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ABSTRACT 

Today, hypothesis-free high-throughput profiling allows relative quantification of 

thousands of proteins or transcripts across samples and thereby identification of 

differentially expressed genes. It is used in many biological contexts to characterize 

differences between cell lines and tissues, identify drug mode of action or drivers of 

drug resistance, among others. Genes can also be differentially regulated because 

of confounding factors that were not accounted for in the experimental plan, such as 

change in cell proliferation. Here, we identified genes for which expression 

consistently correlates with cell proliferation rates in proteomics and transcriptomics 

high-throughput data sets to determine the overall impact of cell growth rate on these 

data. We combined the analysis of 449 cell lines and 1,040 cell lines in five 

proteomics and three transcriptomics data sets to generate a refined list of 223 

confounding genes that correlate with cell proliferation rates. These include many 

actors in DNA replication and mitosis, and genes periodically expressed during the 

cell cycle. It constitutes a valuable resource when analyzing high-throughput 

datasets showing changes in proliferation across conditions. We show how to use 

this resource to analyze in vitro drug screens and tumor samples. By disregarding 

the proliferation confounders, one can instead focus on the experiment-specific 

regulation events otherwise buried in the statistical analysis. 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2022. ; https://doi.org/10.1101/2022.03.15.483931doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.15.483931
http://creativecommons.org/licenses/by/4.0/


 2

INTRODUCTION 

Nowadays, high-throughput proteome profiling allows relative quantification of 

thousands of proteins across samples. It is used in many biological contexts to 

characterize differences between cell lines and tissues, determine drug mode of 

actions, identify drivers of drug resistance, to name a few. While this reveals 

meaningful gene regulations across numerous conditions, these results can be 

confounded by secondary effects of a given treatment (or biological context). For 

example, a change in cell proliferation is a common undesired side effect of 

biological treatment and a well acknowledged confounding factor that influences 

results without being the intended effect of a given treatment1. Indeed, differences in 

cell growth rates correlate with the proportion of cells in each phase of the cell cycle: 

less proliferative cells have longer G1 or G2 phases than more proliferative cells. 

Consequently, slower-growing cell cultures will have more cells in G1 and G2 phase 

and fewer in S and M phase2, and S and M phase-specific proteins will thus be less 

abundant in the lysates. 

Genes highly expressed in proliferative cells have been used as proliferation 

markers by pathologists and researchers for many years3-5. Their expression indeed 

often correlates with the proportion of cells in S and M phase in a given sample and 

can strongly correlate with tumor progression and prognosis6. Nevertheless, there is 

to our knowledge no study that determines which proteins confound hypothesis-free 

high-throughput data analysis by correlating with cell proliferation, and the overall 

impact of cell growth rate on the transcriptome and the proteome remains to be 

determined.  

In this work, we first define a pseudo-proliferation index based on transcriptomics 

and proteomics data for cells with known proliferation rate. We use this to analyze 

even larger datasets to identify a list of genes that correlate with cell proliferation at 

both transcript and protein level. Like the Contaminant Repository for Affinity 

Purification (CRAPome)7, which is often used to highlight potential contaminant of 

pull-down mass spectrometry (MS) analyses, the list of confounding genes that we 

define here constitutes a valuable resource when analyzing datasets where 

proliferation could be affected. We illustrate this in the context of proteomics cancer 

classification and drug screens6,8, where identifying confounders of cell proliferation 
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allows to quickly discard less relevant genes and focus on genes that are regulated 

in a more context-specific manner. 

RESULTS AND DISCUSSION 

Pseudo-proliferation index derived from transcriptomics and proteomics data 

Cell doubling times, or proliferation rates, are rarely provided alongside proteomics 

and transcriptomics data, so calculating correlation between gene relative quantities 

and cell doubling times is only possible for a limited number of publicly available data 

sets. For this reason, we defined a list of proliferation markers which relative 

abundances reflect relative cell proliferation at protein and transcript level. The 

NCI60 cell lines9 have been extensively characterized with high-throughput 

proteomics10-13 and transcriptomics14-16 and their doubling times are publicly 

available (dtp.cancer.gov/discovery_development/nci-60/cell_list.htm; update of the 

05/08/15). We used these data to identify proliferation markers that would 

reproducibly correlate with the inverse of doubling times (i.e. correlate with relative 

cell proliferation) in proteomes and transcriptomes. 

We calculated the Pearson correlation to inverse doubling times for each of the 

3,637 protein groups quantified in minimum three of the four NCI60 proteome data 

sets. Among these, we found seventeen human proteins that were reported as 

proliferation markers in the literature3,17. Most of these are transcribed at specific 

phases of the cell cycle18 (green line in Fig. 1a, and colored in Supplementary 

Figure S1). Although not referenced as cycling in Cyclebase v3.0, MCM3, MCM7 

and MYBL2 have been shown to be expressed in a cell cycle-dependent fashion in 

single-cell transcriptomics19 where MCM3/7 and MYBL2 expression peaks in G1 and 

G2, respectively. In the same study, CCND1 is found cyclic at protein but not 

transcript level, peaking in G1.  

