ratio, with UMB-MBP-01 cells causing a greater increase compared to
337 ATCC25526 cells (**Figure 4F**). The laminin $\alpha 4:\alpha 5$ ratio was not changed around the
338 MLN HEV by either whole bacteria or EPS (**Supplemental Figure 4O**). In PLN CR, only
339 UMB-MBP-01 cells resulted in an increased laminin $\alpha 4:\alpha 5$ ratio (**Figure 4G**). Overall,
340 gavage with both *B. pseudolongum* strains increased local MLN CR laminin $\alpha 4:\alpha 5$
341 ratios, while only UMB-MBP-01 increased the laminin $\alpha 4:\alpha 5$ ratio in systemic PLN CR.
342 This effect was more prominent for UMB-MBP-01 compared to ATCC25526,
343 demonstrating strain-specific differences in immune modulation.

344 Markedly different intestinal transcriptional activities in response to UMB-MBP-01 than
345 to ATCC25526

346 To determine the effect of UMB-MBP-01 and ATCC25526 on host gene
347 expression, we characterized the transcriptome of mouse intestinal tissues harvested
348 two days after gavage with either UMB-MBP-01, ATCC25526, or no bacteria control.
349 Differentially expressed genes (DEGs) were identified by comparing the two treatment
350 groups to the control and revealed both shared and strain-specific effects on
351 transcription (**Supplemental Table 6B-D**). A total of 420 and 425 DEGs were observed
352 in comparisons of UMB-MBP-01 vs. control and ATCC25526 vs. control, respectively,
353 and 139 DEGs were observed comparing UMB-MBP-01 to ATCC25526 directly. Based
354 on the \log_2 fold change (LFC) scale of DEGs, the strongest intestinal response was
355 elicited by UMB-MBP-01, compared to either ATCC25526 or control (**Supplemental**
356 **Figure 5**). Functional enrichment analyses revealed the effects elicited by UMB-MBP-
357 01 were mainly involved in positive regulation of cell activation, leukocyte and
358 lymphocyte activation, B cell activation, and somatic recombination of immunoglobulin
359 superfamily domains (**Supplemental Figure 5A, C**). Elicited effects of ATCC25526
360 include responses in phagocytosis, membrane invagination, defense response to
361 bacterium and complement activation (**Supplemental Figure 5E**). These results further
362 supported our observations that ATCC25526 elicited distinct host responses compared
363 to UMB-MBP-01, which induced greater numbers of DEGs and stronger host
364 responses.

365 We further examined the host responses present in both UMB-MBP-01 and
366 ATCC25526 as well as those present only in one but not the other, to pinpoint the

367 differential host responses induced by the two strains. Of the DEGs identified comparing
368 UMB-MBP-01 or ATCC25526 to the control (n=411 and 416), 59.6% and 58.9%,
369 respectively, were identified in both comparisons (**Figure 2A, Supplemental Table 6**).
370 These overlapped DEGs (N=238) and the condition-specific DEGs, that included 164
371 DEGs only up-regulated in UMB-MBP-01 versus control and 111 DEGs only
372 upregulated in UMB-MBP-01 versus ATCC25526, comprised the majority of all DEGs
373 (85.9%). Downregulated genes accounted for only a small fraction of all DEGs (14.1%)
374 and majority of them were identified in only the comparison of UMB-MBP-01 vs.
375 ATCC25526 (N=67, 80.1% of downregulated). The DEGs that were upregulated in both
376 UMB-MBP-01 vs. control and ATCC25526 vs. control include B cell immunity, collagen
377 metabolism, immunoglobulin protein expression, cytokines (IL-1 β , IL-10, IL-13, IL-21),
378 TNF receptor superfamily, among others (**Supplemental Table 6**). Two functional
379 pathways were enriched in UMB-MBP-01 vs control, but not in ATCC25526 vs control:
380 regulation of cell-cell adhesion and T cell activation and the response to interferon γ and
381 interferon β (**Figure 5B**). In contrast, the host responses to ATCC25526 but not UMB-
382 MBP-01 were enriched in functions involved in fatty acid metabolism, lipid localization,
383 acylglycerol metabolism, and cholesterol and sterol homeostasis (**Supplemental**
384 **Figure 5D**). Together these data further indicated that the effects of UMB-MBP-01 or
385 ATCC25526 were mediated through different pathways. The ATCC25526 strain
386 appeared to exert immunomodulatory effects, at least in part, via stimulation of
387 phagocytosis and induced lipid metabolism, while the UMB-MBP-01 strain exerted
388 stronger effects, mostly through upregulating antibody secretion and regulation of
389 multiple aspects of lymphocyte functions, including cytokines, adhesion, and activation.

390 As extracellular molecules may play an important role in eliciting
391 immunomodulatory effects, we also compared intestinal gene expression following
392 gavage with live *B. pseudolongum* bacteria to that with *B. pseudolongum* produced
393 EPS. The comparison revealed DEGs that were mostly group-specific without much
394 overlap with EPS vs. control group (12.1%, N=39) (**Supplemental Figure 6A, B**).
395 These data indicated that the predominant intestinal transcriptional responses were due
396 to *B. pseudolongum* whole cell gavage (62.6%, N=201), compared to DEGs in EPS
397 gavage (25.5%, N=82). Gene-pathway network analyses indicated B cell receptor
398 activation and signaling, antigen-receptor mediated signaling, and phagocytosis
399 recognition and engulfment were highly upregulated by whole *B. pseudolongum* gavage
400 (**Supplemental Figure 6C**). While both live cells and EPS induced antimicrobial
401 circulating immunoglobulin, the transcriptional effects were an order of magnitude
402 higher for live cells (**Supplemental Figure 6C-D**). This result was commensurate with
403 the observations above that EPS did not stimulate cytokine production or cell surface
404 costimulatory receptor expression in either BMDC or MΦ. Together, our data suggested
405 that the immunomodulatory effects of *B. pseudolongum* were potentially via their
406 metabolic activities and secreted molecules and/or other cell membrane components
407 other than the surface structure of EPS.

408 Different *B. pseudolongum* strains elicit rapid, profound alterations in both structure and
409 function of gut microbiome

410 We next investigated the impact of bacterial gavage on the gut microbiome using
411 shotgun metagenomic sequencing of the intraluminal fecal content (40.6±7.7 million
412 reads per sample; **Supplemental Table 2B**). Taxonomic composition was established

413 using the comprehensive mouse gut metagenome catalog (CMGM) [47] designed
414 specifically to characterize the mouse gut microbiome (**Figure 5A, Supplemental Table**
415 **7**). A significant reduction in gut microbial community diversity was observed after both
416 UMB-MBP-01 and ATCC25526 gavage, with UMB-MBP-01 gavage resulting in the
417 lowest diversity (**Figure 5C**). After *B. pseudolongum* administration, the most
418 outstanding changes in specific taxonomic groups were the marked increases in the
419 relative abundance of *Bacteroides thetaiotaomicron* and *Lactobacillus johnsonii* and
420 relative depletion of *Muribaculaceae* and *Erysipelotrichaceae* (**Figure 5B**,
421 **Supplemental Figure 7**). Gavage with the *Desulfovibrio* did not produce a significant
422 change in the microbiome, and *Muribaculaceae*, *Erysipelotrichaceae*, and
423 *Lachnospiraceae* were the most abundant groups in these communities and in the not-
424 treatment control communities. These data indicated the gavage of either *B.*
425 *pseudolongum* strains profoundly altered the gut microbial community, with a significant
426 reduction in abundance of endogenous gut microorganisms.

427 Canonical Correspondence Analysis (CCA) on both community taxonomic
428 profiles and functional pathways resulted in concordant clustering patterns, in that
429 ATCC25526 or UMB-MBP-01 each resulted in a distinct community, and that were
430 clearly separate from *Desulfovibrio*-treated and no bacteria controls (**Figure 5D, 5E**).
431 Based on linear discriminant analysis (LDA) effect size (LEfSe) analysis [48], UMB-
432 MBP-01 resulted in a significantly higher abundance of *B. pseudolongum* than
433 ATCC25526 ($19.8\pm6.1\%$ vs. $6.1\pm2.0\%$, $P = 0.02$, **Supplemental Figure 8A,B**). These
434 data suggested murine strain UMB-MBP-01 was better able to colonize the mouse gut
435 than the porcine isolate ATCC25526, lead to greater abundance in the murine gut

436 environment. On the other hand, *Enterobacteriaceae* (*Klebsiella michiganensis* and
437 *Enterobacter himalayensis*), and *Clostridiaceae* (*Clostridium paraputrificum* and
438 *Clostridium* MGG49300) were significantly more enriched in the ATCC25526 treated
439 group but were mostly absent in the UMB-MBP-01 gavage mice (**Supplemental Figure**
440 **8C-F**). Based the scaled eigenvalue, the top taxa and pathways that contributed to the
441 separation of the clusters in ordination analyses were identified (**Supplemental Figure**
442 **9A, B, Supplemental Table 8**). The ATCC25526 cluster was attributed to
443 *Enterobacteriaceae* and *Clostridiaceae*, and the top contributors included *K.*
444 *pneumonia*, *K. michiganensis*, *B. animalis*, *E. himalayensis*, and *Clostridium*
445 *paraputrificum*. The most prominent pathways attributed to ATCC25526 cluster include
446 motility (peptidoglycan maturation), gluconeogenesis, energy conversion (fatty acid β -
447 oxidation), and L-threonine biosynthesis. On the other hand, *Akkermansia muciniphila*,
448 *Paeniclostridium sordellii*, and *B. pseudolongum* were among the top significant
449 contributors to the UMB-MBP-01 cluster. The most outstanding pathways for UMB-
450 MBP-01 included ribonucleotide and amino acid biosynthesis (folate transformation, L-
451 isoleucine, L-arginine, L-lysine) and pyruvate fermentation (pyruvate/acetyl-CoA
452 pathway). Together, the data indicated UMB-MBP-01 or ATCC25526 each altered the
453 gut microbiota profoundly and distinctively, which may contribute to their distinct
454 immunomodulatory effect.

455 Discussion

456 *B. pseudolongum* demonstrates great intraspecies genetic diversity and shows
457 patterns consistent with host specificity, rendering it an advantageous model organism
458 to study the effect of intraspecies variation on host immunomodulation [35]. Further, as
459 a predominant species in the murine GI tract, *B. pseudolongum* displays an extensive
460 enzymatic capacity and might act as a keystone species in this environment [35, 49]. In
461 this study, we employed the murine strain UMB-MBP-01, which demonstrates an anti-
462 inflammatory and pro-homeostatic effect [33, 34], and porcine-isolated *B.*
463 *pseudolongum* type strain ATCC25526 to investigate the strain-specific mechanisms of
464 host responses *in vitro* and *in vivo*. The distinct genetic attributes and
465 immunomodulatory capabilities of UMB-MBP-01 from the *B. pseudolongum* type strain
466 ATCC25526 show that *Bifidobacterium* modulates intestinal responses and host
467 immunity in a strain specific manner. We observed UMB-MBP-01 exerted stronger
468 immunologic effects in intestinal responses mostly likely through regulation of multiple
469 aspects of lymphocyte functions, while ATCC25526 appeared to exert
470 immunomodulatory effects, at least in part, via stimulation of phagocytosis and induced
471 lipid metabolism. We further demonstrated the *in vitro* strain-specific activation and
472 cytokine responses in DC and MΦ and changes in local and systemic leukocyte
473 distribution and LN morphology, demonstrating the unique immune modulatory effects
474 of the two *B. pseudolongum* strains. A deeper understanding of strain-specific
475 immunomodulatory properties is fundamentally important to inform probiotic design as
476 well as immunomodulatory therapeutic targeting.

