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Abstract
Human bulk tissue samples comprise multiple cell types with diverse roles in disease etiology. Conventional
transcriptome-wide association study (TWAS) approaches predict gene expression at the tissue level from
genotype data, without considering cell-type heterogeneity, and test associations of the predicted tissue-level
gene expression with disease. Here we develop MiXcan, a new TWAS approach that predicts cell-type-specific
gene expression levels, identifies disease-associated genes via combination of cell-type-specific association
signals for multiple cell types, and provides insight into the disease-critical cell type. We conducted the first
cell-type-specific TWAS of breast cancer in 58,648 women and identified 12 transcriptome-wide significant
genes using MiXcan compared with only eight genes using conventional approaches. Importantly, MiXcan
identified genes with distinct associations in mammary epithelial versus stromal cells, including three new
breast cancer susceptibility genes. These findings demonstrate that cell-type-specific TWAS can reveal new
insights into the genetic and cellular etiology of breast cancer and other diseases.

Introduction
Transcriptome-wide association studies (TWAS) aim to identify genes that are associated with disease
through their genetically regulated expression levels.[1, 2] Conventional TWAS approaches such as PrediX-
can [1] predict tissue-level gene expression from genetic variants using models trained on transcriptomic and
genomic data from bulk tissue samples, and test associations between the predicted tissue-level expression
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and disease. By reducing the multiple testing burden from millions of variants to thousands of genes, TWAS
can improve the power of genome-wide association studies (GWAS) while providing biological insights into
the genes and regulatory mechanisms underlying disease. However, conventional TWAS approaches do not
account for cell-type heterogeneity in the composition of bulk tissue samples or the effects of expression
quantitative trait loci (eQTL), which can reduce the accuracy of expression prediction models and obscure
disease associations, particularly when the most mechanistically relevant cell type for the disease is a minor
cell type in the tissue.[3]

Breast carcinoma is a common and highly heritable cancer that arises from epithelial cells, which line
the ducts and lobules that produce milk during lactation.[4, 5] Human mammary tissue has highly variable
cell composition. Visualized on mammography, breast composition can range from extremely dense (light),
reflecting a high proportion of fibroglandular tissue, to almost entirely fatty (dark), reflecting a high propor-
tion of adipose tissue.[6, 7] Whereas higher mammographic density is associated with increased risk of breast
cancer, a higher amount of nondense fatty tissue is associated with decreased risk, indicating disparate roles
of the different cellular components of mammary tissue in carcinogenesis.[8, 9, 10] Breast cancer suscepti-
bility loci identified by prior GWAS[11, 12, 13] and TWAS[14, 15, 16] approaches that do not account for
cell-type heterogeneity explain only a fraction of the familial relative risk. Disentangling the distinct effects
of gene expression in mammary epithelial cells from other cell types through cell-type-specific analysis could
lead to new gene discoveries and biological insights.

To our knowledge, no statistical methods currently exist for conducting cell-type-specific TWAS using
GWAS data. Single-cell sorting and transcriptome profiling are costly, and large reference panels with both
single-cell transcriptomic and genomic data are not yet widely available for training robust expression predic-
tion models from genotype data. Recent studies of bulk tissue transcriptomic data have used computational
estimates of cell composition to evaluate cell-type-specific effects. The Genotype-Tissue Expression (GTEx
[17]) consortium estimated cell type enrichment scores in bulk tissue samples using the xCell[18] method and
tested for interactions between genotype and xCell scores in linear regression models of gene expression to
identify interaction eQTLs (ieQTLs).[19] The breast was among the human tissues with the most ieQTLs,
specifically involving mammary epithelial cells and adipocytes,[19] highlighting the potential for new methods
that harness cell-type-specific genetic regulation of expression to improve the power of breast cancer TWAS.
Methods that integrate bulk tissue data with single-cell reference profiles to estimate cell-type-specific gene
expression have also been proposed to study cell-type-specific disease associations.[20, 21] However, these
methods all require transcriptomic data from the disease-relevant tissue and cannot be applied to existing
GWAS datasets to perform TWAS in large populations.

Here we present MiXcan, a new statistical framework for conducting cell-type-specific TWAS using GWAS
data. MiXcan builds cell-type-specific gene expression prediction models through decomposition of bulk
tissue data, identifies disease-associated genes via combination of signals from cell-type-specific association
analyses of multiple cell types, and provides insight into the cell type responsible for the disease association.
We show that MiXcan improves the prediction accuracy of gene expression at the tissue level compared
with conventional approaches in an independent validation dataset. Simulation studies show that MiXcan
controls the type I error, and provides higher power than conventional TWAS approaches when disease
associations are driven by a minor cell type (e.g. mammary epithelial cells) rather than the predominant
cell type in a tissue, or have opposite directions in different cell types. We apply MiXcan to conduct the
first cell-type-specific TWAS of breast cancer risk in 31,716 cases and 26,932 controls, and report three new
susceptibility genes (ZNF703, TMEM245, and PSG4) with evidence of distinct associations in mammary
epithelial versus stromal cells that were not detected by prior TWAS nor GWAS. These findings provide a
proof a concept that cell-type-specific TWAS can reveal new insights into the genetic and cellular etiology
of breast cancer and other diseases.
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Results

MiXcan framework
We developed the MiXcan framework for conducting cell-type-specific TWAS (Fig. 1). First, the proportion
of the key cell type in bulk tissue samples is estimated using the xCell[18] score as a prior (see Methods).
Second, the bulk tissue gene expression is decomposed into its cell-type-specific components and joint penal-
ized regression is used to model the association of genetic variants (SNPs) with gene expression (exp) for each
cell type. Third, the regression coefficients (SNP weights) are compared to determine whether the prediction
models are cell-type-specific or nonspecific. Association tests of the composite null hypothesis that there is
no association between the genetically regulated gene expression level in any cell type with the disease versus
the alternative hypothesis that there is an association in at least one cell type, are then performed using
the cell-type-specific models when available and combining the resulting p-values across different cell types
with the Cauchy[22] method, or using the same prediction model for all cell types similar to PrediXcan.
Genes that are associated with disease are identified using the MiXcan combined p-values and applying
an appropriate significance threshold to control the family-wise error rate (FWER) or false discovery rate
(FDR) for the number of genes tested. For significant genes, comparison of the cell-type-specific MiXcan
results provides further insight into the cell type(s) likely to be responsible for the disease association.

Figure 1: MiXcan framework. MiXcan estimates cell-type composition using transcriptomic data, builds
cell-type-specific and nonspecific prediction models of gene expression, identifies disease-associated genes by
aggregating the signals across different cell types, and provides insight into the cell type responsible for the
disease association.

While the MiXcan framework is general, its performance depends on the cell types under consideration
and the available training data. As the number of cell types increases, the number of parameters increases
and the accuracy of the model decreases. At present, given the limited sample size of transcriptomic and
genomic datasets available for most human tissues through public repositories such as GTEx, it is practical
to consider only two categories of cells using MiXcan and to focus on the most relevant cell type for the
disease versus the other cell types. To identify genes for breast cancer, we developed MiXcan epithelial and
stromal (nonepithelial) cell models trained using bulk mammary tissue transcriptomic and genomic data
available for 125 European ancestry (EA) women in GTEx v8.

