

1 Neonate personality affects early-life resource
2 acquisition in a large social mammal

3

4 Bawan Amin^{*1}, Dómhnaill J. Jennings², Alison Norman¹, Andrew Ryan¹, Vasiliki Ioannidis¹, Alice
5 Magee¹, Hayley-Anne Haughey¹, Amy Haigh¹, Simone Ciuti¹

6

7 ¹Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science,
8 University College Dublin, Dublin, Ireland

9 ²School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom

10

11 *Correspondence: bawan.amin@ucdconnect.ie

12 **Abstract**

13 Current debate in the field of animal personality revolves around whether personality is reflecting
14 individual differences in resource allocation or acquisition. Despite the large body of literature, the
15 proximate relationships between personality, resource allocation, and acquisition are still unclear,
16 especially during early stages of development. Here we studied how among-individual differences in
17 behaviour develop over the first 6 months of life, and their potential association with resource
18 acquisition in a free-ranging population of fallow deer (*Dama dama*). We related proxies of neonate
19 personality – i.e. neonate physiological (heart rate) and behavioural (latency to leave at release)
20 anti-predator responses to human handling – to the proportion of time fawns allocated to scanning
21 during their first summer and autumn of life. We then investigated whether there was a trade-off
22 between scanning time and foraging time in these juveniles, and how it developed over their first 6
23 months of life. We found that neonates with longer latencies at capture (i.e. risk-takers) allocated
24 less time scanning their environment, but that this relationship was only present when fawns were
25 3-6 months old during autumn, but not when fawns were only 1-2 months old during summer. We
26 also found that time spent scanning was negatively related to time spent foraging – a relationship
27 rarely tested in juveniles of large mammals - and that this relationship becomes stronger over time,
28 as fawns gradually switch from a nutrition rich (milk) to a nutrition poor (grass) diet. Our results
29 highlight a potential mechanistic pathway in which neonate personality may drive differences in
30 early-life resource acquisition, through allocation, of a large social mammal.

31

32

33 **Keywords** Temperament, anti-predator, foraging, fallow deer, juvenile, vigilance, coping

34

35

36 **Author Contributions**

37 BA, DJJ and SC conceived the ideas and designed methodology; BA, AN, AR, VI, AM, HAH and AH
38 collected the data; AN, AM and HAH carried out the data scoring; BA and SC analysed the data; BA
39 wrote the manuscript, revised by DJJ and SC. All authors contributed critically to the drafts and gave
40 final approval for publication.

41

42 **Acknowledgements**

43 We thank the Office of Public Works (OPW), Ireland, for funding (grant no. R18625) and support. We
44 extend a special thanks to Margaret Gormley (Chief Parks Superintendent), Paul McDonnell (Parks
45 Superintendent), Maurice Cleary, Terry Moore, each of the OPW rangers, and the extended OPW
46 staff in Phoenix Park – this study would not have been possible without them. We thank the School
47 of Biology and Environmental Sciences (SBES) in University College Dublin (UCD) for co-funding this
48 project. We like to thank Pippa-Jordan Faull, Sanne Fennema, May Higgins, Órla Heussaff, Ruairí
49 O’Dea, Julia Evans, Kate Toland, Anthony Legeard and Sarah Keenen for their assistance in the field.
50 The funders had no role in study design, data collection and analysis, decision to publish, or
51 preparation of the manuscript. We declare that none of the authors have a conflict of interest.

52

53 **Data availability statement**

54 Data and code (in R-Markdown format) will be published on Dryad upon acceptance and are already
55 available as attachments to the editor and reviewers.

56

57 **Introduction**

58

59 Individuals tend to differ in their average behaviour and these among-individual differences, when
60 consistent over time and across context (i.e. “animal personality”), have been shown to play an
61 important role in ecology and evolution (Wolf & Weissing, 2012). Current theory such as the
62 extended pace-of-life syndrome hypothesis (POLS) suggests that among-individual differences in
63 behaviour mediate within-species differences in life-history strategies on a fast-slow continuum
64 (Réale et al., 2010). Within this framework, behaviour, physiology and life-history are expected to
65 covary. Individuals with a faster pace-of-life (POL) are expected to be bolder, more active, and to
66 allocate more resources to growth and short-term reproduction than individuals with a slower POL
67 (Réale et al., 2010). This increased resource allocation in current growth or reproduction is predicted
68 to come at the cost of survival: animals with a faster POL are expected to have a shorter lifespan
69 relative to those with a slower POL (Réale et al., 2010).

70 Over the last decade, empirical research has not provided conclusive results for the main
71 predictions of POLS (Laskowski et al., 2021; Moiron et al., 2020; Royauté et al., 2018), suggesting
72 that there is a greater complexity than expected in the covariation between behaviour and life-
73 history. Recently, Laskowski et al. (2021) suggested that such a covariance may vary depending on
74 the interaction between among-individual variation in behaviour and actual resource acquisition. If
75 among-individual variation in behaviour is closely related to resource acquisition, with bolder
76 animals gaining even more resources than shyer ones, then the trade-off between survival, current
77 growth and reproduction may be weakened or even disappear (Laskowski et al., 2021). This is also
78 what recent meta-analyses seem to suggest (Moiron et al., 2020; Haave-Audet et al., 2021). Neither
79 of these meta-analyses found support of resource allocation as main driver of individual variation,
80 suggesting that resource acquisition may instead be the main driver of among-individual variation
81 (Haave-Audet et al., 2021).

82

Additional complexity, often leading to contrasting evidence in animal personality science, is associated with changes of behaviour over different life-stages (Stamps & Groothuis, 2010; Cabrera et al., 2021). Although there is clear evidence that individuals behave in a consistent way within life-stages, including the earliest stages of life (Amin et al., 2016; Fucikova et al., 2009; Guenther & Trillmich, 2015; Dhellemmes et al., 2020), the same cannot be said of individual consistency across different life-stages (see Cabrera et al., 2021 for a review and references therein). Furthermore, the limited number of studies that have investigated among-individual differences across life-stages have either done so on captive populations (Wuerz & Krüger, 2015; Neave et al., 2020; Favati et al., 2016), or have measured behaviour only during capture (Class & Brommer, 2015; Petelle et al., 2013) or within artificial settings (Kelley et al., 2015; Hall et al., 2015). There is a paucity of studies that have investigated whether these traits measured in controlled settings are actually related to life history in the wild (Niemelä & Dingemanse, 2014).

Consequently, the relationship between animal personality and life history related traits during early stages of maturation and development in a wild setting has yet to be tested. To address this shortcoming, we tested whether repeatable among-individual differences were associated with behavioural strategies affecting early-life resource acquisition in a free-living population of fallow deer fawns (*Dama dama*). These were monitored from birth to 6 months, through the key transition from solitary to group-living life. Fallow deer are a hider species (Lent, 1974): fawns experience a solitary life during their first 2-4 weeks of life remaining hidden in vegetation while occasionally being visited by their mother for maternal care (Chapman & Chapman 1997). We recently showed that repeatable among-individual differences are present during the first days of life in this population (Amin et al., 2021). Some neonates display repeatable active responses – i.e. elevated heart rates and short latency to leave when released - whereas other neonates are bolder and less risk averse – i.e. they maintain low heart rates during human handling and have longer latencies to leave once released (Amin et al., 2021).

108 A few weeks after birth, most fawns make the transition from a solitary life to a group-living
109 one and they join the female herd with their mothers, gradually shifting from a milk-based diet to a
110 fully independent herbivorous diet (Chapman & Chapman 1997). When they join the main herd with
111 their mothers, fawns are expected to trade-off their time budgets, as typical for herbivores, between
112 anti-predator behaviour, i.e. scanning the landscape for potential threats, and resource acquisition,
113 i.e. foraging (Sih, 1980; Lima, 1987; Bachmann, 1993). Simulations have recently shown that
114 scanning dictates the amount of resources acquired and not vice versa (Sirot et al., 2021). Since
115 bolder individuals are predicted to spend less time scanning (Bergvall et al., 2011; Uchida et al.,
116 2019), scanning behaviour could act as a feature of personality that in turn dictates resource
117 acquisition. By allocating less time in scanning, individuals may be able to increase resource
118 acquisition. Shedding light on these relationships will therefore provide a mechanism in which
119 personality, through allocation, explains resource acquisition during the early stages of
120 independence in juveniles.