477 It remains unclear whether *B. pseudolongum* immune and intestinal modulation
478 is mediated through direct interactions with the intestinal epithelium, or indirectly via
479 modulation of endogenous gut microbiome with consequent effects on intestinal
480 metabolism and immunity, or both [18]. In our study, the administration of two separate
481 *B. pseudolongum* strains resulted in profoundly different gut microbiomes in both
482 structure and functional capabilities as well as intestinal responses, suggesting the
483 critical involvement of the endogenous gut microbiome as a key element of their
484 immunomodulatory attributes and indicating that indirect effects likely contribute. Our
485 results align with recent key clinical findings, suggesting that *Bifidobacterium* could act
486 as a “microbiome modulator” to competitively exclude toxigenic pathogens and
487 orchestrate homeostatic gut metabolism and host immune responses [50-53]. It is worth
488 noting that the effect of LBPs on the structure and function of the microbial community
489 has not been accepted among standard parameters to characterize or evaluate LBP
490 efficacy. Our study emphasizes the importance of characterization of the dynamics of
491 the gut microbial community to understand the efficacy and specificity of LBPs.

492 Distinctive from ATCC25526 and pro-inflammatory bacterial control, UMB-MBP-
493 01 demonstrated strain persistence within the gut microbiome after administration,
494 further highlighting the role of gut microbiome in LBP-host interaction. Previous studies
495 suggested that the administration of *B. longum* subsp. *longum* has stable, persistent
496 colonization in recipients whose gut microbiome previously had low abundance of gene
497 content involved in carbohydrate utilization, suggesting competition for resources as a
498 key mechanism determining strain persistence [54]. This may relate to the ecological
499 concept of “colonization resistance”, whereby endogenous microbiota occupy host

500 tissues with an intrinsic capability to limit the introduction of exogenous microorganisms
501 and the expansion of endogenous microorganisms, while a microbiota with low capacity
502 in carbohydrate assimilation could be more permissive to exogenous colonization that
503 can fundamentally disrupt the microbiota [55, 56]. Given human gut reliance on
504 microbiota to cope with glycan-rich gut environment for the metabolism of luminal
505 oligosaccharides [57], the ability of *Bifidobacterium* strains to utilize complex
506 carbohydrates provides a selective advantage to effectively compete for nutrients with
507 other bacteria in the gut microenvironment [57]. Interestingly, their repertoire of
508 glycoside hydrolases are species- or strain-specific [39, 58], indicating indispensable
509 roles for glycan-assimilation in their specific niche adaptability to the intestinal
510 microenvironment. Supporting the competitive exclusion ecological theory, we observed
511 the depletion of endogenous gut microorganisms *Muribaculaceae* and
512 *Erysipelotrichaceae* with *Bifidobacterium* treatment, as well as the specialized
513 carbohydrate metabolism of UMB-MBP-01 in utilizing a greater variety of
514 oligosaccharide molecules and host-derived glycans. Future longitudinal
515 characterization of strain persistence, microbiota changes, and oligosaccharide and
516 glycoprotein assimilation may hold a key to determine probiotic strain specificity in host
517 adaption and intestinal responses.

518 The bacterial determinants of immunomodulation properties of individual strains
519 remains an underdeveloped research area. Recent studies revealed strains of the same
520 species induced different immunophenotypes, suggesting that bacterial-induced
521 immunomodulation is not dictated by bacterial phylogeny [22, 59]. Multiple LBP
522 produced effector molecules that interact with host immunity have been recently

523 identified [60]. In particular, cell wall components found in Gram-positive bacteria, such
524 as peptidoglycan and lipoteichoic acid, contain MAMPs which are recognized by
525 immunoregulatory pattern recognition receptors such as Toll-like receptors [23].
526 *Bifidobacterium* peptidoglycans have also demonstrated immunomodulatory effects on
527 the Th1 polarization of naïve T cells as well as DC maturation and enhanced immune
528 responses [61, 62]. Other surface molecules such as EPS and pili also play a role in
529 *Bifidobacterium*'s strain-specific pro-homeostatic immunomodulation [27, 28]. We also
530 observed here expanded enzymatic capabilities of UMB-MBP-01, but not ATCC25526,
531 in assimilating oligosaccharide molecules and host-derived glycans as well as the
532 capacity to manufacture cell wall components such as peptidoglycan. Together these
533 studies implicate the genetic variation of different bacterial strains as underlying induced
534 intestinal responses and mucosal immunological signaling. This speculation warrants
535 direct experimental validation.

536 Making conclusions about the immunomodulatory effects of bacterial strains
537 based on the surface structures alone is inaccurate, as the preparations of the cell wall
538 components and extracellular polysaccharides are strongly influenced by cultivation
539 conditions [63]. The differences observed in this study between *Bifidobacterium* whole
540 cells and purified EPS *in vitro* vs. *in vivo* indeed suggest the presence of many other
541 molecules and mechanisms that contribute to the regulation of immunity and
542 inflammation. In particular, the observation that EPS alone yielded gut Treg recruitment
543 in addition to innate myeloid cell populations suggests that EPS may act indirectly
544 through an intermediary, such as intestinal epithelial cells, which then influence
545 leukocyte subsets. Indeed, characterization of *B. pseudolongum*-induced innate

546 immune responses revealed that these bacteria induce a more balanced anti-
547 inflammatory and homeostatic cytokine response from DC and MΦ [64]. In addition, *B.*
548 *pseudolongum* induced changes in LN architecture, resulting in an increased ratio of
549 extracellular matrix protein laminin α 4 to laminin α 5 in the cortical ridge, a microdomain
550 structure that is mechanistically associated with immunologic suppression and tolerance
551 [33]. These observations demonstrate that a single probiotic bacterial strain can
552 influence local, regional, and systemic immunity through both innate and adaptive
553 pathways. A holistic understanding of the strain-specific bacterial effects is critical to
554 inform probiotic design as well as immunomodulatory therapeutic targeting.

555 Conclusion

556 The distinct genetic attributes and immunomodulatory capabilities of UMB-MBP-
557 01 compared to *B. pseudolongum* type strain ATCC25526 show that *Bifidobacterium*
558 modulates intestinal responses and host immunity in a strain-specific manner. Our
559 results highlight the importance to characterize individual *Bifidobacterium* strains and
560 not to generalize their immunomodulatory effects to other strains of the same species,
561 despite their many shared features. It is critical to investigate both endogenous
562 microbiota in response to LBP strains and to profile the intestinal responses, in order to
563 interrogate mechanistically the highly coordinated multicellular host-microbe
564 interactions, which are key to understanding strain-specific immunomodulation. Future
565 studies are warranted to investigate the specific bioactive metabolites and pathways
566 through which the gut microbiota exert their immunomodulatory effects, and the specific
567 intestinal cell types that respond to those signals. A comprehensive understanding of
568 strain-specific immunomodulatory properties is fundamentally important to inform
569 probiotic design as well as immunomodulatory therapeutic targeting.

570 **Methods and Materials**

571 Strains cultivation and genomic sequencing

572 *B. pseudolongum* strain ATCC25526 was purchased from ATCC (Manassas, Virginia).

573 *B. pseudolongum* strain UMB-MBP-01 was isolated from the feces of C57BL/6J mice

574 through passages and screening on Bifidus Selective Medium (BSM) agar (Sigma-

575 Aldrich, St. Louis, MO, USA), as previously described [34]. Both strains were initially

576 grown anaerobically at 37°C for 3–5 days on Bifido Selective Media (BSM) agar plates

577 (Millipore Sigma, Burlington, MA), from which a single colony was selected and grown in

578 BSM broth (Millipore Sigma, 90273-500G-F) until stationary phase (up to 3 days).

579 *Desulfovibrio desulfuricans* subsp. *desulfuricans* (ATCC27774) was purchased from

580 ATCC and grown in ATCC Medium: 1249 Modified Baar's Medium (MBM) for sulfate

581 reducers, which was made according to ATCC protocol. Cultures were initially

582 incubated under anaerobic conditions for 5 days on Modified Baar's Medium agar

583 plates, after which single colonies were chosen, transferred to liquid media, and

584 incubated for up to 3 weeks. *B. pseudolongum* strains ATCC25526 and UMB-MBP-01

585 were used in cell stimulation and cytokine assays.

586 *B. pseudolongum* UMB-MBP-01 was sequenced previously [34]. For strain

587 ATCC25526, genomic DNA extraction was performed using a lysozyme/mutanolysin-

588 based cell lysis followed by purification using the Wizard Genomic DNA Purification Kit

589 (Promega, Madison, WI, USA). Library preparation on extracted DNA was conducted

590 using a Kapa kit (Roche, Indianapolis, IN) for 150-bp paired-end sequencing, and

591 sequencing was performed with an Illumina (San Diego, CA) MiSeq system.

592 Sequencing was performed by the University of Maryland School of Medicine, Institute

593 for Genome Sciences, Genomics Resource Center with standard operating procedures
594 and assembled using SPAdes v3.14.0 [65]. Contig ordering was performed using
595 MAUVE contig mover [66] and the UMB-MBP-01 genome as reference [67].

596 Exopolysaccharide (EPS) Isolation

597 EPS was extracted from strains X and Y using the protocol previously published
598 by Bajpai and colleagues [68]. Briefly, bacterial cultures were grown in 500 ml BSM
599 media to early stationary phase, after which trichloroacetic acid was added (14% v/v
600 final) and the mixture incubated at 37°C for 40 minutes. After centrifugation at 8,000 g
601 for 20 minutes at 4°C, the supernatant was collected, absolute ethanol added (2:1 v/v
602 EtOH:sup), followed by incubation at 4°C for 48h and centrifugation at 8,000xg at 4°C
603 for 20 minutes. This ethanol wash step was repeated to remove any impurities, and a
604 final centrifugation at 8,000xg at 4°C for 20 minutes was performed. The resulting pellet
605 was then dissolved in 5 to 10 ml of water, before being dialyzed against DI water for 48
606 hours, and lyophilized.

607 Anaerobic microplate assay

608 Anaerobic microplates (AN plates, Biolog, Hayward, CA) pre-coated with 95
609 various carbon sources was used in the assay. Each well of the 96-well AN Biolog plate
610 was coated by a sole-carbon source, with one well being used as no carbon control.
611 Metabolism of the substrate in particular wells results in formazan production, producing
612 a color change in the tetrazolium dye. Cultured bacteria in log growth phase were
613 centrifuged down to pellet, which was suspended using inoculating fluid (Biolog,
614 Hayward, CA) to an OD value around 0.26. The suspension was added to the

615 microplates and sealed by anaerobic GasPak EZ anaerobe gas pouch system with
616 anaerobic indicators (BD, Franklin Lakes, NJ). The plates were read between 20-24hrs
617 following inoculation with a pre-grown isolate using spectrophotometer microplate
618 reader (Molecular Devices, LLC, San Jose, CA) and reading data acquisition was
619 performed using SoftMax Pro 7 software (Molecular Devices, LLC, San Jose, CA). The
620 procedure was performed in triplicate for each strain. The no carbon control reading
621 was subtracted from each of the readings of the wells, and student's t test was
622 performed to test if the average reading was significantly different from zero.

