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Abstract

Multiplexed  imaging  and  spatial  transcriptomics  enable  highly  resolved  spatial
characterization  of  cellular  phenotypes,  but  still  largely  depend  on  laborious  manual
annotation to understand higher-order patterns of tissue organization. As a result, higher-
order patterns of tissue organization are poorly understood and not systematically connected
to disease pathology or clinical  outcomes.  To address this gap,  we  developed UTAG, a
novel  method  to  identify  and  quantify  microanatomical tissue  structures  in  multiplexed
images  without  human  intervention.  Our  method  combines information  on  cellular
phenotypes  with  the  physical  proximity  of  cells  to  accurately  identify organ-specific
microanatomical domains in healthy and diseased tissue. We apply our method to various
types of images across physiological and disease states to show that it  can consistently
detect higher level architectures in human organs, quantify structural differences between
healthy  and  diseased  tissue,  and  reveal  tissue  organization  patterns  with  relevance  to
clinical outcomes in cancer patients.
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Introduction

The  recent  development  of  technologies  such  as  multiplexed  imaging1–5 and  spatial
transcriptomics6–10 allow  for  both  direct  observation  of  cellular  phenotypes  and  cellular
interactions in native tissue microenvironment.  While these technologies provide a highly
resolved view of cellular heterogeneity in native tissues, they struggle to move beyond a cell-
centric  view of  tissue,  failing  to  uncover  organizing  principles  of  tissue architecture  and
tissue-specific physiology which are encoded at various scales of cellular and extracellular
interactions. Understanding higher-level patterns of tissue and organ organization would be
crucial  to establishing a relationship between cellular phenotypes and organ-specific tissue
physiology.

Visual inspection of histopathological images of biopsied or surgically removed tissue is a
major component of disease diagnosis,  but is a labor intensive job that requires manual
annotations from specialized pathologists. Also, the process may require multiple specialists
to reduce intra- and inter-observer variability.  To  assist  and improve upon the inspection
process, computational techniques have been developed for the automated detection and
quantification of cells or tissue structures11–13, often in a supervised manner which requires
manual annotations as training data. This approach is expensive and laborious, is prone to
learning biases from training data, and is hard to employ with exceptionally abundant tissue
features such as individual ducts in submucosal glands, or small capillaries. Unsupervised
methods try to accomplish similar tasks without the need for manual input. A popular method
is the inference of cell neighborhoods based on multiplexed data by assembling a graph of
cellular  interactions  based  on  physical  proximity14,15.  Clustering  of  cells  based  on  these
interactions yields cellular neighborhoods predictive of patient survival14–17. However, graph
clustering per se does not make use of cell type identities or phenotypes, and has only been
applied to cancer tissue.

Recent  studies  applying  unsupervised deep learning models  to histopathological  images
such as hematoxylin eosin staining have shown that it is possible to extract morphological
features  that  are  for  example  predictive  of  gene  expression18.  Other  studies  have  also
employed deep learning of graphs of cellular proximity with cellular phenotypes for cell type
prediction19, inference of cellular communication20, and data exploration21. These models are
computationally expensive to train, and their results heavily depend on training data, which
may preclude joint analysis of expression and morphological features across studies and
data types. There is thus a need for unsupervised, broadly applicable methods of tissue
structure detection across organs and imaging modalities that incorporate cellular proximity,
expression, and morphological features. Here we present a novel and accurate method to
perform discovery  and  quantification  of  microanatomical tissue  structures  in  multiplexed
histopathological  images without  human  intervention  or  prior  knowledge.  Our  method
combines information on cellular morphology and expression with the physical proximity of
cells to discover domains of tissue architecture. We demonstrate that our approach is able to
discover  organ-specific  microanatomical domains  in  the  human  lung,  across  diseased
physiological states, and even to cancer contexts where it uncovers tissue organization with
relevance to the clinical outcome of patients.
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Results

Unsupervised identification of tissue microanatomical domains with graphs (UTAG)

To address the problem of  discovery  of  microanatomical structure in  tissue across data
types  and biological  systems we developed  a  method  called  unsupervised  discovery  of
tissue architecture with  graphs (UTAG) (Figure 1a). Our method is generally applicable to
images  of  cells  in  their  native  tissue  context collected  via highly  multiplexed  single-cell
imaging  data  such  as  co-detection  by  indexing  (CODEX),  cyclic  immunofluorescence
(CyCIF), imaging mass cytometry (IMC), multiplexed ion beam imaging (MIBI), and likewise
multiplexed spatial platforms. The central aspect of UTAG is the combination of two matrices
that represent phenotypic and positional information about each cell  present in an image
(Figure  1a,  gray  areas),  to  generate  a  new  feature  space  which  encodes  spatially
aggregated phenotypic information. This matrix of new features can then be clustered into
domains of cells that are both phenotypically and spatially related (Figure 1a, orange area).
The matrix of phenotypic information (feature matrix) is a numeric matrix of gene or protein
abundance, or morphology for each cell, while the positional information of each cell is used
to generate a graph of physical proximity between cells through binarization and optional
normalization (adjacency matrix).