Figure 1a shows that the expression of most of these proliferation markers correlate 

strongly with the inverse of NCI60 cell doubling times. We hypothesized that other 

cycling genes could be good markers of cell proliferation, and that increasing the 

number of genes used to estimate cell proliferation would be more robust to missing 

values and quantification uncertainties. Among the genes known to cycle at 

transcript level according to 18,20, sixteen were quantified in minimum three of the 
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NCI60 proteomics data sets (colored points in Supplementary Figure S1a). These 

proteins form complexes with other subunits that were not identified as cycling at 

RNA level but could correlate with the inverse doubling times; examples include the 

DNA polymerases A complex known to bind the cycling primases PRIM1 and 

PRIM2, or members of the replication factor C (RFC5 was not detected in 20 so its 

cycling status is unknown) (empty circles in Supplementary Fig. S1a).  

 

Figure 1: Calculation of pseudo-proliferation index. a) Pearson correlation with inverse 
doubling times of the NCI60 cell lines for proliferation markers referenced in the literature. The 
number of cell lines with known doubling times is indicated for each data set above the heatmap. 
The proteins that cycle in Cyclebase 3.0 are indicated by green bars on the right (“known to 
cycle”), and the data set names are indicated in the bottom. b) Mean Pearson correlation to 
inverse doubling time in the proteome (y-axis) and transcriptome (x-axis). The point size is 
proportional to the inverse of the coefficient of variance in the proteomics data, proteins present 
in less than 3 proteomics data sets were excluded. Periodic genes are color-coded by the phase 
of their expression peak, proliferation markers reported in the literature are indicated by triangles. 
c) Pearson correlations between pseudo-proliferation index and inverse doubling time in the 
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proteomics data sets containing NCI60 cells using three sets of proliferation markers. Grey points 
and bars are mean and confidence intervals across data sets. d) Pairwise Pearson correlation 
between the pseudo-proliferation indexes calculated in the different data sets (proteomics and 
transcriptomics in black and red, respectively) and the doubling times provided for the NCI60 cell 
lines. Non-NCI60 cells were excluded from the data sets.  

Since we wanted to estimate relative cell proliferation in transcriptomics as well as in 

proteomics data, we also analyzed two transcriptomics data sets of the NCI60 cell 

lines15,16 (Supplementary Figure S1b). Figure 1b shows the correlation of the 

selected genes with inverse doubling time in the transcriptome (x-axis) and the 

proteome (y-axis). The periodic genes with the strongest correlation peak in G1/S 

and S phase at transcript and protein level, respectively18. From these data, we 

defined a preliminary set of potential proliferation markers containing the genes 

presenting high correlation with inverse doubling time both in the transcriptomics and 

proteomics data sets (Fig 1b, red area in the top-right corner). We compared 

pseudo-proliferation indexes calculated as the mean signal of: 

- proliferation markers referenced in the literature (PCNA, MCM2–7 and 

MKI67). 

- proliferation markers referenced in the literature and genes known to cycle at 

transcript level (FEN1, RRM1, RRM2, RAD21, CDK1, RPA2, RFC4, RFC2, 

PRIM2). 

- all the above plus known interacting non-cycling subunits POLA1, RFC3, 

RPA1, RPA3, RFC5. 

We compared how the resulting pseudo-proliferation indexes correlated with inverse 

doubling time in the proteomics NCI60 data sets (Fig. 1c). As expected, the more 

genes were included in the proliferation markers list, the stronger the correlation 

(except for the Nusinow et al. data set, which only contained 32 NCI60 cell lines). 

Based on these results, we decided to include the proliferation markers, periodic 

genes, and subunits of cycling complexes to calculate pseudo-proliferation index (all 

proteins in the top-right corner of Fig. 1b). 

This data-driven approach was used to estimate relative cell proliferation on 

proteomics data sets with no doubling time reported: the proteomes of the CRC65 

cancer cell lines10; and the Cancer Cell Line Encyclopedia (CCLE) that comprises 

the CRC65, NCI60 and other cell lines13,21. For each data set, we first calculated the 

pseudo-proliferation indexes, and next the correlations of each protein to this proxy 
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for cell proliferation. Gene set enrichment analysis (GSEA) showed that proteins 

involved in chromatin remodeling, DNA replication and chromosome organization 

were highly correlated to pseudo-proliferation index (Supplementary Figure S2). 