623 Comparative genomics analyses

624 A total of 79 *B. pseudolongum* genomes were included in the analyses, which
625 included the four sequenced in this study and all 75 available *B. pseudolongum*
626 genomes on GenBank (retrieved September 2021, **Supplemental Table 5A**). The
627 pangenome was constructed using anvi'o vers 6.2 workflow [69, 70]. Briefly, this
628 workflow 1) dereplicates genomes based on similarity score calculated using Sournash
629 vers 3.3 [71], 2) uses BLASTP to compute ANI identity between all pairs of genes, 3)
630 uses the Markov Cluster Algorithm (MCL) [72] to generate homologous gene clusters
631 (HGCs) based on all-versus-all sequence similarity, and 4) aligns amino acid sequences
632 using MUSCLE [73] for each gene cluster. Each gene was assigned to core or
633 accessory according to the hierarchical clustering of the gene clusters. Sournash vers
634 3.3 [71] was used to compute ANI across genomes. Functional annotation of each
635 secreted protein was performed employing the eggNOG database v5.0 [74] using
636 eggNOG-mapper v2 [75] and the results were imported into the anvi'o contig database.
637 Further functional annotation included PFAMs based on hidden Markov model (HMM)

638 search to Pfam vers34.0 [76]. Protein-coding genes were also annotated to metabolic
639 functionality categories using KEGG (Kyoto Encyclopedia of Genes and Genomes) [77].
640 GhostKOALA annotation tool [78] was used to assign KEGG Identifiers. Enrichment
641 analyses were performed using Anvi'o pangenome pipeline that take COG functions
642 across genomes and clade affiliation as the explanatory variable. The equality of
643 proportions across clade affiliation was tested using a Rao score test, which generates
644 an enrichment score as the test statistic and a p value. The q-value was then calculated
645 from the p value to account for multiple testing using R package qvalue [79]. A COG
646 function was considered enriched if the q-value was below 0.05.

647 The prediction of genes encoding extracellular enzymes possessing structurally
648 related catalytic and carbohydrate-binding modules catalyzing hydrolysis, modification,
649 or synthesis of glycoside bounds was performed using dbCAN2 [80] and dbCAN
650 HMMdb (v.9) that was built using CAZy database (v.07302020) [38]. To identify signal-
651 peptide specific sequence motifs, we employed the subcellular localization prediction
652 tool PSORTb (v.3.0.2) [81].

653 *In vitro* co-culture

654 Peritoneal macrophages (MΦ) and bone marrow derived dendritic cells (BMDCs) were
655 isolated and then seeded onto 24 well plates in 1 ml RPMI complete medium as
656 described [82]. Briefly, MΦ were collected 4 days after i.p. injection of Remel
657 Thioglycollate solution (Thermo Fisher Scientific, Waltham, MA). BMDCs were
658 generated from bone marrow cells treated with 10 ng/ml GM-CSF (R&D Systems,
659 Minneapolis, MN) for 10 days. Loosely adherent immature BMDCs were collected and
660 then CD11c+ DCs were enriched using CD11c positive selection kit (Stemcell

661 Technologies, Cambridge, MA). Twenty-four hours after culture of purified subsets, the
662 cells were stimulated with UV-killed *Bifidobacterium* bacteria or purified EPS for 24
663 hours. Bacterial cells were killed by UV exposure at 100 μ J/cm² for four 15-minute
664 cycles with a UV CrossLinker (Fisher Scientific, Hampton, NH). Culture supernatants
665 were collected from whole bacteria or EPS stimulated cultures and ELISA for TNF α , IL-
666 6, and IL-10 (BioLegend, San Diego, CA) performed. The myeloid cells from co-culture
667 wells were collected and analyzed by flow cytometry.

668 Flow cytometry

669 Cells were passed through 70- μ m nylon mesh screens (Thermo Fisher Scientific,
670 Waltham, MA) to produce single-cell suspensions. Cell suspensions were treated with
671 anti-CD16/32 (clone 93, eBioscience) to block Fc receptors, and then stained for 30
672 minutes at 4°C with antibodies against surface molecules (**Supplementary Table 9**)
673 and washed 2 times in FACS buffer [phosphate buffered saline (PBS) with 0.5% w/v
674 Bovine serum albumin (BSA)]. Samples were analyzed with an LSR Fortessa Cell
675 Analyzer (BD Biosciences), and data analyzed with FlowJo software version 10.6 (BD
676 Biosciences).

677 Immunohistochemistry

678 Peripheral LN, mesenteric LN, and small bowel segment (duodenal-jejunal junction)
679 were excised and washed in cold PBS before freezing in OCT (Sakura Finetek,
680 Torrance, CA) in histology blocks on dry ice and then stored at -80°C. LN cryosections
681 were cut in triplicate at 5 μ m using a Microm HM 550 cryostat (Thermo Fisher Scientific,
682 Waltham, MA). Sections attached to slides were fixed with cold acetone/ethanol (1:1)

683 solution and washed in PBS buffer (Lonza, Morristown, NJ). Primary antibodies and
684 isotype controls (**Supplementary Table 9**) were added to slides for 1 hour in a
685 humidified chamber. Sections were washed with PBS, blocked with 2.5% donkey serum
686 and 2.5% goat serum, and incubated with secondary antibodies for 60 minutes. Slides
687 were then fixed with 4% paraformaldehyde/PBS (Alfa Aesar, Haverhill, MA) for 5
688 minutes, incubated with 1% glycerol for 5 minutes, and Prolong Gold Antifade Mountant
689 with or without DAPI (Thermo Fisher Scientific, Waltham, MA) was added before
690 applying cover slips. Images were acquired using an Accu-Scope EXC-500 fluorescent
691 microscope (Nikon, Melville, NY) and analyzed with Velocity image analysis software
692 (PerkinElmer, Waltham, MA). The percentage positive staining area was quantified
693 based on at least 2 independent experiments with 3 mice/group, 3 LNs/mouse, 3
694 sections/LN, and 3–5 fields/section.

695 Mice experiments

696 Female C57BL/6 mice between 8 and 14 weeks of age were purchased from The
697 Jackson Laboratory (Bar Harbor, ME). All the procedures involving mice were performed in
698 accordance with the guidelines and regulations set by the Office of Animal Welfare
699 Assurance of the University of Maryland School of Medicine, under the approved
700 IACUC protocols 0518004 and 0121001. Mice were fed antibiotics (kanamycin,
701 gentamicin, colistin, metronidazole, and vancomycin) *ad libitum* in drinking water on
702 days -6 to -1. On day 0, cultured *Bifidobacterium* ATCC25526 or UMB-MBP-01 were
703 gavaged p.o. Mice received tacrolimus (3 mg/kg/d s.c.) on days 0 and 1. On day 2, the
704 animals were euthanized. Mesenteric and peripheral (axillary, inguinal, popliteal,
705 brachial) LNs as well as small intestine were harvested. Fecal pellets were also

706 collected prior to euthanasia into individual tubes, using aseptic technique to minimize
707 handling, and stored at -80°C. Antibiotics were USP grade or pharmaceutical secondary
708 standard (all from MilliporeSigma): kanamycin sulfate (0.4 mg/ml), gentamicin sulfate
709 (0.035 mg/ml), colistin sulfate (850 U/ml), metronidazole (0.215 mg/ml), and
710 vancomycin hydrochloride (0.045 mg/ml) were dissolved in vivarium drinking water and
711 administered *ad libitum*. Tacrolimus (USP grade, MilliporeSigma) was reconstituted in
712 DMSO (USP grade, MilliporeSigma) at 20 mg/ml and diluted with absolute ethanol (USP
713 grade, Decon Labs, King of Prussia, PA) to 1.5mg/ml. DMSO/ethanol stock was diluted
714 1:5 in sterile PBS for s.c. injection and injected at 10 µl/g (3 mg/kg/day).

715 Metagenomic sequencing and microbiome analyses

716 Harvested intestine tissues and luminal contents were stored immediately in
717 DNA/RNA Shields (Zymo Research, Irvine, CA) to stabilize and protect the integrity of
718 nucleic acids and minimize the need to immediately process or freeze specimens. The
719 colon content from ~1cm colon tissue was used in DNA extraction. Metagenomic
720 sequencing libraries were constructed from the same DNA using the Nextera XT Flex kit
721 (Illumina) according to the manufacturer recommendations. Libraries were then pooled
722 together in equimolar proportions and sequenced on a single Illumina NovaSeq 6000
723 S2 flow cell at the Genomic Resource Center of the Institute for Genome Sciences at
724 the University of Maryland School of Medicine.

725 Metagenomic sequence reads were removed using BMTagger v3.101 [83] using
726 a Genome Reference Consortium Mouse Build 39 of strain C57BL/6J (GRCm39) [84].
727 Sequence read pairs were removed even if only one of the reads matched to the mice
728 genome reference. The Illumina adapter was trimmed and quality assessment was

729 performed using default parameters in fastp (v.0.21.0) [85]. The taxonomic composition
730 of the microbiomes was established using Kraken2 (v.2020.12) [86] and Braken (v.
731 2.5.0) [87] using the comprehensive mouse gut metagenome catalog (CMGM) [47] to
732 calculate the metagenomic taxonomic composition. The Phyloseq (v.1.34.0) [88] R
733 package was used to generate the diversity plot and barplot. Linear discriminant
734 analysis (LDA) effect size (LEfSe) analysis [48] was used to identify fecal phylotypes
735 that could explain differences between. For LEfSe, only taxonomic groups present
736 in >1% of at least one sample were included in the analyses; the alpha value for the
737 non-parametric factorial Kruskal-Wallis (KW) sum-rank test was set at 0.05 and the
738 threshold for the logarithmic LDA model [89] score for discriminative features was set at
739 2.0. An all-against-all BLAST search in multi-class analysis was performed.
740 Metagenomics dataset was mapped to the protein database UniRef90 [90] to ensure
741 the comprehensiveness in functional annotation, and was then summarized using
742 HUMAnN2 (Human Microbiome Project Unified Metabolic Analysis Network) (v0.11.2)
743 [91] to efficiently and accurately determine the presence, absence, and abundance of
744 metabolic pathways in a microbial community. Further, HUMAnN2 employed a tiered
745 search strategy enabling a species-resolved functional profiling of metagenomes, hence
746 to characterize the contribution to the functional pathways of a known species.
747 Canonical Correspondence Analysis (CCA) was used in ordination analysis, and biplot
748 was generated using vegan package [92, 93] based on bray-curtis distance. CA1 and
749 CA2 were selected as the major components based on the eigenvalue. A species score
750 was scaled proportional to the eigenvalues representing the direction from the origin
751 where the group had a larger than average value for the particular species [92, 94]. The

752 species scores greater than 1 were used to select the species that were considered the
753 most significant contributors to each group.