Figure 1: Unsupervised discovery of tissue architecture with graphs. 
a) Schematic description of the methodology for the discovery of domains of tissue microanatomy and architecture using
graphs of cellular interactions. Intensity values and cellular segmentation masks are used to derive an expression matrix

containing the intensity of each marker in each cell, and a graph of physical cellular interaction based on proximity which can
be represented as a binary adjacency matrix. Message passing (described in b) combines the expression and adjacency

matrices into a new matrix of spatially aggregated expression values which serves as the input for clustering methods. The
resulting clusters represent domains of tissue microanatomy underlying the tissue architecture. The procedure can be

performed jointly across several images, yielding consistent microanatomical domains across images. b) Graphical description
of the message passing procedure, in which the adjacency and expression matrices are combined with the dot product. Note
how in the message-passed graph, the node colors are linear combinations of the colors of the nodes with which they share

edges. Each element in the feature matrix in this example depicts a vector of features.
UTAG  then  leverages  the  properties  of  matrix  multiplication  through  linear  algebra  to
combine the matrices in a procedure known as message passing (Figure 1b). In this, nodes

3/20

70

75

80

85

90

95

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 18, 2022. ; https://doi.org/10.1101/2022.03.15.484534doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.15.484534
http://creativecommons.org/licenses/by-nc/4.0/


of  cells  in  physical  proximity  will  receive  a  portion  of  the  neighboring  cell’s  phenotypic
information  in  a  weighted  manner,  effectively  diffusing  the  phenotypes  into  physically
proximal  cells  determined  by  the  adjacency  matrix.  The  intermediate  resulting spatially
aggregated features therefore contain information on both cellular phenotypes and physical
proximity  between  cells.  This  spatially  aggregated  feature  matrix  allows  capture  of
microanatomical domains consisting of multiple cell types that are spatially homogeneously
distributed.  For  example,  arteries  consist  of  a  layer  of  endothelial  cells  surrounded  by
smooth  muscle  cells.  Through  message  passing,  endothelial  cells  become  more  like
adjacent  muscle cells  and vice versa,  effectively  grouping cells  with different  phenotypic
features based on their spatial distribution. Finally,  this matrix is clustered using standard
modern algorithms such as Leiden22 or Phenotyping by Accelerated Refined Community-
Partitioning (PARC)23 clustering to derive domains of tissue structure in images (Figure 1a,
orange  area).  In  this  process,  the  number  of  captured  domains  is  determined  by  a
customizable resolution hyperparameter which controls the coarseness in both Leiden and
PARC clustering  (Extended Data Figure 1b).  Biological  interpretation of  the discovered
domains remains however dependent on the user by contextualization in terms of their cell
type composition, frequency of cellular interactions, or association with target variables such
as clinically relevant outcomes. We provide a software package with the implementation,
documentation,  and  tutorials  on  the  application  of  UTAG  to  various  datasets
(https://github.com/ElementoLab/utag).

UTAG uncovers microanatomy and principles of organ organization in the healthy lung

We  first  tested  UTAG  on  healthy  lung  tissue  images.  The  human  lung  is  a  highly
compartmentalized tissue where the organ physiology dictates an intricate interplay between
cells and matrix to create functional structures such as the airway lumen, alveolar airspace,
and blood vessels. We applied UTAG to  a dataset of 26 highly-multiplexed IMC lung images
from  three donor lung  specimens,  consisting  of  28  markers,  with  a  particular  focus  on
airways  extending  from  proximal  bronchi  and  succeeding  divisions  to  terminal  and
respiratory bronchioles (Figure 2a, first column,  Extended Data Table 1).  Importantly, in
this dataset, each image has been manually annotated with organ-specific microanatomical
domains such as airways, connective tissue, submucosal glands, vessels, alveolar space
(Figure 2a, fourth column). The annotated structures effectively serve as a reference for
microanatomical  annotation  of  the  lung.  In  addition,  the  cells  in  these  data  had  been
phenotyped into seven broad clusters of cell identity (Figure 2a, second column), which can
be helpful to interpret the composition of the domains, albeit not used by UTAG.

We applied UTAG to the IMC data, by providing the position of the cells in the image, and
the intensity of each marker in each cell  to the algorithm. We then labeled the resulting
clusters with identities  into five groups depending on the intensity of markers and cellular
composition (Extended Data Figure 1c). The resulting microanatomical domains detected
by UTAG largely recapitulated the microanatomy of manually labeled domains (Figure 2a,
third column).  To assess the performance of  our  method,  we compared the discovered
microanatomical domains with the annotations from expert labels using two different metrics
based  on  cell  domain  properties  (Figure  2b).  As  comparison,  we  calculated  the  same
metrics  based  on  randomly  shuffled  domain  labels  and  cell  type  identities.  UTAG
significantly  outperformed  both  in  terms  of  label  agreement  (Rand  score)  and  purity
(Homogeneity  score) (Figure 2b,  p <  8.9×10-9,  two-tailed Mann-Whiteney U-test),  which
shows that an unsupervised approach can discover accurate microanatomical domains in
multiplexed imaging data.