121 Here we tested whether neonate personality of fallow deer fawns, recorded during their
122 hider phase, is related to the time they allocate to scanning while living in a group, during their first
123 6 months of life. In order to do that, we first tested whether scanning times were repeatable
124 between individuals. Our main hypothesis then was that among-individual differences in neonate
125 traits would be covary with among-individual differences in scanning time. Specifically, we predicted
126 that animals who react more boldly at capture, i.e. lower heart rates and longer latencies, also
127 behave more boldly while in the herd, i.e. spend less time scanning. We then tested whether time
128 spent scanning is inversely related to foraging time, our proxy for resource acquisition. Although this
129 relationship is fairly clear in adults across vertebrates (Caro, 2005), juveniles have been shown to
130 scan the environments less than adults in several bird and mammal species (see Caro, 2005 for a
131 review), and could therefore also differ in their time budget trade-offs. We predicted that the trade-
132 off between scanning and foraging would be present in fawns, and furthermore, that it would

133 increase in strength when fawns grow older as they switch from a maternally provisioned nutrition
134 rich (i.e. milk) to a nutritionally poorer (i.e. grazer) diet (Arenz & Leger, 2000).

135

136

137 **Methods**

138

139 *Study site and study population*

140

141 This study was conducted on a population of European fallow deer resident in the Phoenix Park, a 7
142 km² enclosed park located near the centre of Dublin, Ireland (53.3559° N, 6.3298° W). Vegetation in
143 the park is predominately open grassland (~80%) with the remaining area composed by mixed
144 woodland. Our study population of deer was estimated to be over 600 individuals over the course of
145 this study (late summer estimates after the fawning). The majority of fawns are born from early June
146 to early July. Fallow deer are a hider species and fawns remain hidden, usually in tall grass or
147 understory vegetation, away from the main doe herd during the first two-three weeks of life
148 following which they are brought into the doe herd by their mothers (Chapman & Chapman, 1997;
149 Ciuti et al., 2006). The only natural predator present in the park is the red fox (*Vulpes vulpes*),
150 although fawns are also occasionally preyed upon by unleashed domestic dogs (*Canis lupus*
151 *familiaris*). Deer are culled annually by professional stalkers over the winter period as part of the
152 population management led by the Office of Public Works.

153

154

155 *Neonate captures*

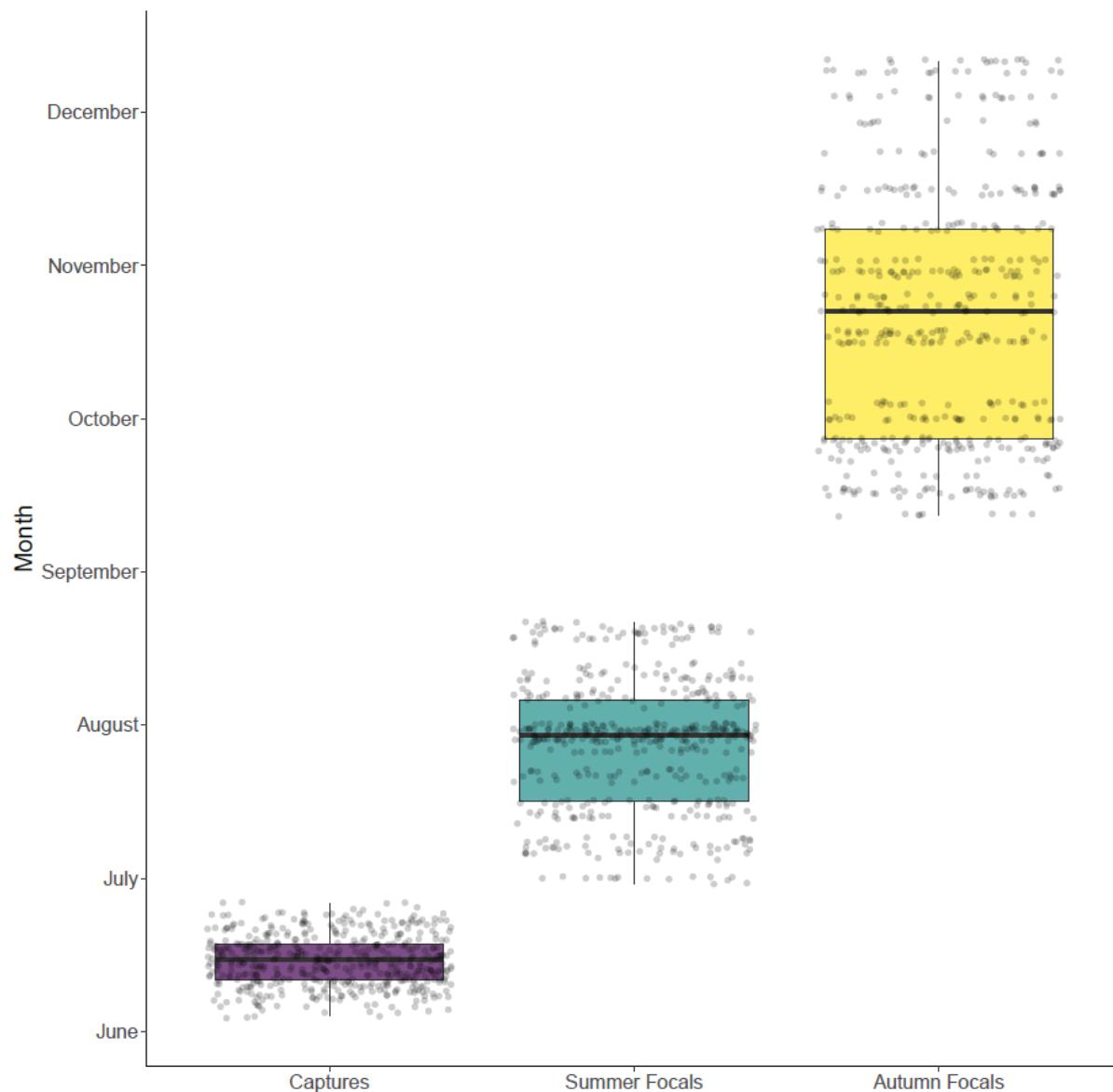
156

157 Fawns have routinely been captured and ear-tagged with unique numbered and coloured plastic
158 tags (Allflex medium, Mullinahone Co-op, Ireland) since the early 1970's as part of the monitoring

159 and management of the herd (Hayden et al. 1992). Fawns were located by patrolling geographical
160 areas traditionally used by does as fawning sites daily in June, when the majority of the births
161 happen. Using fishing nets (1-1.5m diameter; various brands), we located and tagged a total of 185
162 fawns over two consecutive years (n = 102 in 2018, n = 83 in 2019), of which 91 were recaptured
163 once (n = 43 in 2018, n = 48 in 2019), 33 twice (n = 14 in 2018, n = 19 in 2019), and 9 three times or
164 more (n = 4 in 2018, n = 5 in 2019). We recorded the following confounding variables which have
165 been shown to affect neonatal response to handling (Amin et al. 2021): weight (in kg) was measured
166 using a digital scale by laying the fawn in a 100-litre bag (resolution: 0.01 kg – Dario
167 Markenartikelvertrieb, Hamburg, Germany); air temperature was measured at the bed-site location
168 using a digital thermometer (Grandbeing, China). We quantified the behaviour of the fawn prior to
169 capture (prior behaviour) by recording whether the fawn was in motion (yes = 1, no = 0), turned its
170 head to look around (yes = 1, no = 0), kept its head up or down (up = 1, down = 0), had its ears up or
171 down (up = 1, down = 0), was down but got up (yes = 1, no = 0), and attempted to run away (yes = 1,
172 no = 0). We took the mean of all these scores as a measure of prior behaviour, where 1 indicated the
173 most active behaviour and 0 the least active behaviour (*sensu* Amin et al., 2021).

174 Directly relevant to this study, we selected a physiological trait (heart rates prior to release,
175 i.e. a physiological response of fawns to human handling) and a behavioural trait (latency to leave
176 upon release), both shown to be repeatable at the among-individual level previously (Amin et al.,
177 2021). Heart rates were taken directly before the weighting of the fawns and quantified by counting
178 the number of beats per 20 seconds using a Lightweight Dual Head Stethoscope (MDF®, California,
179 USA). The latency to leave (in seconds) on release was defined as the time it took the fawn to stand
180 up after opening the weighing bag. We took 10 seconds as the maximum value and assigned that to
181 individuals that had not moved before then (Amin et al., 2021).

182


183

184 *Focal observation in the herd*

185

186 Time budgets were computed from focal sampling during summer and autumn in each year.
187 Summer data collection took place in July and August of each year when newborn fawns join the
188 female herd for the first time. Although the timing of emergence into the herd can be variable
189 between individuals, most fawns make their first appearances in the herd in the summer months
190 (See Supplementary S1). Autumn data collection took place from mid-September until early
191 December, overlapping with the rutting season. The temporal overview of the different data
192 collection periods is displayed in Fig.1.

193

194

195 **Fig 1:** A temporal overview of the different data collection periods in 2018 and 2019, which were the
196 neonate captures and the focal observations taken in summer and autumn. Jittered points indicate
197 individual observations.