754 RNA isolation, transcriptome sequencing and analyses of the intestinal tissues

755 Dissected intestinal tissues were stored immediately in RNAlater solution
756 (QIGEN) that had been stored at -80°C to stabilize and protect the integrity of RNA
757 [95]. For each sample, bulk RNA was extracted from ~1cm of intestine tissues. Prior to
758 the extraction, 500µl of ice-cold RNase free PBS was added to the sample. To remove
759 the RNAlater, the mixture was centrifuged at 8,000xg for 10min and the resulting pellet
760 resuspended in 500µl ice-cold RNase-free PBS with 10µl of β-mercaptoethanol. Tissue
761 suspension was obtained by bead beating procedure using the FastPrep lysing matrix B
762 protocol (MP Biomedicals, Solon, OH) to homogenized tissues. RNA was extracted
763 from the resulting suspension using TRIzol Reagent (Invitrogen, Carlsbad, CA) following
764 the manufacturer recommendations and followed by protein cleanup using Phasemaker
765 tubes (Invitrogen) and precipitation of total nucleic acids using isopropanol. RNA was
766 resuspended in DEPC-treated DNAase/RNAase-free water. Residual DNA was purged
767 from total RNA extract by treating once with TURBO DNase (Ambion, Austin, TX, Cat.
768 No. AM1907) according to the manufacturer's protocol. DNA removal was confirmed via
769 PCR assay using 16S rRNA primer 27F (5'-AGAGTTGATCCTGGCTCAG-3') and
770 534R (5'-CATTACCGCGGCTGCTGG-3'). The quality of extracted RNA was verified
771 using the Agilent 2100 Expert Bioanalyzer using the RNA 1000 Nano kit (Agilent
772 Technologies, Santa Clara, CA). Ribosomal RNA depletion and library construction
773 were performed using the RiboZero Plus kit and TruSeq stranded mRNA library
774 preparation kit (Illumina) according to the manufacturer's recommendations. Libraries

775 were then pooled together in equimolar proportions and sequenced on a single Illumina
776 NovaSeq 6000 S2 flow cell at the Genomic Resource Center (Institute for Genome
777 Sciences, University of Maryland School of Medicine) using the 150 bp paired-end
778 protocol.

779 Bioinformatic analysis of the transcriptome data includes the quality of fastq files,
780 which was evaluated by FastQC. Reads were aligned to the mouse genome (v.
781 *Mus_musculus.GRCm39*) using HiSat (v. HISAT2-2.1.0) [96] and the number of reads
782 that aligned to the coding regions were determined using HTSeq (v.1.0.0) [97].
783 Significant differential expression was assessed using DEseq with an FDR value ≤ 0.05
784 [98]. Quadrant plot to show whether DEGs have the same or opposite relationships
785 between each of the pairwise comparisons of UMB-MBP-01 vs ATCC25526 and UMB-
786 MBP-01 vs control. Gene Ontology (GO) enrichment analysis was performed in order to
787 identify GO terms significantly over-represented in genes deregulated in specific
788 comparisons and, as a result, to suggest possible functional characteristics of these
789 genes. Enriched GO terms in the set of genes that are significantly over-expressed or
790 under-expressed in a specific condition may suggest possible mechanisms of regulation
791 or functional pathways that are, respectively, activated or repressed in that condition.
792 Over-representation analyses [99] of differentially expressed genes (DEGs) against GO
793 ontologies was performed using enrichGO function of clusterProfile Bioconductor
794 package [100]. Cnetplot function was used to depict the linkages of genes and GO
795 terms as a Gene-Concept Network for top over-represented GO terms based on q-value
796 and gene-count.

797 **References**

798 1. Milani C, Turroni F, Duranti S, Lugli GA, Mancabelli L, Ferrario C, van Sinderen D, Ventura
799 M: **Genomics of the Genus *Bifidobacterium* Reveals Species-Specific Adaptation to the**
800 **Glycan-Rich Gut Environment.** *Appl Environ Microbiol* 2016, **82**:980-991.
801 2. O'Callaghan A, van Sinderen D: **Bifidobacteria and Their Role as Members of the**
802 **Human Gut Microbiota.** *Front Microbiol* 2016, **7**:925.
803 3. Gionchetti P, Rizzello F, Venturi A, Campieri M: **Probiotics in infective diarrhoea and**
804 **inflammatory bowel diseases.** *J Gastroenterol Hepatol* 2000, **15**:489-493.
805 4. Marteau P, Seksik P, Jian R: **Probiotics and intestinal health effects: a clinical**
806 **perspective.** *Br J Nutr* 2002, **88 Suppl 1**:S51-57.
807 5. Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA: **Probiotics and prebiotics in**
808 **intestinal health and disease: from biology to the clinic.** *Nat Rev Gastroenterol Hepatol*
809 2019, **16**:605-616.
810 6. Venturi A, Gionchetti P, Rizzello F, Johansson R, Zucconi E, Brigidi P, Matteuzzi D,
811 Campieri M: **Impact on the composition of the faecal flora by a new probiotic**
812 **preparation: preliminary data on maintenance treatment of patients with ulcerative**
813 **colitis.** *Aliment Pharmacol Ther* 1999, **13**:1103-1108.
814 7. Patole SK, Rao SC, Keil AD, Nathan EA, Doherty DA, Simmer KN: **Benefits of**
815 ***Bifidobacterium breve M-16V* Supplementation in Preterm Neonates - A Retrospective**
816 **Cohort Study.** *PLoS One* 2016, **11**:e0150775.
817 8. Gueimonde M, Margolles A, de los Reyes-Gavilan CG, Salminen S: **Competitive exclusion**
818 **of enteropathogens from human intestinal mucus by *Bifidobacterium* strains with**
819 **acquired resistance to bile--a preliminary study.** *Int J Food Microbiol* 2007, **113**:228-
820 232.
821 9. Lievin V, Peiffer I, Hudault S, Rochat F, Brassart D, Neeser JR, Servin AL: ***Bifidobacterium***
822 **strains from resident infant human gastrointestinal microflora exert antimicrobial**
823 **activity.** *Gut* 2000, **47**:646-652.
824 10. Mennigen R, Nolte K, Rijcken E, Utech M, Loeffler B, Senninger N, Bruewer M: **Probiotic**
825 **mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein**
826 **expression and preventing apoptosis in a murine model of colitis.** *Am J Physiol*
827 **Gastrointest Liver Physiol** 2009, **296**:G1140-1149.
828 11. Ewaschuk JB, Diaz H, Meddings L, Diederichs B, Dmytrash A, Backer J, Looijer-van Langen
829 M, Madsen KL: **Secreted bioactive factors from *Bifidobacterium infantis* enhance**
830 **epithelial cell barrier function.** *Am J Physiol Gastrointest Liver Physiol* 2008, **295**:G1025-
831 1034.
832 12. Alessandri G, Ossiprandi MC, MacSharry J, van Sinderen D, Ventura M: ***Bifidobacterial***
833 **Dialogue With Its Human Host and Consequent Modulation of the Immune System.**
834 ***Front Immunol*** 2019, **10**:2348.
835 13. Fanning S, Hall LJ, Cronin M, Zomer A, MacSharry J, Goulding D, Motherway MO,
836 Shanahan F, Nally K, Dougan G, van Sinderen D: ***Bifidobacterial* surface-**
837 **exopolysaccharide facilitates commensal-host interaction through immune**
838 **modulation and pathogen protection.** *Proc Natl Acad Sci U S A* 2012, **109**:2108-2113.

839 14. Yan F, Polk DB: **Probiotics and immune health.** *Curr Opin Gastroenterol* 2011, **27**:496-
840 501.

841 15. Klaenhammer TR, Kleerebezem M, Kopp MV, Rescigno M: **The impact of probiotics and**
842 **prebiotics on the immune system.** *Nat Rev Immunol* 2012, **12**:728-734.

843 16. Zoetendal EG, Raes J, van den Bogert B, Arumugam M, Booijink CC, Troost FJ, Bork P,
844 Wels M, de Vos WM, Kleerebezem M: **The human small intestinal microbiota is driven**
845 **by rapid uptake and conversion of simple carbohydrates.** *ISME J* 2012, **6**:1415-1426.

846 17. Bloom PD, Boedeker EC: **Mucosal immune responses to intestinal bacterial pathogens.**
847 *Semin Gastrointest Dis* 1996, **7**:151-166.

848 18. Reid G, Younes JA, Van der Mei HC, Gloor GB, Knight R, Busscher HJ: **Microbiota**
849 **restoration: natural and supplemented recovery of human microbial communities.** *Nat*
850 *Rev Microbiol* 2011, **9**:27-38.

851 19. Sarkar A, Mandal S: **Bifidobacteria-Insight into clinical outcomes and mechanisms of its**
852 **probiotic action.** *Microbiol Res* 2016, **192**:159-171.

853 20. Geva-Zatorsky N, Sefik E, Kua L, Pasman L, Tan TG, Ortiz-Lopez A, Yanortsang TB, Yang L,
854 Jupp R, Mathis D, et al: **Mining the Human Gut Microbiota for Immunomodulatory**
855 **Organisms.** *Cell* 2017, **168**:928-943 e911.

856 21. Dong H, Rowland I, Yaqoob P: **Comparative effects of six probiotic strains on immune**
857 **function in vitro.** *Br J Nutr* 2012, **108**:459-470.

858 22. Medina M, Izquierdo E, Ennahar S, Sanz Y: **Differential immunomodulatory properties**
859 **of Bifidobacterium logum strains: relevance to probiotic selection and clinical**
860 **applications.** *Clin Exp Immunol* 2007, **150**:531-538.

861 23. Bron PA, van Baarlen P, Kleerebezem M: **Emerging molecular insights into the**
862 **interaction between probiotics and the host intestinal mucosa.** *Nat Rev Microbiol*
863 2011, **10**:66-78.

864 24. Hoarau C, Martin L, Faugaret D, Baron C, Dauba A, Aubert-Jacquin C, Velge-Roussel F,
865 Lebranchu Y: **Supernatant from bifidobacterium differentially modulates transduction**
866 **signaling pathways for biological functions of human dendritic cells.** *PLoS One* 2008,
867 **3**:e2753.

868 25. Wittmann A, Autenrieth IB, Frick JS: **Plasmacytoid dendritic cells are crucial in**
869 **Bifidobacterium adolescentis-mediated inhibition of Yersinia enterocolitica infection.**
870 *PLoS One* 2013, **8**:e71338.

871 26. van Baarlen P, Troost F, van der Meer C, Hooiveld G, Boekschen M, Brummer RJ,
872 Kleerebezem M: **Human mucosal in vivo transcriptome responses to three lactobacilli**
873 **indicate how probiotics may modulate human cellular pathways.** *Proc Natl Acad Sci U*
874 *S A* 2011, **108 Suppl 1**:4562-4569.

875 27. Turroni F, Serafini F, Foroni E, Duranti S, O'Connell Motherway M, Taverniti V,
876 Mangifesta M, Milani C, Viappiani A, Roversi T, et al: **Role of sortase-dependent pili of**
877 **Bifidobacterium bifidum PRL2010 in modulating bacterium-host interactions.** *Proc Natl*
878 *Acad Sci U S A* 2013, **110**:11151-11156.

879 28. Hickey A, Stamou P, Udayan S, Ramon-Vazquez A, Esteban-Torres M, Bottacini F,
880 Woznicki JA, Hughes O, Melgar S, Ventura M, et al: **Bifidobacterium breve**
881 **Exopolysaccharide Blocks Dendritic Cell Maturation and Activation of CD4(+) T Cells.**
882 *Front Microbiol* 2021, **12**:653587.