The domains discovered by UTAG were enriched in  protein expression specific  to each
domain, as evidenced by KRT5, CC16, SCGB3A2, MUC5B, and MUC5AC expression in
airways,  or  CD31,  alpha  smooth  muscle  actin  (aSMA)  and  type  IV  collagen  in  vessels
(Figure  2c).  Furthermore,  we  found  the  cell  type  composition  to  reflect  the  captured
domains. Airways and submucosal glands consisted predominantly of epithelial cell  types
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Figure 2: Discovery of microanatomical domains and principles of tissue architecture in human lung.
a) microanatomical domains detected in IMC images of healthy human lung tissue. The first column illustrates the intensity of

three selected channels in four representative images, the second column the cell identity of the cells in those images, the third
column displays the microanatomical domains discovered with UTAG, and the fourth column microanatomical domains

manually annotated by experts. Scale bars represent 200 µm. b) Benchmark of the UTAG domains against expert annotation,
in comparison with randomized domain labels per cell, and cell type identities. Each point represents one image and for both
metrics values closer to 1 are optimal.** p < 0.01, two-sided Mann-Whitney U-test. c) Mean channel intensity for all channels

aggregated by the discovered microanatomical domains. d) Cellular composition of microanatomical domains. e) Composition
of microanatomical domains in terms of intercellular interactions derived from physical proximity. f) Model of physical proximity
between microanatomical domains in the lung. The nodes of the graph represent the microanatomical domains, and the color

of the edges between them show the strength of their physical interactions. The node position is determined based on the edge
weight using the Spring force-directed algorithm.

while  being  spatially  distinct.  Connective  tissues  were  generally  composed  of  sparse
matrices  of  cells  that  had  low  expressions  of  all  markers  (Figure  2c),  but  sometimes
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included  supportive  muscles  and  infiltrating  immune  cells  (Figure  2d).  Other  identified
domains were well balanced in terms of cell type composition. The alveolar space included a
well-balanced  proportion  of  epithelial  and  endothelial  cells  required  for  gas  exchange
(Figure  2d).  This  reveals  that  UTAG,  without  specific  training,  is  capable  of  effectively
capturing  both  simple  domains  with  a  dominant  cell  type,  and  more  complex  domains
composed  of  multiple  cell  types.  Beyond  cell  type  composition,  we  identified  distinct
differences in  the frequency of  physical  interactions between cells  of  different  cell  types
across microanatomical domains (Figure 2e). In airways, we observed a tight connection
between epithelial cells, and reciprocal proximity between epithelial and connective tissue.
The connective tissue, as a transition tissue between airways and other functional domains
in the lung showed high diversity and balance in cellular interactions. The alveolar space
domain has strong reciprocal interactions between epithelial and endothelial cells which is a
hallmark of alveolar type 1 cells closely connected to capillary endothelium. Taken together,
the observed cell  type abundance  (Figure 2d)  and interaction  relationships  (Figure 2e)
within the microanatomical domains of the lung provide a signature of the architecture of the
healthy human lung.

While the composition of an organ in microanatomical domains is an important part of its
architecture, it is also important to understand the wider-scale architecture of an organ in
relation to its physiology. To demonstrate how UTAG can be useful in uncovering organ-
specific high-level architecture, we quantified physical interactions between microanatomical
domains in IMC images, and related domains based on the frequency of interactions (Figure
2f).  The resulting network,  made by associating the strength of  microanatomical  domain
interaction with attraction between nodes, summarizes the architecture of the lung - with a
main  anatomical  axis  of  high  order  tissue  assembly  from  airway,  connective  tissue  to
alveolar space (Figure 2f). Furthermore, we also found that both vessels and submucosal
glands, while interacting with similar domains, are diametrically opposed to the main axis
(Figure 2f), which may suggest that segregation of vascular and secretory domains of the
lung  is  a  hallmark  of  healthy  lung  architecture.  Overall,  the  microanatomical  domains
detected by UTAG in the lung,  along with  the inferred high-level  structure of  the  organ
illustrate the accuracy and utility of UTAG in understanding tissue architecture at various
scales with a completely unsupervised approach.

UTAG captures changes in microanatomical domain composition and structure in diseased
lung tissue

