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Microbial communities play a crucial role in determining the dynamics of soil and marine
ecosystems. They strongly influence the physiological functioning of plants and animals,
for instance, nutrient uptake, stress tolerance, immune responses in the gut, lung, skin, etc.
The diverse species in such communities interact both competitively as well as cooperatively.
Cross-feeding, the exchange of metabolites between a pair of microbial species for mutual
benefit is a common interaction that probably explains why 99% of natural bacterial species
are unculturable on their own in the laboratory. Here, we provide a theoretical, network-level
understanding of the conditions under which cross-feeding between a pair of microbial species
can be beneficial to both. Using the known microbial repertoire of metabolic reactions, as
represented in the KEGG database, we construct a large ensemble of metabolic networks
designed to synthesize a set of biomass precursors from specified nutrients. We construct
both autonomous networks, that can perform this task on their own, as well as pairs of
cross-feeding networks that can only perform this task together but not alone. Surprisingly,
we find that there exist cross-feeding pairs that produce higher biomass or energy yields than
even the best autonomous networks. We show that such “outperforming” cross-feeding pairs
exist only because of certain nonlinearities in the way metabolic flux is distributed in these
networks. By analyzing patterns in our ensemble of networks, we propose a set of necessary
and (almost) sufficient conditions that the metabolic networks have to satisfy for cross-feeding
to be beneficial. These conditions are based partly on the structure of the networks and
partly on the chemical and thermodynamic properties of the underlying chemical reactions,
phenomenologically quantified in terms of the effect of donating or accepting metabolites
on the yield of our constructed networks. Our analysis not only provides a mechanistic
understanding of why cross-feeding is prevalent in microbial communities, but also provides a
theoretical basis for understanding the benefit of compartmentalization of chemical reactions
in a variety of contexts, for instance with mitochondrial vs. cytoplasmic metabolism in
eukaryotic cells, or multi-enzyme cascade reactions in industrial contexts.

Introduction

Naturally occurring microbial communities are genetically and metabolically diverse. A common
argument to explain the prevalence of such diversity is that co-occurring microbial species
can often benefit from each other through division of labour [1, 2, 3, 4, 5]. In many cases, this
labour is biochemical in nature. For instance, species can benefit by cross-feeding, where one
species releases metabolites into its environment which another can use as a nutrient [6, 7, 8]. A
mutualistic interaction, where a pair of species cross-feed off each other, can offer a fitness benefit.
That is, the growth rates of both species can increase due to cross-feeding when compared with
autonomous culture, even when the interaction is obligate [9, 10].

Some reports suggest that the dominant reason why only about 1% of naturally occurring
microbes can be cultured in the lab [11,12] is that obligately dependent cross-feeding is prevalent
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in natural communities [13,14,15]. Others, however, argue that competitive interactions are more
common between microbes in nature [16, 17] and an obligate cross-feeding interaction, albeit
beneficial, would likely be unstable against environmental and genetic changes [18,19,20]. This
is a major on-going debate.

Previous studies that have attempted to understand metabolic interdependence between
microbes fall into three broad categories: (i) measuring fitness benefits in genetically engineered
bacteria which survive by exchanging metabolites [9, 21, 22, 23], (ii) inferring interactions in
naturally occurring communities through shotgun metagenomic sequencing [24,25,26,27], and
(iii) using theoretical models to understand the requirements for beneficial cross-feeding [18,28,
29,30,31,32]. These studies provide evidence both for and against: some suggest that obligate
cross-feeding can help interacting species [9, 22,23,33], while others claim that this is likely not
the case [17, 19, 20, 27]. However, these studies have some limitations: the experiments either
lack a mechanistic understanding of the interaction (which metabolites are exchanged and how
that benefits fitness), or are constrained by the lack of metabolic annotations in sequenced
community samples; and the theoretical models rely on metabolic trade-offs that have not been
experimentally verified to show the aforementioned benefits.

Here, we construct an ensemble of metabolic networks randomly assembled from the entire
repertoire of prokaryotic metabolic reactions (as represented by the KEGG database). The
random assembly of these networks is subject only to constraints of viability, defined as the ability
to synthesize a specified set of biomass precursors from a given set of nutrients. We construct
such ensembles both for autonomous networks that are viable on their own, and cross-feeding
pairs of networks that are viable together but not individually. We use these ensembles to provide
baseline expectations for the structure, productivity and stability of autonomous and cross-feeding
pairs of metabolisms based upon the chemical reactions that comprise these networks and their
stoichiometry. Strikingly, we demonstrate that some cross-feeding pairs can produce higher
biomass yields than even the best autonomous networks. We identify the chemical basis for this
phenomenon; that is, we provide necessary and sufficient conditions that the network pairs must
satisfy for cross-feeding to be beneficial.

Results

Algorithmic generation reveals on the order of 10,000 unique autonomous
metabolic networks viable in a given nutrient environment

We first studied autonomous networks, which can individually convert nutrients into biomass
precursors and energy. We assumed a minimal nutrient medium with acetate as a carbon source
and ammonia as a nitrogen source. Further, we assumed that the following “currency” molecules
were always present in saturating amounts in the medium: water, carbon dioxide, oxygen,
hydrogen, ATP, ADP, AMP, NAD(P)H and formate. We verified that changing the carbon and
nitrogen source to glucose and glutamate, respectively, does not qualitatively affect our results
(supplementary figure 4).

We then stipulate that a “viable” metabolic network must satisfy the following stringent
condition: starting from only the nutrient and currency molecules, it must be able to produce all
of a specified set of biomass precursor molecules (such as pyruvate, L-Serine, and D-Ribose-5-
phosphate; see table 2 for full list of precursors we use). We have also verified that an alternate
choice for the precursors does not qualitatively affect our results.

For the medium composition described above, we were able to generate 19,543 unique
randomly assembled networks that satisfied this criterion. The algorithm for doing this is
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depicted schematically in Fig. 1 and described in detail in Methods. We note here only that:
(i) the reactions comprising these networks are chosen from the entire repertoire of prokaryotic
metabolic reactions in the KEGG database (henceforth referred to as the “KEGG universal
chemistry”), and (ii) this algorithm generates “minimal” networks, in the sense that removal
of any single reaction from each network causes it to become unviable. The latter choice was
made simply to allow a more robust comparison between such autonomous networks and the
cross-feeding pairs of networks we discuss in the next section. Figure 1A shows one example of
such a constructed network, specifically the smallest autonomous network we generated (the one
with the least number of reactions). It is interesting that so many solutions are possible within
the KEGG universal chemistry for the metabolic task of converting the given nutrients into the
specified biomass precursors.

Of course, while these 19,543 networks can each produce all the biomass precursors, they
may do so with varying efficiency. Therefore, we calculated, for each network, its size (number of
reactions in the network), its energy yield (ATP and NAD(P)H generated per nutrient molecule),
and its biomass yield (the total amount of precursor molecules generated per nutrient molecule).
The yield calculations depend of course on how we distribute metabolic fluxes within the networks.
The Methods section describes the simple method we chose, based on stoichiometric demand
for each metabolite. Briefly, the method assumes that (i) a metabolite that is a reactant in
multiple reactions is distributed amongst them in proportion to the stoichiometry with which it
is consumed in each reaction, and (ii) the flux of a reaction with multiple reactants is limited by
the reactant coming in with the least flux. We elaborate further on this choice in the Discussion
section, but we note here that another method, using a network’s net chemical reaction (see
Methods), did not qualitatively affect our results (see supplementary figure 3).

Figures 1C–E show these three distributions – size, energy and biomass yield – over the
ensemble of 19,543 autonomous networks we constructed. The smallest network, the ones with
the highest energy yield and the one with the largest biomass yield are all different networks (solid
vertical bars in figure 1C–E). However, statistically there appears to be no obvious correlation
between the three metrics over the sampled networks (supplementary figure 1). Thus, we do
indeed observe that the many solutions, for catabolizing the given nutrients into the specified
set of biomass precursors, vary significantly in the efficiency with which they perform this task.
However, even if we examine only those networks with the maximum energy yield we still find
that there are multiple (5) solutions. However, the networks with maximum biomass yield, and
with the smallest number of reactions, are unique.

