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Abstract

Cancer genome sequencing enables accurate classification of tumours and tumour sub-

types. However, prediction performance is still limited using exome-only sequencing and for

tumor types with low somatic mutation burden such as many pediatric tumours. Moreover,

the ability to leverage deep representation learning in discovery of tumour entities remains

unknown. We introduce here Mutation-Attention (MuAt), a deep neural network to learn

representations of simple and complex somatic alterations for prediction of tumour types and

subtypes. MuAt achieved prediction accuracy of 89% for whole genomes (24 tumour types)

and 64% for whole exomes (20 types), and a top-5 accuracy of 97% and 90%, respectively.

Tumour representations learnt by MuAt included tumour entities such as acral melanoma,

SHH-activated medulloblastoma, SPOP-associated prostate cancer, microsatellite instabil-

ity, and MUTYH-associated pancreatic endocrine tumours although these tumour subtypes

and subgroups were not used as training labels. Integrated representations of somatic al-

terations hold significant potential to drive discovery of novel tumour entities and clinical

application.
∗ Corresponding author, E-mail: esa.pitkanen@helsinki.fi
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1 Introduction

Accurate identification of tumour histological type and molecular subtype is crucial to determin-

ing cancer diagnosis, prognosis and treatment choice [1, 2]. In pediatric brain tumors, long-term

survival can range from 90% for WNT-medulloblastomas to 40% for Group 3-medulloblastomas [3].

Solid tumours exhibiting microsatellite instability (MSI) resulting from defective mismatch re-

pair (MMR) are susceptible to treatment with PD-1 immune checkpoint inhibitors leading to

improved response and survival rates [4, 5]. Moreover, approximately 3-5% of metastatic cancers

do not have a clear primary site of origin despite comprehensive clinical workup [6, 7]. These

cases, termed cancers of unknown primary (CUPs), present a challenge as targeted treatment

options depend on the tissue of origin. CUPs are thus often treated with broad spectrum anti-

neoplastic drugs with limited success, instead of site-specific treatments. Liquid biopsies can be

used to detect circulating tumor DNA (ctDNA) originating from cancer cells before metastatic

spread and to predict disease outcome [8, 9, 10]. Similarly to CUPs, determining the tissue of

origin of ctDNA is a key obstacle in enabling clinical action.

Somatic mutations in a cancer cell are the consequence of the mutational processes which

acted on its ancestors in the somatic cell tree [11]. Many such processes have been identified, in-

cluding exogenous processes such as ultraviolet radiation and polycyclic aromatic hydrocarbons

in tobacco smoke, and endogenous processes such as spontaneous deamination of methylated

cytosines, defective DNA repair, and DNA replication infidelity [12]. These processes can have

distinct characteristics in terms of DNA substrate preference (e.g., CpG, mononucleotide mi-

crosatellite), mutation type (e.g., single-base substitution, insertion or deletion, or structural

alteration) and genomic position (e.g., intronic or late replicating region preference), among

others [13]. Typically only a handful of mutational processes are active in a cell of specific type

and location within the body and tissue [14, 15]. For instance, skin cells exposed to the sun

are susceptible to DNA damage due to ultraviolet radiation, whereas B cells undergo somatic

hypermutation affecting predominantly the immunoglobulin heavy chain variable region of the

genome. Somatic mutations can thus be informative of the tissues and conditions where the

mutations occurred, and consequently, cancer genome sequencing can be used to scrutinize the

somatic mutations of a cancer with the prospect of revealing its tissue of origin and molecular

subtype.

Recently, several computational methods have been developed to predict tumour types by

analyzing somatic driver and passenger mutation patterns in next-generation sequencing data

[16, 17]. TumorTracer is a random forest classifier combining copy number profiles and nucleotide

substitution spectra attaining 85% and 69% accuracy across 6 and 10 primary sites, respectively
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[18]. Soh et al. predicted tumour types with a support vector machine using information on

somatically mutated genes resulting in 49% accuracy in 28 tumour types, with addition of

copy number profiles increasing accuracy to 78% [19]. Especially in whole cancer genomes, the

mutational landscape is dominated by passenger mutations which are highly informative of the

tissue-of-origin. As part of the Pan-Cancer Analysis of Whole Genomes project (PCAWG),

Jiao et al. explored tumour type prediction in 2,606 tumours representing 24 tumour types,

and 88% accuracy in an independent set of tumour whole genomes with a deep neural network

model which takes as input counts of mutation types and their binned genomic positions in

each tumour [20]. Tumours exhibiting microsatellite instability (MSI) were removed from data

prior to model training. Both Jiao et al. and Salvadores et al. [21] found the utility of driver

mutations in accurately predicting tumour types to be limited due to the relatively small number

of driver alterations per tumour, few recurrent driver alterations, and lack of strong tumour

type specificity for cancer driver genes. Recently, Danyi et al. showed data augmentation to

be an effective strategy for tumour typing with sparse sequencing data such as sequencing of

ctDNA [22].

While supervised approaches have been developed to predict tumour subtypes [23, 24], unsu-

pervised methods are more common due to lack of labeled subtype data. In unsupervised tumour

subtyping, one typically aims to find a compact set of latent factors explaining the observed data,

often compassing multiple modalities [25], and then identifying subtypes using latent factors.

Recent subtyping methods have employed matrix factorization [26], clustering [27], deep autoen-

coders [24], and adversarial learning [28] of multiomics data. Discovery of prognostic subtypes

has been done by weighting or selecting features based on survival [24, 29]. Sequence context of

somatic mutations has been shown to be informative in subtyping of breast cancers [30].

Here, we developed a novel deep neural network (DNN) model, termed Mutation-Attention

(MuAt), which allows us to predict tumour types from cancer whole-genome and whole-exome

sequencing data. It leverages the ability of DNNs to work in a supervised setting to learn repre-

sentations that can be used to explore and explain the structure of input data beyond class labels.

