bioRxiv preprint doi: https://doi.org/10.1101/2022.03.15.483931; this version posted March 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

|dentifying the genes impacted by cell
proliferation in proteomics and
transcriptomics studies

Marie Locard-Paulet!, Oana Palasca?, Lars Juhl Jensen®’.

! Novo Nordisk Foundation Center for Protein Research, University of Copenhagen,
Denmark
* To whom correspondence should be addressed: lars.juhl.jensen@cpr.ku.dk

ABSTRACT

Today, hypothesis-free high-throughput profiling allows relative quantification of
thousands of proteins or transcripts across samples and thereby identification of
differentially expressed genes. It is used in many biological contexts to characterize
differences between cell lines and tissues, identify drug mode of action or drivers of
drug resistance, among others. Genes can also be differentially regulated because
of confounding factors that were not accounted for in the experimental plan, such as
change in cell proliferation. Here, we identified genes for which expression
consistently correlates with cell proliferation rates in proteomics and transcriptomics
high-throughput data sets to determine the overall impact of cell growth rate on these
data. We combined the analysis of 449 cell lines and 1,040 cell lines in five
proteomics and three transcriptomics data sets to generate a refined list of 223
confounding genes that correlate with cell proliferation rates. These include many
actors in DNA replication and mitosis, and genes periodically expressed during the
cell cycle. It constitutes a valuable resource when analyzing high-throughput
datasets showing changes in proliferation across conditions. We show how to use
this resource to analyze in vitro drug screens and tumor samples. By disregarding
the proliferation confounders, one can instead focus on the experiment-specific

regulation events otherwise buried in the statistical analysis.
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INTRODUCTION

Nowadays, high-throughput proteome profiling allows relative quantification of
thousands of proteins across samples. It is used in many biological contexts to
characterize differences between cell lines and tissues, determine drug mode of
actions, identify drivers of drug resistance, to name a few. While this reveals
meaningful gene regulations across numerous conditions, these results can be
confounded by secondary effects of a given treatment (or biological context). For
example, a change in cell proliferation is a common undesired side effect of
biological treatment and a well acknowledged confounding factor that influences
results without being the intended effect of a given treatment®. Indeed, differences in
cell growth rates correlate with the proportion of cells in each phase of the cell cycle:
less proliferative cells have longer G1 or G2 phases than more proliferative cells.
Consequently, slower-growing cell cultures will have more cells in G1 and G2 phase
and fewer in S and M phase?, and S and M phase-specific proteins will thus be less

abundant in the lysates.

Genes highly expressed in proliferative cells have been used as proliferation
markers by pathologists and researchers for many years>>. Their expression indeed
often correlates with the proportion of cells in S and M phase in a given sample and
can strongly correlate with tumor progression and prognosis®. Nevertheless, there is
to our knowledge no study that determines which proteins confound hypothesis-free
high-throughput data analysis by correlating with cell proliferation, and the overall
impact of cell growth rate on the transcriptome and the proteome remains to be

determined.

In this work, we first define a pseudo-proliferation index based on transcriptomics
and proteomics data for cells with known proliferation rate. We use this to analyze
even larger datasets to identify a list of genes that correlate with cell proliferation at
both transcript and protein level. Like the Contaminant Repository for Affinity
Purification (CRAPome)’, which is often used to highlight potential contaminant of
pull-down mass spectrometry (MS) analyses, the list of confounding genes that we
define here constitutes a valuable resource when analyzing datasets where
proliferation could be affected. We illustrate this in the context of proteomics cancer

classification and drug screens®®, where identifying confounders of cell proliferation
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allows to quickly discard less relevant genes and focus on genes that are regulated

in a more context-specific manner.

RESULTS AND DISCUSSION
Pseudo-proliferation index derived from transcriptomics and proteomics data

Cell doubling times, or proliferation rates, are rarely provided alongside proteomics
and transcriptomics data, so calculating correlation between gene relative quantities
and cell doubling times is only possible for a limited number of publicly available data
sets. For this reason, we defined a list of proliferation markers which relative
abundances reflect relative cell proliferation at protein and transcript level. The

NCI60 cell lines’ have been extensively characterized with high-throughput

10-13 14-16

proteomics and transcriptomics and their doubling times are publicly
available (dtp.cancer.gov/discovery_development/nci-60/cell_list.htm; update of the
05/08/15). We used these data to identify proliferation markers that would
reproducibly correlate with the inverse of doubling times (i.e. correlate with relative

cell proliferation) in proteomes and transcriptomes.

We calculated the Pearson correlation to inverse doubling times for each of the
3,637 protein groups quantified in minimum three of the four NCI60 proteome data
sets. Among these, we found seventeen human proteins that were reported as
proliferation markers in the literature®**’. Most of these are transcribed at specific
phases of the cell cycle'® (green line in Fig. 1a, and colored in Supplementary
Figure S1). Although not referenced as cycling in Cyclebase v3.0, MCM3, MCM7
and MYBL2 have been shown to be expressed in a cell cycle-dependent fashion in
single-cell transcriptomics™® where MCM3/7 and MYBL2 expression peaks in G1 and
G2, respectively. In the same study, CCNDL1 is found cyclic at protein but not

transcript level, peaking in G1.

Figure 1a shows that the expression of most of these proliferation markers correlate
strongly with the inverse of NCI60 cell doubling times. We hypothesized that other
cycling genes could be good markers of cell proliferation, and that increasing the
number of genes used to estimate cell proliferation would be more robust to missing
values and quantification uncertainties. Among the genes known to cycle at

18,20

transcript level according to , Sixteen were quantified in minimum three of the
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NCI60 proteomics data sets (colored points in Supplementary Figure Sla). These
proteins form complexes with other subunits that were not identified as cycling at
RNA level but could correlate with the inverse doubling times; examples include the
DNA polymerases A complex known to bind the cycling primases PRIM1 and
PRIM2, or members of the replication factor C (RFC5 was not detected in % so its

cycling status is unknown) (empty circles in Supplementary Fig. S1a).
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Figure 1: Calculation of pseudo-proliferation index. a) Pearson correlation with inverse
doubling times of the NCI60 cell lines for proliferation markers referenced in the literature. The
number of cell lines with known doubling times is indicated for each data set above the heatmap.
The proteins that cycle in Cyclebase 3.0 are indicated by green bars on the right (“known to
cycle”), and the data set names are indicated in the bottom. b) Mean Pearson correlation to
inverse doubling time in the proteome (y-axis) and transcriptome (x-axis). The point size is
proportional to the inverse of the coefficient of variance in the proteomics data, proteins present
in less than 3 proteomics data sets were excluded. Periodic genes are color-coded by the phase
of their expression peak, proliferation markers reported in the literature are indicated by triangles.
c) Pearson correlations between pseudo-proliferation index and inverse doubling time in the
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proteomics data sets containing NCI60 cells using three sets of proliferation markers. Grey points
and bars are mean and confidence intervals across data sets. d) Pairwise Pearson correlation
between the pseudo-proliferation indexes calculated in the different data sets (proteomics and
transcriptomics in black and red, respectively) and the doubling times provided for the NCI60 cell
lines. Non-NCI60 cells were excluded from the data sets.

Since we wanted to estimate relative cell proliferation in transcriptomics as well as in
proteomics data, we also analyzed two transcriptomics data sets of the NCI60 cell

lines®™1®

(Supplementary Figure S1b). Figure 1b shows the correlation of the
selected genes with inverse doubling time in the transcriptome (x-axis) and the
proteome (y-axis). The periodic genes with the strongest correlation peak in G1/S
and S phase at transcript and protein level, respectively’®. From these data, we
defined a preliminary set of potential proliferation markers containing the genes
presenting high correlation with inverse doubling time both in the transcriptomics and
proteomics data sets (Fig 1b, red area in the top-right corner). We compared
pseudo-proliferation indexes calculated as the mean signal of:

- proliferation markers referenced in the literature (PCNA, MCM2-7 and
MKI67).