Prediction performance
MiXcan estimates of the epithelial cell proportion were highly correlated with the xCell[18] epithelial cell
enrichment score, with Pearson correlations of 0.90 and 0.89 in normal mammary tissue samples from EA
women in GTEx (N=125) and TCGA (N=103), respectively (Supplementary Fig. 1). Overall, MiXcan
epithelial cell proportion estimates were more highly correlated with the expression levels of 126 genes in the
xCell epithelial cell gene signature (median r of 0.54 in GTEx and 0.60 in TCGA samples) than were the
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xCell scores themselves (median r of 0.36 in GTEx and 0.39 in TCGA samples) indicating that the MiXcan
bagging approach can improve cell proportion estimation (Supplementary Fig. 1).

Figure 2: Gene expression prediction accuracy in independent validation dataset. Correlation of
tissue-level gene expression measurements with predictions using MiXcan or PrediXcan in an independent
dataset of adjacent normal mammary tissue samples from 103 European ancestry women with breast cancer
in TCGA. MiXcan and PrediXcan prediction models were developed using mammary tissue samples from
125 European ancestry women in GTEx v8 for 6461 genes (a), including 5473 genes with cell-type-specific
(b) and 988 genes with nonspecific (c) MiXcan prediction models.

The accuracy of MiXcan and PrediXcan gene expression prediction models trained using GTEx data for
125 mammary tissue samples from EA women was evaluated in an independent dataset of 103 tumor-adjacent
normal mammary tissue samples from EA women in TCGA (Fig. 2). MiXcan estimated cell-type-specific
prediction models for 5473 (84.7%) and nonspecific prediction models for 988 (15.3%) of 6461 genes that
had mammary tissue-level prediction models available in PredictDB.[23] Gene expression at the tissue level
was computed using MiXcan estimates of the cell-type proportion and predicted component gene expression
levels. The median correlation of predicted and measured mammary tissue expression levels for the 6461
genes in the TCGA validation set was significantly higher for MiXcan compared with PrediXcan (median r
of 0.41 vs. 0.10; p-value<2.2×10-16) models trained using the same dataset of 125 GTEx EA women. The
prediction accuracy for the 5473 genes with cell-type-specific models in MiXcan was significantly better than
PrediXcan (median r of 0.43 vs. 0.12; p<2.2×10 16), whereas the prediction accuracy for the remaining 988
genes with nonspecific models in MiXcan was the same as PrediXcan (median r of 0.08 vs. 0.08; p-value=1).
These results indicate that allowing for cell-type-specific gene expression models increases the prediction
accuracy for genes with evidence of cell-specific expression, and does not decrease the prediction accuracy
for other genes compared with standard approaches for predicting tissue-level gene expression.

To examine potential sources of the gain in prediction accuracy, three additional approaches were com-
pared with MiXcan and PrediXcan (Supplementary Fig. 2). The median correlation of predicted and
measured mammary tissue expression levels for all 6461 genes in the TCGA validation set was slightly
higher for PredictDB (r=0.12) elastic-net models trained using 337 GTEx EA men and women compared
with PrediXcan (r=0.10) trained using 125 EA women indicating modest gains from the inclusion of 212 EA
men in the training dataset. Accounting for cell composition using penalized regression models including
interactions of SNPs with the xCell epithelial cell score (xCell Interaction; r=0.20) or MiXcan cell proportion
(MiXcan0; r=0.38) led to substantial gains in prediction accuracy. Symmetric estimation of cell-type-specific
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prediction models employed in MiXcan (r=0.41) further improved performance. Importantly, whereas stan-
dard interaction models require estimates of cell-type composition, which often are unavailable for the tissue
of interest in GWAS of human diseases, MiXcan prediction models can be applied directly to GWAS genotype
data to perform cell-type-specific TWAS.

Simulation studies
To evaluate type I error and power of MiXcan association tests, datasets were simulated (see Methods)
under a broad range of realistic models for the associations of genetic variants with gene expression (SNP-
exp) and gene expression with disease (exp-disease). MiXcan predicted gene expression levels with higher
accuracy than PrediXcan in the presence of cell-type heterogeneity of SNP-exp associations, while maintain-
ing comparable accuracy in the absence of cell-specific effects (Supplementary Fig. 3), consistent with
results in the independent TCGA validation dataset (Fig. 2).

Association test results for MiXcan using either the true or misspecified cell-type proportions were com-
pared with PrediXcan in simulated datasets (Fig. 3). The type I error was well controlled for MiXcan
and PrediXcan under all simulated data scenarios (Fig. 3 col. 1). When SNP-exp associations were
homogeneous in the two cell types (Fig. 3a), the power was similar for MiXcan and PrediXcan whether the
exp-disease associations were homogenous or heterogeneous across cell types. Differences in the mean gene
expression level between the two cell types that were not determined by SNP-exp associations (Fig. 3a-b)
did not impact the power of MiXcan and PrediXcan indicating robustness to differential expression that is
not regulated by genetic variants. MiXcan results using the true and misspecified values of the cell-type
proportion were comparable indicating robustness to noisy estimates of the cell-type proportion (Fig. 3;
Supplementary Fig. 3).

When SNP-exp associations were heterogeneous in the two cell types (Fig. 3b-d), the relative power of
MiXcan and PrediXcan depended on the mechanisms of the exp-disease and SNP-exp associations. PrediX-
can was generally more powerful than MiXcan when the exp-disease association was either homogeneous
across cell types (Fig. 3 col. 2) or present only in the major cell type (Fig. 3 col. 3). However, MiXcan
was generally more powerful than PrediXcan when the exp-disease association was present only in the minor
cell type (Fig. 3 col. 4) or had opposite directions in the two cell types (Fig. 3 col. 5).

As the strength of the SNP-exp association increased in the same cell type as the exp-disease association,
the power increased for both PrediXcan and MiXcan (Fig. 3c col. 4; Fig. 3d col. 3). However, as
the strength of the SNP-exp association increased in a different cell type from the exp-disease association,
the power decreased for PrediXcan but not MiXcan (Fig. 3c col. 3; Fig. 3d col. 4). When the exp-
disease association had opposite directions in the two cell types, the power was U-shaped for PrediXcan but
increased for MiXcan as the strength of the SNP-exp association increased in either cell type (Fig. 3c-d col.
5). These patterns show that different association signals in the two cell types can cancel each other out in
PrediXcan, which averages their effects, but are aggregated across cell types in MiXcan thereby preserving
power to detect associations due to the minor cell type or that differ across cell types.