These results were similar to those of a GSEA performed on proteins ranked by their 

correlation to inverse doubling time when available (“NCI60 only”), which confirmed 

that pseudo-proliferation index reflects the proliferative state of cells and can be used 

as an estimation of relative cell growth rates. We further controlled that the same 

Gene Ontology (GO) terms were reproducibly enriched across larger data sets of 

non-NCI60 cell lines. It is worth mentioning that the doubling times available on the 

NCI60 panel may be different from the actual doubling times in the different data sets 

analyzed here. Indeed, differences in experimental conditions and cell passages 

may affect cell growth rates22. This could explain why we observed lower p-values 

and higher normalized enrichment scores (NES) in the GSEA performed with 

pseudo-proliferation index than with inverse doubling times. With the same 

approach, we calculated pseudo-proliferation index at RNA level in data sets 

containing the NCI60 and CCLE cells transcriptome14-16 (Supplementary Table S2). 

Pseudo-proliferation indexes were highly consistent across proteomes (0.54 to 0.74) 

as well as between proteomes and transcriptomes while negatively correlating with 

the NCI60 doubling times (Figure 1d).  

Identification of proliferation confounders 

Using pseudo-proliferation index, we could identify which protein quantities 

correlated with cell proliferation rates in the four proteomics data sets presented 

above (Supplementary Fig. S3a). We filtered out the proteins that were detected in 

less than two data sets and calculated the mean of Pearson correlations to pseudo-

proliferation index across data sets. 

We benchmarked our approach with three sets of genes expected to be confounders 

of cell proliferation (i.e. gold standards) either because they are known to be 

expressed in a cell-cycle-dependent fashion or because they were reported to be 

expressed under the control of a transcription factor only active on S-phase entry: 

- B1: 48 genes known to be periodically expressed in synchronized cell 

cultures23.  
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- B2: 382 genes compiled from two list of proposed E2F transcription factor 

targets20,24,25. 

- Cyclebase 3.0: 570 periodically-expressed genes (https://cyclebase.org/)18. 

We ranked the proteins (excluding the proliferation markers used to calculate 

pseudo-proliferation index in the first place) by decreasing absolute mean of 

correlation to pseudo-proliferation index and counted the number of proteins 

belonging to each of the three gold standard sets (Fig. 2a). As expected, these gold 

standards were enriched in the top-ranked confounders (left of the x-axis), which 

indicates high absolute correlation with pseudo-proliferation index. We determined 

two cutoffs for low- and high-confidence correlation with pseudo-proliferation index: ≥ 

0.313 and ≥ 0.385, respectively (“o” and “x” in Fig. 2a). The exact same strategy was 

applied with three transcriptomes to determine the transcriptomics confidence 

thresholds: ≥ 0.560 and ≥ 0.625 for low- and high-confidence, respectively (Fig. 2b). 

In both analyses, we calculated gene correlations with randomized pseudo-

proliferation index (50 iterations) to check that all the low- and high-confidence 

cutoffs where under 0.1% FDR (see material and methods). 
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Figure 2: Confounding factors of cell proliferation. a-b) Definition of high- and low-confidence 
cutoffs for correlation with pseudo-proliferation index with three sets of gold standards in the 
proteomes (a) and the transcriptomes (b). Proteins/genes were ranked by decreasing absolute 
Pearson correlation to pseudo-proliferation index (x-axis) and the y-axis presents the cumulative 
number of gold standards for each set. Proteins/genes quantified in less than 3 and 2 data sets 
were excluded in (a) and (b), respectively. c) Scatter plot of the mean Pearson correlation to 
pseudo-proliferation index at protein (x-axis) and transcript (y-axis) level across all data sets. The 
red areas contain the proteins above the medium- and low-confidence thresholds in the 
proteome and/or transcriptome and the rectangles with white borders indicate the final list of low- 
and high-confidence proliferation confounders defined in this study. The point distribution in the 
proteomes and transcriptomes are presented on the sides of the plot. 
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Figures 2c shows gene correlations to pseudo-proliferation index at transcript and 

protein level. Overall, transcripts presented a higher mean correlation with pseudo-

proliferation index than the proteins these were translated to, and the distribution of 

Pearson correlations to pseudo-proliferation index was wider at transcript than 

protein level. This indicates post-translational adjustment of protein quantities. Gene 

correlations to pseudo-proliferation index at protein and transcript level are available 

in Supplementary Table S3. We defined two set of confounding genes that correlate 

with pseudo-proliferation index at transcript as well as protein level (i.e. proliferation 

confounders): 223 and 119 genes were above the low- and high-confidence cutoffs 

in both proteomics and transcriptomics analysis, respectively.  