- proliferation markers referenced in the literature and genes known to cycle at
transcript level (FEN1, RRM1, RRM2, RAD21, CDK1, RPA2, RFC4, RFC2,
PRIM2).

- all the above plus known interacting non-cycling subunits POLA1l, RFCS3,
RPA1, RPAS3, RFC5.

We compared how the resulting pseudo-proliferation indexes correlated with inverse
doubling time in the proteomics NCI60 data sets (Fig. 1c). As expected, the more
genes were included in the proliferation markers list, the stronger the correlation
(except for the Nusinow et al. data set, which only contained 32 NCI60 cell lines).
Based on these results, we decided to include the proliferation markers, periodic
genes, and subunits of cycling complexes to calculate pseudo-proliferation index (all

proteins in the top-right corner of Fig. 1b).

This data-driven approach was used to estimate relative cell proliferation on
proteomics data sets with no doubling time reported: the proteomes of the CRC65
cancer cell lines'®; and the Cancer Cell Line Encyclopedia (CCLE) that comprises
the CRC65, NCI60 and other cell lines**?'. For each data set, we first calculated the

pseudo-proliferation indexes, and next the correlations of each protein to this proxy
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for cell proliferation. Gene set enrichment analysis (GSEA) showed that proteins
involved in chromatin remodeling, DNA replication and chromosome organization
were highly correlated to pseudo-proliferation index (Supplementary Figure S2).
These results were similar to those of a GSEA performed on proteins ranked by their
correlation to inverse doubling time when available (“NCI60 only”), which confirmed
that pseudo-proliferation index reflects the proliferative state of cells and can be used
as an estimation of relative cell growth rates. We further controlled that the same
Gene Ontology (GO) terms were reproducibly enriched across larger data sets of
non-NCI60 cell lines. It is worth mentioning that the doubling times available on the
NCI60 panel may be different from the actual doubling times in the different data sets
analyzed here. Indeed, differences in experimental conditions and cell passages
may affect cell growth rates?. This could explain why we observed lower p-values
and higher normalized enrichment scores (NES) in the GSEA performed with
pseudo-proliferation index than with inverse doubling times. With the same
approach, we calculated pseudo-proliferation index at RNA level in data sets

containing the NCI60 and CCLE cells transcriptome**®

(Supplementary Table S2).
Pseudo-proliferation indexes were highly consistent across proteomes (0.54 to 0.74)
as well as between proteomes and transcriptomes while negatively correlating with

the NCI60 doubling times (Figure 1d).
Identification of proliferation confounders

Using pseudo-proliferation index, we could identify which protein quantities
correlated with cell proliferation rates in the four proteomics data sets presented
above (Supplementary Fig. S3a). We filtered out the proteins that were detected in
less than two data sets and calculated the mean of Pearson correlations to pseudo-

proliferation index across data sets.

We benchmarked our approach with three sets of genes expected to be confounders
of cell proliferation (i.e. gold standards) either because they are known to be
expressed in a cell-cycle-dependent fashion or because they were reported to be

expressed under the control of a transcription factor only active on S-phase entry:

- B1: 48 genes known to be periodically expressed in synchronized cell

cultures®.
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- B2: 382 genes compiled from two list of proposed E2F transcription factor
targets?0?42°,

- Cyclebase 3.0: 570 periodically-expressed genes (https://cyclebase.org/)"®.

We ranked the proteins (excluding the proliferation markers used to calculate
pseudo-proliferation index in the first place) by decreasing absolute mean of
correlation to pseudo-proliferation index and counted the number of proteins
belonging to each of the three gold standard sets (Fig. 2a). As expected, these gold
standards were enriched in the top-ranked confounders (left of the x-axis), which
indicates high absolute correlation with pseudo-proliferation index. We determined
two cutoffs for low- and high-confidence correlation with pseudo-proliferation index: =
0.313 and = 0.385, respectively (“0” and “X” in Fig. 2a). The exact same strategy was
applied with three transcriptomes to determine the transcriptomics confidence
thresholds: = 0.560 and = 0.625 for low- and high-confidence, respectively (Fig. 2b).
In both analyses, we calculated gene correlations with randomized pseudo-
proliferation index (50 iterations) to check that all the low- and high-confidence

cutoffs where under 0.1% FDR (see material and methods).
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Figure 2: Confounding factors of cell proliferation. a-b) Definition of high- and low-confidence
cutoffs for correlation with pseudo-proliferation index with three sets of gold standards in the
proteomes (a) and the transcriptomes (b). Proteins/genes were ranked by decreasing absolute
Pearson correlation to pseudo-proliferation index (x-axis) and the y-axis presents the cumulative
number of gold standards for each set. Proteins/genes quantified in less than 3 and 2 data sets
were excluded in (a) and (b), respectively. c) Scatter plot of the mean Pearson correlation to
pseudo-proliferation index at protein (x-axis) and transcript (y-axis) level across all data sets. The
red areas contain the proteins above the medium- and low-confidence thresholds in the
proteome and/or transcriptome and the rectangles with white borders indicate the final list of low-
and high-confidence proliferation confounders defined in this study. The point distribution in the
proteomes and transcriptomes are presented on the sides of the plot.
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Figures 2c shows gene correlations to pseudo-proliferation index at transcript and
protein level. Overall, transcripts presented a higher mean correlation with pseudo-
proliferation index than the proteins these were translated to, and the distribution of
Pearson correlations to pseudo-proliferation index was wider at transcript than
protein level. This indicates post-translational adjustment of protein quantities. Gene
correlations to pseudo-proliferation index at protein and transcript level are available
in Supplementary Table S3. We defined two set of confounding genes that correlate
with pseudo-proliferation index at transcript as well as protein level (i.e. proliferation
confounders): 223 and 119 genes were above the low- and high-confidence cutoffs

in both proteomics and transcriptomics analysis, respectively.

Figure 3 shows the physical interactions between the high-confidence proliferation
confounders identified in this study according to the STRING physical interaction
subnetwork®. Each node (gene) is colored with its Pearson correlation with pseudo-
proliferation index in each data set (ring). These confounding genes are involved in
DNA replication and mitosis. As expected, we find back the genes used for
calculating the pseudo-proliferation index (circled in black). Some of the proliferation
markers previously described in the literature were high-confidence confounders,
such as BUB1 and CCNB1/2 and PLK1 (dashed black borders in Fig. 3). These
genes were not included in the refined list of proliferation markers used for
calculating pseudo-proliferation index because they did not consistently correlate
with the inverse of NCI60 doubling times, but they strongly correlate with relative cell

proliferation when integrating more cell lines.
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Figure 3. High-confidence proliferation confounders. STRING subnetwork of physical
interactions (score = 0.7) corresponding to the high-confidence proliferation confounders as
selected in Fig. 2. The genes used to calculate the pseudo-proliferation index and the known
proliferation markers not included for pseudo-proliferation index calculation are highlighted by
black solid and dashed borders, respectively. The nodes are color-coded by selected gene
annotations of biological processes. External ring are the Pearson correlations for each data set
independently.

Use case 1: Proliferation confounders in drug screens

Many drugs affect cell proliferation, thereby decreasing the proportion of cells
actively dividing in samples. This can confuse data analysis when investigating drug
mode of action because many of the genes regulated upon treatment are in fact
confounding genes correlated with cell proliferation. A recently published paper
provides the proteomes of five cell lines after 53 drug treatments®. In many
experiments, proliferation confounders were enriched among the proteins that were
downregulated after treatment, suggesting that the drug treatments reduced cell

proliferation rates.