MuAt utilizes a recent innovation in deep learning called the attention mechanism [31, 32]. This

mechanism allows deep neural networks to focus on data elements which are important to solv-

ing the learning task at hand, often leading to improved model performance and explainability.

MuAt is able to integrate single-nucleotide and multi-nucleotide substitutions (SNVs/MNVs),

short insertions and deletions (indels), structural variant (SV) breakpoints, and combinations of

these primary genetic alterations. In contrast to previous approaches, MuAt integrates mutation

type and genomic position information at a per-mutation level, instead of representing type and
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positions as aggregated counts.

Our models achieve high accuracy in predicting tumour types, with top-1 and top-3 ac-

curacies of 88.9% and 96.1% in the 24 tumour types that were studied within the PCAWG

consortium. It further outperforms the previous state-of-the-art approaches for cancer types

that have been challenging to predict such as tumours with MSI. We investigate the utility of

our model in tumour exome sequencing data from the TCGA consortium, achieving 64.1% ac-

curacy across 20 tumour types. Exploring the representations learnt by MuAt, we show that the

model learns to differentiate tumour subtypes which were not given as input information. These

subtypes include tumours driven by somatic and germline mutations such prostate cancers with

somatic SPOP mutations and pancreatic endocrine tumours with germline MUTYH mutations,

hypermutable subtypes such as microsatellite-unstable cancers and polymerase ϵ proofreading

deficient tumours, as well as CCND1-amplified acral melanomas, and Sonic Hedgehog (SHH)-

activated medulloblastomas.

The use of attention mechanism together with the ability to learn representations for different

data modalities such as mutation types and positions allows MuAt to represent each mutation

as a combination of these modalities. To gain insight into model results, we show that the

trained model learns to focus its attention to mutations that are characteristic for each tumour

type. MuAt models trained with cancer genomes from PCAWG and TCGA consortiums, an

interactive browser, and the source code are available under a permissible license at GitHub

(https://github.com/primasanjaya/mutation-attention).

2 Data

To train MuAt models, we utilized WGS data from the Pan-Cancer Analysis of Whole Genome

(PCAWG) project and WES data from the Pan-Cancer Atlas project of TCGA. PCAWG ana-

lyzed whole genomes of 2,658 human tumours and matched normal samples across 38 tumour

types obtained from International Cancer Genome Consortium (ICGC) and The Cancer Genome

Atlas (TCGA) donors [33]. The project released a dataset of somatic mutations called uniformly

in these tumours containing somatic SNVs, MNVs, indels (<50 bp), SVs and mobile element

insertions (MEIs). To train MuAt models, we utilized only tumour types with more than 20

tumours in PCAWG resulting in 2,595 tumours across 24 tumour types and 18 primary sites.

These tumours harbored a total of 47,649,187 somatic mutations, divided into 41,969,899 SNVs,

826,093 MNVs, 3,720,396 indels, 1,109,524 SVs and 16,757 MEIs, constituting the PCAWG

training dataset.

The Pan-Cancer Atlas project of TCGA [34] released the MC3 somatic mutation dataset con-
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Figure 1: Illustration of the MuAt deep neural network to predict the type of a tumour from

its catalogue of somatic mutations. First, mutation data is one-hot encoded. MuAt integrates

three data modalities: 3-bp sequence motif, genomic position and genomic annotations. Then,

embedded mutation vectors are fed to the attention mechanism. Finally, mutation-level features

are combined into tumour-level features, and tumour type is predicted. MuAt models can be

interrogated by analysing 1) the attention matrix to recover informative mutations for tumours

and tumour types, 2) tumour-level features for tumour subtype discovery, and 3) prediction

performance.

sisting of a total of 5,717,732 somatic mutations from 8,942 tumours across 32 tumour types [35].

We selected the 20 tumour types with more than 100 tumours into our TCGA training dataset,

resulting in 7,352 tumours and 2,682,344 somatic mutations (2,498,826 SNVs, 46,589 MNVs, and

136,929 indels). No SVs in the data were included in the training dataset due to these events

often occurring in the intergenic regions and thus not adequately captured by exome sequencing.

To validate our results with data which was not used in training, we used the whole genomes

available in ICGC that were not included in the PCAWG dataset above. Out of 16 tumour types,

5 tumour types were matched to PCAWG tumour types, while the rest were used to evaluate the

behaviour of MuAt when predicting unseen tumour types. There were 1,072 tumours, having in

total 12,099,773 mutations (8,180,922 SNVs, 233,535 MNVs and 3,685,316 indels). SVs were not

available in this dataset. Further details on the datasets can be found in Supplementary Table

1.

3 Model

MuAt is a DNN model, which predicts tumour types based on a catalogue of somatic alterations

that are observed in a single cancer genome (Figure 1). We describe here briefly the key aspects

5

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2022. ; https://doi.org/10.1101/2022.03.15.483816doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.15.483816
http://creativecommons.org/licenses/by-nc-nd/4.0/


of MuAt, and provide details in Methods and Supplementary Figure 1. The model consists

of three consecutive modules. In the first module, mutations are encoded and embedded into

a feature space. Three sources of information are used to encode each mutation: 1) mutation

type embedded in a three-nucleotide sequence context (e.g., Ap[C>T]pG, Tp[delC]pC), 2) ge-

nomic position in 1-Mbp bins, and 3) annotations describing whether a mutation occurs in a

gene or in an exon, and the coding strand orientation. The supported somatic mutation types

are SNVs, indels and SV breakpoints. The MuAt encoding allows for combinations of up to

three of these simple mutations to be represented in the sequence context, for instance MNVs

(e.g., Cp[C>T]p[C>T]) or >1 bp indels (e.g., [insT]p[insT]p[insT]). Sequence contexts, genomic

positions and annotations are represented as one-hot encoded vectors. MuAt learns feature em-

beddings of these three modalities, which are then concatenated and used as input to the second

module.