883 29. Granette C, Nutten S, Palumbo E, Morath S, Hermann C, Dewulf J, Pot B, Hartung T,
884 Hols P, Mercenier A: **Enhanced antiinflammatory capacity of a *Lactobacillus plantarum***
885 **mutant synthesizing modified teichoic acids.** *Proc Natl Acad Sci U S A* 2005, **102**:10321-
886 10326.

887 30. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM,
888 Topping DL, Suzuki T, et al: **Bifidobacteria can protect from enteropathogenic infection**
889 **through production of acetate.** *Nature* 2011, **469**:543-547.

890 31. Pineiro M, Stanton C: **Probiotic bacteria: legislative framework-- requirements to**
891 **evidence basis.** *J Nutr* 2007, **137**:850S-853S.

892 32. Daniel C, Poiret S, Goudercourt D, Dennin V, Leyer G, Pot B: **Selecting lactic acid**
893 **bacteria for their safety and functionality by use of a mouse colitis model.** *Appl Environ*
894 *Microbiol* 2006, **72**:5799-5805.

895 33. Bromberg JS, Hittle LE, Xiong Y, Saxena V, Smyth EM, Li L, Zhang T, Wagner C, Fricke WF,
896 Simon T, et al: **Gut microbiota-dependent modulation of innate immunity and lymph**
897 **node remodeling affects cardiac allograft outcomes.** *JCI Insight* 2018, **3**.

898 34. Mongodin EF, Hittle LL, Nadendla S, Brinkman CC, Xiong Y, Bromberg JS: **Complete**
899 **Genome Sequence of a Strain of *Bifidobacterium pseudolongum* Isolated from Mouse**
900 **Feces and Associated with Improved Organ Transplant Outcome.** *Genome Announc*
901 2017, **5**.

902 35. Lugli GA, Duranti S, Albert K, Mancabelli L, Napoli S, Viappiani A, Anzalone R, Longhi G,
903 Milani C, Turroni F, et al: **Unveiling Genomic Diversity among Members of the Species**
904 ***Bifidobacterium pseudolongum*, a Widely Distributed Gut Commensal of the Animal**
905 **Kingdom.** *Appl Environ Microbiol* 2019, **85**.

906 36. Lugli GA, Milani C, Duranti S, Mancabelli L, Mangifesta M, Turroni F, Viappiani A, van
907 Sinderen D, Ventura M: **Tracking the Taxonomy of the Genus *Bifidobacterium* Based on**
908 **a Phylogenomic Approach.** *Appl Environ Microbiol* 2018, **84**.

909 37. Pokusaeva K, Fitzgerald GF, van Sinderen D: **Carbohydrate metabolism in**
910 ***Bifidobacteria.*** *Genes Nutr* 2011, **6**:285-306.

911 38. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B: **The carbohydrate-**
912 **active enzymes database (CAZy) in 2013.** *Nucleic Acids Res* 2014, **42**:D490-495.

913 39. Milani C, Lugli GA, Duranti S, Turroni F, Mancabelli L, Ferrario C, Mangifesta M, Hevia A,
914 Viappiani A, Scholz M, et al: ***Bifidobacteria* exhibit social behavior through**
915 **carbohydrate resource sharing in the gut.** *Sci Rep* 2015, **5**:15782.

916 40. van Wely KH, Swaving J, Freudl R, Driessens AJ: **Translocation of proteins across the cell**
917 **envelope of Gram-positive bacteria.** *FEMS Microbiol Rev* 2001, **25**:437-454.

918 41. Lugli GA, Mancino W, Milani C, Duranti S, Turroni F, van Sinderen D, Ventura M:
919 **Reconstruction of the *Bifidobacterial* Pan-Secretome Reveals the Network of**
920 **Extracellular Interactions between *Bifidobacteria* and the Infant Gut.** *Appl Environ*
921 *Microbiol* 2018, **84**.

922 42. Osswald A, Westermann C, Sun Z, Riedel CU: **A Phytase-Based Reporter System for**
923 **Identification of Functional Secretion Signals in *Bifidobacteria.*** *PLoS One* 2015,
924 **10**:e0128802.

925 43. Artis D: **Epithelial-cell recognition of commensal bacteria and maintenance of immune**
926 **homeostasis in the gut.** *Nat Rev Immunol* 2008, **8**:411-420.

927 44. Chen X, Katchar K, Goldsmith JD, Nanthakumar N, Cheknis A, Gerding DN, Kelly CP: **A**
928 **mouse model of Clostridium difficile-associated disease.** *Gastroenterology* 2008,
929 **135:1984-1992.**

930 45. Warren KJ, Iwami D, Harris DG, Bromberg JS, Burrell BE: **Laminins affect T cell trafficking**
931 **and allograft fate.** *J Clin Invest* 2014, **124**:2204-2218.

932 46. Li L, Shirkey MW, Zhang T, Xiong Y, Piao W, Saxena V, Paluskievicz C, Lee Y, Toney N,
933 Cerel BM, et al: **The lymph node stromal laminin alpha5 shapes alloimmunity.** *J Clin*
934 *Invest* 2020, **130**:2602-2619.

935 47. Kieser S, Zdobnov EM, Trajkovski M: **Comprehensive mouse gut metagenome catalog**
936 **reveals major difference to the human counterpart.** *bioRxiv*
937 2021:2021.2003.2018.435958.

938 48. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C:
939 **Metagenomic biomarker discovery and explanation.** *Genome biology* 2011, **12**:R60.

940 49. Centanni M, Lawley B, Butts CA, Roy NC, Lee J, Kelly WJ, Tannock GW: **Bifidobacterium**
941 **pseudolongum in the Ceca of Rats Fed Hi-Maize Starch Has Characteristics of a**
942 **Keystone Species in Bifidobacterial Blooms.** *Appl Environ Microbiol* 2018, **84**.

943 50. Odamaki T, Kato K, Sugahara H, Xiao JZ, Abe F, Benno Y: **Effect of probiotic yoghurt on**
944 **animal-based diet-induced change in gut microbiota: an open, randomised, parallel-**
945 **group study.** *Benef Microbes* 2016, **7**:473-484.

946 51. Odamaki T, Sugahara H, Yonezawa S, Yaeshima T, Iwatsuki K, Tanabe S, Tominaga T,
947 Togashi H, Benno Y, Xiao JZ: **Effect of the oral intake of yogurt containing**
948 **Bifidobacterium longum BB536 on the cell numbers of enterotoxigenic Bacteroides**
949 **fragilis in microbiota.** *Anaerobe* 2012, **18**:14-18.

950 52. Toscano M, De Grandi R, Stronati L, De Vecchi E, Drago L: **Effect of Lactobacillus**
951 **rhamnosus HN001 and Bifidobacterium longum BB536 on the healthy gut microbiota**
952 **composition at phyla and species level: A preliminary study.** *World J Gastroenterol*
953 2017, **23**:2696-2704.

954 53. Ding S, Yan W, Ma Y, Fang J: **The impact of probiotics on gut health via alternation of**
955 **immune status of monogastric animals.** *Anim Nutr* 2021, **7**:24-30.

956 54. Maldonado-Gomez MX, Martinez I, Bottacini F, O'Callaghan A, Ventura M, van Sinderen
957 D, Hillmann B, Vangay P, Knights D, Hutkins RW, Walter J: **Stable Engraftment of**
958 **Bifidobacterium longum AH1206 in the Human Gut Depends on Individualized**
959 **Features of the Resident Microbiome.** *Cell Host Microbe* 2016, **20**:515-526.

960 55. Sorbara MT, Pamer EG: **Interbacterial mechanisms of colonization resistance and the**
961 **strategies pathogens use to overcome them.** *Mucosal Immunol* 2019, **12**:1-9.

962 56. Chiu L, Bazin T, Truchetet ME, Schaeverbeke T, Delhaes L, Pradeu T: **Protective**
963 **Microbiota: From Localized to Long-Reaching Co-Immunity.** *Front Immunol* 2017,
964 **8**:1678.

965 57. El Kaoutari A, Armougom F, Gordon JI, Raoult D, Henrissat B: **The abundance and**
966 **variety of carbohydrate-active enzymes in the human gut microbiota.** *Nat Rev*
967 *Microbiol* 2013, **11**:497-504.

968 58. Odamaki T, Horigome A, Sugahara H, Hashikura N, Minami J, Xiao JZ, Abe F:
969 **Comparative Genomics Revealed Genetic Diversity and Species/Strain-Level**

970 **Differences in Carbohydrate Metabolism of Three Probiotic Bifidobacterial Species. *Int***
971 ***J Genomics* 2015, **2015**:567809.**

972 59. Yang C, Mogno I, Contijoch EJ, Borgerding JN, Aggarwala V, Li Z, Siu S, Grasset EK,
973 Helmus DS, Dubinsky MC, et al: **Fecal IgA Levels Are Determined by Strain-Level**
974 **Differences in *Bacteroides ovatus* and Are Modifiable by Gut Microbiota**
975 **Manipulation.** *Cell Host Microbe* 2020, **27**:467-475 e466.

976 60. Kukkonen K, Kuitunen M, Haahtela T, Korpela R, Poussa T, Savilahti E: **High intestinal IgA**
977 **associates with reduced risk of IgE-associated allergic diseases.** *Pediatr Allergy*
978 *Immunol* 2010, **21**:67-73.

979 61. Yoshida Y, Seki T, Matsunaka H, Watanabe T, Shindo M, Yamada N, Yamamoto O: **Clinical effects of probiotic *bifidobacterium breve* supplementation in adult patients**
980 **with atopic dermatitis, .** *Yonago Acta Med* 2010, **53**:37-45.

982 62. Zhang CY, Chen GF, Wang YY, Xu Z, Wang YG, Song XL: **peptidoglycan extracted from**
983 ***Bifidobacterium* sp. **could enhance immunological ability of *Apostichopus japonicus*.****
984 *Aquac Nutr* 2015, **21**:679-689.

985 63. Abbad Andaloussi S, Talbaoui H, Marczak R, Bonaly R: **Isolation and characterization of**
986 **exocellular polysaccharides produced by *Bifidobacterium longum*.** *Appl Microbiol*
987 *Biotechnol* 1995, **43**:995-1000.

988 64. Bromberg JS, Hittle L, Xiong Y, Saxena V, Smyth EM, Li L, Zhang T, Wagner C, Fricke WF,
989 Simon T, et al: **Gut microbiota-dependent modulation of innate immunity and lymph**
990 **node remodeling affects cardiac allograft outcomes.** *JCI Insight* 2018, **3**.

991 65. Nurk S, Bankevich A, Antipov D, Gurevich AA, Korobeynikov A, Lapidus A, Prjibelski AD,
992 Pyshkin A, Sirotnik A, Sirotnik Y, et al: **Assembling single-cell genomes and mini-**
993 **metagenomes from chimeric MDA products.** *J Comput Biol* 2013, **20**:714-737.

994 66. Rissman AI, Mau B, Biehl BS, Darling AE, Glasner JD, Perna NT: **Reordering contigs of**
995 **draft genomes using the Mauve aligner.** *Bioinformatics* 2009, **25**:2071-2073.