After befeldin A?® treatment, proliferation confounders are enriched among the most
downregulated proteins (Fig. 4a). Brefeldin A disassembles the Golgi complex and
induces endoplasmic reticulum (ER) stress. It is usually used as potent inhibitor of
cell secretion. Consequently, Brefeldin A treatment reduces cell proliferation, which
is very visible when labelling proliferation confounders in the volcano plot Figure 4b
(red and orange dots): most of the cofounders are shifted towards the left of the
volcano. Labelling them facilitates data analysis by: 1) highlighting global fold-
change shifts that can be due to proliferation increase or decrease as a
consequence of drug treatment and 2) disregarding protein regulations due to

proliferation changes to concentrate on more direct consequences of drug treatment.
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Figure 4: Proliferation confounders in the context of drug treatment. a) Enrichment of high-
confidence proliferation confounders in the proteomes of cells treated with Brefeldin A. Proteins
were ranked by significance of down-regulation according to Ruprecht et al. (g-value) (x-axis)
and the y-axis presents the cumulative number of high-confidence confounder for each cell line.

12


https://doi.org/10.1101/2022.03.15.483931
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.15.483931; this version posted March 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

“2030” and “2122" correspond to the NCIH-2030 and NCIH-2122 cell lines, respectively. b)
Volcano plot for A549 cells treated with Brefeldin A. High- and low-confidence proliferation
confounders are highlighted in red and orange, respectively. The dashed line corresponds to a g-
value of 0.05. c) Enrichment of high-confidence proliferation confounders in the proteomes of
cells treated with Docotaxel as in (a). d) Volcano plot for A549 cells treated with Docetaxel as
presented in (b). e) Significantly down-regulated proteins (grey square in (d)) are presented in a
STRING network of functional associations (score = 0.7). High- and low-confidence proliferation
confounders are highlighted in red and orange, respectively. f) Enrichment of high-confidence
proliferation confounders in the proteomes of cells treated with Ribociclib as in (a).

Docetaxel treatment impacts cell proliferation specifically in A549 cells (lung
carcinoma epithelial cells) where downregulated proteins were enriched in high-
confidence proliferation confounders (Fig. 4c). The volcano plot corresponding to this
experiment is presented Figure 4d Docetaxel is a taxane that interferes with
microtubule growth by binding to the B-subunit of tubulin. It is used in the treatment
of many cancers. Here, we see that most of the proteins significantly downregulated
upon treatment in A549 were proliferation confounders. Figure 4e shows the
STRING network of functional associations of the proteins significantly
downregulated in Figure 4d (grey box). Most of these genes are functionally
connected in a “hairball” that contains all but one proliferation confounder. Some of
these genes are involved in microtubule remodeling, but others are downregulated
because of a reduction of cell proliferation of the A549 cells upon treatment.
Examples of the latter include RRM2, which catalyzes the biosynthesis of
deoxyribonucleotides, and the chromatin-assembly factors CHAF1A and CHAF1B.
Labeling of the proliferation confounders facilitates the identification of proteins
potentially more relevant to the drug treatment (grey nodes outside of the hairball).
For example, the Microtubule-associated tumor suppressor 1 (ATIP3, coded by the
gene MTUS1). MUTS1-deficiency is associated with increased microtubule
dynamics?’, which is the opposite of docetaxel-induced microtubule stabilization. In
breast cancer, ATIP3 was found significantly downregulated in taxane-sensitive
tumors?®. It is an interesting therapeutic target for breast cancer?®. Caspase 2
(CASP2) has been shown to cleave the Microtubule-associated protein tau (coded
by the gene MAPT) that promotes microtubule assembly and stability and potentially
competes with taxanes for microtubule binding. It is associated with resistance to
taxanes in several cancers®®*’, The Transforming acidic coiled-coil-containing
protein 1 (TACC1) is also involved in microtubule regulation®*. The Nucleolar

complex protein 3 homolog (NOC3L), protein MAK16 homolog, RRP5 homolog
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(PDCD11) and the ATP-dependent RNA helicases DDX24/27/54 are RNA-binding
proteins. Although there is no obvious known association of these proteins with
docetaxel treatment and/or microtubule regulation, these downregulated proteins

may inform on docetaxel impact on A549 cells.

In other cases, such as ribociclib treatment the same genes are not confounders but
reflect the drug mode of action. Ribociclib inhibits CDK4/6 activity and thereby
prevents progression through the G1/S checkpoint, blocking cells in G1 phase. This
results in a high enrichment of proliferation confounders in negatively regulated
genes (Fig. 4f and Supplementary Figure S3c), which is highly relevant for data

interpretation.

Use case 2: Proliferation confounders in the context of cancer prognostic and
classification

The refined list of proliferation confounders can also be useful for analysis of in vivo
samples and patient data, for example in the context of cancer since most tumors
are characterized by an increased proliferation rate. Many of the confounding genes
reported here are indeed reported prognostic markers in the context of cancer.
Although this can be highly relevant, these proliferation confounders may only be
significantly regulated because of the presence of more dividing cells in certain
tumor samples. Other genes/proteins may be more appropriate for targeted therapy.

The recently published meta-analysis of the Clinical Proteomic Tumor Analysis
Consortium (CPTAC)® identified proteins which relative quantities are correlated with
tumor grade or stage in patient samples. The high-confidence proliferation
confounders identified in this study were not enriched in proteins associated with
tumor stage (Fig.5a, see Supplementary Figure S3d for lower confidence
confounders). Proteins strongly correlating with tumor grade, however, were
enriched in proliferation confounders in lung adenocarcinoma (LUAD), uterine
endometrial carcinoma (UCEC), and pediatric glioma, but not in clear cell renal cell
carcinoma (CCRCC) and ovarian serous adenocarcinoma (OV) (Fig. 5b, see
Supplementary Figure S3e for lower confidence confounders). This is in agreement
with the GO-term enrichment presented in Monsivais et al., where “cell cycle
process” and “DNA replication” are strongly enriched in the proteins the most

associated with cancer grades in LUAD, glioma and UCEC.

14


https://doi.org/10.1101/2022.03.15.483931
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.15.483931; this version posted March 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Locard-Paulet et al., Figure 5

a b
o 1.00 p OO s
o e et
= B ;
3 S !
‘g 0.75 ..g 0.75 1
8 8 F
k] G
5 0.50 g 0.501 {
€ g /
E E J,_[
2 025 o 0251 Jf
& ko
o = ‘
o
0.001,~~ B 0.00 |
0.00 025 050 075 1.00 0.00 025 050 075 1.00
ranked by significance ranked by significance
Relative number of proteins Relative number of proteins
correlated with cancer stage correlated with cancer grade
cancer type: cancer type:
Lung adenocarcinoma (LUAD) Lung adenocarcinoma (LUAD)
Uterine Corpus Endometrial Carcinoma (UCEC) Uterine Corpus Endometrial Carcinoma (UCEC)
Clear cell renal cell carcinoma (CCRCC) Clear cell renal cell carcinoma (CCRCC)
Breast invasive carcinoma (BRCA) Ovarian serous carcinoma (OV)
Ovarian serous carcinoma (OV) — Pediatric glioma
Colon adenocarcinoma
c
CMz2
10 i3 SHM'EE .DNAJCQ
XPO5 ..'M.CMB .=Mc|\:!4|waP‘C1
KIF11 = ) SPIRE1 NOP2
UHRF1 .- L4
PocD2L  |ANLN i . GTPBP4 HEPAOB1
SGTA = * * eDDX21 SLCAA1AP FNDC3Bl, 4« NP2
. A1 ZNF706, PTPRF.TYMP  SMARCD2 - = s
5 ' DAXX ./ « DEF& CENPI AN
g i ZWINT ,SAMDS
ar g ewe - r ., . *ADNP2
Sonte: - » NCAPG* . SLC43A2 &
- g
o T
g0 SE ST
P
-5
Proliferation confounders:
+ High confidence
-10 Low confidence
Lung Pediatric Uterine Corpus Ovarian serous Clear cell renal
adenocarcinoma glioma Endometrial carcinoma cell carcinoma
(LUAD) Carcinoma (OV) (CCRCC)
(UCEC)

15


https://doi.org/10.1101/2022.03.15.483931
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.15.483931; this version posted March 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure 5: Proliferation confounders in the context of cancer grade. a-b) Enrichment of high-
confidence proliferation confounders in proteins associated with cancer stage (a) and grade (b).
Proteins were ranked by significance of correlation according to Monsivais et al. (p-value of
Pearson correlation) (x-axis) and the y-axis presents the cumulative number of high-confidence
confounder for each cancer type (see Supplementary Figure S3c-d for lower threshold). d)
Proteins T-statistic provided by Monsivais et al. for the analysis of cancer grades (positive = high
correlation with cancer grade) for each cancer type (x-axis). Each point corresponds to a protein,
low- and high-confidence proliferation confounders are highlighted in orange and red,
respectively. The seven top hits for each cancer type are indicated by their gene names.