In the second module, an attention mechanism is used to assign more weight ("soft-select")

to pairs of mutations which are informative in predicting the tumor type, and compute input

features for the third module. Attention is defined as

Attention(Q,K, V ) = σ

(
QK ′
√
d

)
V (1)

where Q, K, V are called the query, key and value matrices, respectively, and σ denotes the

softmax [31, 32]. Q, K and V are all l × d matrices, where l is the number of mutations and

d is the feature dimension; these matrices are obtained as linear transformations of the input.

Product QK ′ can be seen as a similarity matrix, with the softmax being used to soft-select

the most relevant mutations ("keys") for each mutation ("query"). The attention thus maps

each input mutation to a d-dimensional feature space defined in terms of similarity to other

mutations in the same tumour. Unlike many natural language processing applications which

employ attention [32], no order is imposed on the mutations: MuAt treats somatic mutations

analogously to a bag-of-words.

The third module combines the mutation features with fully connected layers yielding tumor-

level features. These features are used to compute the final output of the model, which are

probabilities over the tumor type labels. The three modules constitute a single model, where

all parameters are trained end-to-end with backpropagation and stochastic gradient descent.

The trained MuAt model can be interrogated by extracting mutation-level features from the

attention module and tumor-level features from the last module. We can project the latter onto

a two-dimensional space with UMAP [36] for discovery of tumour subtypes.
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4 Results

Evaluation of histological tumour typing performance

We first evaluated the contribution of different somatic mutation types and mutation annota-

tions to cross-validated prediction performance. In tumour whole genomes from the PCAWG

consortium, the best MuAt performance was obtained with the combination of SNVs, MNVs,

indels and genomic position (accuracy 88.8%, 97.6% top-5) (Fig. 2a), although the differences

in performance between these scenarios tested were relatively small. In tumour exomes from

the TCGA consortium, addition of indels and mutation annotations improved the performance

substantially over the other WES models (accuracy 64.1%) (Fig. 2a & Supplementary Fig. 3).

While predicting the exact tumor type correctly with somatic mutations from exomes com-

pared to whole genomes was more challenging, MuAt reached a high top-5 accuracy of 90.6%.

Furthermore, MuAt predictions were found to be reliable, indicating that the model was well-

calibrated (Supplementary Fig. 4).

We then benchmarked our method against the current state-of-the-art. Here, MuAt outper-

formed the recent DNN model of Jiao et al. [20], which achieved 85.5% accuracy with PCAWG

cancer genomes and 59.4% accuracy in TCGA cancer exomes (Fig. 2b). In [20], the method

was evaluated in PCAWG data where MSI tumours had been removed. As the exact type of

an MSI tumour can be difficult to predict, and since they represent a clinically important sub-

group [37], we kept the MSI tumours in the data. This may explain the difference between our

experiment and their reported accuracy of 91% [20]. The accuracy of a random forest model was

substantially worse than either model (77.3% PCAWG, 57.7% TCGA). Full results are available

in Supplementary Table 2 and Supplementary Table 3.

For the remainder of experiments, we proceeded with the MuAt model trained on SNVs,

MNVs, indels and SVs/MEIs, and genomic positions in PCAWG data (Methods). We first

investigated how the number of mutations in each tumour influences prediction performance. As

expected, tumours with smallest mutational burden (n=259 tumours, <1,109 mutations) showed

the poorest prediction accuracy with 78.4% of tumours correctly predicted (Fig. 3a). Many

prostate and thyroid cancers, and medulloblastomas with low burden were found hard to predict,

whereas pilocytic astrocytomas were predicted more accurately. Similarly, the tumours with the

highest burden (n=256 tumours, >29,626 mutations) were more difficult to predict (accuracy

82.8%) than the tumours with intermediate burdens (1,109–29,626; accuracy 90.8%). This

group included many colorectal, stomach and uterine cancers with DNA repair defects leading

to hypermutability. In general, the model misclassified similar tumour types, or tumour types
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Figure 2: a) Top-1, top-3 and top-5 accuracies of MuAt models trained with different mutation

types in PCAWG cancer genomes (top) and TCGA cancer exomes (bottom). Cross-validation

accuracies are shown, with the standard deviation of accuracy in cross-validation folds indicated

by error bars. b) Benchmarking MuAt prediction performance in PCAWG genomes and TCGA

exomes against a recent DNN model [20] and a random forest model (RF). Two versions of

the DNN model performance are reported, analysis of the PCAWG dataset (DNN) and the

performance reported in [20] (PCAWG-DNN). SNV150 indicates the feature set used in [20],

"ges" stands for genic, exonic and strand attributes (Methods). The last column in the PCAWG

comparison shows the best performance obtained by MuAt (SNV+MNV+indel+position). Note

that the data range starts from 0.3 in all charts.
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exhibiting similar mutational mechanisms, such as lung cancers and gastrointestinal cancers

(Fig. 3b). Another reason for tumour misclassification might be the capacity of the MuAt

model being limited to 5,000 mutations that are randomly sampled from the mutation catalogue

of the tumour (Methods). This capacity was exceeded in tumours with highest mutation counts

(Fig. 3a).

We investigated the performance of the MuAt PCAWG model in sparse data by subsampling

mutations. Figure 3c shows the knee in accuracy (71.1%) to occur already at around maximum

number of 500 mutations per sample, and steadily increasing up to 5,000 mutations. Notably,

top-5 accuracy with 500 mutations was relatively high (95.6%). MuAt performed slightly better

than the DNN model in subsampled data. To understand the contribution of the attention

mechanism, we evaluated MuAt models with the attention module removed. Such models were

found to train and perform poorly compared to full MuAt model (Fig. 3d, Supplementary Fig. 5).