198

199 Observations were taken between 09.00-17.00 hours, generally in dry weather with high
200 visibility. Focal subjects were observed using a spotting scope, at a distance no closer than 50 m,
201 allowing the observer to maintain their distance and minimize their impact on the fawns' behaviour.
202 Sampling of the focal individuals was random, with a priori determined rotation system used to find
203 and sample most fawns available in the herd. We walked through the female day range and
204 identified and selected a social group with active, non-resting fawns. A group was defined as
205 multiple clustered individuals that were within 50 m of each other. If a group included multiple
206 active fawns, we selected the focal individual randomly. At the start of the observation, we recorded
207 the total number of deer in that group. Groups were loosely aggregated, with constant fission-fusion
208 throughout the day. The fawn was continuously observed for up to 25 minutes. Focals were often
209 ended early due to fawns moving out of sight, i.e. laying down in the long grass, entering a traveling
210 bout with the group, or a major herd disturbance. The fawn's behaviour during this period was
211 recorded on a Dictaphone (Olympus VN-540PC) and transcribed later. The mean observation
212 duration, excluding time out of sight, was 3.74 (SD = 3.97) minutes for the summer and 7.66 (SD =
213 5.81) minutes for the autumn season.

214 For each focal observation, we recorded the fawn's position in the group at the start and
215 end, based on the number of deer between the fawn and the edge of the group. This ranged from 0
216 to 3, with 0 being the fawn at the outermost edge of the herd, and 3 being three or more deer
217 between the fawn and edge of the herd. We did so in order to account for potentially increased
218 scanning rates of individuals observed at the edge of a group (Caro, 2005). As a measure of human
219 disturbance – and its potential effect on scanning rates (Ciuti et al., 2012), we also recorded the total
220 amount of park visitors within a 50 m radius of the focal fawn during the observation. Once all active

221 fawns in a herd had been recorded, the observers moved on and another herd was selected. We
222 avoided resampling the same fawns during the same session, unless the first observation was very
223 short (< 2 minutes). Initially, fawns were chosen at random. As more focals were obtained, fawns
224 were chosen more selectively, prioritizing individuals with a lesser number of observations. In total,
225 we collected 477 focal observations on 137 fawns during summer and 430 focal observations on 145
226 fawns during autumn, making up a total of 907 focal observations with a total cumulative duration
227 of 84.6 hours.

228 Time budgets were extracted from the audio recordings using Jwatcher (Version 1.0)
229 software. Twenty-six behaviours were recorded, a full description of each behaviour can be found in
230 Table S1. Proportion of time spent on each behaviour was calculated from the total time of each
231 observation, excluding time spent out of sight. Proportion of time spent scanning, defined as
232 standing still with the head above the shoulder height, was used as a measure of scanning time. We
233 accumulated the time spent scanning while chewing and without chewing, since it was difficult to
234 distinguish the two behaviours in the field. Proportion of time spent foraging was calculated by
235 combining the proportions of time spent grazing, defined as unselectively feeding on grass and
236 ground vegetation with the head below the shoulders, and browsing, defined as selectively feeding
237 on leaves, bark and top of plants (see Supplementary ST1 for full definitions).

238

239 *Ethical note*

240 Captures and handling were carried out giving the highest priority to animal welfare. Fawns that
241 were evidently newborn (a fully wet coat) were not captured and in such instances, we abandoned
242 searches in that area to avoid disturbing the fawn. Gloves were always worn during handling to
243 prevent transfer of human odours to the fawn (Galli et al, 2008). We operated in silence during
244 animal handling and left the bed-site immediately after the release of the fawn. Fawns were
245 released in a location adjacent to the capture site and facing in a direction away from the capture
246 team. The capture, handling, tagging and sampling of fawns was supervised by a certified and

247 experienced wildlife biologist. Regular monitoring of the tagging regime has shown there are no
248 survival implications in this population (see also Hayden et al., 1992). The focal data collection was
249 observational: observers kept a minimum distance of 50m from the deer to avoid disturbing their
250 behaviour. The study protocol and all research procedures were approved by the Animal Research
251 Ethics Committee (University College Dublin) under permit number AREC-E-18-28. All methods were
252 in accordance with the Guidelines for the treatment of animals in behavioural research and teaching
253 (Animal Behaviour, 2020).

254

255 *Statistical Analysis*

256 All analyses were conducted using R 3.5.1 (R Core Team, 2020). To give a general overview of the
257 analyses expanded upon below, repeatability of scanning and the covariance between neonate traits
258 and time spent scanning were examined using bivariate mixed effect models (Houslay & Wilson,
259 2017). We then analysed the trade-off between scanning and foraging using univariate mixed-effect
260 models. All response variables and numerical explanatory variables were scaled prior to analysis,
261 such that each variable was centred at their mean value and standardised to units of 1 phenotypic
262 standard deviation. This has been recommended to improve model convergence and result
263 interpretation (Houslay & Wilson, 2017). Full details of the statistical analysis are provided below in
264 the subsections.

265

266 *Neonate traits at capture and scanning time*

267 To estimate the repeatability of and the among-individual covariation between the neonate traits at
268 capture (heart rate and latency to leave) and scanning time while in the herd (in summer and
269 autumn separately), we used multivariate mixed models, under a Bayesian MCMC framework, which
270 are regarded as the state-of-the-art method for personality research (Houslay & Wilson, 2017;

271 Dingemanse & Wright, 2020; Hertel et al., 2020). Multivariate mixed models were fitted via the
272 *MCMCglmm*-package (Hadfield, 2010). To determine whether either heart rate or latency to leave at
273 capture were correlated with scanning behaviour, we fitted four separate bivariate mixed models.
274 Two of the models had heart rate and scanning time as response variables, one model for the
275 summer period and the other for the autumn period. The other two models had latency to leave and
276 scanning time as response variables, with also one model for the summer period and one model for
277 the autumn period. Within-individual covariation between the two responses of each bivariate
278 model were set to 0, since the two responses within each model were not measured at the same
279 time (see Hadfield, 2010). Correlation coefficients at the among-individual level (r_i) and repeatability
280 estimates, along with their 95% credible intervals, were computed following Houslay & Wilson
281 (2017). In all models, Fawn ID was included as random intercept. For each bivariate model, we
282 included only individuals that had at least one datapoint per response variable. We also omitted
283 rows with missing values in any of the explanatory variables from the analysis.

284 In all cases we used a weakly informative prior ($R = list(V = diag(2), nu = 0.002; G = list(G1 =$
285 $list(V = diag(2), nu = 1.002))$). The neonate response variables (heart rate and latency to leave) were
286 log-transformed prior to analysis to improve model fit and meet model assumptions regarding the
287 gaussian distribution of errors. The scanning time response variable was in all cases logit-
288 transformed, i.e. $\log(y/[1 - y])$, as suggested by Warton & Hui (2011). Since the logit of 0 and 1
289 translate to $-\infty$ and ∞ , we added the smallest non-zero value to both the numerator and
290 denominator of the logit equation (Warton & Hui, 2011). We used *a priori* model structures for each
291 response variable, which in the case of the neonate capture traits were based on a previous study
292 (Amin et al., 2021). In the case of scanning time, we included explanatory variables that contained
293 information on the context of each observation, where we included both the linear and quadratic
294 terms for all the numerical explanatory variables to allow non-linear effects. To avoid overfitting of
295 the model, we simplified the full model by only removing the quadratic term of a variable when

296 pMCMC>0.1. The final model structures for each model are given in Table 1 and Table 2, where the
297 columns indicate the response variables and the rows the explanatory variables.

298 All MCMC-chains were run for a total length of 1,050,000 iterations, with a thinning of 500
299 and a burnin of the first 50,000 iterations, leading to a total of 2,000 saved iterations. Model
300 convergence was checked by running 4 separate chains for each bivariate model and calculating the
301 multivariate scale reduction factor (Brooks & Gelman, 1998), which never exceeded 1.1. We also
302 visually inspected the chains, ensuring that every parameter had an effective sample size of at least
303 1,000, and the autocorrelation of the posterior means and variances. From these, we concluded that
304 the chains had converged properly and had negligible autocorrelations. Inferences concerning each
305 of the correlations were made based on the posterior mean and the highest posterior density
306 interval. We considered a relationship to be meaningful if less than 5% of the posterior distribution
307 crossed zero (Allen et al., 2017; Jennings et al., 2018). To visualise the relationships between the
308 responses of the bivariate, we extracted the posterior means of the random intercepts (BLUPs;
309 Houslay & Wilson 2017). Full details on the bivariate models, including all the code, model
310 summaries and model diagnostics are given as supplementary material (Supplementary S2).