In the lung adenocarcinoma and pediatric glioma data, the proteins the most
associated with cancer grade include a high number of proliferation confounders that
may not be the best candidates for targeted treatment. Figure 5¢ shows the proteins
correlation with grade (y-axis), with high- and low-confidence proliferation
confounders highlighted in red and orange, respectively. With such figure, it is

possible to quickly identify proteins that are specifically correlated with high tumor

grade but not associated with the high proliferative state of aggressive lung tumors.

In lung adenocarcinoma, the three proteins the most correlated to cancer grade were
proliferation confounders: the U3 ubiquitin-protein ligase UHRF1, Kinesin-like protein
KIF11 and the well-known proliferation marker MKI67 FHA domain-interacting
nucleolar phosphoprotein. The Anillin actin binding protein (ANLN) was the top hit
amongst non-confounding genes. It is highly expressed in lung cancer cell lines and
tumor samples compared to normal tissues®, and ANLN high expression is a
predictive marker of poor outcome for patients with lung adenocarcinoma in TCGA®.
Anillin activates cellular migration of lung cancer cells in vitro® and increases tumor
growth and metastasis in breast cancer through induction of mesenchymal to

epithelial trans-differentiation®®.

67% of the high-confidence proliferation confounders identified in this study were
correlated to cancer grade with a p-value under 0.01 in gliomas (Fig. 5¢). In such
context, it is particularly important to acknowledge that these genes may be
regulated because of differences in cell growth rates. The confounders MCM2/4/6,
and the heat shock co-chaperone and histone chaperone DNAJC9®" were amongst
the five proteins the most correlated with glioma grades. In the figure, these surround
the mitochondrial serine hydroxymethyltransferase (SHMT2) (ranked 3"), which
could be a more interesting hit for targeted therapy. It participates to the synthesis of

glycine by catalyzing serine-to-glycine conversion. Glycine is a key resource for
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proliferative cells, and elevated concentration of glycine in IDH-mutated glioma
tumors has been associated with aggressive glioma and is predictive of shortened
patient survival®®. While SHMT2 expression is not directly correlated with glycine

concentration in gliomas®3*

it has been shown to favor cancer cells adaptation to
poorly vascularized tumor micro-environments in the context of ischemic glioma®,

and to be associated with poor prognostic in glioma™.

Highlighting proliferation confounders in the analysis of LUAD and pediatric glioma
allowed to quickly focus on proteins more directly associated with cancer grades in
these contexts. This illustrates the advantage of taking confounding genes into

consideration when analyzing proteomics data of patient samples.

CONCLUSION

Here, we calculated a pseudo-proliferation index that we used as proxy for relative
cell proliferation at transcript and protein level to define low- and high-confidence
thresholds for identifying confounding genes correlated with cell proliferation rates.
We combined the transcriptomics and proteomics analysis to provide a final list of
low- and high-confidence proliferation confounders. The Supplementary Table S3
provides the correlations to pseudo-proliferation index for 10,751 genes/proteins
guantified in the data sets that were used for this analysis. With this list of
proliferation confounders, anybody can identify in their data sets the genes/proteins
correlated with cell proliferation like contaminants are routinely flagged using the
CRAPome’.

We showed examples of high-throughput data analysis where labelling proliferation
confounders facilitates data interpretation. We show that cell growth rate can be a
confounding factor that results in down- or up-regulation of many genes in in vitro
drug screens and tumor samples. Flagging these confounders among the most
regulated genes allows to quickly identify other regulated hits that could be more
relevant in the context of the experiment. Such analyses still require strong
knowledge of the biological context and molecular regulation at play, but the genes
correlated with cell proliferation rates are not all annotated as being involved in

replication of cell-cycle-related processes. Thus, our refined list of proliferation
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confounders is an unvaluable resource for interpreting data where changes in cell

growth rates/proliferation is a confounding factor.

The strategy that we describe here to identify proliferation confounders is
straightforward and can be applied to many other types of confounding factors. The
only requirement, which can be very limiting, is the availability of several high-
dimensional data sets on samples where the confounding factor of interest can be
guantified. We believe that taking confounding genes into consideration should
become part of the high-throughput data analysis routine and will facilitate data

interpretation in many biological contexts.

MATERIALS AND METHODS
Data availability

All the scripts and input tables associated to this study are available on Zenodo.org
(10.5281/zen0do.6346643) under a BSD2-Clause “Simplified” license.

Retrieval and pre-processing of proteomics data

The raw data from Gholami et al.™ were retrieved from the PRIDE
proteomeXchange repository PXD005946 and searched against the Human
reviewed protein database (download 12/03/2021 from Uniprot.org) with MaxQuant
v1.6.17.0. The mqgpar.xml and the fasta file associated with the search are available
on Zenodo.org (10.5281/zenodo.6346643). The proteinGroups.txt table was filtered
to remove the reverse sequences and potential contaminants identified with the
contaminant database included in MaxQuant. We kept only the protein groups with
minimum one unique peptide and a g-value < 0.01 (6,900 protein groups). We further
removed the samples with more than 70% of missing values. LFQ was utilized for

correlation calculation after variance stabilizing normalization (vsn)**.

The data from Guo et al.*?

were retrieved from the Table S1E provided in the paper
(3,171 protein groups with no missing value) and normalized using vsn before

correlation calculation.

1.1° was retrieved from the

The normalized iIBAQ quantification from Frejno et a
supplementary Data 3 available with the paper. The tables for Trypsin, GluC and

Trypsin digestion of the CRC65 cells were filtered to remove the reverse sequences
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and potential contaminants identified with the contaminant database included in the
original MaxQuant search. We kept only the protein groups with minimum one
unigue peptide and a g-value < 0.01 (9,744 and 7,271 protein groups in the trypsin
and GIuC dataset for the NCi60 cells, respectively and 11,308 for the CRC65
digested with trypsin). We further removed the protein groups with more than 50% of
missing values. We also removed the protein "PLIB" in the trypsin dataset due to bad
annotation. For the analysis of the NCI60 cell lines, we took the protein groups mean

signal from the trypsin and the GluC data sets.

|l3

The normalized TMT quantification from Nusinow et al.™ was retrieved from the

supplementary data available on https://gygi.hms.harvard.edu/publications/ccle.html

(“Protein Quantitation (TSV Format)”). The tables were filtered to remove the protein

groups with more than 50% of missing values.
Proteome inter-data set matching

Since the searches were performed on each proteomics data set independently, the
same protein can be labelled differently in the search outputs (i.e. belong to different
protein groups, split across several isoforms...). We retrieved the protein groups
corresponding to the same protein in different data sets. We first combined
variants/isoforms signal by keeping their mean values. Then, we matched and
renamed them across data sets according to the mapping table that is provided as
Supplementary Table S1. In the cases where several rows of a given data set were
mapped to the same homogenized protein group ID, we kept the mean value per
sample. If several accessions of a given data set corresponded to a unique
accession in another data set, we favored the homogenized protein group ID with the
highest number of matching protein groups across data sets. In cases of tie, we kept
the one with the least "combined" accessions (several accessions corresponding to

the homogenized accession in a given data set).
Proteomics proliferation confounders

For each data set independently, we calculated the mean of signal of proteins of the
MCM complex (MCM2, MCM7, MCM3, MCM4, MCM5 and MCM6), RAD21, CDK1,
PCNA, RPA2, RRM1, RRM2, RFC4, RFC2, FEN1, MKI67, PRIM2, POLA1, RPAL,
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RPAS3, RFC5, RFC3, to generate a pseudo-proliferation index. The gene names and

corresponding Uniprot accessions are provide in Supplementary Table S4.