Having  established  the performance and usefulness  of  UTAG in  multiplexed  imaging  of
healthy tissue, we sought to determine whether UTAG is able to discover microanatomical
domains in disease as well. To that end, we ran UTAG on a dataset of 239 IMC images with
37 markers from 27 deceased patients due to lung infection24 (Figure 3a). Despite using a
different set of markers from the healthy lung dataset (Figure 2a), we were able to discover
six largely similar microanatomical domains which were present in images of various disease
groups: one domain representative of epithelial cells (predominantly airways), one domain of
fibroblast-rich connective tissue, one domain for alveolar regions, one for vessels, one with
clusters of various immune cells, and a rare one of clustered neutrophils exclusively. Their
relative  abundance  however,  reflects  the  changes  in  the  morphology  and  cellular
composition of the  tissue  after infection24, with for example an  increased proportion of the
epithelial domain following Influenza and in late COVID-19, and an increase in the fraction of
connective  tissue  in  late  COVID-19  indicative  of  fibrosis  (Figure  3b).  Since  topological
domains aggregate spatially  proximal  cells  of  various cell  types that  contribute to tissue
function, we hypothesized that the abundance of topological domains across images more
easily explains the variance in the dataset than the abundance of cell types on their own.
Indeed, in a Principal Component Analysis reduction of the data, we found that not only the
fraction of variance in the first component was higher with topological domains, but they also
more easily reconstructed the linear progression of healthy tissue in comparison with cell
type identities alone (Figure 3c).
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Figure 3: Microanatomical domains discovered by UTAG across data types and disease states.
a) Discovery of microanatomical domains in IMC images of lung from patients of various pathologies. The top row illustrates the

intensity of three selected channels, while the bottom row displays the UTAG domains. b) Univariate analysis of
microanatomical domain composition across lung infection disease. Microanatomical domain composition was percent

normalized per slide. Mann Whitney U test was used for statistical comparison between healthy and disease types. c) Principal
Component Analysis for joint analysis of domain (left) or cell type (right) composition per image. The top two plots visualize the

position of images in the first two principal components. The bottom two plots show the distribution of the first principal
component aggregated by disease group. d) Log odds of domain colocalization frequencies across diseases in alveolar

domains. Log odds indicates observed frequency over expected as estimated empirically by random permutation. Positive
values indicate high intra-domain (alveolar-alveolar) colocalization compared to random mixtures, and negative indicates low

inter-domain colocalization. e) IMC images of healthy and COVID-19 infected lung tissue. The healthy shows highly
compartmentalized domains, particularly in the vasculature, while diseased lung shows loss of compartmentalization. For b)

and c), asterisks represent p-values less than 0.05 after Benjamini-Hochberg adjustment. 
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Since differences in cell  type composition during lung infection have been reported24,  we
sought to investigate whether there are differences in the high-level composition of tissue, as
quantified by the spatial proximity in topological domains across images (Extended Data 3).
The most prominent differences in topological domain colocalization between disease states
was observed between the alveolar space and vessel domains (Figure 3d). In Influenza,
ARDS and late COVID-19, vessel domains interact with alveolar domains more tightly than
in Healthy lung or early COVID-19. In healthy lung sections, vessels often have high intra-
domain  connectivity  and  are  isolated  from  other  domains,  while  in  late  COVID-19  we
observed high connectivity of vessels with other domains,  particularly  the alveolar  space
(Figure 3e).  This  likely  reflects  the  previously  described  increase  in  vasculature  due to
pathology induced angiogenesis  25,26. The characterization  of  microanatomy across various
disease states in the lung along with the discovery of changes in the connectivity of tissue
domains, demonstrate the versatility of unsupervised approaches such as UTAG to detect
and quantify microanatomical structure in human tissue.

UTAG uncovers tumor microenvironment domains associated with patient survival

We have so far employed UTAG in the lung because we have annotated images allowing us
to assess whether the discovered microanatomy aligns with current knowledge in the field.
Given that UTAG is an unsupervised method, it is not guaranteed that its use across organs,
data  types,  and  disease  states  will  always  discover  microanatomical  domains  with
physiological relevance or of pathologic interest.

To  address  this  question,  we  first  applied  UTAG  to  a  dataset  of  19  cyclic
immunofluorescence  (CyCIF)  images  with  26  markers  from  3  lung  cancer  patients27

(Extended  Data  4).  We observed  that  the  obtained  domains  largely  reflected  tumor  or
stromal microenvironments reflecting a complete departure from the tissue architecture seen
in normal lung. This is likely due to proliferation of neoplastic cells which is independent from
the normal physiological function of the lung. In this setting, UTAG may be of use in cancer
by detecting the interface between tumor and stromal, facilitating the investigation of cellular
composition and interactions at  this interface,  without  the need for manual  annotation of
images by an expert.

Second, to assess whether UTAG is capable of discovering microanatomy in other organs,
we apply it to a dataset of 58 IMC images with 28 markers from 7 patients of upper tract
urothelial  carcinoma (UTUC)28 (Figure 4a).  In  line  with  our  observations  in  lung  cancer
(Figure 3c), the five discovered domains largely reflected the division between tumor and
stroma  microenvironments.  However,  we  did  notice  a  gradient  between  the  two,  with
domains with considerable  immune infiltration for  both tumor and stroma, and a domain
present  mostly  at  the interface between tumor and stroma (Figure 4a).  Of  note,  in  this
dataset,  16 images had been manually  annotated with boundaries of tumor and stroma,
which allowed us to assess the performance of UTAG in the delineation of these boundaries
(Figure  4b).  We  found  that  UTAG  domains  largely  recapitulate  these  annotations  and
significantly outperformed randomly shuffled labels in both agreement and purity (Figure 4b,
p < 3x10-7, two-tailed Mann-Whitney U-test), and cell type annotations in terms of agreement
with manual labels (Figure 4b, p = 1.4x10-3).