Finally, we evaluated MuAt with data not used in training to assess the method’s ability to

generalize to new data. To do this, we first constructed a MuAt ensemble model from the ten

best models found in cross-validation (Methods). We then predicted tumour types in the subset

of ICGC whole genomes which were not part of PCAWG and where tumour types matched those

in the PCAWG (six cohorts, five tumour types). Only somatic SNVs and MNVs were used to

train the ensemble model, since these were the only mutation type which was available for all

six cohorts. In addition, genomic positions and mutation annotations were used. The model

achieved 84.8% mean accuracy across all tumours, with the individual cohorts predicted at 74-

100% accuracy (Supplementary Fig. 7). While in training data medulloblastomas were predicted

at 91% accuracy, in an independent pediatric medulloblastoma cohort (PEME-CA) the MuAt

ensemble model reached only 74% top-1 accuracy. Nevertheless, MuAt predicted tumours of

this cohort to be one of the three central nervous system tumour types present in the training

dataset in 96% of cases.

MuAt distinguishes molecular tumour subtypes

We explored the MuAt tumour-level features (n=24, M1,. . .,M24) learnt in PCAWG data by

projecting the features to a two-dimensional space with UMAP [36]. PCAWG tumours clus-

tered by tumor type as expected due to the high performance of the model in predicting tumor

types (Fig. 4). We then investigated whether MuAt features learnt by classifying tumor types

could be informative of histological or molecular subtypes even though information on sub-

types was not provided during model training. By correlating MuAt features with known or

predicted driver events reported in PCAWG tumours [33] and correcting for tumour histology
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Figure 3: a) MuAt predictions in PCAWG cancer genomes stratified by the number of somatic

mutations and whether the tumour type was correctly (solid colours) or incorrectly (cross-

hatched colours) predicted (top-1). Cross-validation results reported for PCAWG dataset. b)

Confusion matrix of the best-performing MuAt model in PCAWG data. c) Comparison of

MuAt and DNN [20] accuracy (Y-axis) on sparse data with respect to the number of mutations

in downsampled tumours (X-axis). Top-1/3/5 accuracies are shown. d) Accuracy of MuAt with

attention (w/ Att) and without (w/o Att), and with respect to the embedding dimensionality.
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(Methods), we identified a striking association of MuAt features with somatic driver events in

SPOP (q=6.591×10−12; Supplementary Fig. 8), a candidate driver gene in prostate cancer [38].

All twelve prostate cancers with SPOP mutations clustered in the MuAt feature UMAP (Fig. 4a).

These tumours harbored 2.3 times (95% CI, 1.2–4.3x) more somatic SVs than wildtype tumours

(Supplementary Table 4). In contrast to tumours with BRCA1 or BRCA2 driver events, which

harbored 1.6x (95% CI, 1.0–2.4x) and 1.4x (95% CI, 0.9–1.9x) more SVs as well as excess of 10–

100 bp deletions (BRCA1, 2.2x; BRCA2, 7.3x), SPOP tumours did not display excess of other

somatic mutation types. Instead, SPOP tumours constituted a molecular subgroup of prostate

cancer characterized by increased somatic structural alteration burden, compatible with previous

reports [39]. Prostate cancers with ERG driver mutations (n=85), mutually exclusive to SPOP

(OR=0.102, 95% CI, 0.002–0.725, p=0.013; [40]), were evenly distributed among the remaining

prostate cancers in MuAt clustering and somatic translocation (Supplementary Fig. 9).

In medulloblastomas, four subgroups were visible in the feature UMAP (Fig. 4b). One

of these was found to correspond to the Sonic Hedgehog (SHH)-activated medulloblastomas

of adult patients with mutation landscapes dominated by the age-associated CpG>TpG sub-

stitutions [41]. Furthermore, PTCH1, DDX3X, and SMO driver mutations characteristic to SHH

medulloblastomas, and PRDM6 enhancer hijacking driver events found in Group 4-medulloblastomas

associated with MuAt features (FDR<1%; Supplementary Fig. 8). Interestingly, medulloblas-

tomas with PRDM6 driver alterations (n=7) were confined to one of MuAt feature clusters

(Supplementary Fig. 10. These tumours displayed an increased genome-wide burden of SV dupli-

cations (3.7x, 95% CI, 1.6–8.3x), inversions (2.4x, 1.0–5.4x) and translocations (2.4x, 1.0–5.6x),

but no excess of other mutation types compared to wildtype medulloblastomas (Methods).

MuAt identified tumours with mismatch repair deficiency (MMR) resulting in microsatellite

instability as well as tumours exhibiting very high burden of mutations, especially TpCpT>TpApT

substitutions characteristic of polymerase ϵ and δ proofreading deficient tumours (Fig. 4c).

Driver mutations in the MMR gene PMS2 associated with MuAt feature M6 (q=5.53×10−7).

The fraction of somatically mutated microsatellites, a measure for the level of MSI in a tumour,

positively associated with features M6, M9 and M13 (q <0.05; Supplementary Table 5; Meth-

ods). TpCpT>TpApT substitutions positively associated with 11 MuAt features at 1% FDR,

with M3 displaying the strongest association (Supplementary Table 6).

In skin melanomas, we observed acral melanomas to cluster by MuAt features (Fig. 4d).

Tumours in this subgroup displayed many somatic SVs and amplifications of CCND1, a common

alteration in acral melanomas associating with ulceration and localized metastasis [42]. The only

mucosal melanoma in the data harbored a CCND1 amplification and clustered with the acral
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Figure 4: UMAP projection of MuAt tumour-level features in PCAWG data. MuAt recognized

tumour subtypes in a) prostate cancers with a subgroup defined by SPOP driver mutations and

increased somatic structural variant burden, b) medulloblastomas, c) colorectal cancers with

microsatellite-unstable (MSI), polymerase ϵ deficient, and microsatellite-stable (MSS) cancers,

d) skin melanomas subtypes with CCND1 amplifications, e) chronic lymphocytic leukemias

associated with somatic hypermutability, and f) pancreatic endocrines with germline MUTYH

mutations. Specific example tumours are indicated by numbers, with SNV, indel and SV types,

and SNV/indel/SV proportions shown.
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melanomas. The remaining melanomas, mostly of the cutaneous subtype, had a high number of

CpC>TpT dinucleotide substitutions compatible with signature DBS1 due to UV light exposure.