For each protein group quantified in a minimum of 10 cell lines, we calculated its
Pearson correlation to cell lines pseudo-proliferation index and to 1/doubling time
(available on dtp.cancer.gov/discovery_development/nci-60/cell_list.htm - Last
Updated: 05/08/15). Missing values were replaced in each data set with the 1%
guantile. We excluded the protein groups only quantified in one data set and
calculated the mean of Pearson correlations. The absolute mean of Pearson
correlation to pseudo-proliferation index was utilized to rank the protein groups. To
identify high confidence proliferation confounders, we performed the same analysis
after randomization of the cell lines’ pseudo-proliferation index (50 iterations). The
distribution of the resulting absolute mean of Pearson correlations across data sets
allowed us to define FDR thresholds: 0.1% FDR was obtained for an absolute mean
of correlation to pseudo-proliferation index 2 0.239 in the proteomics data. To define
high- and low-confidence thresholds, we benchmarked the list of proteins ranked by
decreasing absolute Pearson correlation to pseudo-proliferation index with three

123, B2?9%42%  and the periodic genes described in

gene lists of gold standards: B
Cyclebase 3.0". Their cumulative count in the ranked list of proteins was utilized to
select Pearson correlation values corresponding to high enrichment of gold

standards.
Retrieval and processing of transcriptomics data

The processed data for the Affymetrix NCI60 dataset (Pfister et al.)®> was obtained
from the GEO NCBI portal using the GeoQuery R package (v.2.60.0)*2. Probesets of
the HGU133PIlus2 chip were mapped to Ensembl genes using the custom annotation
provided by BrainArray**. The mapping file for probesets to ensembl genes was
obtained from the BrainArray version 25 download page
(brainarray.mbni.med.umich.edu). Probeset intensities were averaged across
replicates of the same cell line. Only gene-specific probesets were considered: when
multiple probesets corresponded to the same gene, the one with the highest mean
signal across all cell lines was selected to represent the gene. In total, 16,554
Ensembl genes (of which 15,994 having the biotype “protein coding genes”) were

uniquely mapped to probesets on the chip for the 59 NCI60 cell lines.
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Raw fastq files corresponding to the NCI60 RNA-Seq profiling (Reinhold et al.)™
were obtained from the European Nucleotide Archive (project accession
PRJNA433861). The raw sequence reads were trimmed using Trimmomatic v038*,
using the adapter file “TruSeq3-PE-2.fa”, and with the following parameters:
"LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36". Transcript
abundance estimates were then obtained using salmon v1.4.0%° in "quant" mode with
the default parameters against the Human GRCh38 cDNA set obtained from the
Ensembl release 103*. Gene-level abundance estimates were summarized using
the R package tximport v.1.20.0*’, and upper quartile normalization was performed
with the calcNormFactors function from the edgeR package v. 3.34.1%. Finally,
expression levels were obtained for 57,937 Ensembl genes (21,391 having the

biotype "protein coding genes") for the same 59 cell lines profiled in Pfister et al..

For the CCLE dataset (Ghandi et al.)**, normalized gene expression levels in TPM
(transcripts  per million) wunits were obtained from the DepMap portal
(depmap.org/portal, “CCLE_expression_full.csv”). We used the original Ensembl
gene identifiers provided in the files: 51,832 Ensembl genes (19,790 protein coding)

across 1,026 cell lines.
Transcriptomics proliferation confounders

For each dataset independently, the pseudo-proliferation index was obtained as
described for the proteomics datasets, by averaging the expression levels of the
selected proliferation markers. For each gene, in each dataset we computed the
correlations with the pseudo-proliferation index calculated for the dataset, as well as
correlation with 1/doubling time using the NCI60 cell lines doubling times when
available. We selected the genes quantified in at least two datasets and calculated
the mean of Pearson correlations. We performed the same analysis after
randomization of the cell lines' pseudo-proliferation index (50 interations) to define
FDR thresholds: 0.1% FDR was obtained for an absolute mean of correlation to

pseudo-proliferation index = 0.259 in the transcriptomics data.

Mapping between Ensembl gene identifiers and UniprotKB accessions has been
performed using the UniProt.ws R package v2.32.0. For the integration of the RNA
data with the proteome, we removed the genes from the transcriptome that matched

to more than 6 protein groups in the proteome (9 genes) and reported the values of
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each gene from the transcriptome if they matched the same protein group (155

genes).
Gene set enrichment and GO term redundancy reduction

Gene set enrichments were performed with R v4.0.3 (R-project.org/) and RStudio
v1.3.1093 (rstudio.com/) on a x86_64-apple-darwin17.0 (64-bit) running macOS Big
Sur 10.16, using the packages clusterProfiler v3.18.1*° and org.Hs.eg.db v 3.12.0.
The protein accessions were ordered by decreasing Pearson correlation with
1/doubling time or proliferation index. We ran the function gseGO() with the following
parameters: ont ="ALL", keyType = "UNIPROT", minGSSize = 6, maxGSSize = 800,
pvalueCutoff = 0.05, verbose = TRUE, OrgDb = “org.Hs.eg.db”, eps = 0,
pAdjustMethod = "BH". The output summary was used to make the Supplementary
Figure S2 that presents GSEA on data sets with only NCI60 cell lines (first 2 panels)
or without any NCI60 cell (last panel). We then simplified the output to reduce GO
terms redundancy globally: we calculated the pairwise Jaccard indexes between all
pairs of GO terms identified across data sets. Pairs of GO terms with a Jaccard
index = 0.5 were considered similar and only the one with the lowest enrichment g-
value in any data set was kept for plotting. Figure S2 shows the 80 biological
processes with the lowest absolute g-value (minimum value across all data sets and

enrichments).
Functional annotations and networks

The two gene/protein networks presented in this paper were generated with
Cytoscape v 3.9.1%°. GO term annotations were retrieved with the StringApp v
1.7.0°* and the donut visualization of Pearson correlations was performed with

Omics Visualizer v 1.3.0°%
Proliferation confounders in the context of drug treatment

The proteomics analyses of drug-treated cells were found in the supplementary Data
1 of Ruprecht et al.2. We counted the cumulative number of proteins subjected to
statistical analysis by the authors and with a negative fold change upon drug
treatment with Ribociclib (10,000 nM in all cell lines), Brefeldin A (100 nM, 30 nM,
100 nM, 100 nM, 30nM for NHI-2030, NHI-2122, A549, Calul and Calu6,
respectively) and Docetaxel (30 nM, 3 nM, 1 nM, 10 nM, 3 nM for NHI-2030, NHI-
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2122, A549, Calul and Calu6, respectively). Volcano plots were drawn with the data
from Ruprecht et al.?, proliferation confounders were mapped to protein groups if
minimum one of the protein in the protein groups had a gene name corresponding to

a confounder.
Proliferation confounders in the context of cancer tissue samples

The proteomics analyses of tumor tissues were found in Montsivais et al.®
(Supplementary Data 2 and 3 for correlation with grade and stages, respectively).
Proliferation confounders were mapped to protein groups if minimum one of the

proteins in the protein groups had a gene name corresponding to a confounder.