996 67. Darling AE, Mau B, Perna NT: **progressiveMauve: multiple genome alignment with gene**
997 **gain, loss and rearrangement.** *PLoS one* 2010, **5**:e11147.

998 68. Bajpai V, Majumder R, Rather I, Kim K: **Extraction, isolation and purification of**
999 **exopolysaccharide from lactic acid bacteria using ethanol precipitation method.**
1000 *Bangladesh Journal of Pharmacology* 2016, **11**:573-576.

1001 69. Delmont TO, Eren AM: **Linking pangenomes and metagenomes: the *Prochlorococcus***
1002 **metapangenome.** *PeerJ* 2018, **6**:e4320.

1003 70. **An anvi'o workflow for microbial pangenomics**
1004 [\[http://merenlab.org/2016/11/08/pangenomics-v2/\]](http://merenlab.org/2016/11/08/pangenomics-v2/)

1005 71. Pierce NT, Irber L, Reiter T, Brooks P, Brown CT: **Large-scale sequence comparisons with**
1006 **sourmash.** *F1000Res* 2019, **8**:1006.

1007 72. Enright AJ, Van Dongen S, Ouzounis CA: **An efficient algorithm for large-scale detection**
1008 **of protein families.** *Nucleic Acids Res* 2002, **30**:1575-1584.

1009 73. Edgar RC: **MUSCLE: multiple sequence alignment with high accuracy and high**
1010 **throughput.** *Nucleic Acids Res* 2004, **32**:1792-1797.

1011 74. Huerta-Cepas J, Szklarczyk D, Heller D, Hernandez-Plaza A, Forslund SK, Cook H, Mende
1012 DR, Letunic I, Rattei T, Jensen LJ, et al: **eggNOG 5.0: a hierarchical, functionally and**

1013 **phylogenetically annotated orthology resource based on 5090 organisms and 2502**
1014 **viruses.** *Nucleic Acids Res* 2019, **47**:D309-D314.

1015 75. Huerta-Cepas J, Forlund K, Pedro Coelho L, Szklarczyk D, Juhl Jensen L, von Mering C,
1016 Bork P: **Fast genome-wide functional annotation through orthology assignment by**
1017 **eggNOG-mapper.** *Mol Biol Evol* 2017.

1018 76. Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto
1019 SCE, Paladin L, Raj S, Richardson LJ, et al: **Pfam: The protein families database in 2021.**
1020 *Nucleic Acids Res* 2021, **49**:D412-D419.

1021 77. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M: **KEGG as a reference**
1022 **resource for gene and protein annotation.** *Nucleic Acids Res* 2016, **44**:D457-462.

1023 78. Kanehisa M, Sato Y, Morishima K: **BlastKOALA and GhostKOALA: KEGG Tools for**
1024 **Functional Characterization of Genome and Metagenome Sequences.** *J Mol Biol* 2016,
1025 **428**:726-731.

1026 79. Storey JD, Tibshirani R: **Statistical significance for genomewide studies.** *Proc Natl Acad*
1027 *Sci U S A* 2003, **100**:9440-9445.

1028 80. Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, Busk PK, Xu Y, Yin Y: **dbCAN2: a**
1029 **meta server for automated carbohydrate-active enzyme annotation.** *Nucleic Acids Res*
1030 2018, **46**:W95-W101.

1031 81. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ,
1032 Brinkman FS: **PSORTb 3.0: improved protein subcellular localization prediction with**
1033 **refined localization subcategories and predictive capabilities for all prokaryotes.**
1034 *Bioinformatics* 2010, **26**:1608-1615.

1035 82. Piao W, Xiong Y, Li L, Saxena V, Smith KD, Hippen KL, Paluskievicz C, Willsonshirkey M,
1036 Blazar BR, Abdi R, Bromberg JS: **Regulatory T Cells Condition Lymphatic Endothelia for**
1037 **Enhanced Transendothelial Migration.** *Cell Rep* 2020, **30**:1052-1062 e1055.

1038 83. Rotmistrovsky K, Agarwala R: **BMTagger: Best Match Tagger for removing human reads**
1039 **from metagenomics datasets.** NCBI/NLM, National Institutes of Health; 2011.

1040 84. Church DM, Schneider VA, Graves T, Auger K, Cunningham F, Bouk N, Chen HC, Agarwala
1041 R, McLaren WM, Ritchie GR, et al: **Modernizing reference genome assemblies.** *PLoS*
1042 *biology* 2011, **9**:e1001091.

1043 85. Chen S, Zhou Y, Chen Y, Gu J: **fastp: an ultra-fast all-in-one FASTQ preprocessor.**
1044 *Bioinformatics* 2018, **34**:i884-i890.

1045 86. Wood DE, Lu J, Langmead B: **Improved metagenomic analysis with Kraken 2.** *Genome*
1046 *Biol* 2019, **20**:257.

1047 87. Lu J, Breitwieser FP, Thielen P, SL S: **Bracken: estimating species abundance in**
1048 **metagenomics data.** *PeerJ Computer Science* 2017, **3**:e104.

1049 88. McMurdie PJ, Holmes S: **phyloseq: an R package for reproducible interactive analysis**
1050 **and graphics of microbiome census data.** *PLoS One* 2013, **8**:e61217.

1051 89. Fisher RA: **The use of multiple measurements in taxonomic problems.** *Ann Eugenics*
1052 1936, **7**.

1053 90. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M: **KEGG for integration and**
1054 **interpretation of large-scale molecular data sets.** *Nucleic acids research* 2012, **40**:D109-
1055 114.

1056 91. Franzosa EA, McIver LJ, Rahnavard G, Thompson LR, Schirmer M, Weingart G, Lipson KS,
1057 Knight R, Caporaso JG, Segata N, Huttenhower C: **Species-level functional profiling of**
1058 **metagenomes and metatranscriptomes.** *Nat Methods* 2018, **15**:962-968.

1059 92. Jari Oksanen FGB, Michael Friendly, Roeland Kindt, Pierre Legendre, Dan McGlinn, Peter
1060 R. Minchin, R. B. O'Hara, Gavin L. Simpson, Peter Solymos, M. Henry H. Stevens, Eduard
1061 Szoecs and Helene Wagner **vegan: Community Ecology Package. R package.** version 2.4-
1062 1. edition; 2016.

1063 93. Dixon P: **VEGAN, a package of R functions for community ecology.** *Journal of*
1064 *Vegetation Science* 2003, **14**:927-930.

1065 94. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL,
1066 Solymos P, Stevens MHH, Wagner H: **vegan: Community Ecology Package. R package**
1067 *version 20-2* 2011.

1068 95. Gorokhova E: **Effects of preservation and storage of microcrustaceans in RNAlater on**
1069 **RNA and DNA degradation.** *Limnol Oceanogr: Methods* 2005, **3**:143-148.

1070 96. Kim D, Langmead B, Salzberg SL: **HISAT: a fast spliced aligner with low memory**
1071 **requirements.** *Nat Methods* 2015, **12**:357-360.

1072 97. Anders S, Pyl PT, Huber W: **HTSeq--a Python framework to work with high-throughput**
1073 **sequencing data.** *Bioinformatics* 2015, **31**:166-169.

1074 98. Anders S, Huber W: **Differential expression analysis for sequence count data.** *Genome*
1075 *Biol* 2010, **11**:R106.

1076 99. Boyle EI, Weng S, Gollub J, Botstein D, Cherry JM, Sherlock G: **GO::TermFinder—open**
1077 **source software for accessing Gene Ontology information and finding significantly**
1078 **enriched Gene Ontology terms associated with a list of genes.** *Bioinformatics* 2014,
1079 **20**:3710-3715.

1080 100. G Y, L W, Y H, Q H: **clusterProfiler: an R package for comparing biological themes**
1081 **among gene clusters.** *OMICS: A Journal of Integrative Biology* 2012, **16**:284-287.

1082

1083 **Data Availability**

1084 The assembly of the genomes (accession numbers were listed in Supplemental Table
1085 2), metagenome (SRP361281), and transcriptome sequences were submitted to
1086 GenBank under BioProject PRJNA809764.

1087 **Contributions**

1088 B. M., E. F. M, J. B. designed the experiments. S. J. G., V. S., W. P., R. L., L. L., C. P.,
1089 M.W. conducted and analyzed the *in vitro* and *in vivo* experiments. H. W. L. performed
1090 the AN Biolog assay and RNA extraction. L. H., E. F. M., A. M. performed colony
1091 isolation and strain characterization. B. M. and Y. S. performed the bioinformatics
1092 analyses. B. M., M. F. performed the statistical analyses. B. M., S. J. G., M. F., E. F. M.,
1093 and J. S. B. wrote the manuscript.

1094 **Acknowledgements**

1095 This work was supported by National Institute of Health (NIH) National Heart, Lung and
1096 Blood Institute award R01HL148672 (JSB/BM) and NIH National Institute of Allergy and
1097 Infectious Diseases training grant T32AI95190-10 (SJG). This manuscript has been
1098 released as a pre-print at BioRxiv XX. The authors thank C. Colin Brinkman and
1099 Yanbao Xiong at the University of Maryland for helping with pilot data and initial
1100 experiment preparation. Emmanuel Mongodin, PhD, contributed to this work as an
1101 employee of the University of Maryland School of Medicine. The views expressed in this
1102 manuscript are his own and do not necessarily represent the views of the National
1103 Institutes of Health or the United States Government.

1104 **Competing interest statement**

1105 The authors declare no competing financial and non-financial interests.

1106

1107 **Figures**

1108 **Figure 1. Pangenome analyses of *B. pseudolongum* genomes.** Pangenome
1109 constructed using 79 strains, including the 5 strains sequenced in this study
1110 (**Supplemental Table 3**) and displayed using anvi'o vers 6.2 [69]. Homologous gene
1111 clusters (HGCs) were identified based on all-versus-all sequence similarity in left panel
1112 and categorized as core, accessory or dispensable depending on their level of
1113 conservation. Genome ANI (Average Nucleotide Identity) was calculated using
1114 Sourmash vers 3.3 [71]. Blue arrows indicate the two strains compared: ATCC25526
1115 and UMB-MBP-001. Black arrows indicate the other three *B. pseudolongum* strains
1116 isolated from the source stool of pregnant mice.