As a consistency check, figures 1C–E also show where three bacteria with fully characterized
genome-scale metabolisms – one free-living, one pathogenic and one a human gut dweller – lie on
these distributions. All three genome-scale metabolic networks, when pruned to be minimal (see
Methods for details), satisfy our stringent survival criterion on this nutrient medium, as well as
the alternate medium we have examined where the carbon and nitrogen sources are glucose and
glutamate.

Finally, figure 1B shows the set of “byproducts” and their distribution across this set of 19,543
unique autonomous metabolic networks. We define byproducts to be non-precursor molecules
that are produced in a metabolic network but not consumed by any reaction. We note that this
set is quite small, a reflection of the structure of the KEGG universal chemistry. Further, the
average number of byproducts produced in a network is also quite small, typically between 2
and 3 per network (< 1% of the metabolites in each network). This will be relevant in the next
section where we examine pairs of metabolic networks that are capable of feeding off each other
via these “costless” byproduct molecules.
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Obligate cross-feeders can outperform even the most productive autonomous
networks

We define a pair of networks to be obligately cross-feeding when both networks require at least
one of the partner’s byproduct molecules to produce all the precursors, in order to satisfy our
viability criterion. In other words, each network of the pair can perform the metabolic task we
impose in the presence of its partner, but not on its own.

To generate random cross-feeding pairs, we started with a randomly chosen pair of autonomous
networks that we generated previously, and repeatedly added and removed reaction pathways
from them. We did this in such a way that the modified networks required at least one metabolite
from each other’s byproducts in order to produce one of the precursors (see Methods for details).
As with the autonomous networks, these cross-feeding pairs are minimal, in the sense that
removing any reaction renders that network unviable. This procedure successfully resulted in
cross-feeding pairs in roughly 1 of 10,000 attempts, and out of 19,543 autonomous networks,
11,358 were unable to form a cross-feeding pair. However, from the remaining 8,185 autonomous
networks, we generated 5,421 unique obligate cross-feeding pairs of metabolic networks that
satisfied our stringent viability criterion together, but not individually; figure 2A shows one
example. We found that in 8% of these pairs, both members have higher energy yields than
any autonomous network (shaded region in figure 2B), and 6% have higher biomass yields
(shaded region in figure 2C). For the rest of this paper, except where explicitly specified, we
will focus primarily on the biomass yields – cross-feeding pairs that have higher biomass yields
than the best autonomous networks will be termed “outperformers” and the other cross-feeders,
“non-outperformers”. We obtain similar results from energy outperformers.

To understand what distinguishes (biomass) outperformers from non-outperformers, we
compared several of their structural and biochemical properties, namely: metabolic overlap
between partners, number of byproducts exchanged, correlations between yields in a pair, extent
of pathway overlap, and responses to various perturbations (see Methods and supplementary
figure 5). Strikingly, we found that metabolic overlap – the fraction of metabolites common to
both networks in a pair – could help distinguish between outperformers and non-outperformers.
Specifically, outperformers typically had intermediate overlap (between 20 and 55%; figure 2D,
red), while for non-outperformers, the overlap was typically higher (as much as 87%; figure
2D, orange). Similar numbers were found for energy outperformers (supplementary figure 5).
Moreover, we noticed that outperformers typically exchanged only a subset of the byproducts
produced by autonomous networks (8, compared to the 14 total byproducts; figure 2E). The
set of byproducts exchanged by non-outperformers was larger (12 versus the 14 total). Again,
similar observations were made for energy outperformers.

We noticed several additional minor differences between outperformers and non-outperformers.
For instance, the yields of the partners in a non-outperforming pair are typically negatively
correlated, while those of outperformers are typically uncorrelated (supplementary figure 6). We
also found that outperformers and non-outperformers differed in their stability to environmental
perturbations, such as nutrient shifts and invasion by other species (supplementary figure 3).

Choke-points limit key reaction fluxes, and are necessary for outperforming
cross-feeders

The existence of cross-feeding pairs that perform better than the best autonomous networks
implies that some chemical networks produce a different yield when split into two compartments
that interact via a small set of exchanged metabolites. Indeed, we find that the yield distributions
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obtained by merging each cross-feeding pair into a single network are very similar to the
distributions from autonomous networks (see supp supplementary figure 14 for biomass yields).
Thus, understanding why the biomass yield of certain pairs of networks is larger than that of
their corresponding merged network is key to understanding the existence of outperforming
cross-feeding pairs. This is only possible if there are non-linearities in the way metabolic fluxes
are distributed. Conversely, if the fluxes in the merged network were a linear superposition of
the fluxes of the split networks, then the yields of cross-feeding pairs would be identical to the
yields of their merged networks.

We found that the key non-linearity that enables outperforming pairs lies in our stipulation
that the flux of a reaction is limited by the reactant which has the minimum flux (see Methods
and figure 3). This can result in some key reactions being limited by different reactants when
comparing the split and merged networks. We will call such reactions that switch their limiting
substrate, “choke-points”. Notice that such a non-linearity can come into play only when there
is some intermediate overlap (but not when there is either zero or full overlap) between the
metabolites of the cross-feeding pair. If the two networks do not overlap at all, then by definition
the yield of the split and merged networks will be the same. Similarly, if there is 100% overlap,
i.e., the split networks are identical, then too the yield of the merged network will be the same
as the split networks, even if there is a nonlinearity in the distribution of flux. This fits with our
observation that outperforming cross-feeding pairs have between 20% and 58% overlap.

The toy example in Fig 3A illustrates in a simple setting how even a single choke-point can
result in split networks producing a different biomass yield than their merged network. Here
there is 1 nutrient and 2 biomass precursors (labelled a and b). Fig 3B shows the merged network
(the byproducts, still in black, are now internal, intermediate molecules). The list of chemical
reactions corresponding to these networks is listed in table 1. According to our flux distribution
scheme, in the merged network the net flux that produces the overlapping metabolite, marked
with a white cross, is 4, and this flux is distributed amongst 3 reactions labelled F1, F2 and
F3. Following the stoichiometric demand rule, F1 receives a flux of 1 from metabolite A, F2

receives a flux of 1, and F3 receives a flux of 2. From F1, the metabolite B is split into two
downstream reactions. One of these reactions (marked choke in Fig. 3B) is limited by B in
the merged network, but the byproduct A* (which is cross-fed) in the split networks. Thus,
between the split and merged networks, there is a switch in which reactant limits the choke-point
reaction; this switched limitation leads to a difference in how much biomass precursor BA* is
produced downstream, which ultimately leads to differences in the yields between the merged
and split networks. Since the limiting reactant in the choke reaction has a lower flux in the
merged network than the split network, the merged network has a lower biomass yield than the
split networks combined (1.5 for the merged, versus 1.75 for the split).

The networks we have generated from KEGG’s universal chemistry typically have many
more overlapping metabolites, and are much deeper (median un-normalized network depth,

Reaction network 1 Reaction network 2

X −→ 3 A + B X −→ A + BAA

A + B −→ BA∗ BAA −→ B + AA

A −→ A∗ B + A∗ −→ BA∗

AA −→ AA∗ 2 A −→ AA∗

Yield: 2 (per X) Yield: 1.5 (per X)

Table 1: Set of reactions for the cross-feeding pair in figure 3A, whose merger gives yield 1.5 (per X).
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from nutrient to precursor, is 8). Thus, we not only expect many more choke-points to occur
in our cross-feeders, but we also expect their effects to cascade much further (figure 3B). For
a 1000 cross-feeding pairs (54 outperforming, 946 non-outperforming), randomly chosen from
our ensemble of 10,000, we recorded both the number of choke-points (see Methods), as well
as their distance from the nutrients (normalized network depth - see Methods) in the merged
network. We found that the number of choke-points initially increased with metabolic overlap,
reaching a peak at around 40% overlap, and then reduced as the overlap became much larger
(figure 3D). Moreover, we found that, on average, not only did outperformers have a lower
overlap compared to non-outperformers, their overlapping metabolites were more likely to cause
limiting substrate switching (average number of cases of switching being 18 ± 2 versus 12 ± 1;
figure 3D). In outperformers, these choke-points are typically located before byproduct exchange
(on average, 1–2 layers before; figure 3E), whereas in non-outperformers, these are typically
located in the same layers where byproduct exchange occurs (figure 3E, outperformers in blue,
non-outperformers in red, byproduct exchange in gray). Together these results show that not
only do outperformers typically have more choke-points, but that they also occur closer to the
nutrients and away from the precursors, thereby making them capable of increased downstream
cascading effects.