CONTRIBUTION OF THE AUTHORS

Marie Locard-Paulet: Conceptualization, Methodology, Formal analysis,
Investigation, Writing - Original draft, Visualization. Oana Palasca:
Conceptualization, Methodology, Formal analysis, Investigation, Writing - Review &
editing. Lars Juhl Jensen: Conceptualization, Methodology, Writing - Review &

editing, Supervision, Funding acquisition.

ACKNOWLEDGEMENT

Novo Nordisk Foundation Center for Protein Research is supported financially by the
Novo Nordisk Foundation (Grant agreement NNF14CC0001).

BIBLIOGRAPHY

1 Polymenis, M. Proteins associated with the doubling time of the NCI-60
cancer cell lines. Cell Division 12, doi:10.1186/s13008-017-0032-y (2017).

2 Chao, H. X. et al. Evidence that the human cell cycle is a series of uncoupled,
memoryless phases. Molecular Systems Biology 15, doi:10.15252/msb.20188604
(2019).

3 Whitfield, M. L., George, L. K., Grant, G. D. & Perou, C. M. Common markers
of proliferation. Nature Reviews Cancer 6, 99-106, doi:10.1038/nrc1802 (2006).

4 Perou, C. M. et al. Distinctive gene expression patterns in human mammary
epithelial cells and breast cancers. Proceedings of the National Academy of
Sciences 96, 9212-9217, doi:10.1073/pnas.96.16.9212 (1999).

5 Ross, D. T. et al. Systematic variation in gene expression patterns in human
cancer cell lines. Nature Genetics 24, 227-235, doi:10.1038/73432 (2000).

23


https://doi.org/10.1101/2022.03.15.483931
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.15.483931; this version posted March 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

6 Monsivais, D. et al. Mass-spectrometry-based proteomic correlates of grade
and stage reveal pathways and kinases associated with aggressive human cancers.
Oncogene 40, 2081-2095, doi:10.1038/s41388-021-01681-0 (2021).

7 Mellacheruvu, D. et al. The CRAPome: a contaminant repository for affinity
purification-mass  spectrometry data. Nature Methods 10, 730-736,
doi:10.1038/nmeth.2557 (2013).

8 Ruprecht, B. et al. A mass spectrometry-based proteome map of drug action
in lung cancer cell lines. Nature Chemical Biology 16, 1111-1119,
doi:10.1038/s41589-020-0572-3 (2020).

9 Shoemaker, R. H. The NCI60 human tumour cell line anticancer drug screen.
Nature Reviews Cancer 6, 813-823, doi:10.1038/nrc1951 (2006).

10 Frejno, M. et al. Proteome activity landscapes of tumor cell lines determine
drug responses. Nature Communications 11, doi:10.1038/s41467-020-17336-9
(2020).

11 Gholami, A. M. et al. Global Proteome Analysis of the NCI-60 Cell Line Panel.
Cell Reports 4, 609-620, doi:10.1016/j.celrep.2013.07.018 (2013).

12 Guo, T. et al. Quantitative Proteome Landscape of the NCI-60 Cancer Cell
Lines. iScience 21, 664-680, doi:10.1016/j.isci.2019.10.059 (2019).

13 Nusinow, D. P. et al. Quantitative Proteomics of the Cancer Cell Line
Encyclopedia. Cell 180, 387-402.e316, doi:10.1016/j.cell.2019.12.023 (2020).

14 Ghandi, M. et al. Next-generation characterization of the Cancer Cell Line
Encyclopedia. Nature 569, 503-508, doi:10.1038/s41586-019-1186-3 (2019).

15 Pfister, T. D. et al. Topoisomerase | levels in the NCI-60 cancer cell line panel
determined by validated ELISA and microarray analysis and correlation with
indenoisoquinoline sensitivity. Molecular Cancer Therapeutics 8, 1878-1884,
doi:10.1158/1535-7163.mct-09-0016 (2009).

16 Reinhold, W. C. et al. RNA Sequencing of the NCI-60: Integration into
CellMiner and CellMiner CDB. Cancer Research 79, 3514-3524, doi:10.1158/0008-
5472.can-18-2047 (2019).

17 Jurikova, M., Danihel, L., Polak, S. & Varga, |. Ki67, PCNA, and MCM
proteins: Markers of proliferation in the diagnosis of breast cancer. Acta
Histochemica 118, 544-552, doi:10.1016/j.acthis.2016.05.002 (2016).

18 Santos, A., Wernersson, R. & Jensen, L. J. Cyclebase 3.0: a multi-organism
database on cell-cycle regulation and phenotypes. Nucleic Acids Research 43,
D1140-D1144, doi:10.1093/nar/gku1092 (2015).

19 Mahdessian, D. et al. Spatiotemporal dissection of the cell cycle with single-
cell proteogenomics. Nature 590, 649-654, doi:10.1038/s41586-021-03232-9 (2021).

20 Jensen, L. J., Jensen, T. S., De Lichtenberg, U., Brunak, S. & Bork, P. Co-
evolution of transcriptional and post-translational cell-cycle regulation. Nature 443,
594-597, doi:10.1038/nature05186 (2006).

21 Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive
modelling  of anticancer drug  sensitivity. Nature 483, 603-607,
doi:10.1038/nature11003 (2012).

24


https://doi.org/10.1101/2022.03.15.483931
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.15.483931; this version posted March 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

22 Dawson, K. B., Madoc-Jones, H. & Field, E. O. Variations in the Generation
Times of a Strain of Rat Sarcoma Cells in Culture. Exp Cell Res 38, 75-84,
doi:10.1016/0014-4827(65)90429-5 (1965).

23 Whitfield, M. L. et al. Identification of Genes Periodically Expressed in the
Human Cell Cycle and Their Expression in Tumors. Molecular Biology of the Cell 13,
1977-2000, doi:10.1091/mbc.02-02-0030 (2002).

24 Balciunaite, E. et al. Pocket protein complexes are recruited to distinct targets
in quiescent and proliferating cells. Mol Cell Biol 25, 8166-8178,
doi:10.1128/MCB.25.18.8166-8178.2005 (2005).

25 Cam, H. et al. A common set of gene regulatory networks links metabolism
and growth inhibition. Mol Cell 16, 399-411, doi:10.1016/j.molcel.2004.09.037
(2004).

26 Chardin, P. & McCormick, F. Brefeldin A. Cell 97, 153-155,
doi:10.1016/s0092-8674(00)80724-2 (1999).

27 Molina, A. et al. ATIP3, a Novel Prognostic Marker of Breast Cancer Patient
Survival, Limits Cancer Cell Migration and Slows Metastatic Progression by
Regulating  Microtubule  Dynamics. Cancer Research 73, 2905-2915,
doi:10.1158/0008-5472.can-12-3565 (2013).

28 Rodrigues-Ferreira, S. et al. Improving breast cancer sensitivity to paclitaxel
by increasing aneuploidy. Proceedings of the National Academy of Sciences 116,
23691-23697, doi:10.1073/pnas.1910824116 (2019).

29 Haykal, M. M., Rodrigues-Ferreira, S. & Nahmias, C. Microtubule-Associated
Protein ATIP3, an Emerging Target for Personalized Medicine in Breast Cancer.
Cells 10, 1080, doi:10.3390/cells10051080 (2021).

30 Mimori, K. et al. Reduced tau expression in gastric cancer can identify
candidates for successful Paclitaxel treatment. Br J Cancer 94, 1894-1897,
doi:10.1038/sj.bjc.6603182 (2006).

31 Rouzier, R. et al. Microtubule-associated protein tau: a marker of paclitaxel
sensitivity in breast cancer. Proc Natl Acad Sci U S A 102, 8315-8320,
doi:10.1073/pnas.0408974102 (2005).