In addition to providing valid tissue-level tests of the association of predicted gene expression with disease
by aggregating the cell-type-specific signals, MiXcan provides information for each cell type separately.
Simulation studies showed that the type I error was well controlled for MiXcan cell-type-specific tests when
no exp-disease association was present (Supplementary Fig. 4 col. 1). When SNP-exp associations were
homogeneous across cell types (Supplementary Fig. 4a), the expression prediction model and association
test results were the same for all cell types. Thus, cell-type-specific inferences can only be made in the
heterogeneous SNP-exp setting (Supplementary Fig. 4b-d), when cell-type-specific expression prediction
models are available in MiXcan. When the exp-disease association was present in both cell types in the same
or opposite directions (Supplementary Fig. 4 cols. 2 & 5), the power of the cell-type-specific tests
was similar when the SNP-exp associations had similar magnitude (regardless of direction) and increased
as the magnitude of the SNP-exp association increased. When the exp-disease association was present in
only one cell type (Supplementary Fig. 4 cols. 3-4), the power was always highest in this cell type,
but the association signal was shared to some degree with the uninvolved cell type. This correlation of
the cell-type-specific results arises from the joint estimation of the SNP weights for the cell-type-specific
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Figure 3: Simulation studies. Type I error and power of MiXcan and PrediXcan to detect associations
of tissue-level gene expression with the disease in independent test sets (N=500) simulated under a range of
realistic data scenarios. MiXcan results also are shown when the minor cell-type proportion is misspecified,
with a correlation of 0.9 and mean shift of 5% from the true value. Gene expression levels were modeled
by u = �0 + ���1x + eu in the minor cell type, v = ���2x + ev in the major cell type, and y = ⇡u + (1 � ⇡)v
at the tissue level, where ⇡ denotes the minor cell-type proportion, �0 denotes the mean difference of the
gene expression levels in the two cell types, and ���1 and ���2 denote the weights for the association of SNPs X
with gene expression levels in the minor and major cell types, respectively. The disease D was modeled by
logit P (D = 1) = ⌘0 + ⌘1u+ ⌘2v where ⌘1 and ⌘2 denote the associations of the gene expression levels with
disease in the two cell types, respectively. (a) Homogeneous SNP-exp associations (���1 = ���2) in the two cell
types, varying the mean difference in gene expression levels between the two cell types (�0). Heterogeneous
SNP-exp associations (���1 6= ���2) in the two cell types, varying the: (b) mean difference in gene expression
levels between the two cell types (�0); (c) magnitude of the SNP-exp association in the minor cell type (���1);
and (d) magnitude of the SNP-exp association in the major cell type (���2).
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expression prediction models in MiXcan. Therefore, we recommend using the combined p-value for all cell
types to make inferences regarding whether gene expression is significantly associated with disease in any
cell type in the tissue, and the cell-type-specific results to compare the evidence that different cell types are
involved for significant genes.

Finally, we evaluated the impact of the sample size of the training dataset on the type I error and power of
MiXcan association tests in simulation studies (Supplementary Fig. 5). As the training dataset increased
from 100 to 300 samples, the power of association studies with 500 samples increased while the type I error
remained well controlled. Prediction models trained using only 100-150 samples provided reasonable power
for gene identification.

Cell-type-specific TWAS of breast cancer

Figure 4: Transcriptome-wide association studies. Genes significantly associated with breast cancer
using MiXcan or PrediXcan at p-value < 7.7 × 10-6 applying a Bonferroni correction for the 6461 genes
tested in 31,716 breast cancer cases and 26,932 controls of European ancestry from the DRIVE study (dbGaP
phs001265.v1.p1).

We applied MiXcan to conduct the first cell-type-specific TWAS of breast cancer in 58,648 EA women
(31,716 cases and 26,932 controls) who were genotyped using the OncoArray[24] in the Discovery, Biology,
and Risk of Inherited Variants in Breast Cancer (DRIVE) GWAS available in dbGaP (accession number
phs001265.v1.p1). Transcriptome-wide significance was determined using the Bonferroni-corrected threshold
of 7.7×10-6 to account for the 6461 genes tested. MiXcan identified 12 genes whose predicted expression levels
in mammary tissue were significantly associated with breast cancer risk (Table 1, Fig. 4), and 82 suggestive
genes at the false discovery rate (FDR) of 0.10 using the Benjamini-Hochberg procedure (Supplementary
Table 1). In comparison, PrediXcan (trained using the same 125 EA female mammary tissue samples as
MiXcan) identified only 8 significant genes (p-value<7.7×10-6), and 31 suggestive genes (FDR<0.10). The
genomic inflation factor, �1000,[25, 26] was 1.008 for MiXcan and 1.011 for PrediXcan indicating that the
type I error was well controlled.

Four significant genes (CH17-437K3.1, SLC4A7, L3MBTL3, and RCCD1) were identified by both MiXcan
and PrediXcan (Table 1). MiXcan did not estimate cell-type-specific prediction models for these genes, and
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a homogeneous prediction model was used yielding the same results as PrediXcan. All four genes were near
(<500 kb) breast cancer SNPs previously identified by GWAS.[11] Follow-up analyses in a larger sample
of 228,951 EA women (122,977 cases and 105,974 controls) in the Breast Cancer Association Consortium
(BCAC) and DRIVE studies using GWAS summary statistics[11] and S-PrediXcan[27] models for mammary
tissue confirmed that the tissue-level expression for all four genes were significantly (p-value <7.7×10-6)
associated with breast cancer risk.

Eight genes were identified by MiXcan but not PrediXcan (Table 1). Six of these genes (MRPS30,
SETD9, ADGRV1, ZNF703, PRR33, and PSG4) showed different directions of association with breast
cancer in epithelial vs. stromal (nonepithelial) cells. In MiXcan the signals from the two cell types were
aggregated, whereas in PrediXcan they canceled each other out reducing the tissue-level signal. Notably, for
ADGRV1 and PRR33, no SNPs in the training dataset were predictive of gene expression at the tissue level
because of the mixture of the different cell types, and the PrediXcan analysis could not be performed. Two
genes (TMEM245 and CDYL2) showed the same directions of association, with stronger effects in epithelial
vs. stromal cells. These results indicate that MiXcan may be more powerful than PrediXcan in the presence
of cell-type heterogeneity of genetically regulated expression and when the disease association is present in
a minor cell type, e.g. mammary epithelial cells, rather than the predominant cell type in the tissue.

Importantly, MiXcan uniquely identified three novel breast cancer susceptibility genes (ZNF703, TMEM245,
and PSG4) that were not previously implicated by breast cancer GWAS[11, 12, 13] nor TWAS[14, 15, 16]
(Table 1). For ZNF703, gene expression was associated with increased breast cancer risk in stromal cells
(p-value=2.4×10-9) and decreased risk in epithelial cells (p-value=2.7×10-7). Because adipocytes are the pre-
dominant stromal cell type in mammary tissue, we also performed follow-up analyses using the S-PrediXcan
subcutaneous fat model and discovered a highly significant (p-value=2.1×10-20) association of ZNF703
with increased breast cancer risk in BCAC/DRIVE, consistent with the MiXcan stromal cell results. For
TMEM245 and PSG4 the signal was stronger in epithelial cells, which are a minor cell type in mammary
tissue and may explain why their tissue-level expression was not significantly associated with breast cancer
risk. MiXcan also identified two breast cancer genes (ADGRV1 and CDYL2) at previously reported GWAS
loci[11] that had different associations in epithelial and stromal cells and were not detected in prior TWAS.

Four genes (SRGAP2C, CASP8, ALS2CR12, and STXBP4) were identified by PrediXcan but not MiX-
can (Table 1). There was high correlation between the predicted tissue-level expression of CH17-437K3.1
(also identified by MiXcan) and SRGAP2C at 1p11.2 (r=0.95) and CASP8 and ALS2CR12 at 2q33.1 (r=-
0.97) indicating that these associations may represent only two independent loci. All four genes identified by
PrediXcan only were located near breast cancer SNPs previously identified by GWAS,[11] and associations of
the mammary tissue-level expression with breast cancer risk were also found by S-PrediXcan analyses of the
BCAC/DRIVE data. MiXcan estimated cell-type-specific prediction models for these four genes, and differ-
ent associations with breast cancer risk in epithelial and stromal cells that did not reach statistical significance
in part because of the larger number of model parameters compared with PrediXcan. However, the cell-type-
specific MiXcan results for STXBP4 suggest that stromal cells (estimated effect=0.18; p-value=2.1×10-4)
may play a more important role than epithelial cells (estimated effect=-0.06; p-value=0.41) in driving the
positive association of tissue-level expression with breast cancer risk.