Finally, in chronic lymphocytic leukemias, MuAt differentiated tumours with patterns of somatic

mutations that had occurred in B cells during IGH gene rearrangements (Fig. 4e) [43].

Pancreatic neuroendocrine tumours (PanNETs) of four patients clustered unexpectedly with

kidney cancers (Fig. 4f, Supplementary Fig. 11). Accordingly, three of these four PanNETs were

misclassified by MuAt as kidney cancers. These patients were found to be carriers of germline

mutations in MUTYH (p.Tyr176Cys, two patients; p.Pro292Leu; c.924+3A>C). (Supplemen-

tary Table 7), and all four tumours showed loss-of-heterozygosity of MUTYH. MUTYH encodes

a DNA glycosylase involved in base excision repair, and germline MUTYH mutations have been

implicated in a specific G:C>T:A somatic mutation signature found in PanNETs and colorectal

cancers [44, 45]. Consistently with these earlier results, we saw an excess of C>A substitutions

in NpCpA and NpCpT contexts in MUTYH tumours compared to other PanNETs in PCAWG

(t=9.63, p=6.57×10−15) (Supplementary Fig. 11).

MuAt features are informative of mutational patterns and correlate with mu-

tational signatures

A subset of histologies in PCAWG were characterized by high values of specific features (Fig. 5a,

Supplementary Fig. 12) such as central nervous system tumours by feature M1, lung cancers by

M3, pilocytic astrocytomas by M4, gastrointestinal tract cancers by M6, and liver cancers by

M9. Four features associated with higher (M6, M8) or lower (M4) overall somatic SNV burden

(Supplementary Fig. 16, Supplementary Table 6). Other features associated with more specific

mutational patterns, such as higher structural variant counts (M15, M18, M22), 1-3 bp indels

(M3, M6, M8, M13, M21, M24), large deletions and duplications (M5), or only duplications

(M1). Specific SNV triplet patterns included TpCpA>TpApA and TpCpT>TpApT (M20), and

TpCpN>TpGpN and TpCpN>TpApN patterns matching the mutational footprint of APOBEC

activity (M15, M20).

As MuAt features recapitulated mutational patterns reported in literature, we quantified the

independent association of each feature with mutational signatures [14, 15]. We found many

features to share similarity with single-base (SBS) and doublet-base substitution (DBS), and

indel (ID) signatures (Fig. 5; Supplementary Fig. 13 & 14, Supplementary Table 8). These

signatures included SBS2 and SBS13 characterized by APOBEC activity (M15), SBS17a/b pos-

sibly due to DNA damage due to reactive oxygen species or 5FU chemotherapy (M2, M6, M22,

M1, M14), SBS4 due to tobacco smoke (M3, M9), and SBS12 with currently unknown etiology
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Figure 5: Association of MuAt tumour-level features with tumour types and mutational signa-

tures. a) MuAt mean feature values in PCAWG genomes. Tumour type (histology) is indicated

on the right. b) Rank correlation between MuAt features and COSMIC SBS mutational signa-

tures (version 3).
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present in many liver cancers (M9). MuAt features explained over half of variance in twelve sig-

natures (Supplementary Fig. 15). Moreover, MuAt features represented patterns across different

classes of mutations. For instance, in addition to SBS17, feature M6 associated with signature

ID2 characterized with single-base deletions at A:T microsatellites attributed to slippage of tem-

plate strand during DNA replication and observed in large quantities in microsatellite unstable

cancers, whereas feature M21 associated with signatures SBS9 and ID2, the former attributed to

polymerase η somatic hypermutation and the latter to slippage during DNA replication of the

template DNA strand.

Attention mechanism captures tumour type specific mutational patterns

To shed light on the mutational patterns learnt by MuAt, we analyzed the similarity matri-

ces QK ′ extracted from the attention module for the tumours in the PCAWG dataset. Figure

6 shows mutation sequence contexts ("motifs") for mutation pairs which have received most

attention stratified by tumour type. The mutation pair motifs most attended to by MuAt con-

tained a SNV paired either with a SNV (52%), MNV (16%), indel (8%), SV (23%) or MEI

(0.4%) (Supplementary Table 9). All these highly-attended MEI events were L1 retrotransposi-

tions occurring in esophageal, pancreatic and prostate adenocarcinomas. Two groups of motifs

occurred in most tumour types (Fig. 6 groups A & B). Group A consisted of pairs of SNVs

(e.g., (Tp[C>A]pA, Tp[T>G]A)), group B consisting of SNVs paired with any mutation type

(e.g., (Tp[C>A]pA, Ap[BND]pG), where BND denotes a translocation breakend). In addition

to these ubiquitous motifs, many tumour types including PanNETs, brain tumours, and breast,

kidney, prostate and thyroid cancers displayed motifs which were characteristic to each tumour

type. Well-known mutational patterns appeared among these motifs, such as the doublet C>T

substitutions in skin melanomas (Fig. 6 C). We also investigated occurrence of genomic po-

sitions in attention matrices. In chronic lymphocytic leukemias and non-Hodgkin lymphomas,

attention focused on mutations occurring in the IGH region (Supplementary Fig. 17). These two

tumour types displayed both shared and distinct sets of motifs (Fig. 6 D & E). Similarly to motif

pair patterns, many tumour types displayed characteristic positional patterns (Supplementary

Fig. 17).

5 Discussion

We introduced a deep neural network called Mutation-Attention (MuAt) to predict tumour

types from somatic mutation catalogues while learning representations which are informative of

tumour subtypes. To our knowledge, MuAt is the first machine learning model which is able to
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Figure 6: Association between MuAt-derived mutation motifs and tumour types. Attention

values for mutation motif pairs (X-axis) extracted from the MuAt model trained on PCAWG

data. Values have been averaged first over tumours and then over tumour types (Y-axis). Types

of the key and query mutations (SNV, MNV, indel or SV) are indicated on the two top rows.

