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Abstract: Understanding the role of dentate gyrus (DG) mossy cells (MCs) in learning and memory has 

rapidly evolved due to increasingly precise methods for targeting MCs and for in vivo recording and 

activity manipulation in rodents. These studies have shown MCs are highly active in vivo, strongly remap 

to contextual manipulation, and that their inhibition or hyperactivation impairs pattern separation and 

location or context discrimination. What is not well understood is how MC activity is modulated by 

neurohormonal mechanisms, which might differentially control the participation of MCs in cognitive 

functions during discrete states, such as hunger or satiety. In this study, we demonstrate that glucagon-like 

peptide-1 (GLP-1), a neuropeptide produced in the gut and the brain that regulates food consumption and 

hippocampal-dependent mnemonic function, might regulate MC function through selective expression of 

its receptor, GLP-1R. RNA-seq demonstrated that most Glp1r in hippocampal principal neurons is 

expressed in MCs, and in situ hybridization revealed strong expression of Glp1r in hilar neurons. Glp1r-

ires-Cre mice crossed with Ai14D reporter mice followed by co-labeling for the MC marker GluR2/3 

revealed that almost all MCs in the ventral DG expressed Glp1r and that almost all Glp1r-expressing hilar 

neurons were MCs. However, only ~60% of dorsal DG MCs expressed Glp1r, and Glp1r was also 

expressed in small hilar neurons that were not MCs. Consistent with this expression pattern, peripheral 

administration of the GLP-1R agonist exendin-4 (5 μg/kg) increased cFos expression in ventral but not 

dorsal DG hilar neurons. Finally, whole-cell patch-clamp recordings from ventral MCs showed that bath 

application of exendin-4 (200 nM) depolarized MCs and increased action potential firing. Taken together, 

this study identifies a potential neurohormonal mechanism linking a critically important satiety signal 

with activity of MCs in the ventral DG that might have functional effects on learning and memory during 

distinct states.  

 

Keywords: Glucagon-like peptide-1 receptor, GLP-1, dentate gyrus, hippocampus, mossy cell, learning 

and memory 
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Main text 

INTRODUCTION 

The use of cutting-edge tools for recording and manipulating neurons has led to a rapid expansion in 

understanding the in vivo activity and functional roles of dentate gyrus (DG) mossy cells (MCs). Mossy 

cells are glutamatergic neurons with cell bodies in the DG hilus that provide both monosynaptic 

feedforward excitation and disynaptic feedforward inhibition of granule cells (Scharfman, 2016; 

Scharfman & Myers, 2012). Recording or imaging activity in vivo revealed that MCs are more active than 

granule cells, have multiple place fields, and strongly remap their spatial activity in response to contextual 

changes (Danielson et al., 2017; GoodSmith et al., 2017; GoodSmith et al., 2022; GoodSmith, Lee, 

Neunuebel, Song, & Knierim, 2019; Jung et al., 2019; Senzai & Buzsaki, 2017). Mossy cell ablation, 

inhibition, or excitation has shown their involvement in not only cognitive processes such as pattern 

separation and novelty detection that are critical for contextual and spatial memory (Bauer et al., 2021; 

Bui et al., 2018; Fredes et al., 2021; Jinde et al., 2012; X. Li et al., 2021), but also in a diverse repertoire 

of other behaviors and processes, including anxiety and avoidance (Botterill, Vinod, et al., 2021; Wang et 

al., 2021), neurogenesis (Oh et al., 2020; Yeh et al., 2018), and food intake (Azevedo et al., 2019).   

 

Despite this strong foundation establishing that carefully tuned MC activity is necessary for aspects of 

episodic memory, a critical gap in understanding MC biology is how neuromodulatory systems regulate 

MC excitability. Elucidating networks such as neurohormonal signaling might clarify how MC circuits 

function during distinct motivational states. Aside from studies examining MC expression of monoamine 

(Etter & Krezel, 2014; Oh et al., 2020) and glucocorticoid (Patel & Bulloch, 2003) receptors, this 

endeavor has received limited attention. 

 

Neurohormonal systems regulating feeding have consistently been shown to also regulate hippocampal 

function with consequences for learning and memory (reviewed in (Suarez, Noble, & Kanoski, 2019)). As 
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such, we were intrigued that cell-specific RNA sequencing (RNA-seq) of hippocampal excitatory neurons 

revealed transcriptional enrichment of Glp1r, the gene encoding the glucagon-like peptide-1 receptor 