Finally, we compared the TWAS results using MiXcan and PrediXcan with publicly available PredictDB[23]
elastic-net models trained using GTEx mammary tissue data for 212 EA men in addition to 125 EA women
(Supplementary Fig. 6). There was substantial overlap of the genes detected by PrediXcan and Pre-
dictDB as expected, although PredictDB detected a larger number of genes perhaps because the larger
training dataset enabled more accurate prediction models for genes that have similar expression patterns in
male and female mammary tissue. Cell-type-specific TWAS using MiXcan identified five genes (ADGRV1,
ZNF703, TMEM245, CDYL2, and PSG4), including three novel breast cancer susceptibility genes, that were
not identified by either PrediXcan or PredictDB.
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Discussion
MiXcan is a new statistical framework for conducting cell-type-specific TWAS using GWAS data. In contrast
to standard TWAS methods, MiXcan builds cell-type-specific prediction models for the genetically regulated
component of gene expression and performs association tests taking into consideration the signals from
multiple cell types. We have shown that MiXcan improves the prediction accuracy of gene expression at
the tissue level in both simulation studies and an independent validation dataset, and improves the power
to detect disease associations that are driven by a minor cell type or are heterogeneous between cell types
compared with standard approaches. We applied MiXcan to perform the first cell-type-specific TWAS of
breast cancer risk and discovered three new susceptibility genes (ZNF703, TMEM245, and PSG4) with
evidence of distinct associations in mammary epithelial versus stromal cells that were not detected by prior
GWAS[11, 12, 13] nor TWAS.[14, 15, 16] These findings provide a proof of concept that cell-type-specific
TWAS can reveal novel insights into the genetic and cellular etiology of human diseases.

Several recent studies have explored methods for performing cell-type-specific association analyses when
the tissue-level transcriptomic or epigenomic data are available for all subjects.[19, 28, 29, 30, 31] In this
study, MiXcan enables cell-type-specific TWAS using existing GWAS datasets without transcriptomic and
cell composition data from the disease-relevant tissue, which can be infeasible to collect in large populations.
Specifically, to reveal biologically meaningful association signals and address potential confounding due to
the cell composition of bulk tissue samples, MiXcan evaluates the composite null hypothesis that there is
no association between the genetically regulated gene expression level in any cell type with the disease.
By carefully modeling cell-type-specific expression, MiXcan is more powerful than PrediXcan when disease
associations are driven by a minor cell type or have opposite directions in different cell types. However, when
the association of gene expression with disease is similar in all cell types or driven by the major cell type,
then conventional TWAS approaches using more parsimonious tissue-level expression prediction models that
assume cell-type homogeneity can be more powerful. Thus, these two TWAS approaches are complementary,
and additional cell-type-specific analyses are especially valuable for diseases where cell-type heterogeneity
and a minor cell of origin are hypothesized, as for breast carcinoma and many other human diseases.

To construct cell-type-specific expression prediction models, MiXcan uses the xCell[18] cell-type enrich-
ment score in the training data as prior information. While estimates from other approaches[20, 21, 32, 33,
34, 35] could also be used as priors, xCell is among the most widely used. Building upon the priors, MiXcan
fits mixture models for the expression levels of the epithelial cell signature genes in the training data to im-
prove estimation of the cell-type proportion. By incorporating better estimates of the cell-type proportion,
and penalizing all cell types equally, MiXcan improves the accuracy of the expression prediction models, as
well as the power and type I error of the downstream association tests. Compared with standard interac-
tion models that include interaction effects between cell-type enrichment scores and genetic variants,[19] an
important advantage of MiXcan is that the predicted values correspond to the cell-type-specific genetically
regulated gene expression levels, which are directly interpretable and biologically meaningful. Moreover,
standard interaction models require cell composition information, which is often unavailable for the tissue of
interest, whereas MiXcan prediction models can be applied directly to GWAS data without transcriptomic
or cell composition data to interrogate genetic associations within the disease-relevant tissue and cell type
context.

Although the MiXcan framework is generalizable, the model building procedure requires knowledge of
the disease-critical cell types and tissue. The present prediction models were developed specifically for
human mammary tissue with a focus on distinguishing epithelial and stromal (nonepithelial) cells, which
have distinct roles in breast carcinogenesis.[8, 9, 10] The MiXcan framework can be extended naturally to
model more than two cell types, but a balance between the model complexity and the sample size should
be considered. As larger training sets with bulk tissue transcriptomic and genomic data become available,
a careful evaluation of its analytical performance can be performed for less common cell types. Currently,
human single-cell transcriptome profiling efforts[36, 37] are underway, although the available sample sizes are
still too small for direct training of robust prediction models. Future studies can investigate the integration
of single-cell transcriptome profiles to improve estimation of cell composition in bulk tissue samples[35, 34]
or to provide an initial estimate of SNP weights, which could be used to tune separate penalty terms for
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different SNPs in adaptive elastic-net models.[38]
Human mammary tissue has variable cell composition and numerous eQTLs with distinct effects in ep-

ithelial cells and adipocytes, which are a major stromal cell type in the breast.[19] Cell-type-specific TWAS
using MiXcan mammary tissue models applied to publicly available GWAS data identified three new breast
cancer susceptibility genes that were associated with disease risk through their genetically regulated expres-
sion levels in normal mammary epithelial or stromal cells. ZNF703 (zinc finger protein 703) is an oncogene
that is commonly amplified in luminal B breast tumors, and has been shown to regulate genes involved in
proliferation, invasion, and an altered balance of progenitor stem cells.[39, 40, 41] To our knowledge, common
germline variants in ZNF703 have not previously been implicated in breast cancer risk. Our finding that ge-
netic upregulation of ZNF703 in normal mammary stromal cells (predominantly adipocytes) was associated
with increased breast cancer risk in 58,648 women was confirmed by a highly significant (p-value=2.1×10
20) association of tissue-level expression predicted using S-PrediXcan subcutaneous fat models in 228,951
EA women, which has not previously been reported to our knowledge. Notably, the mammary tissue-level
results for ZNF703 did not reach transcriptome-wide significance, underscoring the importance of accounting
for cell-type heterogeneity to elucidate disease etiology. TMEM245 (transmembrane protein 245) is the host
gene for microRNA 32, which has been shown to promote proliferation and suppress apoptosis of breast
cancer cells.[42] Relatively little is known about PSG4 (pregnancy specific beta-1-glycoprotein 4), a mem-
ber of the carcinoembryonic antigen gene family that may play a role in regulation of the innate immune
system.[43]

In conclusion, the MiXcan framework enables cell-type-specific TWAS using prediction models for ge-
netically regulated gene expression that allow for differences across cell types in the disease-relevant tissue.
MiXcan mammary tissue models are available at https://github.com/songxiaoyu/MiXcan and can be
applied to GWAS genotype data to identify genes associated with complex traits through their expression
levels in epithelial or stromal cells. MiXcan software is also freely available to facilitate training prediction
models for additional tissues and cell types, and conducting cell-type-specific TWAS. MiXcan prediction
models had excellent performance in an independent validation dataset, and identified new breast cancer
susceptibility genes in the first cell-type-specific TWAS of breast cancer. These findings provide a proof of
concept that cell-type-specific TWAS are feasible using existing bulk tissue training datasets and GWAS
data, and can lead to the discovery of new disease genes and cellular mechanisms. Future research is needed
to develop MiXcan models for other human tissues and cell types, and to extend the MiXcan framework
for application to GWAS summary statistics to enable the broad application of cell-type-specific TWAS to
improve our understanding of the genetic and cellular mechanisms underlying human diseases.