Figure 3 shows the physical interactions between the high-confidence proliferation 

confounders identified in this study according to the STRING physical interaction 

subnetwork9. Each node (gene) is colored with its Pearson correlation with pseudo-

proliferation index in each data set (ring). These confounding genes are involved in 

DNA replication and mitosis. As expected, we find back the genes used for 

calculating the pseudo-proliferation index (circled in black). Some of the proliferation 

markers previously described in the literature were high-confidence confounders, 

such as BUB1 and CCNB1/2 and PLK1 (dashed black borders in Fig. 3). These 

genes were not included in the refined list of proliferation markers used for 

calculating pseudo-proliferation index because they did not consistently correlate 

with the inverse of NCI60 doubling times, but they strongly correlate with relative cell 

proliferation when integrating more cell lines.  
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Figure 3. High-confidence proliferation confounders. STRING subnetwork of physical 
interactions (score ≥ 0.7) corresponding to the high-confidence proliferation confounders as 
selected in Fig. 2. The genes used to calculate the pseudo-proliferation index and the known 
proliferation markers not included for pseudo-proliferation index calculation are highlighted by 
black solid and dashed borders, respectively. The nodes are color-coded by selected gene 
annotations of biological processes. External ring are the Pearson correlations for each data set 
independently.  

Use case 1: Proliferation confounders in drug screens 

Many drugs affect cell proliferation, thereby decreasing the proportion of cells 

actively dividing in samples. This can confuse data analysis when investigating drug 

mode of action because many of the genes regulated upon treatment are in fact 

confounding genes correlated with cell proliferation. A recently published paper 

provides the proteomes of five cell lines after 53 drug treatments8. In many 

experiments, proliferation confounders were enriched among the proteins that were 

downregulated after treatment, suggesting that the drug treatments reduced cell 

proliferation rates. 

After befeldin A26 treatment, proliferation confounders are enriched among the most 

downregulated proteins (Fig. 4a). Brefeldin A disassembles the Golgi complex and 

induces endoplasmic reticulum (ER) stress. It is usually used as potent inhibitor of 

cell secretion. Consequently, Brefeldin A treatment reduces cell proliferation, which 

is very visible when labelling proliferation confounders in the volcano plot Figure 4b 

(red and orange dots): most of the cofounders are shifted towards the left of the 

volcano. Labelling them facilitates data analysis by: 1) highlighting global fold-

change shifts that can be due to proliferation increase or decrease as a 

consequence of drug treatment and 2) disregarding protein regulations due to 

proliferation changes to concentrate on more direct consequences of drug treatment.    
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Figure 4: Proliferation confounders in the context of drug treatment. a) Enrichment of high-
confidence proliferation confounders in the proteomes of cells treated with Brefeldin A. Proteins 
were ranked by significance of down-regulation according to Ruprecht et al. (q-value) (x-axis) 
and the y-axis presents the cumulative number of high-confidence confounder for each cell line. 
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“2030” and “2122” correspond to the NCIH-2030 and NCIH-2122 cell lines, respectively. b) 
Volcano plot for A549 cells treated with Brefeldin A. High- and low-confidence proliferation 
confounders are highlighted in red and orange, respectively. The dashed line corresponds to a q-
value of 0.05. c) Enrichment of high-confidence proliferation confounders in the proteomes of 
cells treated with Docotaxel as in (a). d) Volcano plot for A549 cells treated with Docetaxel as 
presented in (b). e) Significantly down-regulated proteins (grey square in (d)) are presented in a 
STRING network of functional associations (score ≥ 0.7). High- and low-confidence proliferation 
confounders are highlighted in red and orange, respectively. f) Enrichment of high-confidence 
proliferation confounders in the proteomes of cells treated with Ribociclib as in (a). 

Docetaxel treatment impacts cell proliferation specifically in A549 cells (lung 

carcinoma epithelial cells) where downregulated proteins were enriched in high-

confidence proliferation confounders (Fig. 4c). The volcano plot corresponding to this 

experiment is presented Figure 4d Docetaxel is a taxane that interferes with 

microtubule growth by binding to the β-subunit of tubulin. It is used in the treatment 

of many cancers. Here, we see that most of the proteins significantly downregulated 

upon treatment in A549 were proliferation confounders. Figure 4e shows the 

STRING network of functional associations of the proteins significantly 

downregulated in Figure 4d (grey box). Most of these genes are functionally 

connected in a “hairball” that contains all but one proliferation confounder. Some of 

these genes are involved in microtubule remodeling, but others are downregulated 

because of a reduction of cell proliferation of the A549 cells upon treatment. 

Examples of the latter include RRM2, which catalyzes the biosynthesis of 

deoxyribonucleotides, and the chromatin-assembly factors CHAF1A and CHAF1B. 

Labeling of the proliferation confounders facilitates the identification of proteins 

potentially more relevant to the drug treatment (grey nodes outside of the hairball). 