1117

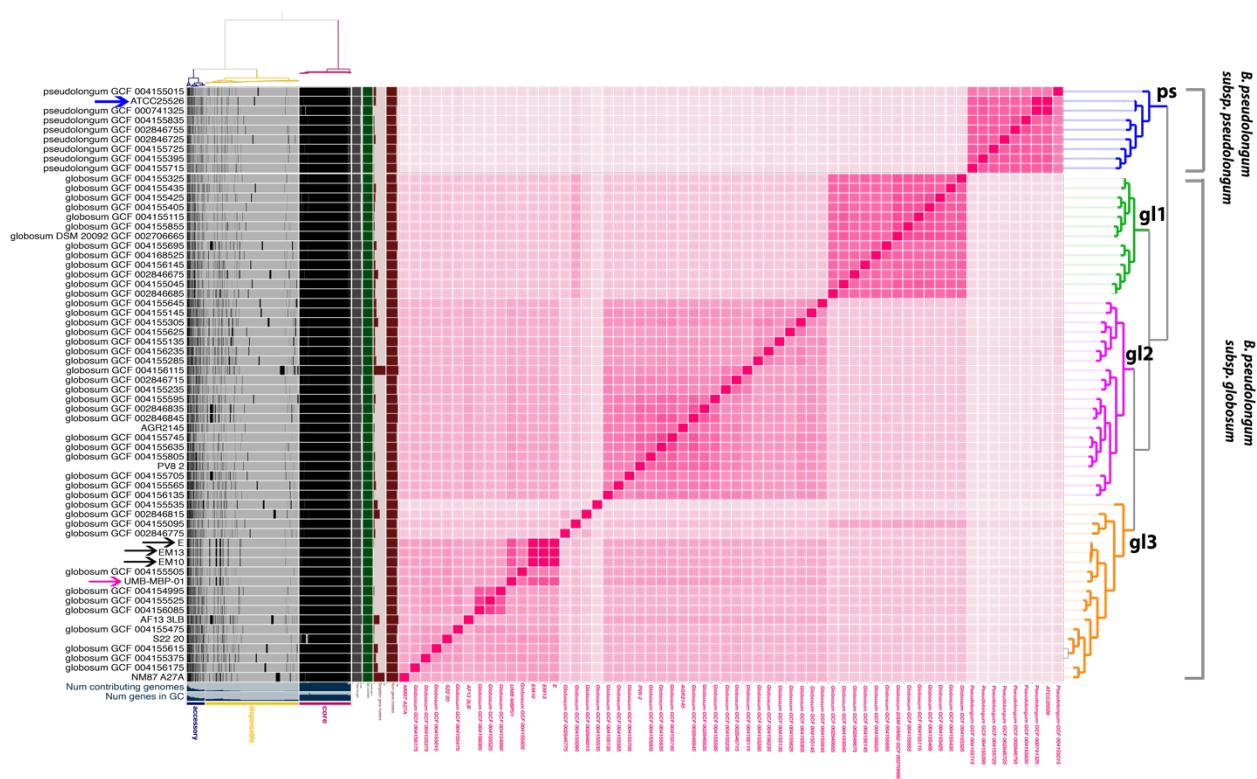
1118 **Figure 2. *Bifidobacterium* alters DC and MΦ surface phenotype.** DC and MΦ
1119 cultured with media alone, ATCC25526 (ATCC) or UMB-MBP-01 (MD) UV-killed
1120 *Bifidobacterium* or EPS derived from each strain. After 24 hrs of culture, cells analyzed
1121 by flow cytometry. DC gated on live CD11c+, and MΦ gated on live F4/80+ populations.
1122 DC stained for **A**) MHC class II, **B**) CD40, **C**) CD80, and **D**) CD86. MΦ stained for **E**)
1123 MHC class II, **F**) CD40 and **G**) CD80. MFI: mean fluorescence intensity; DC: Bone
1124 marrow derived dendritic cells; MΦ: peritoneal macrophages; MFI values normalized to
1125 control and compared using one-way ANOVA. * p value < 0.05; ** p value < 0.01. MΦ
1126 data representative of two experiments. DC data represented as merge of one
1127 experiment with EPS and one experiment with UV killed bacteria, each data set is
1128 normalized to its respective control.

1129

1130 **Figure 3. *Bifidobacterium* alters DC and MΦ cytokine secretion.** DCs (A-C) or MΦ
1131 (D-F) stimulated with EPS or UV-killed ATCC25526 (ATCC) or UMB-MBP-01 (MD), and
1132 24 hrs later supernatants analyzed for A, D) IL-6, B, E) TNF α , and C, F) IL-10 by
1133 ELISA. Treatments compared using one-way ANOVA. * p value < 0.05; ** p value <
1134 0.01, *** p value < 0.001, **** p value < 0.0001. Data representative of two separate
1135 experiments.

1136

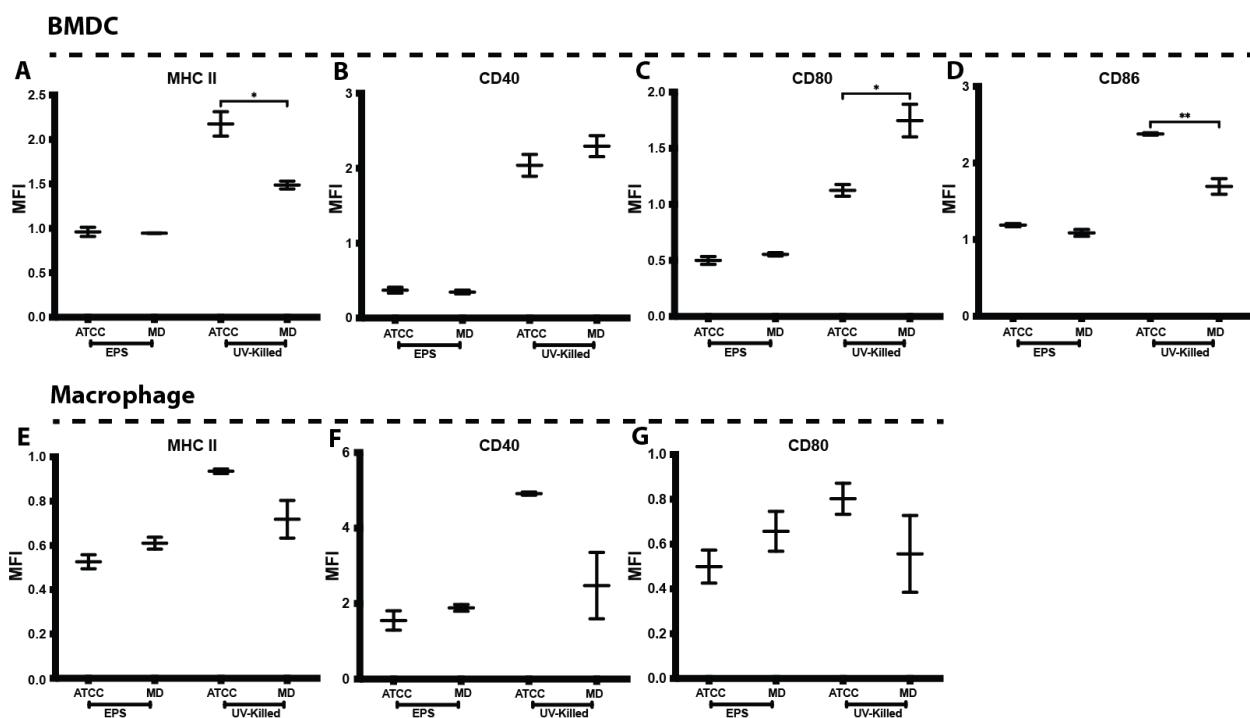
1137 **Figure 4. *Bifidobacterium* strains induce unique changes in local and systemic**
1138 **immune cell distribution and LN architecture.** A) Experimental design. C57BL/6
1139 mice treated with antibiotics for 6 days followed by gavage with *B. pseudolongum*
1140 ATCC25526 (ATCC), UMB-MBP-01 (MD), or PBS (control). Mice then treated with the
1141 immunosuppressant tacrolimus for the next two days. Tissues harvested 2 days after
1142 FMT. Frozen sections of small intestine stained for B) Treg (anti-Foxp3 mAb), and C)
1143 DC (anti-CD11c mAb). MLN sections stained for D) DC (anti-CD11c mAb) and E)
1144 MΦ (anti-F4/80 mAb). LN stained for laminin α 4 and laminin α 5 and laminin α 4: α 5 ratio
1145 calculated for F) MLN CR, and G) PLN CR. MFI: mean fluorescence intensity. MLN:
1146 mesenteric lymph nodes; PLN: peripheral lymph node. MFI values normalized using the
1147 sum of mean, and categories compared using one-way ANOVA. * p value < 0.05; ** p
1148 value < 0.01, *** p value < 0.001, **** p value < 0.0001. Data representative of two
1149 separate experiments, 3 mice/group.


1150

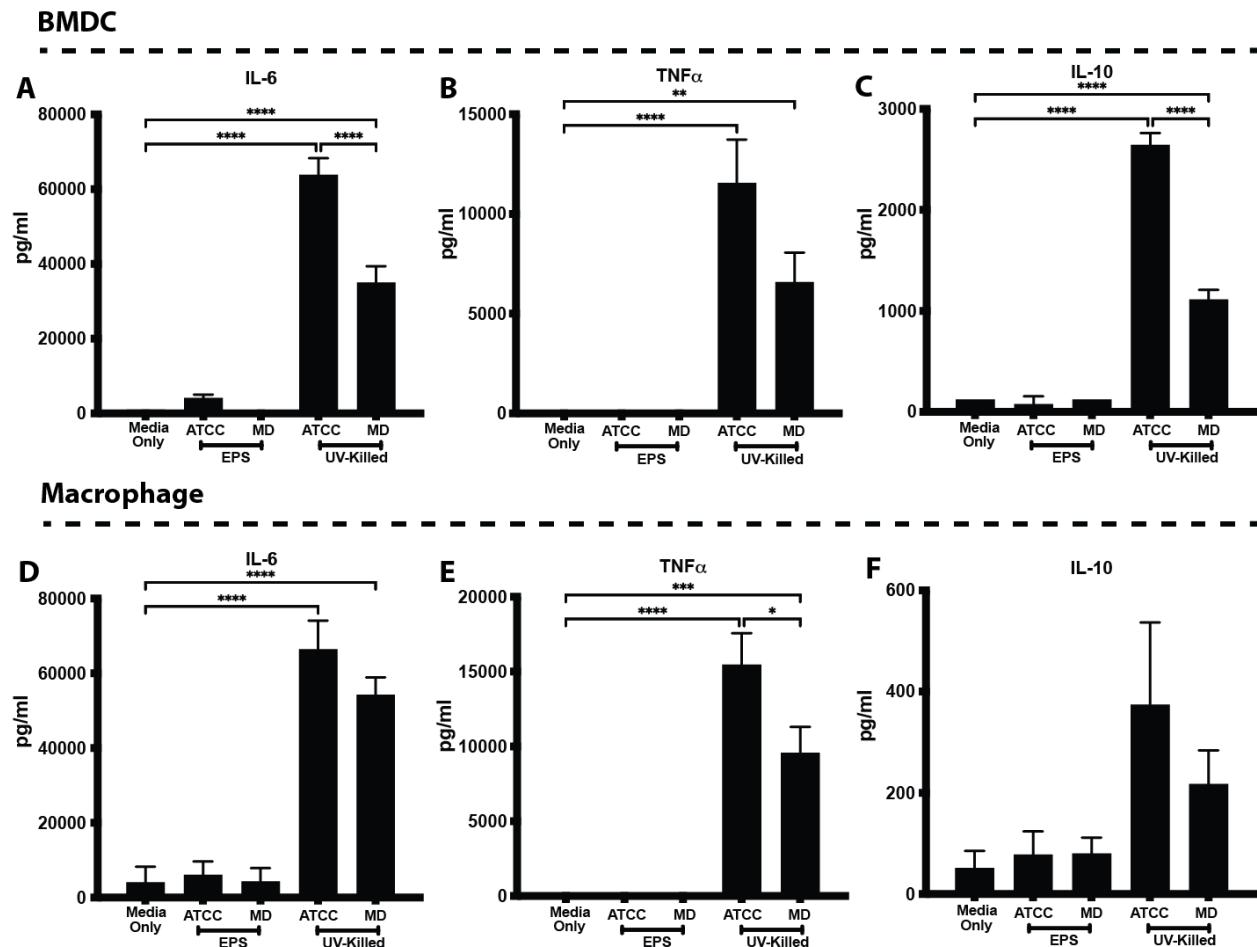
1151 **Figure 5. Transcriptome profiling of intestinal tissues in response to ATCC25526**
1152 **or UMB-MBP-01.** A) Quadrant plot to show whether differential expressed genes

1153 (DEGs) have the same or opposite relationships between each of the pairwise
1154 comparison of UMB-MBP-001 vs control and UMB-MBP-001 vs ATCC25526. DEGs
1155 were determined using log2 fold change (LFC) $>(+/-)1$ and false discovery rate
1156 (FDR) <0.05 . **B**) Gene-Concept network for most over-represented Gene Ontology (GO)
1157 terms to depict over-represented functions based on q-value and gene-count. Over-
1158 representation analyses [99] of DEGs that are only different abundant in UMB-MBP-001
1159 vs control but not in ATCC25526 vs control, using GO ontologies performed using
1160 enrichGO function of clusterProfile Bioconductor package[100]. For pairwise
1161 comparison enrichment analyses for any two conditions, please refer to **Supplemental**
1162 **Figure 4**.