To summarize, thus far we have shown that for a pair of cross-feeding networks to produce
higher biomass yield than their merged network, they need: (i) a non-linearity in the flux
distribution where some reactions switch their limiting substrate, i.e., the existence of choke-points
(particularly in the layers between the nutrients and the byproducts); and (ii) an intermediate
metabolic overlap, without which this non-linearity cannot manifest itself. These two are
necessary conditions for such “local” benefit of cross-feeding, where a cross feeding pair does
better than their merged network. However, in the previous section we found a stronger “global”
benefit, where some cross-feeding pairs performed better than the best autonomous networks,
not just the network formed by merging them. In fact, we find that these two conditions are also
necessary conditions for such global benefit – that is, if a cross-feeding pair does not satisfy (i)
the probability of it being an outperformer is 3%, and if it does not satisfy (ii) the probability is
0%, both of which are close to zero. The few cases that slip through these conditions, especially
condition (i), arise because it is possible for the yields of split networks to differ from their
merged networks without triggering a switch of a limiting substrate – the same non-linearity that
redistributes fluxes is at play in such case, but in a subtler form. However, because the switching
of the limiting substrate is what underlies most outperforming cross-feeding pairs, we chose to
focus on that more dramatic manifestation of the flux non-linearity.

Outperforming cross-feeding networks arise from efficient byproduct donors
and acceptors

While we find that the existence of choke-points and an intermediate metabolic overlap are
necessary conditions for a pair of cross-feeders to outperform, they are not sufficient conditions.
That is, if either condition is not satisfied then the pair is almost certainly not an outperformer;
but both conditions being satisfied in fact predicts outperformance no better than a coin-flip
(41% of cross-feeding pairs that satisfy both these conditions are outperformers; supplementary
figure 8). This is not surprising, because while non-linearities may make a split network produce
a different yield from its merged network, it could as well perform worse rather than better than
the merged network. We now explore additional properties that can predict whether the effect of
such non-linearities is in favour of cross-feeding or against.

Recall that our algorithm for constructing cross-feeders performs a two-step modification on
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a pair of autonomous networks (see figure 4A–B for an illustrative example). First, it removes
a set of reactions (a metabolic pathway) that produces a specific precursor (figure 4A, shaded
region). Then, it adds a compensatory pathway, which uses an external byproduct (figure 4B,
shaded region). Pathway removal, the first step, removes branch points at certain nodes (branch
partition in figure 4A). This provides higher substrate amounts to the remaining reactions, which
increases their flux, and results in higher product amounts (partition relieved in figure 4B). One
effect of this is to change the amount (or yield) of the byproducts produced by the modified
network (from Ybyp to Y ′byp, figure 4A). For a good donor, this change must be positive, since it
means a higher amount of byproduct produced for its partner. Therefore, to measure the donor
quality of a particular autonomous network, we calculated the highest change in byproduct yield
that could result from the removal of one its pathways, max(Y ′byp − Ybyp) (see Methods).

After the pathway removal step, one of the precursors cannot be produced by the modified
network. In order to compensate for this, when we construct obligate cross-feeding pairs we add
another pathway that uses an external byproduct to produce this precursor. The reactions in
this added pathway yield a certain amount of the missing precursor, say B′added. For a good
acceptor, such a pathway addition must satisfy two conditions: (1) the change in the amount
of precursor produced must be positive; and (2) the added pathway must not compromise the
reaction fluxes of the rest of the network, or do so as little as possible. Therefore, to estimate
the acceptor quality of a particular autonomous network, we calculated the highest change in its
total precursor yield, 〈B′added −Badded〉, averaged over all possible input byproducts as well as
output precursors (see Methods). For each network, the input byproducts considered were the
full set of 14 byproducts found in the cross-feeders we generated.

We calculated a donor and acceptor quality for each of the 19,543 unique autonomous networks
that we generated. We found a clear bimodality in acceptor quality with the trough between the
two peaks being centered at zero (see Fig 4D). In contrast, while the distribution of donor quality
spans a broad range from negative to positive numbers, there is no natural separating line between
good and bad donors. Nevertheless, we will define “good” acceptors and donors to be those
with acceptor, or donor, quality greater than zero. Fig 4E shows the same plot of acceptor vs
donor quality for a subset of 8,185 autonomous networks whose modification yielded cross-feeding
networks, coloured according to their ability to produce outperformers (blue indicates a high
probability, and red a low). From this plot it is clear that outperforming cross-feeders arise
largely from autonomous networks that are both good donors and good acceptors. Only 4% of
networks that do not satisfy this condition are outperforming cross-feeders. Therefore, despite
being a rather weak requirement (acceptor and donor qualities just need to be positive, not
particularly large), this still functions as a necessary condition that we can add to the two others
from the previous section. In addition, the acceptor quality of an autonomous network was
somewhat correlated with the quantitative yield gain for cross-feeding pairs it generated (see
supplementary figure 6).

Conclusion: necessary and sufficient conditions for a cross-feeding
pair to outperform autonomous networks

We can succinctly summarize our results as follows:

1. The following three conditions are each necessary conditions for outperforming cross-feeding:
(i) metabolic overlap must lie between 20% and 60%; (ii) choke-points must exist; (iii) the
autonomous networks from which cross feeders are generated must be good donors and good
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acceptors. That is, if any one of these conditions is not satisfied, the cross-feeding pair is
very unlikely to outperform the best autonomous network (top three bars of supplementary
figure 7).

2. Together the three conditions are an almost sufficient condition for outperforming cross-
feeding. More precisely, approx 80% of outperforming cross-feeders satisfy all three
conditions (bottom-most bar of supplementary figure 7).

Note that condition (iii) is a relatively weak constraint – it only demands that donor and
acceptor quality is greater than zero, not that they need to be large.

Satisfying only one or two of these properties is not sufficient – supplementary figure 7 shows
that satisfying combinations of two of these conditions, but not all, predicts outperformers at best
a little better than a coin flip. For a specific example, see figures 3D–E. Here, the outperformer
marked by a blue square and the non-outperformer marked by the red squares have similar
overlap and number of choke-points (figure 3D). However, their individual source autonomous
networks occur in opposite quadrants of the donor-acceptor plot (figure 3E, inset).

The 20% of networks that slip through these three combined conditions consist mainly
(bottom-most bar in supplementary figure 7) of outperforming cross-feeders where the donor
has negative quality and a few where the non-linearity manifests itself in a more subtle manner,
rather than in a switching of the limiting substrate of some key reactions. More complex versions
of conditions (ii) and (iii) could easily be constructed that take care of this and account for almost
all the outperforming cross-feeders. For instance, we can increase the percentage of predicted
ourperformers to 86% if we modify condition (ii) to read: choke-points must exist and > 50% of
them should lie in the network layers between the nutrients and the byproducts. However, this
loses the intuitive simplicity of the original three conditions.

Discussion

Here, we have explained, using realistic metabolic networks, how metabolically interdependent
(cross-feeding) microbes may outperform even the best autonomous microbes at the task of
building a set of biomass precursors in a given nutrient environment. This provides a theoretical
basis for the empirical observation that pairs of microbes that cross-feed often have a higher
growth rate than autonomous microbes [5, 9, 34]. The networks we construct, while randomly
assembled, are built out of real chemical reactions. Thus, the underlying chemical basis for
metabolic interdependence is clear and, for example, the small sets of metabolites that we find
mediate cross-feeding consist of real molecules whose existence in soil, gut or marine ecosystems
can be tested. Previous studies have implicated fermentation end-products such as acids, alcohols
and acetates, as exchanged metabolites during diffusion-dependent cross-feeding [35,36,37]. This
is consistent with the metabolites exchanged by the outperforming cross-feeders in our study.