Methods

MiXcan framework
We first summarize PrediXcan,[1] an established tissue-level TWAS framework, and then present the MiXcan
cell-type-specific TWAS framework. Let yi denote the measured expression level of a gene in the bulk tissue
sample i 2 (1, ..., N), xxxi denote the genetic variants (e.g. SNPs) used to predict gene expression, and zzzi

denote the non-genetic covariates (e.g. age).

PrediXcan tissue-level TWAS framework

PrediXcan uses a linear additive model to characterize the gene expression level:

yi = ↵i + xxx
T
i ��� + zzz

T
i ��� + ei,

where ei ⇠ N(0,�2) is the model error, xxxT
i ��� is the genetically determined component of gene expression,

and zzz
T
i ��� is the non-genetically determined component. This model can be estimated with the elastic-net

method,[44] which maximizes the following penalized log-likelihood function:
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(b↵, b���, b���, b�) = argmax
nX

i=1

✓
� (yi � ↵i � xxx

T
i ��� � zzz

T
i ���)

2

2�2
� 1

2
log(�2)

◆
� �(P (���) + P (���)), (1)

where P (·) = ↵||·||2l2+(1�↵)||·||l1 is the elastic-net penalty function with the mixing parameter ↵ 2 (0, 1). In
PrediXcan, ↵ is set at 0.5 and � is selected via 10-fold cross validation.(CV) [45] The estimated SNP weights
b��� can be used to predict the genetically regulated gene expression levels by byj = x̃

T
j
b��� where x̃j denotes the

SNP genotypes of the GWAS subject j 2 (1, ...,M). Then, the association of byj with the phenotype (e.g.
disease status) dj can be evaluated using a generalized linear model g(dj) = ⌘0 + byj⌘1, where g(.) is a link
function. The null and alternative hypotheses, H0: ⌘1 = 0 vs. HA: ⌘1 6= 0, test whether the genetically
regulated gene expression at the tissue level is associated with the phenotype.

MiXcan cell-type-specific expression prediction model

MiXcan extends upon PrediXcan to enable cell-type-specific TWAS. In this section, we build the prediction
models for the cell-type-specific genetically regulated gene expression levels. In the next section, we develop
strategies for applying these prediction models in disease-association studies.

Human bulk tissue samples from solid tissue (e.g. mammary tissue) comprise a mixture of cells of different
types. Let ⇡i and 1 � ⇡i be the proportions of the cell type of interest (e.g. epithelial cells) and all other
cell types (e.g. stromal cells) in the i

th tissue sample, respectively. We assume the observed bulk tissue
expression level of a given gene yi is a linear combination of expression levels in the cell types. Introducing
two latent variables ui and vi to denote the unobserved average gene expression levels in the epithelial and
stromal cells, respectively, we have:

yi = ⇡iui + (1� ⇡i)vi. (2)

We model both ui and vi using the linear additive models:

ui = ↵u + xxx
T
i ���u + zzz

T
i ��� + eui, and

vi = ↵v + xxx
T
i ���v + zzz

T
i ��� + evi,

(3)

where eui ⇠ N(0,�2
u) and evi,⇠ N(0,�2

v) are the model errors. In Equation(3), the intercepts ↵u and ↵v

and genetic parameters ���u and ���v differ between cell types, allowing for different mean expression levels
and cell-type-specific effects of genetic variants on gene expression. A shared parameter ��� is used for the
non-genetic component zzzi to simplify the model as the non-genetic variables are not necessarily used in
downstream analyses.

The proportion of epithelial cells ⇡⇡⇡ = {⇡1, ...,⇡N} is a feature of the tissue samples, which can be
jointly estimated using multiple genes, whereas ⇥⇥⇥ = (↵u,↵v,���u,���v,���,�

2
u,�

2
v) are features of each gene

under investigation. Therefore, we present a step-wise procedure to first estimate ⇡⇡⇡ using multiple genes,
and then estimate the cell-type-specific effects ⇥⇥⇥ for each gene.

Estimation of ⇡⇡⇡. The notation in the sections above focuses on individual genes, and here we introduce
additional notation to describe the joint modeling of multiple genes. Let WN⇥G = {wg

i } be the observed
expression of G epithelial cell signature genes in N tissue samples; and SN⇥G = {sgi } and TN⇥G = {tgi } be
the unobserved gene expression levels in epithelial and stromal cells, respectively. Similarly as in Equation
(2), we have:

w
g
i = ⇡is

g
i + (1� ⇡i)t

g
i , g = 1, ..., G, i = 1, ..., N.

Leveraging primarily the mean differences of signature genes in epithelial and stromal cells for estimating
⇡⇡⇡, we model the marginal distributions of individual genes and omit the complex gene-gene correlations for
computationally efficient estimation, as supported by our previous work.[46] Specifically, we assume:

s
g
i ⇠ N(µg

Si,�
g
Si), and t

g
i ⇠ N(µg

T i,�
g
T i).

Across all G genes, the parameters include ��� = {{���g}}Gg=1, where ���g = (µµµg
S ,µµµ

g
T ,�

g
S ,�

g
T ).
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In parallel, we also take advantage of a prior cell-type proportion estimate hi based on existing tools (i.e.
xCell[18] enrichment scores). We link the prior estimates hi to the true ⇡i using a Beta distribution such that
hi ⇠ Beta(⇡i�, (1�⇡i)�) for some positive parameter �. We have E(hi) = ⇡i and var(hi) = ⇡i(1�⇡i)/(�+1)
such that hi is an unbiased estimator of the true ⇡i with variation.

We then join these two models for parameter estimation and solve the following maximization problem:

(⇡̂⇡⇡, �̂��, �̂) = argmax
���,⇡⇡⇡,�

NX

i=1

"
GX

g=1

l(���,⇡i | wg
i ) + l(⇡i, � | hi)

#
,

where
PG

g=1 l(���,⇡i | w
g
i ) and l(⇡i, � | hi) are the log-likelihood of the observed gene expression profile

and cell proportion estimate of the i
th sample, respectively. This optimization problem is solved using an

Expectation-Maximization (EM) algorithm similar to that in Petralia et al.[46]
To enhance the robustness of the estimation, we implement a bagging strategy to estimate the parameters

with randomly selected bootstrap samples, and aggregate multiple estimates by calculating a tail truncated
mean. This bagging strategy further stabilizes the estimates, and may also be used to investigate the
consistency of ⇡⇡⇡ estimation.

Estimation of ���u and ���v. Given b⇡⇡⇡, we next estimate ���u and ���v in Equation (3). Since ui and vi are
unobserved, we integrate Equations (2) and (3) to have:

yi = b⇡i(↵u + xxx
T
i ���u + zzz

T
i ��� + eui) + (1� b⇡i)(↵v + xxx

T
i ���v ++zzzTi ��� + evi). (4)

This equation can be rearranged as:

yi = ↵v + b⇡i(↵u � ↵v) + xxx
T
i ���v + b⇡ixxx

T
i (���u � ���v) + zzz

T
i ��� + ✏i, (5)

where ✏i = b⇡ieui + (1� b⇡i)evi. A simple strategy for estimating ���u and ���v is to apply elastic-net regression
to Equation (5). Specifically, the elastic-net regularization is put on (���v,���u � ���v,���)—the dependence of
expression levels on genetic variants and covariates—but not on (↵v,↵u � ↵v) —the mean expression levels
in the two cell types. We refer to this strategy as MiXcan0.