Third,  we sought  to  assess whether  domains  discovered by UTAG in  large datasets of
multiplexed images can be associated with relevant clinical outcomes of patients. We used a
dataset  of  376  IMC  images  with  32  markers  from  285  breast  cancer  patients15,  with
associated clinical  data on tumor subtypes, staging, and overall  survival (Figure 4c,  first
column). We ran UTAG on the dataset and discovered 30 types of microanatomical domains
(Extended Data 5a) including tumor and stromal regions. We then quantified the presence
of each domain in each patient, and divided patients in tertiles based on the abundance of
that domain across all samples. By comparing patients in the top vs bottom tertiles, we found
3 domains where the abundance was significantly associated with overall survival (Figure
4c and Extended Data 5b, p < 0.05 log-rank test with Benjamini-Hochberg FDR correction).
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Two  of  these  associations  were  in  largely  complementary  domains,  related  with  the
abundance of T-cells in stromal components, where low abundance of T-cells is associated
with lower overall  survival   (Figure 4c).  This could be due to a potential  immune action
against the cancer cells by T-cells.

Figure 4: Discovery of microanatomical domains associated with cancer survival.
a) Discovery of tumor and stromal domains in IMC images of UTUC. The top row illustrates the intensity of three selected

channels, while the bottom row displays the UTAG domains.Scale bars represent 100µm. b) Benchmark of the UTAG domains
against manual annotation of tumor and stromal domains. For comparison, we include randomized domain labels per cell, and

cell type identities. Each point represents one image and for both metrics values closer to 1 are optimal. c) Discovery of
microanatomical domains in IMC images of breast cancer and their association with overall patient survival. The first column,

included for comparison, are patient survival curves depending on tumor subtype and grade classification. The remaining
columns are UTAG domains for which patients with presence of the domain above the median show greatest association with

survival. p-values were calculated with a log-rank test and adjusted with the Benjamini-Hochberg FDR method.

In summary, our analysis of tumor microenvironment domains in large cohorts of cancer
patients  revealed  the  accuracy  of  UTAG  in  detecting  microenvironments  reflecting
tumor/stromal  boundaries  in  agreement  with  manual  annotations,  and  shows  that
unsupervised discovery of tissue domains can have prognostic value in disease for example
in patient stratification.
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Discussion

In this study we develop UTAG, a novel method to perform discovery and quantification of
microanatomical tissue structures in biological images which uses no prior knowledge. Our
method  leverages  the  combination  of  phenotypic  and  proximity  information  of  cells  to
discover topology of tissues in various organs, and various types of multiplexed imaging
data.  Given the lack  of  formal  definition  of  microanatomical  domains  and healthy tissue
datasets with such annotation which can be used as ground truth,  benchmarking of  our
method relied on two datasets of lung microanatomy and tumor/stroma divisions in cancer.
While we observed that UTAG performed better than random or simple cell type identities in
the  discovery  of  tissue  microanatomy,  the  ground  truth  set  of  manual  annotations  is
inherently  subjective  to  the observer,  and  often  incomplete  by  focusing  on  a  subset  of
specific predefined structures. In fact, it is conceivable that a fully unsupervised method such
as UTAG is able to capture gradients of mixtures between known domains or even novel or
poorly defined structure in tissue that is underappreciated.

On top of its ability to detect tissue architecture, UTAG can serve as a method to quantify
biologically relevant processes such as angiogenesis in native tissue conformation. In this
paper,  we  presented  ways  to  numerically  quantify  the  loss  of  compartmentalization  of
vessels in alveolar space of COVID-19 infected lung (Figure 3d). In similar fashion, UTAG
can be used to quantify the extent of various biological processes such as angiogenesis in
individual  samples  -  just  as  existing  computational  methods  based  on  genomics  and
transcriptomics can, but with the advantage that the manifestation of biological processes
are directly observable in the original physical context of the tissue.

While we believe our method provides a significant step toward the systematic discovery of
tissue structure, one crucial aspect for its successful application is the interpretation of the
discovered  topological  domains  in  terms  of  their  identity  and  biological  relevance.  We
demonstrated how on cases such as healthy tissue with well defined structure related with
organ-specific physiology, interpretation of domain identity based on cell type composition
and  interactions  can  be  achieved  (Figure  2),  while  in  tissues  without  strong  structural
patterning, or with undefined function such as cancer, interpretation of discovered domains
can rely on the association with clinically  relevant  outcomes (Figure 4).  UTAG provides
flexibility to the user to discover structures present in biological images, but we believe that
its potential is maximized by the involvement of experts in the field such as pathologists, in
the discovery process and interpretation of results.