We argue that enhanced biomass or energy yield of certain cross-feeding networks necessarily
requires some non-linearity in the way metabolic fluxes flow through the network from nutrients
to biomass precursors. In the simple scheme we use to illustrate this, the only non-linearity
lies in the flux of a reaction being limited by the reactant coming in with the least flux. This
non-linearity would also exist in more complex flux distribution schemes (e.g., those based on
flux balance optimisation, or on an explicit regulatory network). The controlling regulatory
network may of course introduce other non-linearities, but this one, we have shown, is sufficient
to enable beneficial cross-feeding.
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We found that for cross-feeding pairs to outperform autonomous networks, three conditions
must hold simultaneously: (i) the cross feeding pair must not have too much or too little overlap,
(ii) some key reactions must switch their limiting substrate in the split networks compared to the
merged network, and (iii) the two cross-feeding networks must be good donors and acceptors
of byproduct metabolites. We believe the three conditions we have uncovered are likely to be
independent of the particular choice we made of the rules for distributing the metabolic flux in
these networks. The reason is that they lay out very general phenomenological criteria. The
precise form of the non-linearity, which particular reactions switch, and the specific values of
the donor and acceptor qualities will change if we use a different flux distribution scheme, but
the three criteria will still hold. If the first two conditions do not hold, i.e., if a non-linearity is
not triggered, or if the overlap in networks is zero or maximal, then the flux distribution in the
merged network will be a linear superposition of the fluxes in the split networks and no benefit
can accrue. The donor or acceptor quality quantifies the ability of metabolic networks to benefit
from secreting a metabolite they don’t need and from using a metabolite they don’t produce.
Thus, the third condition simply encodes the very general idea that the non-linearity must act
in favour of, and not against, the split networks. The donor and acceptor quality of a network
depends on chemical and thermodynamic properties of the set of reactions in the network. It
would be of interest in future work to elaborate precisely what chemical and thermodynamic
conditions lead to networks being good donors and good acceptors. We also note that the donor
and acceptor quality as we have defined it is in principle measurable empirically, albeit requiring
some possibly tedious manipulation of the metabolic pathways of a microbe. Comparing such
measurements with theoretical predictions would allow us to understand better how metabolic
fluxes are actually distributed by regulatory networks in vivo.

The biological consequences of our results are several. First, the existence of outperforming
cross-feeders suggests that once such cross-feeders arise in a microbial community they will likely
do well, assuming that increased energy or biomass yields (as we have defined them) would
correlate with increased growth rate or ability to compete with other strains. It would be useful
to have a clean way to quantitatively predict the growth rate of a cross-feeding pair in laboratory
conditions from the yield values. But in the absence of additional data, how to do this is not
obvious. The growth rate may depend on some weighted combination of the energy and biomass
yields, and these weights in turn may depend on the specific environment in which the strains are
growing. We did check that if we define productivity to be a weighted combination of the biomass
and energy yields, and the size of the network, we still find many outperforming cross-feeding
pairs for a wide range of weight choices (see supplementary figure 4C). One way to calculate
growth rates could be to introduce a “biomass” reaction such as the ones used in flux balance
optimisation. In addition, to predict actual growth rates it may be necessary to include the cost
of secreting metabolites, even if they are byproducts. At the moment we do not include such
costs, so the yield benefits we obtain for cross-feeders are best thought of as upper bounds to
the benefit of cross-feeding – the larger the predicted yields, the higher the costs of secretion
and uptake that the species pair can sustain and still achieve a net benefit. A useful way of
extending our work would be to allow secretion of not just the byproducts but other intermediate
metabolites, and even biomass precursors themselves, thereby asking whether cross-feeding could
also benefit from exchange of such “costly” metabolites. Despite these caveats, we believe our
results nevertheless establish a strong theoretical basis for understanding when cross-feeding can
be beneficial.

An obvious question that arises is whether there exists a plausible evolutionary path whereby
an initially homogeneous population, consisting of all cells having the same autonomous metabolic
network, could spontaneously split into two sub-populations which form cross-feeding pairs. This
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would require the existence of a series of evolutionary steps, consisting say of a loss or gain of a
metabolic pathway, where at each step the resultant strains would be doing at least as well as
the autonomous networks. We do find that certain outperforming cross-feeding pairs exist with
sufficient (∼ 70%) overlap, such that the difference between them is no more than one or two
metabolic pathways. Therefore, our results show that such an evolutionary path is plausible, but
more work would be needed to explicitly demonstrate such “symmetry breaking” [?, 9, 38, 39, 40].

On a broader note, metabolic interdependence of the sort we have studied is very closely
related to the question of compartmentalization of reaction networks. This is relevant not just in
microbial communities but also in a variety of other contexts, such as within eukaryotic cells or
in industrial contexts. Many different reasons have been proposed for why compartmentalization
might be beneficial – for instance, it can prevent the formation of toxins or waste products,
it can prevent runaway polymerization, smaller volumes in smaller compartments can alter
the effective reaction rates, it can be used to control timing of reactions more precisely, etc.
Our work provides another mechanism, via non-linear redistribution of reaction fluxes, that
can operate together with these other possibilities. To understand if such flux redistribution
is important in say eukaryotic cells, one could replace the KEGG universal chemistry we use
(which includes only reactions found in bacteria) with the chemical reactions that are known to
occur in eukaryotic cells. This would demonstrate whether compartmentalizing the reactions
that occur, for example, in mitochondria produces benefits similar to what we have shown to be
possible for bacterial metabolic networks. Similarly, a number of enzymatic cascade reactions
have applications in industry, and compartmentalization has empirically shown some success
at increasing yields [41]. Our approach could potentially be used to predict optimal ways to
compartmentalize such reaction networks, especially because the regulation of the flux is likely
to be better characterized, and even controllable, in these industrial contexts.

Methods

To build a set of chemical reactions from which we will assemble metabolic networks, we extracted chemical
reaction data from the microbial metabolism database in KEGG [42]. During extraction, unless explicitly
stated otherwise, we assumed that all reactions were reversible. This resulted in what we call the “KEGG
universal chemistry”, with 2,550 reactions and 1,059 metabolites. Each metabolic network we construct
from this set required a medium (or environment). For this, we required each medium to contain at least
one carbon source, one nitrogen source, and a set of 10 always available “currency” molecules: water,
carbon dioxide, oxygen, hydrogen, ATP, ADP, AMP, NAD(P)H and formate. For our choice of carbon
and nitrogen sources, we selected two kinds of media: a simple medium (with acetate and ammonia) and a
complex medium (with glucose and glutamine). From these provided nutrients we required each metabolic
network to produce a set of essential biomass precursors in order to be “viable”. For this, we curated
two sets of essential biomass precursors (table 2): (1) 8 metabolites found to be common to 58 diverse
microbial metabolic networks (from ref. [43]), and (2) 8 metabolites in our KEGG universal chemistry
from the biomass composition of E. coli [44]. Both sets contain precursors of proteins (e.g., L-Serine),
nucleic acids (e.g., D-Ribose-5-phosphate), and carbohydrates (e.g., pyruvate).

Algorithm to construct autonomous networks

For each autonomous metabolic network we generated, we required that it produce all 8 precursors (table
2), using only the molecules present in the medium (table 2). We constructed these networks pathway
by pathway, i.e., we first construct sets of reactions (“pathways”) which could individually produce each
precursor. We constructed “minimal” pathways, that is, pathways where no reactions could be removed
without disrupting their ability to generate the target precursor. We did this as follows. We started with
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a set of reactions denoted RS (for reverse scope), which was initially empty. We then queried all reactions
in the KEGG universal chemistry which produced the target precursor. We added these reactions to RS.
Then, we picked all substrates from these newly added reactions, and listed all that were neither nutrients,
nor currency molecules. We then queried all reactions in the KEGG universal chemistry that produced
each of them. We added these to RS. We continued this, step-by-step, until the substrates of all reactions
added during a step were present in the medium. We then marked all reactions in RS that could be
produced using only the molecules in the medium, i.e., the nutrients and currency molecules. We did this
by creating a new set of reactions, FS (for forward scope), first adding all reactions from RS which could
be performed using only those substrates present in the medium. At each subsequent step, we added to F
those reactions from RS which could be performed using only nutrients and the metabolites produced
by the reactions added to FS in the previous step. We continued this till no more reactions from RS
could be added to FS. To make this FS minimal, we then pruned it by iteratively removing randomly
picked reactions from FS, one at a time, such that the remaining reactions could still produce the target
precursor starting with only the metabolites in the medium. We then defined the pruned set FS as a
random minimal pathway which produces a specific precursor. To construct a completely autonomous
metabolic network, we repeated this process, generating one pathway per precursor for all 8 precursors.
We took the union of the reactions in these pathways, and once again pruned this union as described
above. We defined the set of reactions thus obtained as a randomly generated autonomous metabolic
network.