One issue with MiXcan0 is that the two cell components in the mixture model are not treated in a
symmetric manner. In other words, the penalization on ���u and ���v differs: ���v is shrunk towards zero, while
���u is shrunk towards ���v. This asymmetric penalization results in different models if the order of the two
components is switched. To address this issue, we introduce bci = b⇡i � 0.5 and rewrite Equation (5) as:

yi =
↵u + ↵v

2
+ bci(↵u � ↵v) + xxx

T
i
���u + ���v

2
+ bcixxxT

i (���u � ���v) + zzz
T
i ��� + ✏i. (6)

When fitting elastic-net regression to Equation (6), we include penalties on (���u+���v

2 , (���u � ���v),���), which
impose the same degree of regularization on ���u and ���v: the penalty on ���u+���v

2 regularizes the overall sparsity
of the genetic effects, while the penalty on ���u����v encourages similarities between the two components. We
refer to this strategy as MiXcan.

Note, when fitting elastic-net regressions in MiXcan0 and MiXcan, we do not consider the varying vari-
ances of ✏i as ⇡̂i takes different values. This is because the residual variance structure has limited impact on
the coefficient estimates, especially for regularized regression. In a trade-off between extensive computational
costs (allowing varying residual variances) and minimal sacrifice of estimation accuracy (assuming constant
variance), we chose the latter and take advantage of the fast implementation of elastic-net regression in the
glmnet package.

Model Aggregation. In the prediction models, the term b���u � b���v is of particular importance: a non-zero
value suggests that the dependence structure between genetic variants and expression levels is cell-type-
specific. Therefore, it is critical to know the selection robustness of b���u � b���v. We employ a procedure similar
to stability selection [47] for its evaluation. Specifically, for models that select non-zero b���u� b���v, we generate
B bootstrap samples (e.g. B = 200), perform ordinary least square analysis on the pre-selected variables,
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and record cdiff
(b)

� = b���
(b)

u �b���
(b)

v for b = 1, ..., B. Only when the 95% confidence interval (CI) for cdiff� excludes
0 do we employ cell-type-specific prediction models (inferred using the complete data set). Otherwise, the
same prediction model will be used for both cell types, as in Equation (1) of PrediXcan.

Association analysis with cell-type-specific prediction models

The model building procedure in MiXcan selects cell-type-specific prediction models for some genes and
nonspecific models for other genes. Nonspecific models are the same models as developed in PrediXcan,
and thus can use the existing association strategy. Cell-type-specific prediction models, however, employ
cell-type specific prediction weights, b���u and b���v, to predict expression levels from the genotype data x̃j

(j 2 (1, ...,M)), such that ỹuj = x̃
T
j
b���u and ỹvj = x̃

T
j
b���v. These cell-type-specific expression levels cannot

be combined into tissue levels in GWAS datasets that lack cell-type proportion estimates, requiring a novel
statistical framework for association analysis.

One natural idea is to infer cell-type-specific associations by directly associating the phenotype dj with
ỹuj and ỹvj , either separately, such that g(dj) = ⌘0 + ⌘uỹuj and g(dj) = ⌘

0
0 + ⌘v ỹvj , or jointly, such that

g(dj) = ⌘0 + ⌘uỹuj + ⌘v ỹvj . While appealing, this idea is problematic when using the predicted values. This
is because the ỹuj and ỹvj are predicted from the same genotype data with prediction weights jointly learned
using the bulk tissue data. Model uncertainty is expected, and ỹuj and ỹvj might capture leaked information
from other cell types. As a result, if an association exists in one cell type, analysis in the other cell type may
also capture this association, resulting in an inflated type I error for cell-type-specific association analysis.
To avoid this inflation, we propose a composite hypothesis test of whether any association exists in the tissue:

H0 : There is no association in any cell type in the tissue vs.
HA : There is an association in at least one cell type in the tissue.

This composite null is robust against information leakage, as the leaked values under the null are not
associated with the phenotype. To perform the test, we first associate dj with ỹuj and ỹvj , separately if the
(ỹuj , ỹvj) are highly correlated (e.g. r = ±1), or jointly otherwise. We propose to aggregate the resulting
p-values pu and pv for ỹuj and ỹvj using Cauchy combination.[22] The Cauchy combination aggregates
correlated p-values, and in this setting the test statistic can be written as:

TCauchy = tan{pi(0.5� pu)}+ tan{pi(0.5� pv)},

where pi is the mathematical constant approximately equal to 3.14159. The combined p-value for the tissue
is approximated by:

ptissue ⇡ 1/2� {arctan(TCauchy)}pi.
The ptissue tests whether any association exists in the tissue. Unlike PrediXcan that tests associa-

tions averaged across all cell types, the ptissue in MiXcan accumulates signals from different cell types. In
transcriptome-wide studies, ptissue from genes with cell-type-specific prediction models and p-values from
genes with nonspecific models can be jointly used to adjust for multiple testing, and infer transcriptome-wide
significant discoveries.

Note that pu and pv are building blocks of TCauchy and the resulting ptissue is between pu and pv. After
the tissue-level hypothesis test, pu and pv can provide information on the cell type(s) driving the association.
For example, pu << pv indicates that a significant ptissue is primarily driven by epithelial cells.

Build MiXcan prediction models using GTEx mammary tissue data
MiXcan gene expression prediction models were developed using the GTEx v8 genotype and gene expres-
sion data for mammary tissue samples from 125 European ancestry women (dbGaP accession number
phs000424.v8). PredictDB (http://predictdb.org) provides tissue-level expression prediction models
trained on 337 men and women of European ancestry with mammary tissue data available in GTEx v8.
PredictDB included mammary tissue elastic-net models for a total of 6461 genes that were well predicted
by genetic variants (176,983 SNPs). An additional 1,715 SNPs were included in PredictDB mammary tis-
sue MASHR models.[48] For the purpose of comparison to PrediXcan as a proof of concept, we developed
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cell-type-specific prediction models for these 6461 genes using all 178,698 SNPs in the PredictDB mammary
tissue database. MiXcan cell-type-specific prediction models were developed for mammary epithelial cells,
the cell of origin for breast carcinoma, and stromal (non-epithelial) cells.

⇡⇡⇡ estimation. The epithelial cell proportion ⇡⇡⇡i was estimated using 126 epithelial cell signature genes[18]
available in the training dataset of 125 female mammary tissue samples. We first applied xCell[18] to estimate
enrichment scores for multiple cell types, and then re-scaled the xCell epithelial cell enrichment score to range
from 0 to 1 for use as a prior in MiXcan. The ⇡⇡⇡i estimation was performed using 100 bootstrap samples
(80% random draw with replacement). The final estimate was computed by excluding the most extreme 5%
of bootstrap estimates in each of the two tails and averaging the remaining estimates.