Beyond  the conceptual  limitation  in  the  biological  interpretation  of  UTAG results,  a  few
technical  issues  must  also  be  taken  into  account.  UTAG  relies  on  user-supplied  cell
segmentation  to  determine  positional  information  from  the  cells  and  consequently  infer
physical interactions. Recent advances in cellular segmentation algorithms29–32 have greatly
advanced the quality of segmentation masks for various types of images, but downstream
results  can  only  be as  good  as  the segmentation.  Furthermore,  we greatly  simplify  the
geometric  complexity  of  2D  tissue  slices  by  assuming  centroids  capture  most  of  the
positional information of cells, which for eccentric cell types such as neurons, endothelial,
and various types of eccentric immune cells, may not be the case.

The inference of cellular contacts and the scale at which microenvironmental signals diffuse
across the local cellular  context are fields of current study33–36 and of importance for the
detection of tissue microanatomy. UTAG requires a user-provided parameter to discretize
cellular  contacts. In our experience, we found that changes in this parameter were most
needed depending on the resolution of the images, since optical imaging typically has more
resolution  than  for  example  laser-based  tissue  ablation  in  IMC.  Nonetheless,  this  is
something  we purposefully  designed  to  be tuned by  the user  in  order  for  UTAG to  be
adaptable  to  the  requirements  of  various  image  types  and  cellular  contexts  without
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assumptions on the underlying structure of the tissue, such as has been done for example
relying on the consistent shape of germinal centers across organs37.

UTAG opens new possibilities in our ability to understand tissue architecture by detecting
microanatomical domains, but also by quantifying how they interact at a higher level to a
point that we could infer the broad rules of human lung architecture. We envision that in the
future, UTAG could be applied to traditional hematoxylin and eosin stained histopathological
images  if  an  appropriate  feature  matrix  of  stain  intensity  and  cell  morphology  can  be
extracted. That would open the possibility for the detection of microanatomical structures in
large biobanks and association of these with clinical features at scale. Likewise, systematic
application of UTAG in image data from various organs will undoubtedly accelerate projects
such  as  spatial  cell  atlases38–40,  by  providing  microanatomical  context  to  the  cells,  and
enabling ground-up discovery of tissue architecture beyond cell type composition of tissues.
Another exciting future application is the discovery of microanatomy in volumetric images of
tissue13,41–43, since there is no conceptual limitation to use UTAG in 3 dimensions. This would
enable robust morphometry of tissue structures since a current challenge in two-dimensional
analysis  of  tissue is the detection of  structure independent  of  the cutting angle.  Robust,
automated assessment of tissue microanatomy could enable the definition of tissue integrity
ranges  in  healthy  human tissue  across  ages,  detection  of  early  pre-cancer  lesions  and
cancer  invasion,  and  the  study  of  age-associated  diseases  characterized  by  cellular
degeneration, fibrosis, and loss of tissue integrity  such as chronic obstructive or idiopathic
pulmonary disease.

Methods

UTAG Algorithm

The two inputs to the UTAG algorithm were the cell feature matrix and the location matrix.
The cell feature matrix is designed to be as generalizable as possible to incorporate multiple
imaging modalities and can contain any features ranging from generic cell properties such
as cell area, perimeter, and morphology to modality specific attributes such as intensity of
hematoxylin and eosin from H&E staining to marker expression quantification such as CD4,
KRT8, or PD1 levels in IMC. From the location matrix,  we build a graph using squidpy44

(version 1.1.0) where each node is a unique cell and edge is whether two cells are within a
threshold Euclidean distance. We then perform message passing, an inner product between
the adjacency matrix of the graph and the feature matrix, so that each cell within the graph
inherits features from its immediate neighbors. When aggregating spatial components with
the feature matrix, we optionally add a normalization step to allow users to take the L1 norm
of the adjacency matrix so that the users can decide whether to mean-aggregate or sum-
aggregate. We denote the resulting matrix spatially aggregated feature matrix that encodes
information  of  both  single  cell  features  and  cell  locations.  The  cells  in  the  spatially
aggregated feature matrix are clustered into groups using the Leiden22 (version 0.8.7) and
PARC23 (version 0.31) algorithm at multiple resolutions. Each cluster can then be annotated
into microanatomical domains based on enrichment profiles or by inspecting user provided
cell type identities.

Running UTAG on IMC data

To quantify cellular phenotypes, we used the cell masks, and aggregated all pixels of a cell
with the mean intensity for each IMC channel. We combined the per cells expression vector
from all cells in all images into a single matrix. We then performed log transformation, Z-
score normalization with truncated at positive and negative 3 standard deviations, followed
by Combat45 (version 0.3.0) batch correction to phase out sample-specific biases. This was
subsequently followed by a final Z-score normalization truncated at 3 standard deviations.

For the healthy lung dataset, UTAG was run with a max_dist of 15, which are in physical 
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dimensions 20 microns (Extended Data 1b). For all other IMC datasets (lung infection, 
UTUC, and BRCA), we ran UTAG with max_dist of 20. Each dataset was clustered at 
resolutions of 0.05, 0.1, 0.3, and 0.5. The principle of selecting the optimal resolution was 
based on how diverse each dataset was, or in other words how many patients and diseases 
each dataset contained. Higher resolutions, resulting in more clusters, were preferred in 
diverse datasets while more homogenous datasets required only a few clusters. For the 
normal lung dataset, we used Leiden clustering at 0.3 resolution and annotated the resulting 
11 clusters into 5 microanatomical domains (Extended Data 1c and 1d). For the infected 
lung, UTUC, and BRCA dataset we used PARC clustering with resolution 0.3, 1.0 and 0.1 
respectively which resulted in 20, 34, and 31 clusters.