Calculating reaction network yields

We measured the productivity of generated metabolic networks in terms of their energy and biomass
yields. A network’s energy yield indicates the number of energy molecules (ATP and NAD(P)H) produced
per nutrient molecule consumed, while the biomass yield counts the number of precursors produced per
nutrient. We assumed, as per electron transport chemistry, that NAD(P)H molecules provided energy
equal to 3 ATP molecules [45], though we verified that changing this ratio does not qualitatively affect
our results (supplementary figure 4B). We used two methods to calculate yields for each network, each
assuming a different way to distribute the metabolic fluxes: (1) a split-by-demand method, and (2) a net
reaction method.

In the split-by-demand method, we assumed that a fixed amount (say, one) of each nutrient molecule
was provided to each metabolic network. We first computed which reactions could be performed using
just these nutrient and currency molecules. For each such reaction, we used stoichiometric information
to calculate which substrate limited the reaction. We assumed that currency molecules never limited a
reaction. The amount of products produced by each reaction was determined by its limiting substrate.
These products were subsequently used as substrates for the next set of reactions. Here again, the amount
of products produced directly influenced which of them limited further reactions. Thus, step-by-step, we
calculated the quantities of all molecules generated by the network. At the end of this process, we could
sum up and calculate both yields. The network’s energy yield was the net amount of energy molecules
generated, divided by the total amount of nutrient molecules provided (2; one each for acetate and
ammonia). Similarly, the network’s biomass yield was the net sum of all precursor molecules, divided by
the total amount of nutrient molecules provided.

For an example, consider the toy reaction network 1 from figure 3A, which has 4 reactions (Table
1), for which we will calculate the biomass yield. For simplicity, this example has no currency molecules,
though when present, these are always assumed to be present and non-limiting. In the first step, only
those reactions which consume the nutrient X are possible, which for reaction network 1 is the single
reaction X −→ 3A + B. We assume that X is provided in unit amount, since we normalise yields to the
nutrient amounts. Since this reaction uses only one reactant, X, it is the limiting reactant, and therefore
the reaction produces 3 units of A and 1 of B. At the next step, two reactions are possible: (1) A + B
−→ BA∗, and (2) A −→ A∗. Both reactions require A, and in equal stoichiometric amounts, because
of which we split the 3 available units of A into 1.5 each. Reaction (1) thus has 1.5 units of A and 1
unit of B available, and is limited by B. It therefore produces 1 unit of BA∗. Reaction (2) produces 1.5
units of A∗. In this example, the last reaction AA −→ AA∗, cannot be completed because the network
cannot generate AA itself. When AA is provided from a cross-feeding partner (reaction network 2 in
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Table 1), this reaction will proceed with a flux determined by the amount of AA provided by the partner.
In case no AA is provided, reaction network 1 cannot produce both precursor molecules (BA∗ and AA∗),
and therefore is not viable, and has no defined yields. If we assume that AA is somehow present, say in
unit amount, then the network produces 1 unit of AA∗. The total yield of this network is 2 (2 units of
precursors: 1 of BA∗ and 1 of AA∗, for every unit of nutrient X provided).

In the net reaction method, we generated a “net reaction” for each metabolic network. For this, we
listed all reactions present in the network once, and summed all the substrates and products on each side.
We used this net reaction to calculate the yields of the network. The network’s energy yield was the net
amount of energy molecules produced (i.e. the sum of coefficients of ATP and thrice NAD(P)H on the
product side) divided by the net amount of nutrients consumed (i.e. the sum of coefficients of the carbon
and nitrogen source on the substrate side). Similarly, the network’s biomass yield was the net amount of
precursor molecules produced (i.e. the sum of coefficients of all precursors on the product side), divided
by the net amount of nutrients consumed (sum of coefficients of all nutrients on the reactant side).

In the example of reaction network 1 in Table 1, the net reaction, obtained by summing over all four
constituent reactions, will be: X + 2 A + B + AA −→ 3 A + B + A∗ + BA∗ + AA∗. The amounts of
precursors (BA∗ and AA∗) produced are 2 (1 + 1) on the product side, and the amount of nutrient X
used on the reactant side is 1. Thus, the total biomass yield of reaction network 1 using this method is 2.

Algorithm to construct cross-feeding metabolisms

We constructed pairs of obligate cross-feeding networks, where both networks in a pair required at least
one byproduct from their partner to be able to produce all precursors. To construct such pairs, we first
generated two random autonomous metabolic networks, as described previously. We then picked one of
these networks at random, and calculated its byproducts (defined as metabolites that are produced by
the network but not used as substrates in any reaction). We then constructed a new pruned pathway
which used one of these byproducts as a substrate, and produced one of the 8 biomass precursors. We
substituted the corresponding pathway (producing the same precursor) in the second network with this
newly generated pathway. The second network now depended on the first. We repeated this pathway
substitution procedure, this time generating a pathway using one of the second network’s byproducts as
a substrate. When we could perform all these steps successfully in a pair of autonomous networks, we
obtained a pair of obligate cross-feeding metabolic networks.

Comparing with genome-scale metabolic models of three bacteria

To compare the metabolic networks generated by our algorithm with those of real microbes, we extracted
3 genome-scale metabolic models: the free-living Escherichia coli [46], the pathogenic Mycoplasma
genitalium, which has the smallest-known naturally occurring genome [47], and the prevalent human gut
resident Bacteroides caccae [48]. From each metabolic model, we extracted the EC numbers corresponding
to their constituent metabolic reactions, and mapped them against reactions in our KEGG universal
chemistry. For E. coli, this resulted in 1,339 reactions with 1,039 metabolites. Next, since we assumed
reaction reversibility in KEGG’s universal chemistry, we checked if any extracted reactions should be
reversed. For this, we replaced the minimum number of reactions with their reverse reactions, such that
the resulting reactions could produce all precursors required for growth. Then, to make each reaction
set minimal, we pruned this reaction set several times. We pruned in steps; each step, we removed a
reaction from the set, and checked if it was still viable given our viability criteria. If it was still viable,
we continued the next step with the reduced set of reactions, otherwise we added the reaction back. We
continued to prune each reaction set until we could remove no more reactions from it, at the end of which
we had a resulting minimal reaction set. From the many (∼1,000) times we pruned a reaction set, we
obtained a set of corresponding minimal reaction sets, of which we chose the smallest set (or network). We
then measured the energy and biomass yields of this smallest corresponding minimal network as described
previously (the network for E. coli has 104 reactions and 128 metabolites). We used the same procedure to
compare two reported cross-fed genome-scale metabolic pairs with our constructed cross-feeding networks
as well (figure 1C–E).
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Estimating donor-acceptor characteristics of autonomous networks

To measure the donor quality of an autonomous network, we calculated the maximum difference in
byproduct yield upon pathway removal. For this, we first calculated the yield of each byproduct in the
network, using the method described previously. We then generated several modified versions of this
network, where each version had one pathway removed. These modified networks could not produce a
specific precursor. For each such network, we calculated the yields of each of their byproducts. We then
calculated the change, or difference, in the yields of byproducts common to both that network and the
original autonomous network. We then defined the largest change across all these modified networks as
that autonomous network’s donor quality.

To measure the acceptor quality of an autonomous network, we calculated the maximum difference
in precursor yield upon pathway addition. For this, we first calculated the yield of each precursor in
the network. We then selected 1 byproduct from the 14 listed in figure 1B, and 1 of 8 precursors from
table 2. We then used our algorithm to construct several (upto 10, when possible) possible pathways
that used the chosen byproduct as a substrate to produce the chosen precursor. We then replaced the
pathway that produces this precursor in the autonomous network, with each of our constructed pathways,
and measured the change in the yield of the chosen precursor. For this, we assumed that a unit amount
of byproduct was available. We recorded the largest of these changes. We then repeated this for each
possible byproduct-precursor pair. We defined the average of our recorded yield changes, across different
byproduct-precursor possibilities, as the acceptor quality of that autonomous network.