Prediction model. Using b⇡⇡⇡, we modeled the cell-type-specific (or nonspecific) expression levels for each
of the 6461 genes using MiXcan with tuning parameter � selected by 10-fold CV. We adjusted for covariates
that were used in GTEx eQTL analyses including age, platform, PCR, genomic principal components (PC)
1-5, and PEER factors 1-15.[49] For genes with non-zero b���u � b���v, we performed ordinary least squares
regression on the pre-selected variables for 200 bootstrap samples, and calculated the 95% bootstrap CI of
b���u � b���v. If the 95% CI excluded 0, we used cell-type-specific models with parameters estimated using the
full data; otherwise, we used nonspecific models that were the same as PrediXcan.

Evaluate MiXcan prediction accuracy in independent TCGA data
We evaluated the prediction performance of MiXcan in an independent dataset of 103 European ancestry
female breast cancer patients with adjacent normal tissue samples from TCGA.[50, 51] To minimize the study
effect, we re-processed the TCGA gene expression data using methods analogous to those used to process
the GTEx expression data (https://gtexportal.org/home/documentationPage). Briefly, we required
genes to have Transcripts Per Kilobase Million (TPM) > 0.1 in at least 20% of samples, and at least six
reads in at least 20% of samples, resulting in a set of 25,702 out of 25,849 total genes that met these quality
control (QC) requirements. Expression data were then normalized using the trimmed mean of M values
method (TMM)[52] as implemented in the R package edgeR,[53] and the results were quantile-normalized
to a standard normal distribution with mean=0 and variance=1. Comparison of these normalized gene
expression levels showed no systematic differences between the GTEx and TCGA data (Supplementary
Fig. 7). To process the genotype data, we removed all indels, monomorphisms, and ambiguous pairs (e.g.
A/T, C/G). SNPs with > 5% missing genotypes or Hardy–Weinberg equilibrium (HWE) test p-value <
1e-05 were also removed. The remaining SNPs were aligned to build 37 coordinates, and imputation was
performed on the TOPMed imputation server.[54] A total of 97% (54,663 out of 56,531) and 97% (52,031
out 53,876) SNPs used in MiXcan and PrediXcan prediction models were available for analysis.

We estimated the epithelial cell proportion in the TCGA samples as described above, and used this
estimate to combine the predicted cell-type-specific gene expression levels from epithelial and stromal com-
ponents into the tissue level. To evaluate predication accuracy, we computed the Pearson correlation between
the predicted and observed tissue-level gene expression, and compared the results with the predicted tissue-
level expression using PrediXcan. The observed bulk tissue expression levels showed significantly higher
correlation with the tissue-level expression predicted by MiXcan compared with PrediXcan. To investi-
gate the sources of the improved performance, we compared five approaches for predicting tissue-level gene
expression:

• Existing PredictDB elastic-net models (PredictDB)

• PrediXcan trained on the same dataset as MiXcan (PrediXcan)

• Prediction model including interactions between SNPs and the xCell score (xCell interaction)

• Prediction model including interactions between SNPs and the MiXcan cell-type proportion (MiXcan0)

• Cell-type-specific prediction models with symmetric penalization (MiXcan).
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These comparisons evaluated incorporating cell-type composition, use of the MiXcan cell-type proportion
estimate, and symmetric penalization of the two cell types in prediction models, as well as use of a larger
training set including both men and women in PredictDB. It is worth noting that "MiXcan0" and "xCell
interaction" models are not applicable to GWAS datasets that lack cell-type composition information for
the tissue of interest, and are included here only for the purpose of understanding the sources of improved
prediction performance for MiXcan.

Simulation studies
To evaluate the type I error and power of MiXcan association tests, we performed extensive simulation
studies under a broad range of realistic models for the associations of genetic variants with gene expression
(SNP-exp) and gene expression with disease (exp-disease). Mimicking real data, in each simulation, we
generated a training dataset for building the expression prediction models, and a GWAS dataset for testing
the associations of genetically predicted gene expression with disease.

For the training dataset, we simulated 300 bulk tissue samples with observed SNP genotypes and tissue-
level gene expression. We assumed each tissue i 2 (1, ..., 300) was a mixture of two cell types and that the
minor cell type (cell type 1) comprised an average of 40% of the tissue, with proportion ⇡i ⇠ Beta(↵ =
2,� = 3). We further simulated the genotypes of 50 neighboring SNPs xxxi = {x1i, ..., x50i} using the genome
simulator R package sim1000G, with its default reference genome region (chromosome 4) and minor allele
frequency (MAF) range 0.05–0.50. For the expression levels in the two cell types ui and vi, we considered
a linear additive model such that ui = �0 + ���1xxxi + eui and vi = ���2xxxi + evi where eui, evi ⇠ N(0, 1). The
parameter �0 determines the mean expression difference in the two cell types under xxxi = 0, and ���1 and ���2

determine the association patterns between the SNPs X and gene expression level Y in the minor and major
cell types, respectively. Then, the tissue-level gene expression is a weighted average of the expression levels
in the two cell types: yi = ⇡iui + (1� ⇡i)vi.

We considered two SNP-exp settings: Homogeneous SNP-exp Association (���1 = ���2) and Heterogeneous
SNP-exp Association (���1 6= ���2). Under the Homogeneous SNP-exp setting, we randomly selected one genetic
variant p to be associated with expression levels in the two cell types and let �1p = �2p = 2 or -2 with equal
chance. We altered �0 from -5 to 5 to evaluate the impact of the intercept (mean expression difference in
two cell types under xxxi = 0) on TWAS. Under the Heterogeneous SNP-exp setting, we randomly selected
two SNPs p1 6= p2 2 (1, ..., 50) with SNPs p1 and p2 associated with expression levels in the minor and
major cell types, respectively. Similar to the Homogeneous SNP-exp setting, we first evaluated the impact
of the intercept by altering �0 from -5 to 5 while fixing �1p1 at 2 or -2 and �2p2 at 2 or -2 with equal chance.
Second, we altered the magnitude of �1p from 0 to 5 (allowing a random sign with equal chance), while fixing
�0 at 2 and �2p = ±2 to understand the impact of the SNP-exp association strength in the minor cell type.
Third, we altered the magnitude of �2p from 0 to 5 (allowing a random sign with equal chance), while fixing
�0 at 2 and �1p = ±2 to understand the impact of the SNP-exp association strength in the major cell type.
Finally, to evaluate the impact of the sample size of the training dataset, we assessed sample sizes ranging
from 100 to 300, while fixing �0 at 2 and the magnitude of non-zero components of ���1,���2 at 2.

For the GWAS dataset, we simulated 500 samples with observed SNP genotypes and disease status
for testing the associations of predicted gene expression levels with the disease. We assumed that the
unobserved cell-type composition and cell-type-specific gene expression levels in this dataset followed the
same distributions as in the training dataset. Disease risk was simulated using a logistic model, such that
logitP (dj = 1) = ⌘0+ ⌘1uj + ⌘2vj for j 2 (1, ..., 500). The intercept ⌘0 was set so that the disease prevalence
was 50% in the samples. We considered five different settings for ⌘1, ⌘2 to capture the dynamic relationship
between gene expression levels in the two cell types and disease risk:

• No Exp-Disease Association: ⌘1 = ⌘2 = 0, i.e. disease is not associated with the gene expression in
either cell type.

• Homogeneous Exp-Disease Association: ⌘1 = ⌘2 = 0.2, i.e. disease is associated with the gene expression
in both cell types in the same way.
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• Exp-Disease Association in Major Cell : ⌘1 = 0 and ⌘2 = 0.2, i.e. disease is associated with the gene
expression in the major cell type (cell type 2).

• Exp-Disease Association in Minor Cell : ⌘1 = 0.2 and ⌘2 = 0, i.e. disease is associated with the gene
expression in the minor cell type (cell type 1).