Benchmarking against manual expert annotation

To show that the gain of information using the UTAG algorithm is statistically significant, we
compare cell  types and UTAG labels  against  manual  expert  annotations.  To objectively
assess the  performance  of  UTAG,  we  used Rand score  and homogeneity  score  as  an
evaluation metric for the unsupervised segmentation task. Rand score, also known as Rand
index, is a similarity measurement that is calculated by the ratio of agreeing pairs over all
pairs  between  the  predicted  and  true  labels.  The  homogeneity  score46 assesses  how
uniquely predicted labels associate with true labels (a measure of cluster purity). Ranges of
both metrics are from 0.0 to 1.0 inclusive, with higher scores indicating better performance.
To lay  out  a baseline  for  how the metrics  works,  we show how random labels  perform
against the expert annotation. To test for differences in performance, we perform a two-tailed
Mann-Whitney test between random labels scores, cell-type scores, and UTAG scores.

Quantification of cellular interactions and microanatomical domain interactions

As UTAG achieves microanatomical domain annotation based on graphs leveraging spatial
proximity, we can take advantage of the spatial neighborhood information for downstream
analysis. Under the graph formalism, we can quantify cellular and domain interactions from
edge counts connecting distinct nodes, identified by cell type and domain properties. Graphs
were constructed with a threshold distance of 40 pixels for healthy lung IMC samples to
allow a more lenient  interaction threshold compared to the UTAG default.  For cell-to-cell
interactions,  we  quantify  edges  connecting  a  cell  type  to  another  and  aggregate  the
connections into an adjacency matrix denoting the cell type colocalization. We present this
cellular  interaction  matrix  as  a  chord  plot  generated  by  holoviews  python  library.
Microanatomical domains are similarly aggregated for each domain-to-domain interaction.
These results are presented as a networkx47 (version 2.6.2) graph in a spring-force layout
which visually demonstrates how each domain colocalizes with others. This was done on the
logarithm of the counts of edge connections to ensure that the counts are on a comparable
scale.

Lung infection data univariate and Principal Component Analysis

To quantify the difference in domain composition across disease types, each IMC slide was 
aggregated by the number of cells in each domain. Cell counts were subsequently percent 
normalized to take into account the difference in cell densities. We perform a univariate 
domain proportion comparison for each disease group with respect to healthy samples using
a two-sided Mann-Whitney U test. For a multivariate analysis, we reduce the dimensionality 
of domain proportion using Principal Component Analysis. We then perform a two-sided 
Mann-Whitney U test on the first principal component, similar to the univariate analysis, to 
show how all domain distributions jointly vary across disease. To show that the first principal 
component of domain proportions better captures the difference in diseases, we perform the 
same analysis with cell type proportions. All Mann-Whitney U tests were performed using 

12/20

405

410

415

420

425

430

435

440

445

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 18, 2022. ; https://doi.org/10.1101/2022.03.15.484534doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.15.484534
http://creativecommons.org/licenses/by-nc/4.0/


pingouin48 (version 0.3.12) and were Bonferroni-Hochberg corrected.

Quantification of domain colocalization frequency

Quantifying  domain-to-domain  colocalization  by  counting  the  number  of  edges  may  not
provide the most representative measurement, because the value is largely by the original
domain abundance. For example, if there is one domain that is more abundant than every
other domain, then that domain generally has the highest colocalization count with all other
domains. In order to compensate for the original domain distribution, we repeatedly perform
domain permutation,  random shuffling of  domains for  cells  in  the graph,  to establish an
expected colocalization frequency given the domain distribution. We add one to both the
observed colocalization frequency and expected frequency, computed by the mean of 100
random permutations, to avoid division by zero. Log-fold change for domain colocalization is
then computed by taking differences between two log-transformed values.

Running UTAG on CyCIF data

40X CyCIF lung cancer samples were downloaded from DOI 10.7303/syn17865732.  We
used the provided cell segmentation probability maps generated with standard watershed
algorithms in ImageJ or MATLAB to create cell masks using DeepCell, similar to the IMC
data preprocessing. Cell fluorescence was mean aggregated just as in the IMC data. All
cells across images were combined together, and the resulting matrix was log transformed,
Z-scaled, batch corrected with Combat, and Z-scaled again.

Before running the UTAG algorithm, 11 DNA channels and 7 background channels were
removed from the feature matrix, leaving 26 channels to remove background noise and to
ensure that the algorithm was not overly influenced by replicates of a single feature. The
UTAG algorithm was run with a thresholding distance of 50 pixels because the per pixel
distance was more than twice as high at this magnification. We ran both Leiden and PARC
clustering at multiple resolutions of 0.05, 0.1, 0.3, 0.5, and 1. We annotated stromal and
tumor  regions  based  on  0.1  resolution,  as  the  seven  created  clusters  were  more  than
enough for a small dataset with 3 patients and 16 slides. 