311

312 *Trade-off between scanning and foraging*

313 To investigate the possible trade-off between scanning and foraging in young fawns and the possible
314 change over ontogeny, we fitted a linear mixed-effect model (*lme4* package, Bates et al. 2015). Time
315 spent scanning and time spent foraging were quantified as proportions of total time, which were
316 then logit-transformed (Warton & Hui, 2011). Since scanning is proposed to be driving resource
317 acquisition (Sirot et al., 2021), we used foraging time as our response variable and scanning time as
318 explanatory variable. To investigate change over time, we included the day of the year as a
319 numerical explanatory variable, along with its interaction with scanning time. We included the
320 quadratic terms of scanning time and day of the year to allow for non-linear effects. Finally, to

321 correct for the effect of observation length on our estimates of foraging behaviour (see sensitivity
322 analysis below; supplementary S3), we also included the duration of each observation as an
323 explanatory variable. The predicted model effect following from this model was visualized using the
324 *effects*-package with 95% marginal confidence intervals (Fox & Weisberg, 2018; 2019).

325

326 *Sensitivity analysis*

327 Initially, we aimed to include foraging time as a response variable in our bivariate models as well, in
328 addition to scanning time and the neonate response variables, to investigate the relationship
329 between neonate personality and resource acquisition directly. Prior to running our bivariate
330 models, however, we investigated the stability of foraging time and scanning time estimates over
331 different observation lengths. This was done because very short observations may produce biased
332 time budgets (Childress and Lung, 2003). For that purpose, we ran a sensitivity analysis
333 (Supplementary S3). From the sensitivity analysis we concluded that foraging time was strongly
334 affected by observation length and failed to stabilise even with increasing observation lengths. We
335 therefore decided not to include foraging time as a response variable in our bivariate models, which
336 we use to estimate among-individual covariation. Scanning time, on the other hand, was relatively
337 robust and, especially in autumn, barely affected by observation length. There was some minor
338 underestimation of scanning time for very short observations, mainly during summer, and we
339 therefore included observation length as an explanatory variable in our bivariate models for
340 scanning time.

341

342 **Table 1:** Structure and output of the final bivariate models (MCMCglmm) used for the analysis of
 343 the among-individual covariation between heart rate at capture and time spent scanning in the
 344 summer (*Heart rate-scanning summer model*) as well the covariation between latency to leave at
 345 capture and time spent scanning in the summer (*Latency-scanning summer model*). Posterior means
 346 with their associated 95% Credible Intervals of each of the explanatory variables (rows) included are
 347 given. Empty cells indicate that the explanatory variable was not included in the model for the
 348 respective response variables (model structures for the neonate traits defined by Amin et al. 2021).
 349 The position in the herd was not taken during the summer of 2018 and therefore, left out of the two
 350 models that were used for the summer season.

Variable	Posterior mean [95% CrI]			
	Heart rate-scanning summer model		Latency-scanning summer model	
	Heart rate	Scanning (summer)	Latency	Scanning (summer)
Intercept	-0.164 [-0.356, 0.061]	0.033 [-0.153, 0.216]	-0.649 [-1.305, -0.093]	0.030 [-0.142, 0.209]
Prior behaviour	0.087 [0.007, 0.163]		-0.127 [-0.198, -0.051]	
Prior behaviour ²	-0.069 [-0.147, 0.012]			
Weight	0.220 [0.144, 0.301]		-0.142 [-0.218, -0.056]	
Weight ²	0.033 [-0.039, 0.109]		0.064 [-0.004, 0.136]	
Year (2019)			0.099 [-0.154, 0.372]	
Capture			-0.172 [-0.330, -0.031]	
Time of day	0.127 [-0.002, 0.245]	-0.159 [-0.252, -0.060]		-0.164 [-0.264, -0.072]
Time of day ²	-0.000 [-0.102, 0.105]			
Air temperature	0.080 [0.004, 0.154]			
Sex (m)	0.238 [-0.011, 0.501]	-0.319 [-0.555, -0.115]		-0.308 [-0.522, -0.087]
Season (2018)		-0.421 [-0.653, -0.176]		-0.418 [-0.658, -0.191]
Number of people		0.072 [-0.001, 0.150]		0.073 [-0.005, 0.151]
Group size		0.088 [0.003, 0.163]		0.088 [0.004, 0.159]
Birthday (in days)		0.031 [-0.054, 0.118]		0.027 [-0.057, 0.115]
Days since emergence		-0.267 [-0.399, -0.125]		-0.265 [-0.404, -0.135]
Observation length (ms)		0.159 [0.078, 0.247]		0.160 [0.071, 0.241]
Observation length (ms) ²		-0.173 [-0.256, -0.092]		-0.175 [-0.249, -0.093]

351

352

353 **Table 2:** Structure and output of the final bivariate models (MCMCglmm) used for the analysis of the
 354 among-individual covariation between heart rate at capture and time spent scanning in the autumn
 355 (*Heart rate-scanning autumn model*) as well the covariation between latency to leave at capture and
 356 time spent scanning in the autumn (*Latency-scanning autumn model*). Posterior means with their
 357 associated 95% Credible Intervals of each of the explanatory variables (rows) included are given.
 358 Empty cells indicate that the explanatory variable was not included in the model for the respective
 359 response variables (model structure for neonate traits defined by Amin et al. 2021).

Variable	Posterior mean [95% CrI]			
	Heart rate-scanning autumn model		Latency-scanning autumn model	
	Heart rate	Scanning (autumn)	Latency	Scanning (autumn)
Intercept	-0.145 [-0.342, 0.049]	-0.036 [-0.253, 0.186]	-0.969 [-1.554, -0.450]	-0.033 [-0.245, 0.193]
Prior behaviour	0.093 [0.021, 0.179]		-0.135 [-0.214, -0.060]	
Prior behaviour ²	-0.041 [-0.128, 0.040]			
Weight	0.188 [0.112, 0.273]		-0.087 [-0.178, -0.004]	
Weight ²	0.034 [-0.049, 0.106]		0.066 [-0.008, 0.142]	
Year (2019)			0.139 [-0.127, 0.399]	
Capture			-0.249 [-0.391, -0.107]	
Time of day	0.117 [-0.000, 0.239]	-0.148 [-0.252, -0.043]		-0.146 [-0.253, -0.044]
Time of day ²	0.016 [-0.115, 0.129]			
Air temperature	0.079 [-0.001, 0.155]			
Sex (m)	0.221 [-0.024, 0.485]	-0.077 [-0.306, 0.154]		-0.083 [-0.313, 0.116]
Season (2018)		0.304 [0.063, 0.566]		0.295 [0.056, 0.550]
Number of people		0.048 [-0.031, 0.119]		0.050 [-0.024, 0.123]
Group size		0.050 [-0.033, 0.129]		0.054 [-0.027, 0.130]
Group size ²		0.075 [-0.003, 0.159]		0.074 [-0.010, 0.153]
Birthday (in days)		-0.004 [-0.097, 0.081]		-0.010 [-0.097, 0.077]
Position in the herd		0.039 [-0.037, 0.121]		0.035 [-0.041, 0.113]
Position in the herd ²		0.089 [0.003, 0.169]		0.088 [0.005, 0.172]
Days since emergence		-0.238 [-0.369, -0.104]		-0.238 [-0.366, -0.115]
Observation length (ms)		0.013 [-0.081, 0.110]		0.022 [-0.079, 0.118]

361 **Results**

362

363 *Neonate traits at capture and scanning time*

364 Both neonate traits measured at capture were found to be repeatable among individuals (heart rate:

365 $R = 0.35$, 95% CrI [0.18, 0.51], $N = 145$ individual fawns; latency to leave: $R = 0.33$, 95% CrI [0.17,

366 0.48], $N = 145$). The proportion of time that fawns spent scanning was also repeatable among

367 individuals, in both summer as well as autumn (summer: $R = 0.12$, 95% CrI [0.06, 0.18], $N = 137$;

368 autumn: $R = 0.17$, 95% CrI [0.09, 0.25], $N = 145$). The posterior means and 95% CI of the explanatory

369 variables used for estimating repeatability and among-individual covariance between neonate traits

370 at capture and time spent scanning are given in Table 1 (summer models) and Table 2 (autumn

371 models). We found no meaningful relationship between heart rates and scanning time in summer