(GLP-1R) (Cembrowski, Wang, Sugino, Shields, & Spruston, 2016), in MCs. Other feeding-relevant 

endocrine receptors, including ghrelin, leptin, and insulin, were not reported as enriched in MCs. GLP-1 

is produced in the distal gut and in the brainstem, where its role in the central regulation of feeding has 

been extensively described (Muller et al., 2019). Interestingly, GLP-1R signaling also promotes 

hippocampal-dependent spatial and associative learning (During et al., 2003; Isacson et al., 2011) as well 

as DG adult neurogenesis (Gault, Lennox, & Flatt, 2015; H. Li et al., 2010). However, the specific 

neuronal substrate within the hippocampus on which GLP-1 acts is not well defined. In this study, we 

characterize the expression and function of GLP-1R on MCs in the murine DG. We find that hippocampal 

GLP-1Rs are strongly and selectively expressed on ventral DG MCs and that ventral MC GLP-1Rs are 

functional both ex vivo and in vivo. Our results support future investigation of how ventral MC GLP-1Rs 

regulate cognitive and non-cognitive functions shown previously to be mediated by MCs.  

 

MATERIALS AND METHODS 

Animals 

Male and female Glp1r-ires-Cre mice (RRID:IMSR_JAX:029283) (Williams et al., 2016) were crossed 

with Ai14D tdTomato reporter mice (RRID:IMSR_JAX:007914) (Madisen et al., 2010) to yield Glp1r-

ires-Cre x Ai14D mice. All other mice used were male and female C57BL/6. Animals were group housed 

with a 12-hour light/dark cycle at 72 ± 2 °F with ad libitum access to food and water. All procedures were 

approved by the Vanderbilt Institute Animal Care and Use Committee.  

 

Drugs 
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Exendin-4 acetate was purchased from Cayman Chemical Company (Ann Arbor, MI). 

 

cFos expression following exendin-4 administration 

Mice were habituated to the testing room for at least 1 hr, then administered exendin-4 (5 μg/kg in saline, 

s.c.) or saline, returned to their home cage, and transcardially perfused 90 mins later.  

 

Immunostaining 

Terminal anesthesia, transcardial perfusion, and tissue sectioning were performed exactly as previously 

described (Bauer et al., 2021). For GluR2/3 immunostaining: two brain sections from each animal in each 

region of interest were selected. Dorsal DG slices were at approximately anterior/posterior (AP): -1.94 

mm and ventral DG slices at approximately AP: -3.10 mm. Sections were permeabilized and blocked in 

0.3% Tx-100 and 3% normal donkey serum (Jackson ImmunoResearch, West Grove, PA) in phosphate-

buffered saline (PBS) for 2 hours. Sections were incubated overnight in rabbit anti-GluR2/3 (AB1506, 

Millipore Sigma, Burlington, MA, RRID:AB_90710, 1:200 dilution) at 4 °C. Sections were washed 3 x 

10 mins in PBS, then incubated in donkey anti-rabbit Alexa 488 (Jackson ImmunoResearch, 1:1,000 

dilution) at room temperature for 2 hrs. Sections were washed 3 x 10 mins in PBS, then incubated in 4′,6-

diamidino-2 -phenylindole (DAPI, Millipore, 1:5,000 dilution) in PBS at room temperature for 5 mins, 

washed in PBS, then mounted on slides using Fluoromount G (Electron Microscopy Sciences, Hatfield, 

PA). cFos immunostaining was performed identically, except permeabilization and blocking was done 

using 0.1% Tx-100, 1% normal donkey serum in PBS. Primary antibody was rabbit anti-cFos (226 003, 

Synaptic Systems, Goettingen, Germany, RRID:AB_2231974, 1:1,000 dilution), and secondary antibody 

was donkey anti-rabbit Alexa 488 (Jackson ImmunoResearch, 1:500 dilution). 
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Microscopy and image quantification 

Imaging was performed using an LSM 880 (Zeiss, White Plains, NY) equipped with a 20x Plan-

Apochromat objective (NA = 0.8) and Zeiss Zen software for acquisition. All image analysis was 

performed blinded. For Glp1r-ires-Cre x Ai14D and GluR2/3 co-labeling, total numbers of tdTomato+ 

(i.e., Ai14D reporter), GluR2/3+, and tdTomato+GluR2/3+ neurons were counted within the hilus of each 

DG of each section and averaged across at least 2 sections per mouse. For cFos activation, the total 

number of cFos+ neurons within the DG hilus were counted and averaged across at least two sections per 

mouse. Images were processed using Fiji (Schindelin et al., 2012). 