For example, the Microtubule-associated tumor suppressor 1 (ATIP3, coded by the 

gene MTUS1). MUTS1-deficiency is associated with increased microtubule 

dynamics27, which is the opposite of docetaxel-induced microtubule stabilization. In 

breast cancer, ATIP3 was found significantly downregulated in taxane-sensitive 

tumors28. It is an interesting therapeutic target for breast cancer29. Caspase 2 

(CASP2) has been shown to cleave the Microtubule-associated protein tau (coded 

by the gene MAPT) that promotes microtubule assembly and stability and potentially 

competes with taxanes for microtubule binding. It is associated with resistance to 

taxanes in several cancers30-32. The Transforming acidic coiled-coil-containing 

protein 1 (TACC1) is also involved in microtubule regulation33. The Nucleolar 

complex protein 3 homolog (NOC3L), protein MAK16 homolog, RRP5 homolog 
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(PDCD11) and the ATP-dependent RNA helicases DDX24/27/54 are RNA-binding 

proteins. Although there is no obvious known association of these proteins with 

docetaxel treatment and/or microtubule regulation, these downregulated proteins 

may inform on docetaxel impact on A549 cells.  

In other cases, such as ribociclib treatment the same genes are not confounders but 

reflect the drug mode of action. Ribociclib inhibits CDK4/6 activity and thereby 

prevents progression through the G1/S checkpoint, blocking cells in G1 phase. This 

results in a high enrichment of proliferation confounders in negatively regulated 

genes (Fig. 4f and Supplementary Figure S3c), which is highly relevant for data 

interpretation. 

Use case 2: Proliferation confounders in the context of cancer prognostic and 

classification 

The refined list of proliferation confounders can also be useful for analysis of in vivo 

samples and patient data, for example in the context of cancer since most tumors 

are characterized by an increased proliferation rate. Many of the confounding genes 

reported here are indeed reported prognostic markers in the context of cancer. 

Although this can be highly relevant, these proliferation confounders may only be 

significantly regulated because of the presence of more dividing cells in certain 

tumor samples. Other genes/proteins may be more appropriate for targeted therapy. 

The recently published meta-analysis of the Clinical Proteomic Tumor Analysis 

Consortium (CPTAC)6 identified proteins which relative quantities are correlated with 

tumor grade or stage in patient samples. The high-confidence proliferation 

confounders identified in this study were not enriched in proteins associated with 

tumor stage (Fig. 5a, see Supplementary Figure S3d for lower confidence 

confounders). Proteins strongly correlating with tumor grade, however, were 

enriched in proliferation confounders in lung adenocarcinoma (LUAD), uterine 

endometrial carcinoma (UCEC), and pediatric glioma, but not in clear cell renal cell 

carcinoma (CCRCC) and ovarian serous adenocarcinoma (OV) (Fig. 5b, see 

Supplementary Figure S3e for lower confidence confounders). This is in agreement 

with the GO-term enrichment presented in Monsivais et al., where “cell cycle 

process” and “DNA replication” are strongly enriched in the proteins the most 

associated with cancer grades in LUAD, glioma and UCEC.  
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Figure 5: Proliferation confounders in the context of cancer grade. a-b) Enrichment of high-
confidence proliferation confounders in proteins associated with cancer stage (a) and grade (b). 
Proteins were ranked by significance of correlation according to Monsivais et al. (p-value of 
Pearson correlation) (x-axis) and the y-axis presents the cumulative number of high-confidence 
confounder for each cancer type (see Supplementary Figure S3c-d for lower threshold). d) 
Proteins T-statistic provided by Monsivais et al. for the analysis of cancer grades (positive = high 
correlation with cancer grade) for each cancer type (x-axis). Each point corresponds to a protein, 
low- and high-confidence proliferation confounders are highlighted in orange and red, 
respectively. The seven top hits for each cancer type are indicated by their gene names. 

In the lung adenocarcinoma and pediatric glioma data, the proteins the most 

associated with cancer grade include a high number of proliferation confounders that 

may not be the best candidates for targeted treatment. Figure 5c shows the proteins 

correlation with grade (y-axis), with high- and low-confidence proliferation 

confounders highlighted in red and orange, respectively. With such figure, it is 

possible to quickly identify proteins that are specifically correlated with high tumor 

grade but not associated with the high proliferative state of aggressive lung tumors.  

In lung adenocarcinoma, the three proteins the most correlated to cancer grade were 

proliferation confounders: the U3 ubiquitin-protein ligase UHRF1, Kinesin-like protein 

KIF11 and the well-known proliferation marker MKI67 FHA domain-interacting 

nucleolar phosphoprotein. The Anillin actin binding protein (ANLN) was the top hit 

amongst non-confounding genes. It is highly expressed in lung cancer cell lines and 

tumor samples compared to normal tissues34, and ANLN high expression is a 

predictive marker of poor outcome for patients with lung adenocarcinoma in TCGA35. 