Association of UTAG domains with survival in breast cancer

To assess whether UTAG labels have clinical implications, we run UTAG on a 285 patient
breast cancer dataset with survival information. We calculate the average microanatomical
domain  density  (number  of  cells/mm2)  for  each  cluster  created  by  PARC  clustering  at
resolution 0.1. We build a domain density matrix by concatenating the domain densities for
all  patients.  Very  rare  domains  whose  75th  percentile  was  zero  were  excluded  from
downstream analysis.  For each domain,  we categorize the 285 patients  into two disjoint
groups by using the two extremities thresholded by ⅓ and ⅔ quartile of domain densities
(Extended Data Figure 5). To identify how each domain density impacts patient prognosis,
we  perform  Kaplan  Meier  survival  analysis  using  the  lifelines  package49

(lifelines.KaplanMeierFitter) (version 0.26.4). In order to test whether there is a statistically
significant  difference between the survival  probability  of  two subgroups,  we calculate  p-
values  using  a  log  rank  test,  and  adjust  p-values  for  multiple  testing  correction  using
pingouin48 (version 0.3.12). We also include the survival analysis results stratified by clinical
hormone subtypes and tumor grades for reference.

Software  used:  squidpy44 1.1.0,  Leiden22 0.8.7,  PARC23 0.31,  ilastik50  1.3.3,  DeepCell32

0.10.0,  Combat45 0.3.0,  StarDist29,  lifelines49 0.26.4,  scikit-image51,  scikit-learn52 0.24.2,
scanpy53 1.8.0, pingouin48 0.3.12.
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Data availability

Healthy lung IMC data are part of a publication submitted concurrently to BioRxiv and will be
made public upon publication of that work. The remaining datasets are publicly available at
the following URLs:

 COVID-19 lung IMC24: https://doi.org/10.5281/zenodo.4110559
 Lung cancer t-CyCIF27: https://doi.org/10.7303/syn17865732
 Upper tract urothelial carcinoma IMC28: https://doi.org/10.5281/zenodo.5719187
 Breast cancer IMC15: https://doi.org/10.5281/zenodo.3518283

Code availability

Source code is publicly available at the following URL: https://github.com/ElementoLab/utag
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Extended data figures

Extended Data Figure 1: UTAG analysis of IMC images of healthy lung.
a) UMAP representation of all cells across all images based on cellular phenotypes only (left), or cellular phenotypes and

positional information combined with UTAG (right). b) Labeling of domains from clustering indices. Cluster indices from leiden
clustering at resolution 0.1 were mapped to domains based on expression profiles. c) Deciding optimal resolution for healthy
lung IMC data. Leiden clustering for resolution of 0.1 was selected as the ideal resolution because it had the greatest median

rand score across all slides.
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Extended Data Figure 2: UTAG results on IMC images of healthy lung.
a)  Illustration of lung IMC images where the first column illustrates three channels (X, Y, Z), the second column cell type

identities, the third column cells colored by manual annotation of microanatomical domains, and the fourth column cells colored
by UTAG domains. Each channel on the raw signal is keratin 5 for red, alpha smooth muscle for green, and DNA for blue.

Scale bars represent 200 µm. 
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Extended Data Figure 3: Application of UTAG to quantify domain colocalization frequency.
a) Full comparison of domain colocalization frequency for all pairwise microanatomical domains in lung infection data grouped

by disease type.

Extended Data Figure 4: Application of UTAG to CyCIF lung cancer data.
a) Discovery of tumor and stromal domains in CyCIF images of two types of lung cancer. The top row illustrates the intensity of

three selected channels, while the bottom row displays the UTAG domains. Scale bars represent 200 µm.
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Extended Data Figure 4: Application of UTAG to images of a cohort of breast cancer patients.
a) Abundance of discovered UTAG clusters in each image. b) Survival analysis for patients based on whether they are above

or below the mean abundance of each UTAG cluster. p-values were calculated with a log-rank test and adjusted with the
Benjamini-Hochberg FDR method.

Extended data tables

Extended Data Table 1. Samples included in analysis of healthy lung tissue with IMC.

Sample ID Age1 Sex2 Ancestry3 Smoking4 Lung disease Cause of Death5 Source6 Internal ID

N1 63 F C 13 PY No Stroke, ICH UNC SR-1002

N2 32 M C 1.8 PY No

Anoxia, 
cardiovascular 
(natural causes) UNC UNC-59

N3 60 M A NS No NA UNC H-9293

1 Age (years);
2 Sex: F, female; M, male;
3 Ancestry: A, African-American; C, Caucasian              
4 Smoking: for smokers - pack-years (PY); non-smokers (NS)
5 Cause of death (CoD) : ICH, intracerebral hemorrhage; NA, specific information not available
6 Sample source: UNC, University of North Carolina Tissue and Cell Culture Procurement Core
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