 

Acute slice preparation 

Acute brain slices were prepared from male and female juvenile (P19 to P35) C57BL/6 mice. Mice were 

decapitated under isoflurane, and their brains were removed quickly and placed in an ice-cold sucrose-

rich slicing artificial cerebrospinal fluid (ACSF) containing (in mM): 85 NaCl, 2.5 KCl, 1.25 NaH2PO4, 

25 NaHCO3, 75 sucrose, 25 glucose, 0.01 DL-APV, 100  kynurenate, 0.5 Na L-ascorbate, 0.5 CaCl2, and 

4 MgCl2. Sucrose-ACSF was oxygenated and equilibrated with 95% O2/5% CO2. Horizontal slices (300-

350 µm) were prepared using a vibratome (model VT1200S, Leica Biosystems). Slices were transferred 

to a holding chamber containing sucrose-ACSF warmed to 30°C and slowly returned to room temperature 

over the course of at least 30 min. Slices were then transferred to oxygenated ACSF at room temperature 

containing (in mM): 125 NaCl, 2.4 KCl, 1.2 NaH2PO4, 25 NaHCO3, 25 glucose, 2 CaCl2, and 1 MgCl2, 

and were maintained under these incubation conditions until recording. 

 

Electrophysiological recordings 
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Slices were transferred to a submerged recording chamber continuously perfused at 2.0 ml/min with 

oxygenated ACSF maintained at 30 °C. Putative hilar mossy cells were identified using infrared 

differential interference contrast on a microscope (Slicescope II, Scientifica) and recordings made as 

previously reported (Hedrick et al., 2017). Whole-cell patch-clamp recordings were performed using 

borosilicate glass micropipettes with tip resistance between 3 and 6 MΩ. Signals were acquired using an 

amplifier (Axon Multiclamp 700B, Molecular Devices). Data were sampled at 10 kHz and low-pass 

filtered at 10 kHz. Access resistances ranged between 16 and 22 MΩ and were continuously monitored 

before switching to current-clamp configuration. Changes greater than 20% from the initial value that 

were recorded at the end of an experiment were excluded from data analyses. Series resistance was 

uncompensated. Data were recorded and analyzed using pClamp 11 (Molecular Devices). Current clamp 

was performed using a potassium gluconate-based intracellular solution containing the following (in 

mM): 135 K-gluconate, 5 NaCl, 2 MgCl2, 10 HEPES (pH 7.0), 0.6 EGTA, 4 Na2ATP, and 0.4 Na2GTP, 

pH 7.3, at 281 mOsm). Input resistance was measured immediately after breaking into the cell and was 

determined from the peak voltage response to a 5 pA current injection. Following stabilization and 

measurement of the resting membrane potential, current was injected to hold all cells at a membrane 

potential between 60 – 65 mV, maintaining a common membrane potential that is within the reported 

resting membrane potential of hilar mossy cells to account for intercell variability. Hilar mossy cells were 

selected for recording based on the presence of a large, multipolar soma in the hilus. After achieving 

whole-cell configuration, hilar mossy cells were verified by a large whole-cell capacitance (>45 pF), a 

high frequency of sEPSCs (>5 Hz), and baseline action potential firing. Action potentials were 

characterized as having a mean amplitude of 83.988 ± 4.578 mV, a mean duration of 1.64 ± 0.09 ms, and 

a ratio of rising slope:decay slope greater than 2 (n = 7 cells from 6 animals), which is similar to that 

reported in the literature (Scharfman, 1992, 1995; Scharfman & Myers, 2012; Scharfman & 

Schwartzkroin, 1988). 
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Statistical analysis 

t tests (paired or unpaired, as appropriate) were used to compare two groups. To compare three or more 

groups, one- or two-way analysis of variance (ANOVA) as appropriate with Sidak’s post test was used. 

All tests were two-tailed. Analyses were performed using Prism 9 (GraphPad, San Diego, CA). Error bars 

depict standard error of the mean (SEM) unless otherwise noted.  

 

RESULTS 

Using cell-specific RNA-seq, Cembrowski et al. previously reported that expression of Glp1r was 

enriched in MCs (Cembrowski et al., 2016). We further investigated this enrichment using HippoSeq, a 

publicly available tool to analyze the RNA-seq data generated by this study. Glp1r expression was only 

detectable in MCs and ventral CA3 pyramidal neurons (Figure 1a). Gene expression of the receptors for 

ghrelin, insulin, and leptin, which like GLP-1 are other feeding-relevant hormones previously shown to be 

important in hippocampal function (Suarez et al., 2019), was markedly lower than Glp1r expression and 

not enriched in MCs (Figure 1b). HippoSeq did not divide MCs into dorsal and ventral DG MCs, which 

is important because dorsal and ventral MCs differ not only molecularly (Blasco-Ibanez & Freund, 1997; 

Fujise, Liu, Hori, & Kosaka, 1998), physiologically (Bui et al., 2018; Fredes et al., 2021; Jinno, Ishizuka, 

& Kosaka, 2003), and anatomically (Botterill, Gerencer, Vinod, Alcantara-Gonzalez, & Scharfman, 2021; 

Houser, Peng, Wei, Huang, & Mody, 2020), but also in their role in cognitive function (Bauer et al., 

2021; Botterill, Vinod, et al., 2021; Yassa & Stark, 2011). Therefore, to corroborate RNA-seq data and 

examine potential dorsal and ventral MC expression differences, we examined in situ hybridization (ISH) 

data for Glp1r from the Allen Mouse Brain Atlas (Lein et al., 2007) (Figure 1c,d). These data 

demonstrated Glp1r expression in neurons in both dorsal and ventral DG hilus, with markedly stronger 

staining in ventral DG, and limited expression elsewhere. Together, these data reveal that Glp1r in 
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hippocampal excitatory neurons is enriched in MCs, and that Glp1r expression is strongest in hilar 

neurons of the ventral DG.   