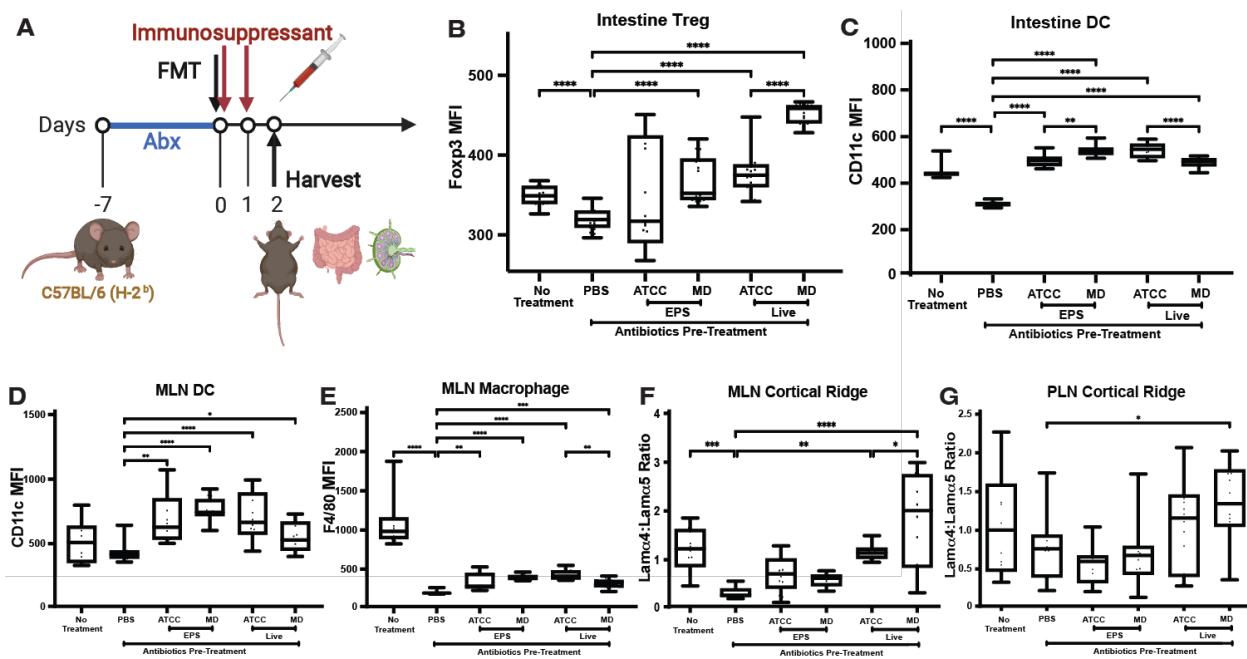
1163
1164 **Figure 6. Alterations in gut microbiome after bacterial engraftment. A)** Heatmap of
1165 the top 20 most abundant intestinal bacterial taxa relative abundance in mice
1166 intraluminal samples. Ward linkage clustering based on Jensen-Shannon distance was
1167 calculated using the vegan package in R [94]. Taxonomic profiles of the microbial
1168 community were characterized using the comprehensive mouse gut metagenome
1169 (CMGM) catalog[47]. **B)** Cumulative abundance of major bacterial families. The relative
1170 abundances of each family are stacked in order from greatest to least, and are
1171 separated by a horizontal line. **C)** Shannon diversity index (within-community diversity)
1172 of the four experimental groups. **D), E)** Canonical Correspondence Analysis (CCA) of
1173 microbial functional pathways characterized using HUMAnN2 (v0.11.2)[91] and Uniref90
1174 database [90] based on Bray-Curtis distance. CA1 and CA2 selected as the major
1175 components based on the eigenvalue.


1176 **Figure 1**

1177


1178

1179 **Figure 2**



1182 **Figure 3**

1183

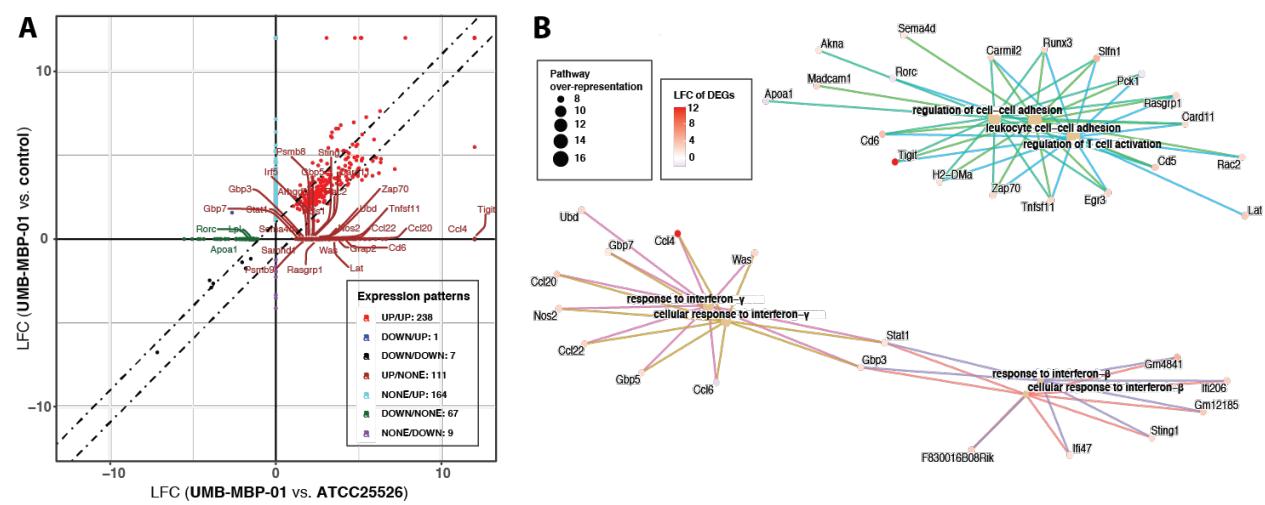
1185 **Figure 4**

1186

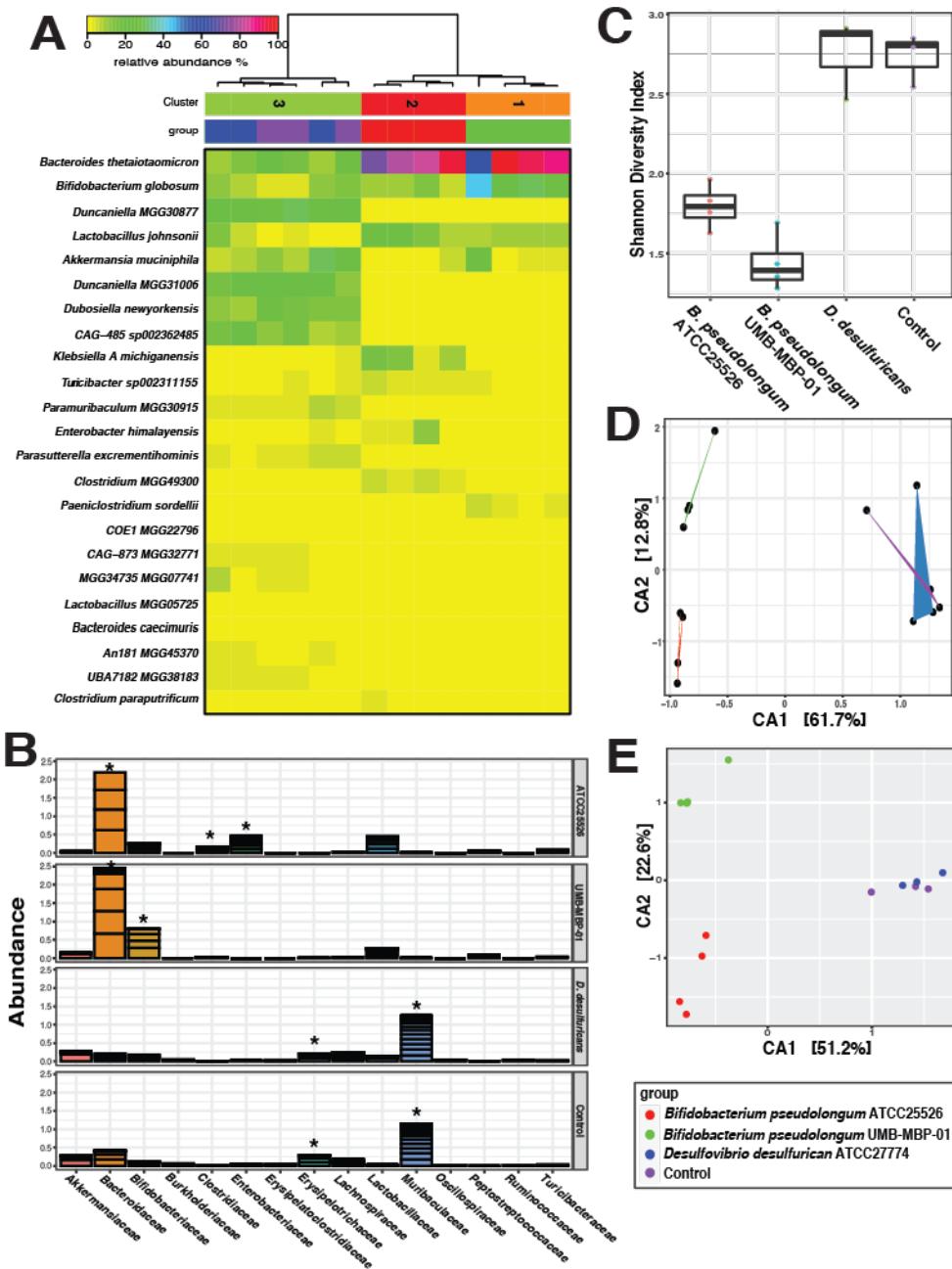
1187

1188

1189


1190

1191


1192

1193 **Figure 5.**

1194

1196 **Figure 6.**
1197

1198