Calculating predicted and observed yield gains for cross-feeders

For each autonomous network that could be converted to an outperforming cross-feeder, we compared
their mean observed yield change with our prediction from their donor-acceptor qualities. For each such
autonomous network, we calculated the change in biomass yield, averaged over all outperformers they
were part of in our 10,000 generated cross-feeders. We defined this as the average observed yield gain for
such a network.

Detecting limited substrate switching and choke-points while merging cross-feeders

To detect cases of limited substrate switching, we compared cross-feeding pairs with their merged
autonomous counterparts, in the following way. For both networks in a given cross-feeding pair, we
first recorded which substrates limited each reaction in them, using the split by demand procedure for
measuring yields. We then constructed a merged, autonomous version of this pair, by taking the union of
reactions in both networks in the pair. We repeated our calculation of limiting substrates in each reaction
in this merged network. We then noted in which reactions this limiting substrate were different between
the merged network and cross-feeding pair, and defined each such reaction as a case of limited substrate
switching. We identified the metabolites that both participated in these reactions and were common to
members of the pair, as choke-points.

Measuring network depth in merged cross-feeders

To measure the location of instances of limited substrate switching, or choke-points, when a cross-feeding

pair was merged, we first identified these reactions in the merged network as described previously. Then,

for each identified reaction, we measured its depth in the merged metabolic network. For this, we asked

at what step this reaction could be performed by the network. Those reactions whose substrates were

only the nutrients in the medium and the currency molecules formed the first step. Those reactions whose

substrates were either these, or the products of the first step, formed the second step, and so on. At the

last step, all precursors would have been produced. We then normalized the position of each reaction by

dividing the step at which it could be performed by the total number of steps in the network. We defined

this number as the reaction’s depth in the network. To calculate the location of byproduct exchange,
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we measured the depth (in the merged network) of those reactions that produced and consumed the

metabolites that were the exchanged byproducts in the split networks.
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Figure 1: Algorithmically generated autonomous metabolic networks
(A) Schematic representation of the algorithm that assembles an autonomous metabolic network (for a detailed description
see Methods). (B) Network representation of the smallest (having the least number of reactions) metabolic network
constructed to be viable on a nutrient medium with acetate and ammonia as the sources of carbon and nitrogen, along
with the currency molecules listed in the panel. Each node represents a metabolite, with green nodes representing the
nutrients in the growth medium, red nodes the essential biomass precursors, and yellow nodes the intermediate metabolites.
For visual clarity, the currency molecules are omitted. The size of each node represents its degree in the network. Links
indicate the existence of a reaction that connects the corresponding metabolites, with the arrow pointing from reactant to
product. The network shown has 44 reactions (see Table S1). (C) List of all byproducts (non-precursor metabolites that are
produced but not consumed in a given metabolic network), along with the frequency of their occurrence amongst the 19,543
networks we constructed. (D, E, F) Distribution of the sizes, energy yields, and biomass yields (see text for definitions),
respectively, amongst the 19,543 unique autonomous networks constructed for this nutrient medium. The networks with
lowest size, highest energy yield and highest biomass yields are indicated by thick vertical lines in orange, blue and green
respectively (the networks that are smallest and have highest biomass yield are unique, whereas there are 11 networks with
the maximal energy yield; the blue line in the size panel corresponds to the minimum size of these maximal energy networks,
and similarly the blue line in the biomass panel marks the maximum biomass yield for these 19,543 networks). The symbols
on the distributions show measurements from three real bacterial metabolisms (see Methods for how we constructed these
three metabolic networks).
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Figure 2: Obligate cross-feeding reaction networks can outperform even the most productive autonomous

networks

(A) Schematic representation of the algorithm that assembles a pair of obligate cross-feeding metabolic networks
(for a detailed description see Methods). (B) Network representation of an obligate cross-feeding network pair we
constructed. Each node represents a metabolite, with green nodes representing the nutrients in the growth medium,
red nodes the essential biomass precursors, and yellow nodes the intermediate metabolites. For visual clarity
currency metabolites are omitted. The size of each node represents its degree in the network. Links represent
a reaction in the network that connects the corresponding metabolites. The network on the left consists of 89
reactions, and the network on the right has 103 (see Table S2). In this cross-feeding pair, the network on the
left secretes methanol and uses 2-Maleylacetate (both in black) from the network on the right (which does the
opposite). The distribution of (C) energy yields and (D) biomass yields of members of the constructed obligate
cross-feeding pairs (we plot the lesser of two yields in each pair). The shaded regions marks productivity values
beyond those observed from any constructed autonomous network. Cross-feeding pairs that lie in this range we
term ‘outperformers’ and the rest ‘non-outperformers’ (E) Cumulative distributions of the metabolic overlap
(the number of metabolites common to both members in a cross-feeding pair, divided by the total number of
metabolites in the union of the two networks) for biomass outperformers (red) and non-outperformers (orange).
No outperforming pair has > 60% overlap, while non-outperforming pairs can share as many as 87% reactions.
(F) Distribution of byproducts exchanged between members of biomass outperforming cross-feeding pairs (see
supplementary figure 4).
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Figure 3: Choke-points limit key reaction fluxes, and are necessary for outperforming cross-feeders
(A) A toy example of a cross-feeding pair with a higher biomass yield than its merged network. Both networks use one
nutrient (green) to produce two precursors (red, a and b), via intermediates (yellow). Circles represent metabolites, while
squares, reactions. Arrows into a reaction node indicate reactants, and arrows away indicate products of that reaction. A
reaction set corresponding to these networks is listed in table 1. Both networks cross-feed off each other’s byproducts (black
circles). The total biomass yield of the pair is 2 precursors per nutrient for the network on the left and 1.5 for the network
on the right, resulting in a combined yield of 1.75 precursors per nutrient. (B) The corresponding autonomous network
when the pair in (A) is merged. The metabolite marked with a white cross participates in reactions in both networks
(labelled F1, F2, and F3), and is therefore distributed differently in these reactions in the merged network compared to
the split pair. Here, this leads to a switch in the limiting substrate for the downstream reaction indicated by the white
square with a black cross. This “choke-point”, results in a lower biomass yield for the merged network (1.5 precursors
per nutrient). (C) Comparison of choke-points in the cross-feeding pairs we constructed and their merged networks. For
networks with multiple nutrients, precursors and layers (measured in network depth, i.e., distance from nutrients), it is
possible for an overlapping reaction (white cross) to lead to limited flux for a downstream reaction. This “limited substrate
switching” can have cascading effects on downstream reactions, resulting in differences in autonomous network performance.
(D) Scatter plot showing metabolite overlap between both members of 500 randomly chosen cross-feeding pairs versus the
number of choke-points (limiting substrate switching events) in them. The blue envelope shows the 95th percentile range of
outperformers, and the red, that of non-outperformers. The blue and red squares highlight an example outperformer and
non-outperformer, respectively, that have similar overlap and number of choke-points. (E) Histograms of the location, in
terms of normalized network depth, of identified choke-points in outperformers (blue) and non-outperformers (red). The
network depth for a metabolite is the minimum number of reaction steps between the nutrients and that metabolite. The
normalized network depth is that number divided by the maximum depth for that network. The gray region shows the
range of depths where byproduct exchange occurs in the cross-feeders.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2022. ; https://doi.org/10.1101/2022.03.14.484247doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.14.484247
http://creativecommons.org/licenses/by-nc-nd/4.0/