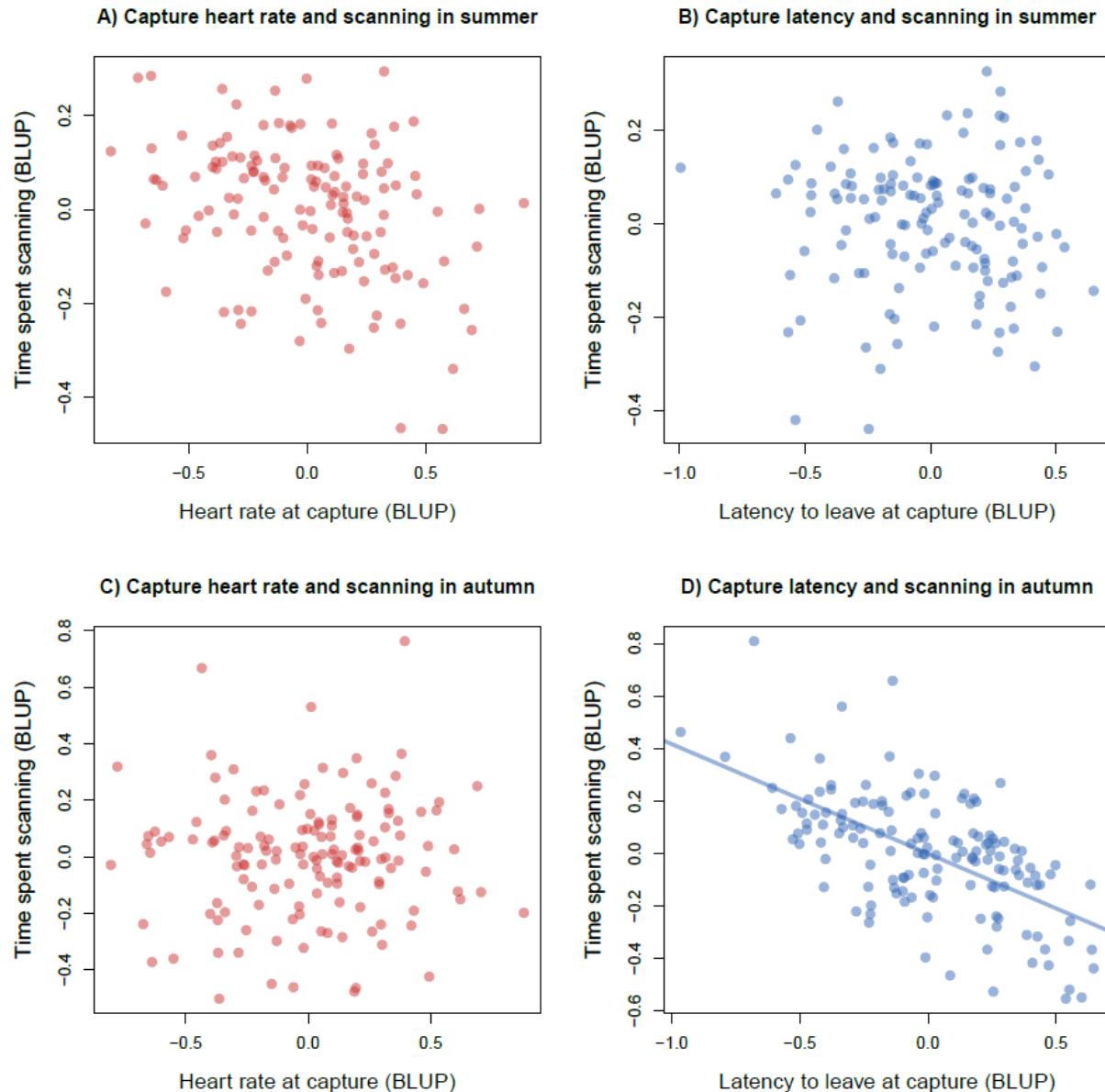
372 nor in autumn (Table 3; Fig. 2A; 2C). There was also no clear pattern between latency to leave and

373 scanning time in the summer (Table 3; Fig. 2B). In autumn, however, we did find a meaningful

374 negative relationship between latency to leave and scanning time. Individuals with higher latencies

375 to leave as neonates in June spent less time scanning their environment in autumn (Table 3; Fig. 2D).

376


377 **Table 3:** Correlations between different traits, at the among-individual level, extracted from

378 bivariate models. Correlations displayed in bold indicate statistically meaningful effects.

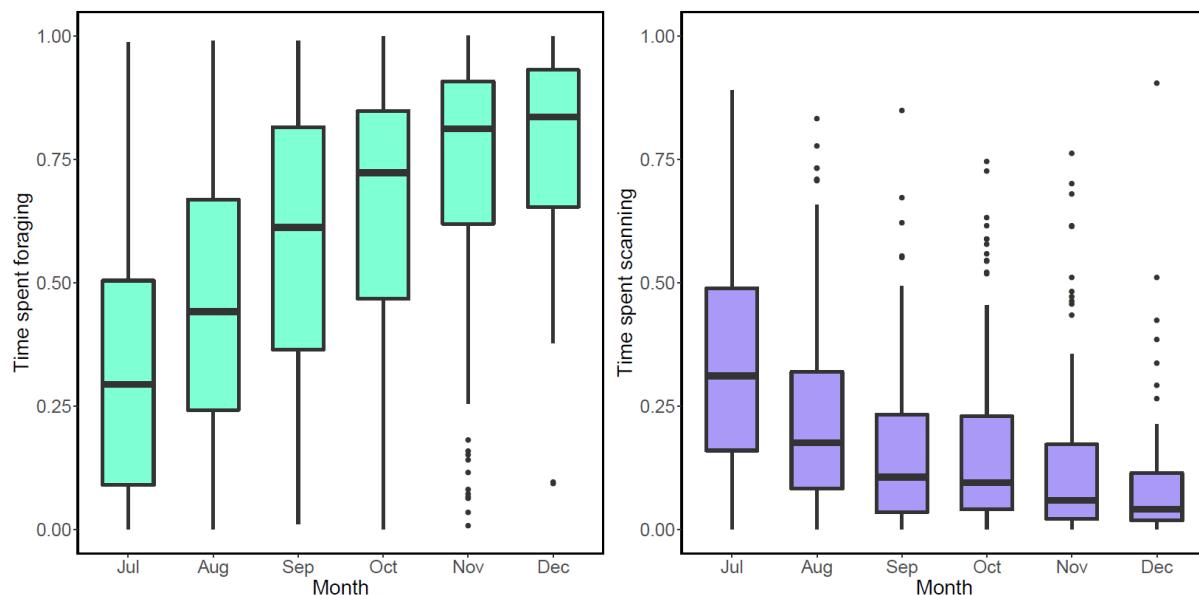
Response 1	Response 2	Correlation coefficient (r_i)	95% Credible intervals	N_{fawns}
Heart rate	Scanning (summer)	-0.169	[-0.526, 0.207]	137
Latency	Scanning (summer)	-0.024	[-0.434, 0.354]	137
Heart rate	Scanning (autumn)	0.014	[-0.355, 0.417]	145
Latency	Scanning (autumn)	-0.359	[-0.669, -0.028]	145

379

380

381

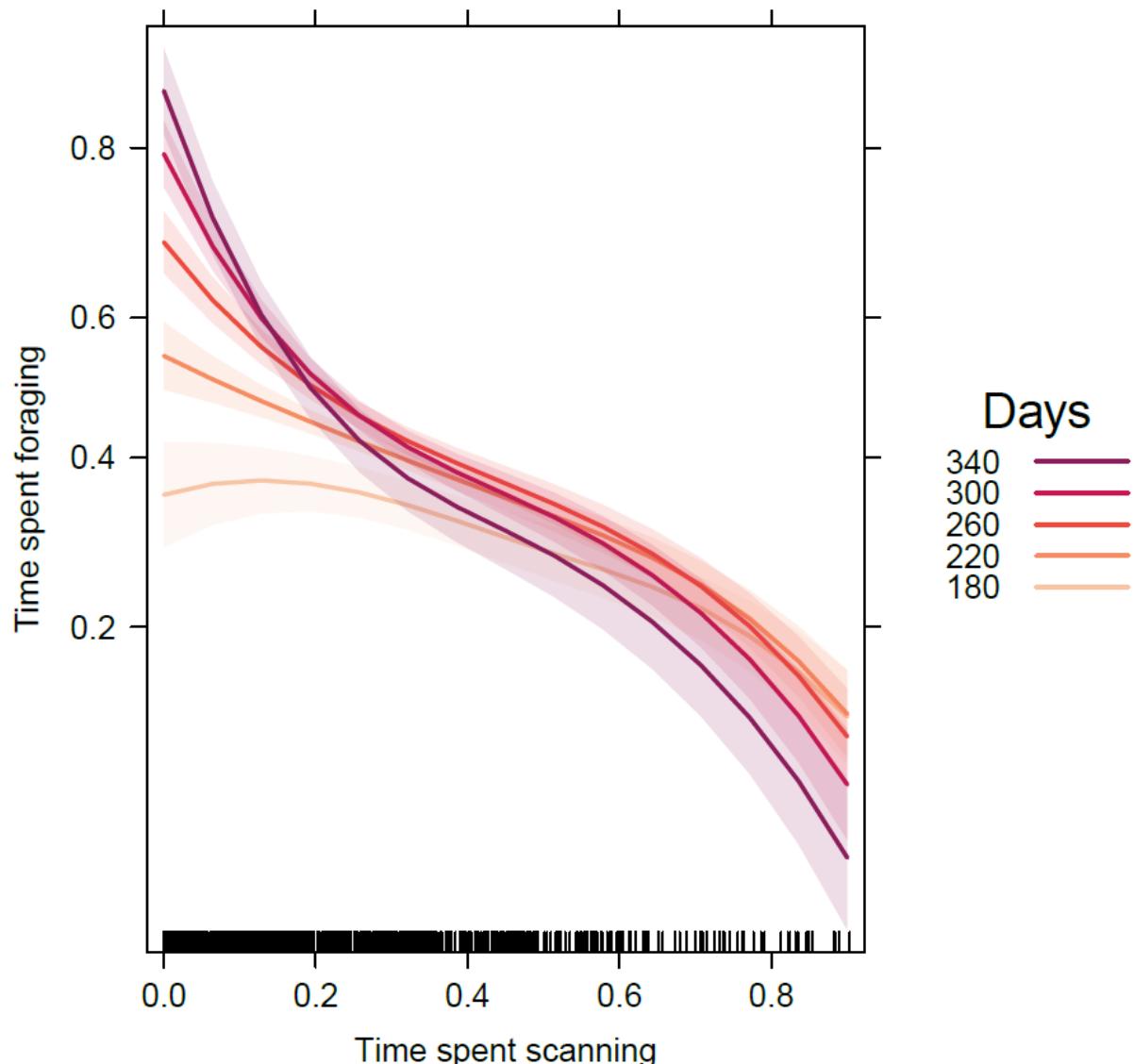
382 **Fig 2:** The relationships between A) heart rate and scanning time in summer, B) latency to leave and
383 scanning time in summer, C) heart rate and scanning time in autumn and D) latency to leave and
384 scanning time in autumn. Posterior means of the random intercepts (BLUPs) were used here for
385 visualisation purposes only. Solid trendline indicates a meaningful effect.