• Exp-Disease Association in Opposite Directions: ⌘1 = �0.2 and ⌘2 = 0.2, i.e. disease is associated with
the gene expression in the two cell types in opposite directions.

We compared the prediction accuracy, type I error, and power of MiXcan with PrediXcan, which ignores
cell-type heterogeneity. The performance of MiXcan depends on estimates of the cell type proportion, b⇡i.
To evaluate the impact of misspecifying b⇡i, we let b⇡i = ⇡i + Uniform(�0.05, 0.35) and rescaled it to (0,1),
which resulted in a mean shift of the minor cell type proportion from 40% to 45% and reduced correlation
with the true ⇡i to 0.9. We compared the results of MiXcan, using either the true or misspecified cell type
proportion, with PrediXcan in 200 Monte Carlo simulations.

Apply MiXcan to perform cell-type-specific TWAS of breast cancer
Cell-type-specific TWAS of breast cancer

We performed TWAS of breast cancer risk using GWAS data from the Discovery, Biology, and Risk of Inher-
ited Variants in Breast Cancer (DRIVE) study. Genotype data for 60,014 women (32,438 cases and 27,576
controls) assayed on the Oncoarray[24] were downloaded from dbGaP (phs001265.v1.p1), which provides
excellent coverage of most common variants. After imputation (as described above for TCGA data), 95%
(53,528 out of 56,531) and 95% (51,049 out of 53,876) SNPs used in MiXcan and PrediXcan prediction
models were available for analysis, respectively.

Principle component analysis (PCA) was performed using 20,629 SNPs, after excluding SNPs with a
missing rate above 0.01% and selecting SNPs in approximate linkage equilibrium using PLINK[55] (indep-
pairwise option with window size=50kb, step size=5, r2 threshold=0.05). EIGENSOFT v6.1.4 was used to
compute PCs with the fast mode option enabled, which implements the FastPCA approximation.[56] The
first PC separated individuals of African (e.g. from Nigeria, Uganda and Cameroon) vs. European (e.g.
from Australia) ancestry. In total, 58,648 women (31,716 cases and 26,932 controls) of European ancestry
determined by PCs were included in TWAS analyses.

MiXcan, PrediXcan and PredictDB elastic-net mammary tissue models were applied to the individual-
level genotype data to perform cell-type-specific or tissue-level TWAS, as described above. All three models
were adjusted for the same covariates, including age, country of origin and the top 10 PCs.[15]

Evaluation of TWAS findings

We evaluated significant TWAS genes identified by MiXcan and PrediXcan in a substantially larger study
of 228,951 European ancestry women (122,977 cases and 105,974 controls) from the combined DRIVE and
Breast Cancer Association Consortium (BCAC) GWAS meta-analysis of breast cancer.[11] The summary
statistics for the "Combined Oncoarray, iCOGS GWAS meta analysis" were downloaded from https://bc
ac.ccge.medschl.cam.ac.uk/bcacdata/oncoarray/oncoarray-and-combined-summary-result/gwa
s-summary-results-breast-cancer-risk-2017/. Associations of predicted tissue-level gene expression
with breast cancer risk were evaluated using S-PrediXcan[27] with PredictDB[23] elastic-net models derived
from GTEx v8 mammary tissue data for 337 men and women of European ancestry.

We also determined whether TWAS genes identified by MiXcan and PrediXcan were located within 500
kb of 214 previously reported genome-wide significant breast cancer susceptibility loci.[11, 12, 13]

MiXcan software
We developed a computationally efficient R package MiXcan to facilitate estimation of cell-type-specific
prediction models for genetically regulated gene expression in two cell components of bulk tissue data, and
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to perform cell-type-specific TWAS. The MiXcan R package, and pre-trained models for the epithelial and
stromal (non-epithelial) cell components of mammary tissue derived from 125 European ancestry women in
GTEx v8 are freely available at https://github.com/songxiaoyu/MiXcan.
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Supplementary Figures 
 

 
 
Supplementary Figure 1. Epithelial cell proportion estimates.  The MiXcan epithelial cell 
proportion and xCell epithelial cell enrichment score were estimated in normal mammary tissue 
samples from European ancestry women in GTEx (N=125) and TCGA (N=103).  The estimated 
xCell score and MiXcan proportion were highly correlated in both the GTEx (a) and TCGA (c) 
samples.  Overall, the MiXcan proportion was more highly correlated than the xCell score with 
the measured expression levels of 126 genes in the xCell epithelial cell gene signature, and the 
correlations were significant in both the GTEx (b) and TCGA (d) samples. 
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Supplementary Figure 2. Gene expression prediction accuracy in independent validation 
dataset.  Correlation of true and predicted tissue-level gene expression was evaluated for 6461 
genes in an independent dataset of adjacent normal mammary tissue samples from 103 
European ancestry women with breast cancer in TCGA.  The PredictDB (median r=0.12) 
database includes the tissue-level gene expression prediction weights for elastic net models 
trained using mammary tissue samples from 337 European ancestry men and women in GTEx 
v8.  PrediXcan (median r=0.10) uses the same approach as PredictDB but is trained only on the 
subset of 125 European ancestry women used to train the other prediction methods.  xCell 
Interaction (median r=0.20) is an elastic net model that includes interactions between genetic 
variants and the xCell epithelial cell enrichment score.  MiXcan0 (median r=0.38) is an elastic 
net model that includes interactions between genetic variants and the estimated epithelial cell 
proportion.  MiXcan (median r=0.41) is the final symmetric penalization approach for estimating 
epithelial and stromal cell models that can be applied to GWAS datasets without cell-type 
proportion information. 
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Supplementary Figure 3. Simulation studies to evaluate gene expression prediction 
accuracy.  Correlation of true and predicted tissue-level gene expression using the MiXcan or 
PrediXcan approaches in independent test sets (N=500) simulated under a range of realistic 
data scenarios as shown in Figure 3.  
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Supplementary Figure 4. Simulation studies to assess cell-type-specific associations.  
Type I error and power of MiXcan to detect cell-type-specific associations of gene expression 
with the disease in the minor and major cell types when the cell-type proportion is accurately 
estimated. Independent test sets (N=500) were simulated under a range of realistic data 
scenarios as shown in Figure 3. 
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Supplementary Figure 5. Simulation studies to assess the impact of the training data 
sample size.  Type I error and power of the MiXcan or PrediXcan approaches trained using 
100-300 samples were evaluated in independent test sets (N=500) simulated under a range of 
realistic data scenarios as shown in Figure 3. 
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Supplementary Figure 6. Transcriptome-wide association studies.  Genes significantly 
associated with breast cancer using PredictDB, PrediXcan, and MiXcan at P < 7.7 × 10-6 
applying a Bonferroni correction for the 6461 genes tested in 31,716 breast cancer cases and 
26,932 controls of European ancestry from the DRIVE study (dbGaP phs001265.v1.p1).  The 
PredictDB elastic net models were trained using mammary tissue samples from 337 men and 
women, whereas PrediXcan and MiXcan were trained using only 125 women of European 
ancestry in GTEx v8. 
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Supplementary Figure 7. Heatmap of mammary tissue gene expression levels.  There 
were no systematic differences between the normalized gene expression levels for 6421 genes 
present in both the GTEx (N=125) and TCGA (N=103) normal mammary tissue datasets, which 
were used for training and independent validation, respectively. 
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