22

Figure 4: Donor and acceptor qualities of autonomous networks
(A) An illustrative example of an autonomous network, that converts nutrients (green) to biomass precursors (red), via
intermediates (yellow). Undirected links indicate a reaction that involves two molecules. Intermediate metabolites which
are substrates in multiple simultaneous reactions are partitioned by stoichiometric demand. Solid arrows indicate specific
reaction fluxes, whose thickness scales with flux amount. Substrate inflow to a reaction determines corresponding product
amounts, or yields. Three such yields are shown: one for the generated byproduct, Ybyp, and one each for the precursors,
namely Yoriginal and Badded. (B) A corresponding cross-feeder of the network in figure 4A, through: (1) pathway removal,
which relieves a previous branch partition; and (2) pathway addition, which allows external byproduct utilization. (1)
changes byproduct yield to Y ′byp, which indicates its strength as a donor. (2) changes its precursor yield to B′added, which

indicates its strength as an acceptor. (D) The donor and acceptor qualities, (Y ′byp−Ybyp) and 〈B′added−Badded〉 respectively,

for all 100,000 autonomous networks generated from KEGG. Networks with similar donor and acceptor qualities are hex-
binned, and coloured by their number density. (E) The donor and acceptor qualities, (Y ′byp − Ybyp) and 〈B′added −Badded〉
respectively, for 8,185 autonomous networks generated from KEGG, which could be converted to cross-feeders. Networks
with similar donor and acceptor qualities are binned together in hexagonal bins, and coloured by their likelihood to become
outperformers (blue) or non-outperformers (red).
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Figure Supplements

Figure S1: Statistics of sampled energy yields, biomass yields and sizes.
Joint density hexagonal plot for the (A) energy yields and biomass yields; (B) energy yields and network size; and (C)
biomass yields and network size, for the autonomous networks sampled in a minimal growth medium. The intensity of the
color of each hexagon corresponds to the density in that region of the space (the shades are arbitrary since the full density
plot is normalized). No two measurements are pairwise correlated in the sampled networks (Pearson’s correlation coefficient,
r = 0.15,−0.05 and −0.04, respectively).
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Figure S2: Comparing sampled networks with known genome-scale metabolic reconstructions.
(A) A comparison of the structure and productivity metrics (as in figure 1D–F) for the sampled autonomous networks in
our survey with three genome-scale metabolic models from different lifestyles: the free-living Escherichia coli (bold black
arrow) [46]; the pathogenic Mycoplasma genitalium (asterisk) which has the smallest-known naturally occurring genome [47];
and the prevalent human gut resident Bacteroides caccae (hash) [48]. All corresponding reaction networks are viable under
our survival criteria.
(B) We test two reported metabolically interacting strains and their genome-scale metabolic models and find that our
model correctly predicts the metabolic interaction underlying them: [top] M. maripaludis requires H2 and formate from D.
vulgaris (as in [49]) for pyruvate production, and [bottom] S. cerevisiae and C. reinhardtii cross-feed CO2 and NH3 (as
in [50]) for pyruvate and amino acid production respectively.
(C) Joint density hexagonal plot for the energy yields and sizes for metabolisms constructed by randomizing the overall
prokaryotic reaction network in KEGG. The networks are much smaller and typically have negative energy yields (which
renders them biochemically not viable).
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Figure S3: Comparing independent and interdependent networks.
(A) We compare the networks sampled from algorithmic construction. We classify these as independent (autonomous pairs;
green) and interdependent (further split into outperforming cross-fed pairs in blue and non-outperformers in violet) network
pairs.
(B) The production-to-consumption ratios (PtCR; the ratio of the number of energy producing (net ATP gain) to energy
consuming (net ATP loss) reactions) for the reaction networks.
(C) Comparison between constructed cross-feeders with engineered cross-feeders in [51]: the networks from our survey use
a similar fraction of pathways that produce different precursors in partners versus the same precursor.
(D) Correlation between the energy yields of the members in an independent or interdependent pair: we find (as observed
in [51]) that non-outperformers usually show a negative correlation.
(E) Cumulative distributions of the number of precursor molecules that sampled networks whose production requires a
common (randomly chosen) [top] reactant and [bottom] reaction. The distributions are plotted for 1,000 randomly chosen
possible reactants and reactions respectively, for each category of networks. We compare the cumulative distributions
pairwise using a two-sample Kolmogorov-Smirnov test with P -value threshold 0.05. We find that for reactants, they do
not differ significantly (P = 0.3 > 0.05) while for reactions, the outperforming cross-feeders are different when compared
to both non-outperforming and autonomous networks.
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Figure S4: Checking result robustness.
(A) A joint density plot of ∆E on the y-axis versus ∆S on the x-axis for the cross-feeders constructed with a different
growth medium (with glucose as the chief carbon source and glutamine the chief nitrogen source). The ∆ represents the
difference in energy yields (or size) of the cross-feeding versus the highest energy yield autonomous network. Outperforming
cross-feeders (∆E > 0) fall above the x-axis (shaded region).
(B) To calculate energy yields for constructed reaction networks, we assume an NAD(P)H-to-ATP conversion ratio of 3.
However, there are likely to be cases in which these chains are not as efficient. In these cases, the said ratios will be lower.
To test if our central result critically depends on the particular conversion ratio we consider, we repeat our survey with
different ratios. Here we show the average energy yield benefit for outperforming pairs (nonzero if it is possible to construct
them) as a function of different exchange ratios.
(C) We redefine network productivity P in several ways (via the relation on the left — connecting the energy yield E,
biomass yield B and network size S via two parameters ε and σ) to check if it crucially influences our central result (see
Materials and methods: Result checking with different productivity measurements). Here we show the average productivity
benefit o 0f the sampled cross-feeding networks that outperform the strongest autonomous networks in each parameter set.
Each row of the grid represents a fixed value of σ, and along a row, each column represents a particular value of ε, increasing
from 0 to 1 moving along the right. The number in each cell is the average productivity benefit of a cross-feeder. Where it
is not possible to construct such a network, we mark the cell with a cross.
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Figure S5: Stability analyses against environmental perturbations for sampled networks
We check how often our sampled reaction networks (autonomous in green, outperforming cross-feeders in blue and non-
outperformers in violet) “survive” (i.e. can produce all biomass precursors) under two plausible environmental perturbations:
(A) nutrient shifts, where we change one of the nutrients in the medium to an alternate reactant in the perturbed reaction
network; and (B) invasions, where we pit the networks against a randomly chosen outperforming cross-feeder (vis-a-vis
their energy yields). Outperformers survive less often than autonomous networks (P < 0.01; Student’s t-test), but not by a
lot (37% as opposed to 50%). Of the surviving networks in (A), we also measure (C) how often the cross-feeding interaction
is retained, as well as the (D) average relative change and (E) absolute changes in productivity (energy yield, ∆E) after
the nutrient shift. The inset classifies the ∆Es into negative, positive or no change.
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Figure S6: Comparing predicted and observed yield gains using donor-acceptor characteristics
Scatter plot of predicted and observed yield gains for 939 autonomous networks that led to outperformers, with each point
representing one network. The predicted yield gain for each network was calculated using its donor-acceptor characteristics.
The solid line represents a linear regression (Spearman’s rho = 0.26; P value < 10−10).
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Figure S7: Predicted conditions under which cross-feeders can outperform
Prediction accuracy for conditions that we found were associated with outperforming cross-feeders in our model. For each
condition (or predictor), we asked how many of the 10,000 cross-feeding pairs that satisfied it, were outperformers. We
tested each condition separately, in pairs, and altogether. The “donor-acceptor” condition measures which networks in the
pair arose from autonomous networks that were both in the positive quadrant of the donor-acceptor plot (figure 4C). The
“overlap” condition measures whether both networks have between 20−60% metabolic overlap (as in figure 3D). The “choke”
condition measures which networks in the pair have > 50% of their choke-points located prior to byproduct exchange (as
in figure 3A).
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Figure S8: Predicted conditions under which cross-feeders can outperform (with a local choke definition)
Prediction accuracy for conditions that we found were associated with outperforming cross-feeders in our model. For each
condition (or predictor), we asked how many of the 10,000 cross-feeding pairs that satisfied it, were outperformers. We
tested each condition separately, in pairs, and altogether. The “donor-acceptor” condition measures which networks in the
pair arose from autonomous networks that were both in the positive quadrant of the donor-acceptor plot (figure 4C). The
“overlap” condition measures whether both networks have between 20−60% metabolic overlap (as in figure 5D). The “choke”
condition measures whether in a pair, all reactions that used the exchanged byproducts are choke-points, i.e., whether in a
pair, all reactions with exchanged byproducts are reactants, switch their limiting reactant when both networks in the pair
are merged (as in figure 5A).
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Figure S9: Cross-feeders with better yields than their autonomous counterparts can have higher overlaps
Distribution of metabolic overlap, defined as the fraction of reactions common to both members of a cross-feeding pair,
when the yields of both members of a pair were higher their corresponding autonomous networks. This was true for 2,325
of the 10,000 cross-feeding pairs generated. The solid grey line represents the highest such overlap, at 70%.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2022. ; https://doi.org/10.1101/2022.03.14.484247doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.14.484247
http://creativecommons.org/licenses/by-nc-nd/4.0/