386

387

388 *Trade-off between scanning and foraging*

389 Fawns decreased their scanning time and increased their foraging time as they aged (see Fig. 3), i.e.
390 during the switch from a milk-based to a grazer diet (fully weaned). Suckling events per hour (s/h)
391 were indeed high in summer (focal observations: 0.81 suckling/hour, range per month: 0.57-0.94
392 s/h) and nearly disappeared in autumn (focal observations: 0.15 s/h, range per month: 0.00-0.25
393 s/h). We investigated whether there was a trade-off between time spent scanning and time spent
394 foraging and whether and how this developed over time. Time spent scanning negatively affected
395 time spent foraging (linear term: $\beta = -0.90 \pm 0.06$ SE, $p < 0.001$, $N = 907$ focal observations on $N =$
396 156 fawns; quadratic term: $\beta = -0.47 \pm 0.06$ SE, $p < 0.001$, $N = 907$ focal observations on $N = 156$
397 fawns) and this association only became stronger over time (Fig. 4), given the strong negative effect
398 of the interaction between scanning time and days of the year ($\beta = -0.20 \pm 0.02$ SE, $p < 0.001$, $N = 907$
399 focal observations on $N = 156$ fawns).


400

401

402 **Fig. 3** The increase in time spent foraging (left plot) and decrease in time spent scanning (right plot)
403 of fallow deer fawns over the first 6 months of life. The times spent are given as proportions of total
404 time of active bouts while in a group of deer.

405

406

407 **Fig. 4:** The relationship between the proportion of time spent scanning and the proportion of time
408 spent foraging over time, i.e., when fawns gradually moved from a mainly milk-based diet to a grazer
409 one (fully weaned). Predicted patterns (lines) are surrounded by marginal 95% confidence intervals
410 (shaded polygons). Different time periods are indicated by different colours, with dates later in the
411 year being represented by darker colours (day 180 = 29 June; day 220 = 8 August; day 260 = 17
412 September; day 300 = 27 October; day 340 = 6 December)

413

414

415 **Discussion**

416

417 Current debate within the field of animal personality focuses on whether among-individual
418 differences in behaviour reflect life-history differences in allocation or acquisition (Laskowski et al.,
419 2021). The theoretical framework, however, does not address the ontogeny of animal personality,
420 which may be why the empirical support for predictions of main theories such as the extended POLS
421 has been ambivalent (Royauté et al., 2018; Moiron et al., 2020). The ontogeny of among-individual
422 difference remains understudied, especially in wild populations (Bell et al., 2009; Cabrera et al.,
423 2021). Here we provide novel insights on the development of among-individual differences in
424 juveniles of a wild large mammal, by studying fallow deer fawns from birth until their sixth month of
425 life. In line with our predictions, we found that repeatable among-individual differences in
426 behavioural response of neonates were related to the time they allocated to scanning their
427 environments while in the herd with their conspecifics, which also was repeatable among
428 individuals. This scanning behaviour was negatively related to time spent foraging, and this
429 relationship only got stronger over time, suggesting among-individual differences in resource
430 acquisition, through among-individual differences in time allocation. Contrary to our expectations,
431 however, the relationship between neonate traits and time spent scanning was only present in
432 autumn, but not earlier in summer, and also only involved the behavioural neonate response (i.e.
433 latency to leave), and not the physiological response (i.e. heart rate). Altogether, our results show
434 that among-individual differences are present shortly after birth and that these differences likely
435 drive resource acquisition months later. This highlights a potential mechanistic pathway in which
436 among-individual differences may lead to differences in resource acquisition in the earliest stages of
437 maturation. These correlates between behaviours can, however, weaken or even diminish during
438 major transitional phases in life-history in the wild. These results provide novel insights into the
439 theory on animal personality, by showing that resource allocation, in this case through time budgets,

440 and resource acquisition can be connected through among-individual differences in behaviour at the
441 earliest stages of life.

442 Animal personality has been related to habitat use in other taxa. More explorative juvenile
443 lemon sharks (*Negaprion brevirostris*) for instance, took more risks than less explorative individuals
444 by swimming further from the shores in a subpopulation with low predator abundance (Dhellemmes
445 et al., 2021). This enabled them to forage more efficiently, at the cost of higher exposure to
446 predators. Similarly, bold golden-mantel ground squirrels (*Callospermophilus lateralis*) had larger
447 core areas and occupied more perches in their areas than their shy counterparts (Aliperti et al.,
448 2021). Bonnot et al. (2015) found that roe deer (*Capreolus capreolus*) that reacted less actively
449 during capture and handling, also tended to use open habitats more than conspecifics that reacted
450 more actively at capture. However, these studies mainly focused on habitat use, whereas here we
451 studied time investments regardless of habitat type or usage in a fairly homogenous environment.
452 We show here that time spent scanning was repeatable, with 12% (in summer) and 17% (in autumn)
453 of the variation in scanning time being attributable to the among-individual level. Time investments
454 thus differed consistently among individuals, indicating that certain individuals, namely those that
455 spend less time scanning, systematically have more time to allocate to foraging and subsequently, to
456 gain more resources than other individuals.

457 The current scientific debate within the field of animal personality is focusing on whether
458 among-individual differences in behaviour mostly reflect among-individual differences in resource
459 allocation or acquisition (Laskowski et al., 2021; Haave-Audet et al., 2021). Recent meta-analyses
460 seem to suggest the latter, since boldness is not associated with a survival cost overall (Moiron et al.,
461 2020; Haave-Audet et al., 2021). These analyses, however, do not investigate the possible
462 connection between resource allocation and acquisition. In this study, we show how individual
463 fawns with a longer latency to leave at capture also allocate less time to scanning their
464 environments months later during autumn, while in the herd with adult deer. Both behaviours could
465 be classified as bold: individuals that stay during a capture conserve energy at the cost of risking

466 mortality; likewise, individuals that allocate less time to scanning in the herd have more time to gain
467 resources at the cost of predator detection. Thus, among-individual differences in behaviour can
468 lead to differences in resource acquisition, through differences in allocation. Our results thereby
469 provide a mechanistic pathway of among-individual differences that links allocation to acquisition.

470 The relationship between neonate capture response and time spent scanning was, contrary
471 to our expectations, not present earlier on during summer. During this summer period, fawns make
472 their first entrances into the herd with adult deer, after spending the first weeks of life hiding alone
473 in the vegetation (Chapman & Chapman, 1997). In addition, fawns gradually switch from a nutrient
474 rich diet (i.e. milk) to a nutrient poor diet (i.e. vegetation) with a concomitant need to invest more
475 time in foraging. Fawns are thus very dependent on their mother for their resources during the first
476 months and this dependency decreases with time, when their ability to forage successfully on their
477 own becomes the main constraining factor for resource acquisition (Chapman & Chapman, 1997). As
478 a result, scanning behaviour is expected to have a stronger limiting effect on foraging as fawns age,
479 an effect clearly shown by our models. This suggests that scanning behaviour may not be
480 functionally linked to life-history differences (here: resource acquisition) in summer, when fawns are
481 also more dependent on milk of their mother, whereas this relationship is present in autumn.
482 Therefore, even though the same behaviour was measured in summer and autumn, the functional
483 role of that behaviour could be very different between life-stages. This may explain why we found
484 no clear relationship between neonate personality and scanning behaviour in summer.