32 Wagner, P. et al. Microtubule Associated Protein (MAP)-Tau: a novel
mediator of paclitaxel sensitivity in vitro and in vivo. Cell Cycle 4, 1149-1152,
doi:10.4161/cc.4.9.2038 (2005).

33 Gergely, F. et al. The TACC domain identifies a family of centrosomal proteins
that can interact with microtubules. Proceedings of the National Academy of
Sciences 97, 14352-14357, doi:10.1073/pnas.97.26.14352 (2000).

34 Suzuki, C. et al. ANLN Plays a Critical Role in Human Lung Carcinogenesis
through the Activation of RHOA and by Involvement in the Phosphoinositide 3-
Kinase/AKT Pathway. Cancer Research 65, 11314-11325, doi:10.1158/0008-
5472.can-05-1507 (2005).

35 Long, X., Zhou, W., Wang, Y. & Liu, S. Prognostic significance of ANLN in
lung adenocarcinoma. Oncology Letters, doi:10.3892/0l.2018.8858 (2018).

36 Wang, D., Naydenov, N. G., Dozmorov, M. G., Koblinski, J. E. & Ivanov, A. .
Anillin regulates breast cancer cell migration, growth, and metastasis by non-

25


https://doi.org/10.1101/2022.03.15.483931
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.15.483931; this version posted March 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

canonical mechanisms involving control of cell stemness and differentiation. Breast
Cancer Research 22, doi:10.1186/s13058-019-1241-x (2020).

37 Hammond, C. M. et al. DNAJC9 integrates heat shock molecular chaperones
into the histone chaperone network. Mol Cell 81, 2533-2548 2539,
doi:10.1016/j.molcel.2021.03.041 (2021).

38 Tiwari, V. et al. Glycine by MR spectroscopy is an imaging biomarker of
glioma aggressiveness. Neuro-Oncology 22, 1018-1029,
doi:10.1093/neuonc/noaa034 (2020).

39 Kim, D. et al. SHMT2 drives glioma cell survival in ischaemia but imposes a
dependence on glycine clearance. Nature 520, 363-367, doi:10.1038/nature14363
(2015).

40 Wang, B. et al. Mitochondrial serine hydroxymethyltransferase 2 is a potential
diagnostic and prognostic biomarker for human glioma. Clin Neurol Neurosurg 154,
28-33, d0i:10.1016/j.clineuro.2017.01.005 (2017).

41 Huber, W., Von Heydebreck, A., Sultmann, H., Poustka, A. & Vingron, M.
Variance stabilization applied to microarray data calibration and to the quantification
of differential expression. Bioinformatics 18, S96-S104,
doi:10.1093/bioinformatics/18.suppl_1.s96 (2002).

42 Davis, S. & Meltzer, P. S. GEOquery: a bridge between the Gene Expression
Omnibus (GEO) and BioConductor. Bioinformatics 23, 1846-1847,
doi:10.1093/bioinformatics/btm254 (2007).

43 Dai, M. Evolving gene/transcript definitions significantly alter the interpretation
of GeneChip data. Nucleic Acids Research 33, e175-e175, doi:10.1093/nar/gnil79

(2005).
44 Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for
lllumina sequence data. Bioinformatics 30, 2114-2120,

doi:10.1093/bioinformatics/btul70 (2014).

45 Patro, R., Duggal, G., Love, M. I, Irizarry, R. A. & Kingsford, C. Salmon
provides fast and bias-aware quantification of transcript expression. Nature Methods
14,417-419, doi:10.1038/nmeth.4197 (2017).

46 Howe, K. L. et al. Ensembl 2021. Nucleic Acids Research 49, D884-D891,
doi:10.1093/nar/gkaa942 (2021).

47 Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq:
transcript-level estimates improve gene-level inferences. F1000Research 4, 1521,
doi:10.12688/f1000research.7563.2 (2016).

48 Chen, Y., Lun, A. T. L. & Smyth, G. K. From reads to genes to pathways:
differential expression analysis of RNA-Seq experiments using Rsubread and the
edgeR quasi-likelihood pipeline. F1000Research 5, 1438,
doi:10.12688/f1000research.8987.2 (2016).

49 Yu, G., Wang, L. G,, Han, Y. & He, Q. Y. clusterProfiler: an R package for
comparing biological themes among gene clusters. OMICS 16, 284-287,
doi:10.1089/0mi.2011.0118 (2012).

26


https://doi.org/10.1101/2022.03.15.483931
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.15.483931; this version posted March 16, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

50 Shannon, P. et al. Cytoscape: A Software Environment for Integrated Models
of Biomolecular Interaction Networks. Genome Research 13, 2498-2504,
doi:10.1101/gr.1239303 (2003).

51 Doncheva, N. T., Morris, J. H., Gorodkin, J. & Jensen, L. J. Cytoscape
StringApp: Network Analysis and Visualization of Proteomics Data. Journal of
Proteome Research 18, 623-632, doi:10.1021/acs.jproteome.8b00702 (2019).

52 Legeay, M., Doncheva, N. T., Morris, J. H. & Jensen, L. J. Visualize omics
data on networks with Omics Visualizer, a Cytoscape App. F1000Research 9, 157,
doi:10.12688/f1000research.22280.2 (2020).

27


https://doi.org/10.1101/2022.03.15.483931
http://creativecommons.org/licenses/by/4.0/

Locard-Paulet et al.,
a

[ no value

number of

-0.4 0 0.4

Figure 1

Pearson correlation
to 1/doubling time

celllines: 58 59 32 56
MCM7
| E2F1
MCM5
MCM3
c PCNA
iel MCM4
© MCM2
° CCNB2
= MCM6
8 MKI67
= MYBL2
© CCND3
o CCNBH1
S PLK1
BUB1
CCNEH1
CCND1
CCND2
| CCNE2
o o £ =
£ 3 8 g Lknown to cycle
i 2 2
pd O]
(o
3 0.5 O Frejno (NCI60)
© " o
£ 8 O Gholami
g O Guo
'*E O Nusinow
= O
=
55 04 =
© I
38
55
g o
22 03]
T o
e
o= O
o @)
£
Kl
>
S 0.2 o
4'- + + known markers
+ + cycling proteins
+

non-cycling subunits

mean Pearson correlation to 1/doubling time

ng Proliferation marker
0.4 ;. reported in the literature
iy N o , cycling protein or subunit of
RFC2 ) o ® cycling complex
: MCM5 .
| RS/ A AMOMS - known peak of expression:
PoLAz | RPA% POLATE 2CMAMCM2 °G1
* %R ® cof | M °G1/S
© 02 CDKS AD21 A Rt AMCME S
E """""""""""""""""" . G2
o STAG2 SMCM. Qs «G2/M
% CDK2 < . M
a P «not reported
« g coefficient of
° 'variance in the
0.0 proteomics
CDK4
[)
-0.2 0.0 0.2 0.4
Transcriptome
£
i= ‘€ 2 - =
2 o § 2 5 T 2
— = (e} o 7 s [} =
= [0) l)
e s £ =} =) =3 £= [0)
g w O] (O] z o o o
o
DoublingTime .

Frejno
Gholami
Guo
Nusinow
Pfister
Ghandi
Reinhold

Pairwise Pearson correlation

-0.52

-0.45

-0.49

-0.24

-0.43 035 022 042 015

-045 044 037 062 042 031 cell line panel:

-0.27 | 0.53 | 0.36 | 0.28 | 0.19 | 0.33 | 0.40 —NCl60
—CCLE

1.0 0.0 1.0


https://doi.org/10.1101/2022.03.15.483931
http://creativecommons.org/licenses/by/4.0/

Locard-Paulet et al., Figure 2

a
s Hi :

1.00 high confidence R
_ o low confidence 7
©
-— i
S)
= ’/‘;/
e S
o !
2075 g
ke s

>
'E e
o

S 050{ % .
c 7
S 2
»n o
° pid X
S f ’
(o] ,/
= 0.25 X0 /,
3 ’ s
1S ’x // X o
g ’ Vv .-~

0001/ p

0.00 0.25 0.50 0.75 1.00

Proteins ranked by decreasing absolute mean
of correlation to pseudo-proliferation index

T

x high confidence

.