Every fourth motif pair is labelled as "X_Y" where X and Y are the motifs corresponding to

attention query and key, respectively. Label colours indicate mutation types. Motif groups:

A) SNV/SNV and B) SNV/non-SNV pairs appearing in many tumour types. C) Motifs with

doublet C>T substitutions specific to skin melanomas. D) and E) Motifs characteristic to

chronic lymphocytic leukemias and Non-Hodgkin lymphomas.
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incorporate heterogeneous information such as mutation type, genomic position and arbitrary

annotations on individual mutations instead of representing mutations as aggregated counts.

Trained with cancer genomes from the PCAWG consortium, MuAt achieved 89% accuracy in

predicting tumour types (24 types), and 74–100% accuracy in independent cohort of cancer

genomes. As exome sequencing can be highly informative in clinical settings [46, 47], we trained

and evaluated a MuAt model with cancer exomes from the TCGA consortium, and achieved a

top-1 accuracy of 64% accuracy. However, top-5 performance in WES data was substantially

better, reaching 91% accuracy. The top predictions often included similar tumour types such as

lung adenocarcinomas and squamous cell carcinoma, or gastrointestinal tumours. Hence, MuAt

results may be informative of tumour origins even if the prediction is not correct. We also

observed relatively good performance with downsampled WGS data, suggesting MuAt may find

use in low-coverage WGS data, pediatric tumours, and in cell-free DNA applications where only

a fraction of the somatic mutation catalogue of a tumour might be captured [22].

We showed MuAt tumour-level features to distinguish between tumour subtypes, even if

these labels were not available during training. By associating MuAt features with driver events

identified in PCAWG, MuAt highlighted prostate cancers driven by SPOP mutations [48], char-

acterised by a 2.3-fold increase in somatic SV burden, exceeding the burden of tumours with

BRCA1 and BRCA2 mutations. SPOP has a role in DNA damage response [49], and SPOP

mutated prostate cancers have elevated levels of genomic instability [48, 39]. SPOP mutations

have been associated with better response to therapies [39, 49], potentially mediated by the

increased SV burden.

MuAt stratified medulloblastomas into four clusters, one of which contained seven tumours

driven by enhancer hijacking events involving PRDM6 with a 3.7-fold increase in SV burden.

PRDM6 is activated by enhancer hijacking events in Group 4 medulloblastomas [41]. Whether

the frequent structural aberrations in these tumours are due to the PRDM6 activation, or vice

versa, remains to be explored in detail. MuAt was also able to highlight a group of four pancreatic

neuroendocrine tumours clustering unexpectedly together with kidney cancers. These tumours

were found to harbor germline mutations of MUTYH with loss-of-heterozygosity in the tumours,

explaining the observed clustering [44].

Since MuAt was able to accurately perform tumour typing with somatic mutation catalogues,

we hypothesised that the learnt tumour-level features would share a degree of similarity with

mutational signatures [14, 15]. We indeed found many MuAt features to associate with COS-

MIC signatures such as SBS2 and SBS13 (corresponding to APOBEC activity), SBS4 (tobacco

smoke), and SBS9 (somatic hypermutation in B cells), although the signatures could not be
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mapped one-to-one with the features. This is likely due to MuAt not designed to find features

which would correspond to independent latent determinants of mutational catalogues similarly

to non-negative matrix factorization used in mutational signature methods [14, 15], but instead

to predict tumour types as accurately as possible. In contrast to signature analyses requiring

a non-trivial refitting step [50, 51], MuAt features for a new sample can be obtained directly

given a trained MuAt model. Approaches to learn disentangled representations in deep neural

networks may prove fruitful future direction in creating more broadly applicable representations

of multiomics data [52, 53].

MuAt’s attention mechanism allowed us to discover aspects of mutation data such as the type

and position – or combinations of these – which were informative in predicting each tumour type.

We found various types of mutations occurring in the IGH locus to be driving predictions of B cell

malignancies. Here MuAt was able to capture the interaction between specific mutation types

and the genomic region characteristic to somatic hypermutation in B cells. MuAt was also able

to leverage the rarer mutation types such as L1 retrotranspositions to help identify cancers such

as esophageal and other epithelial cancers where these events are relatively common [54, 55, 56].

While we were restricted to maximum of 5,000 mutations per tumour due to the complexity

O(n2) of the attention mechanism used, recent improvements such as Reformer [57] or Linformer

[58] may be used to lift this restriction and to increase MuAt capacity, potentially leading to

better performance.

We have demonstrated how deep representation learning can in large cancer datasets yield

features which are useful beyond labelled data, for instance in tumour subtyping. Our method,

MuAt, can be extended to incorporate additional data on somatic mutations, such as epige-

netics, potentially enabling scrutiny of the role of epigenetic interactions in somatic mutagen-

esis [59, 60, 61, 13, 62]. MuAt is already able to contribute to multiomics data integration to

drive biological discovery and clinical applications by providing informative representations of

somatic mutation catalogues of tumours. Beyond tumour typing and subtyping, we envision

machine learning models such as MuAt to be instrumental in determining cancer prognosis and

appropriate treatment choice. As high-throughput patient data accumulates in clinics and can-

cer projects worldwide, machine learning models able to leverage the massive-scale data will

become irreplaceable tools driving digital precision cancer medicine.
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7 Methods

Data acquisition

ICGC and TCGA datasets including consensus somatic variant callsets and sample metadata

were obtained from the ICGC data portal (https://dcc.icgc.org/releases/PCAWG/) and Ge-

nomic Data Commons data portal (https://portal.gdc.cancer.gov/). All coordinates of somatic

variants were specified in GRCh37 human reference genome coordinates.

Data preprocessing

Preparing MuAt inputs from somatic variant callsets

For each somatic variant call in the datasets, MuAt input consists of: 1) mutational sequence

("motif") encoding for the reference and alternate nucleotide sequence, 2) genomic position

(chromosome and position), and 3) additional information on the mutation.