485 Another possibility is that relationships between different aspects of animal personality are
486 overshadowed during major transitional phases in life. The emergence into the herd is such a major
487 transition in the early life of fawns, where they are suddenly in the presence of many other
488 conspecifics. From that point onwards, fawns socialise with other deer, and will therefore be
489 exposed to many new stimuli. Dairy cattle, for instance, showed long-term consistency before and
490 after puberty, but not across (Neave et al., 2020). Similarly, among-individual differences in red
491 junglefowl (*Gallus gallus*) chicks' behaviour were variable during ontogeny and stabilised after

492 independence (Favati et al., 2016), a pattern also seen in wild fairy-wrens (*Malurus cyaneus*, Hall et
493 al., 2015). On the other hand, there are also studies that do report long-term consistency across life-
494 stages (Petelle et al., 2013; Debeffe et al., 2015). Petelle et al. (2013) show that yellow-bellied
495 marmots (*Marmota flaviventris*) show long-term consistency in docility during captures, but not in
496 boldness, whereas Debeffe et al. (2015) also show long-term consistency in docility, but then in wild
497 roe deer (*Capreolus capreolus*) of which the youngest individuals were already months past their
498 hiding phase. It is therefore possible that these studies found long-term consistency because they
499 have not sampled individuals during transitional phases, but rather in between transitional phases.

500 Even though heart rates and latency to leave are strongly and inversely correlated in
501 neonates at captures (Amin et al., 2021), we found no pattern between heart rates at capture and
502 time spent scanning, suggesting that these two metrics are measuring separate traits. Captures of
503 wild animals can be a stressful event, and typically evoke an acute stress response in prey animals
504 such as fallow deer, which leads to an increased physiological and behavioural response (Harris &
505 Carr, 2016). This relationship between physiology and behaviour does not have to be present at
506 other times, such as during foraging bouts where animals are expected to have lower anxiety levels,
507 and therefore also lower HPA-axis activation (Harris & Carr, 2016). Our findings in this study
508 emphasise the need to include both physiological and behavioural responses to gain a better
509 understanding of how physiology and behaviour are (or are not) related in different contexts.

510 Adult herbivores are classically expected to trade-off their time investments between anti-
511 predator behaviour and resource acquisition. Although juveniles are not studied as extensively,
512 previous research does indicate that juveniles differ from adults in the amount of time they spend
513 scanning (Caro, 2005). In most birds and mammals, juveniles are shown to spend less time scanning
514 than adults (e.g. Alados, 1985; Lashley et al., 2014; Li et al., 2015). The general explanation is that
515 juveniles fail to recognize threats from predators and as a consequence spend less time scanning. In
516 species where juveniles have a greater risk of being predated upon due to their reduced ability to
517 escape, however, they may spend more time scanning due to the increased mortality threat (Caro,

518 2005). Our results show that fallow deer juveniles follow this pattern: as fawns grew older, they
519 reduced their time spent scanning. This decrease in scanning time was accompanied by an increase
520 in time spent foraging, a natural consequence of the weaning process (Chapman & Chapman, 1997).

521 To conclude, we have provided empirical support for the relationship between innate
522 among-individual differences and resource acquisition, through allocation, suggesting a mechanistic
523 pathway in which personality is associated with life-history. We have done so in juveniles of a wild
524 large mammal, which have received little attention in the literature compared to other taxa (Bell et
525 al., 2009). We furthermore have highlighted the development of among-individual variation from
526 birth, throughout the transition from a solitary lifestyle to a group living one, up until the sixth
527 month of life. Our results highlight how transitional phases can complicate patterns between
528 behaviour and life-history, thereby offering novel insights into the ontogeny of animal personality.
529 Overall, our study emphasizes the importance of including ontogeny for future studies, and the
530 necessity to understand the relationship between allocation and acquisition for the improvement of
531 theory in the field of animal personality.

532

533 **References**

534 Alados, C. L. (1985). An analysis of vigilance in the Spanish ibex (*Capra pyrenaica*). *Zeitschrift für
535 Tierpsychologie*, 68(1), 58-64.

536 Aliperti, J. R., Davis, B. E., Fangue, N. A., Todgham, A. E., & Van Vuren, D. H. (2021). Bridging animal
537 personality with space use and resource use in a free-ranging population of an asocial ground
538 squirrel. *Animal Behaviour*

539 Allen, W. L., Street, S. E., & Capellini, I. (2017). Fast life history traits promote invasion success in
540 amphibians and reptiles. *Ecology Letters*, 20(2), 222-230.

541 Amin, B., Slabbekoorn, H., Schaaf, M., & Tudorache, C. (2016). "Early birds" take it easy: diurnal
542 timing is correlated with overall level in activity of zebrafish larvae. *Behaviour*, 153(13–14),
543 1745–1762.

544 Amin, B., Jennings, D. J., Smith, A. F., Quinn, M., Chari, S., Haigh, A., Matas, D., Koren, L. & Ciuti, S.
545 (2021). In utero accumulated steroids predict neonate anti-predator response in a wild
546 mammal. *Functional Ecology*, 35(6), 1255-1267.

547 Animal Behaviour (2020). Guidelines for the treatment of animals in behavioural research and
548 teaching. *Animal Behaviour*, 159, i-xi

549 Arenz, C. L., & Leger, D. W. (2000). Antipredator vigilance of juvenile and adult thirteen-lined ground
550 squirrels and the role of nutritional need. *Animal Behaviour*, 59(3), 535-541.

551 Bachman, G. C. (1993). The effect of body condition on the trade-off between vigilance and foraging
552 in Belding's ground squirrels. *Animal Behaviour*, 46(2), 233-244.

553 Bates, D., Maechler, M., Bolker, B., Walker, S. (2015). Fitting Linear Mixed-Effects Models Using
554 *lme4*. *Journal of Statistical Software*, 67(1), 1-48.

555 Bell, A. M., Hankison, S. J., & Laskowski, K. L. (2009). The repeatability of behaviour: a meta-analysis.
556 *Animal behaviour*, 77(4), 771-783.

557 Bergvall, U. A., Schäpers, A., Kjellander, P., & Weiss, A. (2011). Personality and foraging decisions in
558 fallow deer, *Dama dama*. *Animal Behaviour*, 81(1), 101-112.

559 Bonnot, N., Verheyden, H., Blanchard, P., Cote, J., Debeffe, L., Cargnelutti, B., ... & Morellet, N.
560 (2015). Interindividual variability in habitat use: evidence for a risk management syndrome in
561 roe deer? *Behavioral Ecology*, 26(1), 105-114.

562 Brooks, S. P., & Gelman, A. (1998). General methods for monitoring convergence of iterative
563 simulations. *Journal of computational and graphical statistics*, 7(4), 434-455.

564 Cabrera, D., Nilsson, J. R., & Griffen, B. D. (2021). The development of animal personality across
565 ontogeny: a cross-species review. *Animal Behaviour*, 173, 137-144.

566 Caro, T. (2005). Antipredator defenses in birds and mammals. *University of Chicago Press*.

567 Chapman, D. & Chapman, N. (1997). Fallow deer: their history, distribution and biology. 2nd edn.
568 Machynlleth: Coch-y-bonddu Books.

569 Childress MJ, Lung MA (2003) Predation risk, gender and the group size effect: Does elk vigilance
570 depend upon the behaviour of conspecifics? *Animal Behaviour* 66: 389–398.

571 Ciuti, S., Bongi, P., Vassale, S., & Apollonio, M. (2006). Influence of fawning on the spatial behaviour
572 and habitat selection of female fallow deer (*Dama dama*) during late pregnancy and early
573 lactation. *Journal of Zoology*, 268(1), 97-107.

574 Ciuti, S., Northrup, J. M., Muhly, T. B., Simi, S., Musiani, M., Pitt, J. A., & Boyce, M. S. (2012). Effects
575 of humans on behaviour of wildlife exceed those of natural predators in a landscape of fear.
576 *PloS one*, 7(11), e50611.

577 Class, B., & Brommer, J. E. (2015). A strong genetic correlation underlying a behavioural syndrome
578 disappears during development because of genotype–age interactions. *Proceedings of the
579 Royal Society B: Biological Sciences*, 282(1809), 20142777.

580 Dammhahn, M., Dingemanse, N. J., Niemelä, P. T., & Réale, D. (2018). Pace-of-life syndromes: a
581 framework for the adaptive integration of behaviour, physiology and life history. *Behavioral
582 Ecology and Sociobiology* 72: 62

583 Debeffe, L., Lemaître, J. F., Bergvall, U. A., Hewison, A. M., Gaillard, J. M., Morellet, N., ... &
584 Kjellander, P. (2015). Short-and long-term repeatability of docility in the roe deer: sex and age
585 matter. *Animal Behaviour*, 109, 53-63.