32

0.00

0.30

0.550.20 0.90

Overlap between cross-feeding partners

outperformers
non-outperformers

Figure S10: Differences between overlap distributions of outperformers and non-outperformers
Distribution of metabolic overlap, defined as the fraction of reactions common to both members of a cross-feeding pair, of
both members of a cross-feeding pair, both outperformers (blue) and non-outperformers (red).
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Figure S11: Yields of non-outperforming cross-feeders are negatively correlated
Scatter plot showing the energy yields of both members of all non-outperforming cross-feeding pairs (one member on the
x-axis; other on the y-axis.
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Figure S12: Yields of autonomous networks is negatively correlated with their likelihood of outperforming
as a cross-feeder
Scatter plot showing the yield of all 1,000 randomly chosen autonomous networks that could be successfully converted to
cross-feeders on the x-axis, and the likelihood that (or fraction of) their corresponding cross-feeders had better yields than
the autonomous networks themselves. The solid black line represents a linear regression, and rho the Spearman correlation.
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Figure S13: Energy yields and biomass yields of outperforming cross-feeders are negatively correlated
Scatter plot showing the energy yield and biomass yields of all 939 outperforming cross-feeding networks. The solid line
represents a linear regression, and rho the Spearman correlation.
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Figure S14: Comparing merged cross-feeders with autonomous networks. Distribution of the energy yields of the
100,000 constructed autonomous networks (green) and the 10,000 merged cross-feeders (blue). When merged, cross-feeder
outperformance decreases, and the corresponding networks (also autonomous) do not globally outperform.
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Metabolite Classification KEGG Compound ID

Pyruvate Precursor C00022

L-Alanine Precursor C00041

L-Cysteine Precursor C00097

L-Glutamate Precursor C00025

L-Serine Precursor C00065

D-Ribose-5-phosphate Precursor C00117

Diphosphate Precursor C00013

Orthophosphate Precursor C00009

H2O Currency C00001

CO2 Currency C00011

O2 Currency C00007

H+ Currency C00080

AMP Currency C00020

ADP Currency C00008

ATP Currency C00002

NAD+ Currency C00003

NADP+ Currency C00003

NADH Currency C00004

NADPH Currency C00005

Table 2: Set of designated precursor and currency metabolites for the constructed metabolic
networks
(top) The set of metabolites common to metabolic network reconstructions from whole genomes of 58 diverse
symbiotic bacterial species (adapted from ref. [43]), along with their KEGG IDs. These metabolites are designated
as the set of biomass precursors for all microbial genotypes in the in silico networks. For a valid metabolic network
in the model, its biochemical reactions must produce all of these precursors using the nutrients in the specified
growth medium.
(bottom) The set of earmarked metabolites that are used as a ‘currency’, i.e. metabolites that we assume are
always present in the medium.
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KEGG ID Reaction formula

R00149 2 ATP + Ammonia + CO2 + H2O −→ 2 ADP + Orthophosphate + Carbamoyl phosphate

R00214 (S)-Malate + NAD+ −→ Pyruvate + CO2 + NADH + H+

R00216 (S)-Malate + NADP+ −→ Pyruvate + CO2 + NADPH + H+

R00258 L-Alanine + 2-Oxoglutarate −→ Pyruvate + L-Glutamate

R00268 Oxalosuccinate −→ 2-Oxoglutarate + CO2

R00508 3-Phosphoadenylyl sulfate + H2O −→ Adenylyl sulfate + Orthophosphate

R00509 ATP + Adenylyl sulfate −→ ADP + 3-Phosphoadenylyl sulfate

R00529 ATP + Sulfate −→ Diphosphate + Adenylyl sulfate

R00533 Sulfite + Oxygen + H2O −→ Sulfate + Hydrogen peroxide

R00582 O-Phospho-L-serine + H2O −→ L-Serine + Orthophosphate

R00709 Isocitrate + NAD+ −→ 2-Oxoglutarate + CO2 + NADH + H+

R00858 Hydrogen sulfide + 3 NADP+ + 3 H2O −→ Sulfite + 3 NADPH + 3 H+

R01082 (S)-Malate −→ Fumarate + H2O

R01513 3-Phospho-D-glycerate + NAD+ −→ 3-Phosphonooxypyruvate + NADH + H+

R01518 2-Phospho-D-glycerate −→ 3-Phospho-D-glycerate

R01712 Pyridoxamine + Pyruvate −→ Pyridoxal + L-Alanine

R01899 Isocitrate + NADP+ −→ Oxalosuccinate + NADPH + H+

R04524 3-Hydroxy-2-methylpyridine-4,5-dicarboxylate + NADH + H+ −→ 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate + H2O + NAD+

R09144 TCE epoxide −→ Glyoxylate

R00024 2 3-Phospho-D-glycerate −→ D-Ribulose 1,5-bisphosphate + CO2 + H2O

R00200 ADP + Phosphoenolpyruvate −→ ATP + Pyruvate

R00318 Acetate + Orthophosphate −→ Phosphonoacetate + H2O

R00341 ADP + Phosphoenolpyruvate + CO2 −→ ATP + Oxaloacetate

R00343 Oxaloacetate + NADPH + H+ −→ (S)-Malate + NADP+

R00345 H2O + Phosphoenolpyruvate + CO2 −→ Orthophosphate + Oxaloacetate

R00402 Fumarate + NADH + H+ −→ Succinate + NAD+

R00479 Succinate + Glyoxylate −→ Isocitrate

R00658 Phosphoenolpyruvate + H2O −→ 2-Phospho-D-glycerate

R00661 3-Phosphonopyruvate −→ Phosphoenolpyruvate

R00711 Acetate + NADPH + H+ −→ Acetaldehyde + NADP+ + H2O

R00714 Succinate + NADPH + H+ −→ Succinate semialdehyde + NADP+ + H2O

R00747 Acetaldehyde + Orthophosphate −→ Phosphonoacetaldehyde + H2O

R01056 D-Ribulose 5-phosphate −→ D-Ribose 5-phosphate

R01523 ADP + D-Ribulose 1,5-bisphosphate −→ ATP + D-Ribulose 5-phosphate

R01649 Acetate + Succinate semialdehyde + Ammonia + CO2 −→ 2-(Acetamidomethylene)succinate + 2 H2O

R01709 4-Pyridoxate + Hydrogen peroxide −→ Pyridoxal + Oxygen + H2O

R01710 Pyridoxal + Ammonia + Hydrogen peroxide −→ Pyridoxamine + H2O + Oxygen

R02993 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate + NADH + H+ −→ 4-Pyridoxate + NAD+

R03385 2-(Acetamidomethylene)succinate + NAD+ −→ 3-Hydroxy-2-methylpyridine-5-carboxylate + Oxygen + NADH + H+

R03461 3-Hydroxy-2-methylpyridine-5-carboxylate + CO2 −→ 3-Hydroxy-2-methylpyridine-4,5-dicarboxylate

R04053 Phosphonoacetaldehyde + CO2 −→ 3-Phosphonopyruvate

R04173 3-Phosphonooxypyruvate + L-Glutamate −→ O-Phospho-L-serine + 2-Oxoglutarate

R04251 Phosphonoacetate −→ Phosphonoacetaldehyde

R09145 Formate −→ TCE epoxide

Table 3: Set of reactions in a sample autonomous network constructed on a sample growth
medium
The set of reactions (with their KEGG reaction IDs) in one of the smallest autonomous networks we constructed
on a minimal medium with acetate and ammonia. The undirected visual representation of this set is the network
in figure 2A. This set has 44 reactions, an energy yield of 1.5 ATP molecules per nutrient and biomass yield of 1.3
precursors per nutrient. Note that in the network constructed, some of these reactions are incorporated in reverse,
i.e. the reverse reaction is instead part of the network. In these cases, the correct order is indicated in the column
with the reaction formulae.
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