© 1.00 o low confidence = il
° gold standards:
fe) f B1 iodi
o A cyclebase 3.0 penede
© 0.75 0 B2 (targets of the transcription
o ; . factor E2F)
%) / .
B
z g
= 0.50
3 o
[%2]
5 X/ ,
s |8 o
©025] 3 X8
- 8 . b e -
E " [ .- -
= . | . e
0.001," il
0.00 0.25 0.50 0.75 1.00

Genes ranked by decreasing absolute mean
of correlation to pseudo-proliferation index

10 high confidence
g TR Ity > .
° .a ° i :" e - . |
s I I low confidence
— L] L) % 9%0 . |
= o n R >
8 0.5 o«.:. bt i, &s\ e °
c 4° s <, 29 * %
S . "3 G Tl
- AN P % Ly
= o.: ""o’ ':o" °
9 ° . . ‘.0.9.' :. °
e A5 Xi..
@ e 0 '. 0 s
5 o o .:g:‘.‘\.:‘ {.Q::' |, ©
o a ° . .‘ ::". 3 ° Of.
c S TNE “ o
o o® - ,.)‘\. e . .
2 00 | . L — -
© S e, e, e 'l
g ."'c::‘ o.-"".."'.
c . ° .*.:. .09\70... L4 , °
© Yy N e .“ [
i} . R % L BA, s, L
= Tedl YW My .
32 o CANER IR & .
I 4 ".';.: AR .. s
e o
-0.5
-0.5 0.0 0.5 1.0

Mean Pearson Correlation Proteome


https://doi.org/10.1101/2022.03.15.483931
http://creativecommons.org/licenses/by/4.0/

Locard-Paulet et al., Figure 3

[ >
bioRxiv preprint doi: https://doi.org/10.1101/2022.03.1 A3 ) el 16, 2022. The copyright holder for this preprint

g .fuinr_-.,‘.;k@ HCERSe to display-the preprint in perpetuity. It is made
NO ltoense. ¢
-

P &

.v,'
&

B
%
?Xh

o
't

JR% oS
2
(el®
S\
) “a ' \ %

3 Y%
m$@$
— 1
/ \ @Q’J @’
L i =

SIS i
gy, © Wi
), W

Pearson
-1 \ 1

['] Missing value
= NCI60

]

ololelololo,
& &

ololololo

S5
<D _
() O L/ — CRC65
@? @? @ @ I RNA / Ghandi Frejno\ — CCLE
g \\ & \ A Reinhold \
= = = [ > Pfister Gholami
B @ @ Guo Proteome
0 % . :
> ‘,, Nusinow
[ Functional annotation:
‘ . ) ODNArepIication
P - GO biological process

O Chromosome segregation


https://doi.org/10.1101/2022.03.15.483931
http://creativecommons.org/licenses/by/4.0/

Locard-Paulet et al., Figure 4

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.15.48393. this version

sted March 16, 2022. The copyright holder for this preprint

a (whic ifi I is the author/funder, whoMias granted bioRxiv a license to display the preprint in perpetuity. It is made
@V@%f&ﬂﬁ%f@ﬁ%@ﬂ?ﬁﬁﬁﬁ‘gﬁ’gggﬁ available under aCC-BY 4.0 Internatiopal licgnsge* 8"
s i Ak
/7 . o
0.75 /." / 2 b
F § .28
7 E
62 Va4 cell line: Z‘
53 050 A ’ O .. ({7 S
-g ‘c 2030 — -
= 8 £ 8-’ -
=g 2122 = 1
20 /
£3 0.25 / A549 3
= 4 Calut o
€3 3
35 / Calu6 -
0.00 N
0.00 0.25 0.50 0.75 1.00 0
-5 0 5 10
significantly down upon drug treatment log2-transformed fold change upon Brefeldin
A treatment
c d
Docetaxel treatment (inhibits microtubules) e *
1.00 E % .
—:‘—jf’_’r 1.5 (73 # oo, &°
0.75 T
g g 3 1.0 D
S .8 # I line: g
g 5 0.50 r’;* cell line: 1'3',
g 5 £, 2030 =)
(8] Cf
cc = 2122 8
©0 o " 05
T 025 r A549 '
g % /3 Calu1
o I 7
ca f( Calu6
0.00
0.0
0.00 0.25 0.50 0.75 1.00
-4 4 8
significantly down upon drug treatment log2-transformed fold change upon docetaxel
treatment
e f
@ Ribociclib treatment (inhibits CDK4.6)
®ed .-
\ V' i " r Ll
0.75 _r—'
Y -
b~ 2 = B
o2 ;
g é 0.50 / r" cell line:
Brofiferat ound Es dr 2030
roliferation confounders: ¢ }
rerat ! o5 f 2122
low confidence £®  0o5 A549
S8 |
. High confidence ES Calui
o I
@ c e Calué
0.00 0.25 0.50 0.75 1.00

QOO

&

significantly down upon drug treatment


https://doi.org/10.1101/2022.03.15.483931
http://creativecommons.org/licenses/by/4.0/

Locard-Paulet et al., Figure 5

a

Relative number of confounders

1.00 1

0.751

0.50 1

bioRxiv preprint d :'ﬁttps://doi.org/lo.1101/2022.03.15.483931; this versfan posted March 1

1.00 1

0.75 1

0.50 ;

ber of confounders

opyright holder for this preprint

(Which was not cepified by peer review) is the author/funder, who has granta bioRxiv alicen e preprint in perpetuity. It is made
0.25- available under aCC-BY 4.0 ImerrBu%I ljcedse.
' =
©
i
0.001 0.00 1
0.00 025 050 0.75 1.00 0.00 025 050 075 1.00
ranked by significance ranked by significance
Relative number of proteins Relative number of proteins
correlated with cancer stage correlated with cancer grade
cancer type: cancer type:
Lung adenocarcinoma (LUAD) Lung adenocarcinoma (LUAD)
Uterine Corpus Endometrial Carcinoma (UCEC) Uterine Corpus Endometrial Carcinoma (UCEC)
Clear cell renal cell carcinoma (CCRCC) Clear cell renal cell carcinoma (CCRCC)
Breast invasive carcinoma (BRCA) Ovarian serous carcinoma (OV)
Ovarian serous carcinoma (OV) — Pediatric g|ioma
Colon adenocarcinoma

c
MCM2
° SHMT:Z .DNAJCQ
107 XPO5_ MCM6 ,MCM4
. *PABPCT
KI‘F“ . SPIRE1 NOP2
UHRF1 ) . .
PDCD2L  |ANLN " — HSP90B1
SGTA/4\- ® o DDX21 . SLC4A1AP FNDCSBX-. J l\l.liBF2
i 1 ZNF706, PTPRF TYMP  SMARCD2 . IS
5 1 DAXX DEF6 \CENPI GANH
; T :
ot ° ZWINT ,SAMD9
0a e * . <« *ADNP2
RN NCAPG*® * “~-SLC43A2 s
. . : o .. '.
2 : : ekt
[72] 4 Y ." o ,o ')
= ; F ¥ il 2o 5
RN . KRRy
[77) 5L A . L) .,.'_".‘.’”;'..'
- s b r R e
_5 1
Proliferation confounders:
- High confidence
-10 Low confidence
Lung Pediatric Uterine Corpus Ovarian serous Clear cell renal
adenocarcinoma glioma Endometrial carcinoma cell carcinoma
(LUAD) Carcinoma (QV) (CCRCCQC)

(UCEC)


https://doi.org/10.1101/2022.03.15.483931
http://creativecommons.org/licenses/by/4.0/