586 Dhellemmes, F., Finger, J. S., Laskowski, K. L., Guttridge, T. L., & Krause, J. (2020). Comparing
587 behavioural syndromes across time and ecological conditions in a free-ranging predator.
588 *Animal Behaviour*, 162, 23-33.

589 Dhellemmes, F., Finger, J. S., Smukall, M. J., Gruber, S. H., Guttridge, T. L., Laskowski, K. L., & Krause,
590 J. (2021). Personality-driven life history trade-offs differ in two subpopulations of free-ranging
591 predators. *Journal of Animal Ecology*, 90(1), 260-272.

592 Dingemanse, N. J., & Wright, J. (2020). Criteria for acceptable studies of animal personality and
593 behavioural syndromes. *Ethology*, 126, 865-869.

594 Favati, A., Zidar, J., Thorpe, H., Jensen, P., & Løvlie, H. (2016). The ontogeny of personality traits in
595 the red junglefowl, *Gallus gallus*. *Behavioral Ecology*, 27(2), 484-493.

596 Fox, J., & Weisberg, S. (2019). An R Companion to Applied Regression, 3rd Edition. *Thousand Oaks*,
597 CA

598 Fox, J., & Weisberg, S. (2018). Visualizing Fit and Lack of Fit in Complex Regression Models with
599 Predictor Effect Plots and Partial Residuals. *Journal of Statistical Software*, 87(9), 1-27. URL
600 <https://www.jstatsoft.org/v087/i09>.

601 Fucikova, E., Drent, P. J., Smits, N., & Van Oers, K. (2009). Handling stress as a measurement of
602 personality in great tit nestlings (*parus major*). *Ethology*, 115(4), 366–374.

603 Galli, A., Focardi, S., Iseppi, M., & Piasentier, E. (2008). Age determination in fallow deer *Dama dama*
604 neonates. *Wildlife Biology*, 14(3), 386-391.

605 Groothuis, T. G., & Trillmich, F. (2011). Unfolding personalities: the importance of studying
606 ontogeny. *Developmental Psychobiology*, 53(6), 641-655.

607 Guenther, A., & Trillmich, F. (2015). Within-litter differences in personality and physiology relate to
608 size differences among siblings in cavies. *Physiology and Behavior*, 145, 22–28.

609 Haave-Audet, E., Besson, A. A., Nakagawa, S., & Mathot, K. J. (2021). Differences in resource
610 acquisition, not allocation, mediate the relationship between behaviour and fitness: a
611 systematic review and meta-analysis. *Biological Reviews*.

612 Hadfield, J. D. (2010). MCMC methods for multi-response generalized linear mixed models: the
613 MCMCglmm R package. *Journal of statistical software*, 33(2), 1-22.

614 Hall, M. L., van Asten, T., Katsis, A. C., Dingemanse, N. J., Magrath, M. J., & Mulder, R. A. (2015).
615 Animal personality and pace-of-life syndromes: do fast-exploring fairy-wrens die young?.
616 *Frontiers in Ecology and Evolution*, 3, 28.

617 Harris, B. N., & Carr, J. A. (2016). The role of the hypothalamus-pituitary-adrenal/interrenal axis in
618 mediating predator-avoidance trade-offs. *General and comparative endocrinology*, 230, 110-
619 142.

620 Hayden, T. J., Moore, N. P., & Kelly, P. F. (1992). The fallow deer of Phoenix Park: an evolving
621 management plan. Proc. 2nd Deer Park Symp.: management, welfare and conservation of park
622 deer (pp. 27-45).

623 Hertel, A. G., Niemelä, P. T., Dingemanse, N. J., & Mueller, T. (2020). A guide for studying among-
624 individual behavioral variation from movement data in the wild. *Movement ecology*, 8(1), 1-18.

625 Houslay, T. M., & Wilson, A. J. (2017). Avoiding the misuse of BLUP in behavioural ecology.
626 *Behavioral Ecology*, 28(4), 948-952.

627 Jennings, D. J., Boys, R. J., & Gammell, M. P. (2018). Suffering third-party intervention during fighting
628 is associated with reduced mating success in the fallow deer. *Animal Behaviour*, 139, 1-8.

629 Kaiser, M.I., Müller, C. (2021). What is an animal personality? *Biology & Philosophy*, 36(1), 1-25

630 Kelley, A. D., Humphries, M. M., McAdam, A. G., & Boutin, S. (2015). Changes in wild red squirrel
631 personality across ontogeny: activity and aggression regress towards the mean. *Behaviour*,
632 152(10), 1291-1306.

633 Lashley, M. A., Chitwood, M. C., Biggerstaff, M. T., Morina, D. L., Moorman, C. E., & DePerno, C. S.
634 (2014). White-tailed deer vigilance: the influence of social and environmental factors. *PLoS*
635 *One*, 9(3), e90652.

636 Laskowski, K. L., Moiron, M., & Niemelä, P. (2020). Integrating Behavior in Life-History Theory:
637 Allocation versus Acquisition?. *Trends in Ecology & Evolution*.

638 Lent, P. C. (1974). Mother-infant relationships in ungulates. *The behaviour of ungulates and its*
639 *relation to management*, 1, 14-55.

640 Li, C., Zhou, L., Xu, L., Zhao, N., & Beauchamp, G. (2015). Vigilance and activity time-budget
641 adjustments of wintering hooded cranes, *Grus monacha*, in human-dominated foraging
642 habitats. *PloS one*, 10(3), e0118928.

643 Lima, S. L. (1987). Vigilance while feeding and its relation to the risk of predation. *Journal of*
644 *theoretical Biology*, 124(3), 303-316.

645 Moiron, M., Laskowski, K. L., & Niemelä, P. T. (2020). Individual differences in behaviour explain
646 variation in survival: a meta-analysis. *Ecology Letters*, 23(2), 399-408.

647 Neave, H. W., Costa, J. H., Weary, D. M., & Von Keyserlingk, M. A. (2020). Long-term consistency of
648 personality traits of cattle. *Royal Society open science*, 7(2), 191849.

649 Niemelä, P. T., & Dingemanse, N. J. (2014). Artificial environments and the study of 'adaptive'
650 personalities. *Trends in Ecology & Evolution*, 29(5), 245-247.

651 Petelle, M. B., McCoy, D. E., Alejandro, V., Martin, J. G., & Blumstein, D. T. (2013). Development of
652 boldness and docility in yellow-bellied marmots. *Animal Behaviour*, 86(6), 1147-1154.

653 Réale, D., Garant, D., Humphries, M. M., Bergeron, P., Careau, V., & Montiglio, P. O. (2010).
654 Personality and the emergence of the pace-of-life syndrome concept at the population level.
655 *Philosophical Transactions of the Royal Society B: Biological Sciences*, 365(1560), 4051-4063.

656 Royauté, R., Berdal, M. A., Garrison, C. R., & Dochtermann, N. A. (2018). Paceless life? A meta-
657 analysis of the pace-of-life syndrome hypothesis. *Behavioral Ecology and Sociobiology*, 72(3), 1-
658 10.

659 Sih, A. (1980). Optimal behavior: can foragers balance two conflicting demands? *Science*, 210(4473),
660 1041-1043.

661 Sih, A., Bell, A., & Johnson, J. C. (2004). Behavioral syndromes: an ecological and evolutionary
662 overview. *Trends in ecology & evolution*, 19(7), 372-378.

663 Sirot, E., Blanchard, P., Loison, A., & Pays, O. (2021). How vigilance shapes the functional response of
664 herbivores. *Functional Ecology*.

665 Stamps, J. A., & Groothuis, T. G. (2010). Developmental perspectives on personality: implications for
666 ecological and evolutionary studies of individual differences. *Philosophical Transactions of the*
667 *Royal Society B: Biological Sciences*, 365(1560), 4029-4041.

668 Uchida, K., Suzuki, K. K., Shimamoto, T., Yanagawa, H., & Koizumi, I. (2019). Decreased vigilance or
669 habituation to humans? Mechanisms on increased boldness in urban animals. *Behavioral*
670 *Ecology*, 30(6), 1583-1590.

671 Warton, D. I., & Hui, F. K. (2011). The arcsine is asinine: the analysis of proportions in ecology.
672 *Ecology*, 92(1), 3-10.

673 Wolf, M., Van Doorn, G. S., Leimark, O., & Weissing, F. J. (2007). Life-history trade-offs favour the
674 evolution of animal personalities. *Nature*, 447(7144), 581-584.

675 Wolf, M., & Weissing, F. J. (2012). Animal personalities: consequences for ecology and evolution.
676 *Trends in ecology & evolution*, 27(8), 452-461.

677 Wuerz, Y., & Krüger, O. (2015). Personality over ontogeny in zebra finches: long-term repeatable
678 traits but unstable behavioural syndromes. *Frontiers in Zoology*, 12(1), 1-14.

679

680

681

682