Mutational sequences s ∈ Σ3 are drawn from alphabet Σ = {A, C, G, T} ∪M. Mu-

tation symbols M consist of six substitutions described with respect to the pyrimidine base

(i.e., C:G>A:T, C:G>G:C, C:G>T:A, T:A>A:T, T:A>C:G and T:A>G:C), deletions of A,

C, G and T, insertions of A, C, G, T, breakpoints for four types of structural variants (i.e.,

deletions, duplications, inversions and translocations), and retrotransposon insertions (i.e., L1,

Alu and SINE-VNTR-Alus (SVA)). This encoding allows representing both simple and complex

mutations. For instance, the substitution ApCpG>ApTpG would be encoded as A[C>T]G, a

diadenine deletion preceded by a cytosine as C[del A][del A], and a deletion breakpoint with a

C>G substitution followed by a thymine as [SV_del][C>G]T, where {[C>T], [del A], [SV_del]}

⊂ M.

In experiments, we also considered non-mutation events as negative examples. These are

constructed by randomly selecting positions where there is a mutation in one tumour (e.g.,

A[C>T]G at chr1:11,235,813), encoding this position without mutational symbols (e.g., ACG

at chr1:11,235,813), and placing it into another tumour’s mutational catalogue. When injecting
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negative examples into a tumour, we add the median number of variants per type in the dataset

as negatives. Specifically, if the dataset has a median of 1000 SNVs and 100 indels, then each

tumour will receive a total of 1100 negative examples, where 1000 were picked from random

SNVs in other tumours, and the remainder from random indels.

Genomic positions are represented in 1-Mbp bins. For instance, the position (chr1, 11,235,813)

would be encoded as the token "chr1_11". This token is used to encode all mutations occurring

in chr:11,000,000–11,999,999.

We experimented with mutational annotations consisting of indicators whether the mutation

occurs in a gene ("genic") or in an exon ("exonic"). In addition, we categorize each mutation

into one of four mutually exclusive classes ("strand"): mutation’s pyrimidine reference base is

on the 1) same or 2) opposite strand as a gene, or 3) mutation overlaps two genes on opposite

strands, or 4) mutation is intergenic. This annotation attempted to capture transcriptional

strand biases associated with some mutational mechanisms [63].

Each of the three input modalities (mutation motif, position, annotations) were one-hot

encoded separately using token dictionaries. The dictionary of positions consisted 2,915 tokens

for all 1-Mb genomic bins. Mutational motif dictionary consisted of 3,692 tokens including

96 SNVs, 2,170 MNVs, 1,160 indels, 233 SVs and 33 MEIs. Finally, the annotation dictionary

contained 2×2×4=16 values for the possible combinations of genic, exonic and strand attributes.

MuAt architecture

The architecture of MuAt is shown in Figure 1, and in detail in Supplementary Figure 1. Input to

MuAt is a set of l genomic variants. These variants are described with respect to their mutation

type and sequence context (mutation motif), genomic position and mutational annotations.

Each modality is one-hot encoded using a respective dictionary, resulting in l × m, l × p, and

l × g one-hot matrices, where m, p and g are the numbers of unique motifs, genomic positions

per 1-Mbp bins, and mutation annotations, respectively. These one-hot encoded matrices are

then multiplied with embedding matrices ({m, p, g} × k), resulting in three l × k embedding

matrices. Embedding matrices are concatenated to obtain an l × 3k matrix XE , which is the

input to the MuAt attention module.

Query, key and value matrices are computed by multiplying the input embedding matrix

XE with respective 3k × 3k weight matrix, Q = XEWQ, K = XEWK and V = XEWV . The

attention mechanism Eq. 1 is then applied h times, where h is the number of attention heads.

The resulting l × 3k feature matrix is then combined with XE via skip connections, and fed to

batch normalization and fully connected (FC) layers. Finally, the l×3k matrix is average-pooled
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into a 3k-vector and processed in a fully connected layer to yield f sample-level features (Fig. 4).

In our experiments, we used f = 24. To obtain the final tumor type predictions, sample-level

features are inputted to a fully connected layer, and its outputs are normalized with softmax

σ(z)i =
ezi∑
j
ezj

to obtain probabilities over tumor types.

Experimental design and reporting

We were interested in 1) evaluating the contribution of different mutation types in prediction per-

formance, 2) finding hyperparameters which result in best prediction performance, 3) comparing

MuAt with existing models, 4) how to best interpret the trained MuAt models, and whether the

features learnt by MuAt are compatible with previous findings. This section provides details

how the experiments to answer these questions were prepared.

We report the performance in terms of accuracy TP + TN/(TP + TN + FP + FN), pre-

cision TP/(TP + FP ), recall TP/(TP + FN) and F1 score 2TP/(2TP + FP + FN), where

TP, TN,FP, FN are the number of true positives and negatives, and false positives and nega-

tives, respectively. Top-k accuracies were calculated such that the prediction was deemed correct

when the correct class is among the k highest scoring predictions.

MuAt hyperparameter search and model training

We performed search for MuAt hyperparameters over embedding dimensions {128, 256, 512},

number of encoder layers {1, 2, 4}, number of attention heads {1, 2}, number of fully connected

layers {1, 2} and mutation types to be included in the input. Supplementary Figure 2 shows

the mutation type combinations for PCAWG (15 combinations) and TCGA datasets (9 com-

binations). We set the learning rate to 6 × 10−4, momentum 0.9, and minibatch size of one,

training for 150 epochs. Maximum number of mutations MuAt was able to process per tumour

in our experiments was 5000, limited by the memory on GPUs available to us (see Programming

environment). MuAt parameters were optimized with stochastic gradient descent minimizing

cross-entropy loss

L = H(y, ŷ) = −
∑
i

yi log(ŷi) (2)

where ŷi is predicted probability for tumour type i, and yi ∈ {0, 1} denotes whether i is the

correct tumour type.