Anillin activates cellular migration of lung cancer cells in vitro34 and increases tumor 

growth and metastasis in breast cancer through induction of mesenchymal to 

epithelial trans-differentiation36. 

67% of the high-confidence proliferation confounders identified in this study were 

correlated to cancer grade with a p-value under 0.01 in gliomas (Fig. 5c). In such 

context, it is particularly important to acknowledge that these genes may be 

regulated because of differences in cell growth rates. The confounders MCM2/4/6, 

and the heat shock co-chaperone and histone chaperone DNAJC937 were amongst 

the five proteins the most correlated with glioma grades. In the figure, these surround 

the mitochondrial serine hydroxymethyltransferase (SHMT2) (ranked 3rd), which 

could be a more interesting hit for targeted therapy. It participates to the synthesis of 

glycine by catalyzing serine-to-glycine conversion. Glycine is a key resource for 
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proliferative cells, and elevated concentration of glycine in IDH-mutated glioma 

tumors has been associated with aggressive glioma and is predictive of shortened 

patient survival38. While SHMT2 expression is not directly correlated with glycine 

concentration in gliomas38,39 it has been shown to favor cancer cells adaptation to 

poorly vascularized tumor micro-environments in the context of ischemic glioma39, 

and to be associated with poor prognostic in glioma40.  

Highlighting proliferation confounders in the analysis of LUAD and pediatric glioma 

allowed to quickly focus on proteins more directly associated with cancer grades in 

these contexts. This illustrates the advantage of taking confounding genes into 

consideration when analyzing proteomics data of patient samples. 

CONCLUSION 

Here, we calculated a pseudo-proliferation index that we used as proxy for relative 

cell proliferation at transcript and protein level to define low- and high-confidence 

thresholds for identifying confounding genes correlated with cell proliferation rates. 

We combined the transcriptomics and proteomics analysis to provide a final list of 

low- and high-confidence proliferation confounders. The Supplementary Table S3 

provides the correlations to pseudo-proliferation index for 10,751 genes/proteins 

quantified in the data sets that were used for this analysis. With this list of 

proliferation confounders, anybody can identify in their data sets the genes/proteins 

correlated with cell proliferation like contaminants are routinely flagged using the 

CRAPome7. 

We showed examples of high-throughput data analysis where labelling proliferation 

confounders facilitates data interpretation. We show that cell growth rate can be a 

confounding factor that results in down- or up-regulation of many genes in in vitro 

drug screens and tumor samples. Flagging these confounders among the most 

regulated genes allows to quickly identify other regulated hits that could be more 

relevant in the context of the experiment. Such analyses still require strong 

knowledge of the biological context and molecular regulation at play, but the genes 

correlated with cell proliferation rates are not all annotated as being involved in 

replication of cell-cycle-related processes. Thus, our refined list of proliferation 
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confounders is an unvaluable resource for interpreting data where changes in cell 

growth rates/proliferation is a confounding factor. 

The strategy that we describe here to identify proliferation confounders is 

straightforward and can be applied to many other types of confounding factors. The 

only requirement, which can be very limiting, is the availability of several high-

dimensional data sets on samples where the confounding factor of interest can be 

quantified. We believe that taking confounding genes into consideration should 

become part of the high-throughput data analysis routine and will facilitate data 

interpretation in many biological contexts.  

MATERIALS AND METHODS 

Data availability 

All the scripts and input tables associated to this study are available on Zenodo.org 

(10.5281/zenodo.6346643) under a BSD2-Clause “Simplified” license. 

Retrieval and pre-processing of proteomics data 

The raw data from Gholami et al.11 were retrieved from the PRIDE 

proteomeXchange repository PXD005946 and searched against the Human 

reviewed protein database (download 12/03/2021 from Uniprot.org) with MaxQuant 

v1.6.17.0. The mqpar.xml and the fasta file associated with the search are available 

on Zenodo.org (10.5281/zenodo.6346643). The proteinGroups.txt table was filtered 

to remove the reverse sequences and potential contaminants identified with the 

contaminant database included in MaxQuant. We kept only the protein groups with 

minimum one unique peptide and a q-value ≤ 0.01 (6,900 protein groups). We further 

removed the samples with more than 70% of missing values. LFQ was utilized for 

correlation calculation after variance stabilizing normalization (vsn)41. 

The data from Guo et al.12 were retrieved from the Table S1E provided in the paper 

(3,171 protein groups with no missing value) and normalized using vsn before 

correlation calculation.  

The normalized iBAQ quantification from Frejno et al.10 was retrieved from the 

supplementary Data 3 available with the paper. The tables for Trypsin, GluC and 

Trypsin digestion of the CRC65 cells were filtered to remove the reverse sequences 
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and potential contaminants identified with the contaminant database included in the 

original MaxQuant search. We kept only the protein groups with minimum one 

unique peptide and a q-value ≤ 0.01 (9,744 and 7,271 protein groups in the trypsin 

and GluC dataset for the NCi60 cells, respectively and 11,308 for the CRC65 

digested with trypsin). We further removed the protein groups with more than 50% of 

missing values. We also removed the protein "PLIB" in the trypsin dataset due to bad 

annotation. For the analysis of the NCI60 cell lines, we took the protein groups mean 

signal from the trypsin and the GluC data sets. 

The normalized TMT quantification from Nusinow et al.13 was retrieved from the 

supplementary data available on https://gygi.hms.harvard.edu/publications/ccle.html 

(“Protein Quantitation (TSV Format)”). The tables were filtered to remove the protein 

groups with more than 50% of missing values.  

Proteome inter-data set matching 

Since the searches were performed on each proteomics data set independently, the 

same protein can be labelled differently in the search outputs (i.e. belong to different 

protein groups, split across several isoforms…). We retrieved the protein groups 

corresponding to the same protein in different data sets. We first combined 

variants/isoforms signal by keeping their mean values. Then, we matched and 

renamed them across data sets according to the mapping table that is provided as 

Supplementary Table S1. In the cases where several rows of a given data set were 

mapped to the same homogenized protein group ID, we kept the mean value per 

sample. If several accessions of a given data set corresponded to a unique 

accession in another data set, we favored the homogenized protein group ID with the 

highest number of matching protein groups across data sets. In cases of tie, we kept 

the one with the least "combined" accessions (several accessions corresponding to 

the homogenized accession in a given data set).  

Proteomics proliferation confounders  

For each data set independently, we calculated the mean of signal of proteins of the 

MCM complex (MCM2, MCM7, MCM3, MCM4, MCM5 and MCM6), RAD21, CDK1, 

PCNA, RPA2, RRM1, RRM2, RFC4, RFC2, FEN1, MKI67, PRIM2, POLA1, RPA1, 
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RPA3, RFC5, RFC3, to generate a pseudo-proliferation index. The gene names and 

corresponding Uniprot accessions are provide in Supplementary Table S4. 

For each protein group quantified in a minimum of 10 cell lines, we calculated its 

Pearson correlation to cell lines pseudo-proliferation index and to 1/doubling time 

(available on dtp.cancer.gov/discovery_development/nci-60/cell_list.htm - Last 

Updated: 05/08/15). Missing values were replaced in each data set with the 1% 

quantile. We excluded the protein groups only quantified in one data set and 

calculated the mean of Pearson correlations. The absolute mean of Pearson 

correlation to pseudo-proliferation index was utilized to rank the protein groups. To 

identify high confidence proliferation confounders, we performed the same analysis 

after randomization of the cell lines’ pseudo-proliferation index (50 iterations). The 

distribution of the resulting absolute mean of Pearson correlations across data sets 

allowed us to define FDR thresholds: 0.1% FDR was obtained for an absolute mean 

of correlation to pseudo-proliferation index ≥ 0.239 in the proteomics data. To define 

high- and low-confidence thresholds, we benchmarked the list of proteins ranked by 

decreasing absolute Pearson correlation to pseudo-proliferation index with three 

gene lists of gold standards: B123, B220,24,25, and the periodic genes described in 

Cyclebase 3.018. Their cumulative count in the ranked list of proteins was utilized to 

select Pearson correlation values corresponding to high enrichment of gold 

standards. 

Retrieval and processing of transcriptomics data 

The processed data for the Affymetrix NCI60 dataset (Pfister et al.)15 was obtained 

from the GEO NCBI portal using the GeoQuery R package (v.2.60.0)42. Probesets of 

the HGU133Plus2 chip were mapped to Ensembl genes using the custom annotation 

provided by BrainArray43. The mapping file for probesets to ensembl genes was 

obtained from the BrainArray version 25 download page 

(brainarray.mbni.med.umich.edu). Probeset intensities were averaged across 

replicates of the same cell line. Only gene-specific probesets were considered: when 

multiple probesets corresponded to the same gene, the one with the highest mean 

signal across all cell lines was selected to represent the gene. In total, 16,554 

Ensembl genes (of which 15,994 having the biotype “protein coding genes”) were 

uniquely mapped to probesets on the chip for the 59 NCI60 cell lines. 
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Raw fastq files corresponding to the NCI60 RNA-Seq profiling (Reinhold et al.)16 

were obtained from the European Nucleotide Archive (project accession 

PRJNA433861). The raw sequence reads were trimmed using Trimmomatic v03844, 

using the adapter file “TruSeq3-PE-2.fa”, and with the following parameters: 

"LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36". Transcript 

abundance estimates were then obtained using salmon v1.4.045 in "quant" mode with 

the default parameters against the Human GRCh38 cDNA set obtained from the 

Ensembl release 10346. Gene-level abundance estimates were summarized using 

the R package tximport v.1.20.047, and upper quartile normalization was performed 

with the calcNormFactors function from the edgeR package v. 3.34.148. Finally, 

expression levels were obtained for 57,937 Ensembl genes (21,391 having the 

biotype "protein coding genes") for the same 59 cell lines profiled in Pfister et al.. 