We performed 10-fold cross-validation by splitting datasets into training and validation sets

with the ratio of 9:1 to train MuAt models. In each fold, we trained a model for each combination

of the hyperparameter choices listed above, and the model achieving the best accuracy in the

validation set was selected from each fold. The hyperparameters and prediction performance for
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each fold is given in Supplementary Table 3. The model selected for analysis of tumour typing

performance in sparse data and tumour subtype discovery was trained on SNVs, MNVs, indels

and SVs/MEIs, genomic positions and mutation annotations using the PCAWG dataset. This

model contained one attention head and two encoder layers, embedding dimension 512, resulting

in 28,458,520 trainable parameters.

Comparing MuAt with other models

We compared MuAt to the deep neural network proposed by Jiao et al. [20] and a random forest

(RF) model. We used the default setting of RF regressor available in scikit-learn package.

In [20], a total of 150 SNV features were used (SNV150) containing the six possible single-

nucleotide substitutions (C>A, C>G, C>T, T>A, T>C, T>G), SNVs together with either the

flanking 5’ or 3’ base (4×6 + 6×4 = 48 features), and SNVs together with both the 5’ and 3’

flanking bases (4×6×4 = 96 features).

We performed 10-fold cross-validation to train the DNN model. DNN model hyperparameters

were optimized in each fold as done in [20]. For the random forest model, we performed 4-fold

cross-validation.

The contribution of attention mechanism to MuAt performance was evaluated by comparing

a MuAt model with one encoder layer and one attention head to a model without any encoder

layers.

Evaluating MuAt in sparse and independent data

To test the performance of MuAt in sparse data, and further to test transfer learning from

WGS to WES data. We selected 13 common tumour types existing in both PCAWG and

TCGA dataset (Supplementary Table 1). With the same hyperparameters setup as mentioned

previously, we retrain the model, as well downsampled validation set with fixed number of

mutations n ∈ {10, 50, 100, 300, 1000, 2500, 4000, 5000}, where 5000 is the maximum capacity

of MuAt. Results for transfer learning are shown in Supplementary Figure 6. This setup also

used for testing the effect of attention (Fig. 3 and Supplementary Fig. 5)

To evaluate MuAt in independent data 7, we created an ensemble MuAt model by taking

the ten best performing, cross-validated models trained on PCAWG data, and predicting tumor

type based on summed logits for tumor types from each model.
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Extracting and visualising MuAt tumour-level features

To visualize the tumour-level features learnt by MuAt, we extracted the output of the layer

before the final prediction (Supplementary Fig. 1). This yielded a feature vector of length 24

for each tumour, which we projected onto a two-dimensional space with UMAP [36]. Interactive

UMAP visualization is available at https://github.com/primasanjaya/mutation-attention.

Association of MuAt features with driver events and somatic mutation patterns

Driver events identified in PCAWG tumours [33] were associated with principal components of

MuAt features with least-squares regression. For each pair of MuAt feature principal component

(n=24) and driver (n=298), a least-squares linear model p ∼ d+age+sex+histology+g1+. . .+g10

was fitted, where p is the feature principal component, d is an indicator whether the driver

event was detected in the tumour, and gi is the ith principal component of patient genotypes

computed in PCAWG [33]. Association was computed only for drivers with at least three

tumours harboring the driver, resulting in 7,128 models. P -values from all tests were adjusted

for multiple testing with Benjamini-Hochberg method. Supplementary Figure 8 shows the driver

coefficients for all feature principal components from all models, as well as a histogram and a

quantile-quantile plot of unadjusted p-values against a uniform distribution showing relatively

small degree of inflation.

To analyse correspondence of MuAt tumour-level features with COSMIC signatures, we

first calculated Spearman’s rank correlation between each MuAt feature (n=24) and COSMIC

SBS signature (Fig. 5). We also carried out least-squares linear regression for each signature

separately to predict the log-transformed signature value s based on all MuAt features, i.e.,

log(s) ∼ M1 + . . .+M24. We corrected p-values with the Benjamini-Hochberg method [64] and

reported results with false discovery rate (FDR) <10% (Supplementary Fig. 13, 14). For each

signature, the variance explained by MuAt features as adjusted R2 value is given. This analysis

was performed for both COSMIC version 2 and version 3 signatures.

Association of MuAt features with mutation counts stratified by type was quantified with neg-

ative binomial model to predict mutation count based on MuAt features M1, . . . ,M24, showing

results with FDR<5% in Supplementary Figure 16. Association with MSI levels was performed

by predicting the logarithm of fraction of mutated microsatellites computed previously [65] from

MuAt features, i.e., MSI ∼ M1, . . . , M24 with a least-squares regression model.
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Inspecting attention matrices

We analysed the attention matrices QK ′ of each tumour in the PCAWG data by first extracting

the 5000×5000 matrices A = (aij), and selecting the values aij > 0.9×max(A) to reduce the size

of data. Rows and columns of A correspond to mutations of a tumour. We can thus visualise the

matrices with respect to different mutational data modalities; in our experiments, we visualised

mutational motifs and genomic positions. Genomic annotations, (i.e., genic, exonic and strand

attributes) were not visualised.

To create Figure 6 and Supplementary Figures 17, we first expressed the attention values in

terms of the selected modality (e.g., mutation motifs for query and key mutations in Fig. 6), then

averaged the values over tumours and tumour types, and finally divided by column- (modalities)

and row-wise (tumour types) standard deviations.

Programming environment

We implemented MuAt with PyTorch 1.8.0 deep learning framework in Python 3.7. To evaluate

the model of Jiao et al. [20], we used the code provided at https://github.com/ICGC-TCGA-PanCancer/

TumorType-WGS, and ran it with TensorFlow 2.0 in Python 3.6. For the random forest model, we

used scikit-learn 0.21.3. Statistical modelling was done with scipy 1.5.3 and statsmodels 0.12.1

packages. Packages used for data analysis and visualization included pandas 1.3.4, seaborn

0.11.2 and umap-learn 0.5.1. All deep neural network models were trained on NVidia Tesla

V100 GPUs with 16 GB memory.
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