For the CCLE dataset (Ghandi et al.)14, normalized gene expression levels in TPM 

(transcripts per million) units were obtained from the DepMap portal 

(depmap.org/portal, “CCLE_expression_full.csv”). We used the original Ensembl 

gene identifiers provided in the files: 51,832 Ensembl genes (19,790 protein coding) 

across 1,026 cell lines. 

Transcriptomics proliferation confounders  

For each dataset independently, the pseudo-proliferation index was obtained as 

described for the proteomics datasets, by averaging the expression levels of the 

selected proliferation markers. For each gene, in each dataset we computed the 

correlations with the pseudo-proliferation index calculated for the dataset, as well as 

correlation with 1/doubling time using the NCI60 cell lines doubling times when 

available. We selected the genes quantified in at least two datasets and calculated 

the mean of Pearson correlations. We performed the same analysis after 

randomization of the cell lines' pseudo-proliferation index (50 interations) to define 

FDR thresholds: 0.1% FDR was obtained for an absolute mean of correlation to 

pseudo-proliferation index ≥ 0.259 in the transcriptomics data.  

Mapping between Ensembl gene identifiers and UniprotKB accessions has been 

performed using the UniProt.ws R package v2.32.0. For the integration of the RNA 

data with the proteome, we removed the genes from the transcriptome that matched 

to more than 6 protein groups in the proteome (9 genes) and reported the values of 
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each gene from the transcriptome if they matched the same protein group (155 

genes).  

Gene set enrichment and GO term redundancy reduction 

Gene set enrichments were performed with R v4.0.3 (R-project.org/) and RStudio 

v1.3.1093 (rstudio.com/) on a x86_64-apple-darwin17.0 (64-bit) running macOS Big 

Sur 10.16, using the packages clusterProfiler v3.18.149 and org.Hs.eg.db v 3.12.0. 

The protein accessions were ordered by decreasing Pearson correlation with 

1/doubling time or proliferation index. We ran the function gseGO() with the following 

parameters: ont ="ALL", keyType = "UNIPROT", minGSSize = 6, maxGSSize = 800, 

pvalueCutoff = 0.05, verbose = TRUE, OrgDb = “org.Hs.eg.db”, eps = 0, 

pAdjustMethod = "BH". The output summary was used to make the Supplementary 

Figure S2 that presents GSEA on data sets with only NCI60 cell lines (first 2 panels) 

or without any NCI60 cell (last panel). We then simplified the output to reduce GO 

terms redundancy globally: we calculated the pairwise Jaccard indexes between all 

pairs of GO terms identified across data sets. Pairs of GO terms with a Jaccard 

index ≥ 0.5 were considered similar and only the one with the lowest enrichment q-

value in any data set was kept for plotting. Figure S2 shows the 80 biological 

processes with the lowest absolute q-value (minimum value across all data sets and 

enrichments). 

Functional annotations and networks 

The two gene/protein networks presented in this paper were generated with 

Cytoscape v 3.9.150. GO term annotations were retrieved with the StringApp v 

1.7.051 and the donut visualization of Pearson correlations was performed with 

Omics Visualizer v 1.3.052. 

Proliferation confounders in the context of drug treatment 

The proteomics analyses of drug-treated cells were found in the supplementary Data 

1 of Ruprecht et al.8. We counted the cumulative number of proteins subjected to 

statistical analysis by the authors and with a negative fold change upon drug 

treatment with Ribociclib (10,000 nM in all cell lines), Brefeldin A (100 nM, 30 nM, 

100 nM, 100 nM, 30 nM for NHI-2030, NHI-2122, A549, Calu1 and Calu6, 

respectively) and Docetaxel (30 nM, 3 nM, 1 nM, 10 nM, 3 nM for NHI-2030, NHI-
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2122, A549, Calu1 and Calu6, respectively). Volcano plots were drawn with the data 

from Ruprecht et al.8, proliferation confounders were mapped to protein groups if 

minimum one of the protein in the protein groups had a gene name corresponding to 

a confounder.  

Proliferation confounders in the context of cancer tissue samples 

The proteomics analyses of tumor tissues were found in Montsivais et al.6 

(Supplementary Data 2 and 3 for correlation with grade and stages, respectively). 

Proliferation confounders were mapped to protein groups if minimum one of the 

proteins in the protein groups had a gene name corresponding to a confounder.  
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