 

Because HippoSeq only includes excitatory neurons and did not differentiate MCs between dorsal and 

ventral DG, the above RNA-seq and ISH data are unable to determine 1) whether all MCs express Glp1r, 

2) whether all Glp1r is confined to MCs (since interneurons were not included in HippoSeq), and 3) 

whether these expression patterns differ between dorsal and ventral MCs. All of these might have 

important functional consequences. To approach these questions, we examined Glp1r-ires-Cre x Ai14D 

mice, which express the fluorescent reporter tdTomato in Cre-positive neurons (Figure 2). This genetic 

reporter approach differs from ISH in that it allows visualization of not only neuronal soma but also 

projections and permits colabeling with MC markers. Unlike ISH however, genetic reporter intensity 

cannot be used as a proxy for relative expression. In dorsal hippocampus, tdTomato was almost 

exclusively expressed in hilar cells, with almost no expression in the granule cell layer, area CA3, and 

area CA1. In ventral hippocampus, tdTomato was expressed in hilar cells, including at the extreme ventral 

pole. Expression was sparse in ventral CA3, though much more prevalent than in dorsal CA3. Ventral 

CA1, as in dorsal CA1, was largely devoid of tdTomato expression. In both dorsal and ventral sections, a 

strong band of tdTomato immunoreactivity was found in the inner molecular layer, the site of MC 

terminals. Finally, strong expression of tdTomato was found throughout the brain in blood vessels, 

consistent with known localization of GLP-1R in brain arteriolar smooth muscle and endothelial cells 

(Nizari et al., 2021).  

 

We next tested whether hilar neurons expressing the fluorescent genetic reporter were MCs by co-labeling 

with GluR2/3, a marker of hilar MCs in both dorsal and ventral DG (Jiao & Nadler, 2007; Leranth, 

Szeidemann, Hsu, & Buzsaki, 1996) (Figure 3a). These studies revealed that MC expression of Glp1r 
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and Glp1r specificity for MCs differed between dorsal and ventral MCs (Figure 3b,c). In the ventral DG, 

94.8% ± 2.9% of GluR2/3+ MCs expressed Glp1r and 93.8% ± 1.9% of Glp1r-expressing hilar neurons 

expressed GluR2/3. However, in the dorsal DG, only 61.3% ± 10.4% of dorsal DG GluR2/3+ MCs 

expressed Glp1r, and 66.0% ± 9.7%  of Glp1r-expressing neurons also expressed GluR2/3+, suggesting 

about one-third of dorsal Glp1r-expressing neurons were not MCs. Altogether, RNA-seq, ISH, and 

genetic reporter strategies suggest that Glp1r expression overall is more prevalent in ventral 

hippocampus, where it is expressed in a sparse population of CA3 pyramidal neurons and expressed in 

essentially all ventral MCs, while Glp1r is not universally expressed in dorsal MCs and is also expressed 

in non-MC hilar neurons. Furthermore, dense tdTomato-positive terminals in the inner molecular layer 

throughout the DG dorsoventral axis suggests that Glp1r-positive MCs innervate granule cells across all 

hippocampal lamellae. 

 

Glucagon-like peptide-1 and several GLP-1R agonists, including exendin-4, readily cross the blood-brain 

barrier (Kastin & Akerstrom, 2003; Kastin, Akerstrom, & Pan, 2002) where they have centrally mediated 

effects on cognition, feeding, and neurogenesis (During et al., 2003; Gault et al., 2015; Isacson et al., 

2011; Kanoski, Fortin, Arnold, Grill, & Hayes, 2011). To investigate whether DG activity was changed 

by pharmacological activation of GLP-1Rs, we administered the GLP-1R agonist exendin-4 (5 μg/kg) 

peripherally, sacrificed the animal 90 mins later, and performed immunohistochemistry for the immediate 

early gene cFos. Consistent with stronger expression of Glp1r in ventral MCs, we found a significant 

increase in cFos following exendin-4 administration in the ventral but not dorsal DG (Figure 4).  

 

Along with Glp1r expression data, these findings suggest that GLP-1R activation might act directly on 

MCs to increase their firing. However, cFos cannot differentiate this possibility from network effects, 

such as activation of MCs and hilar GABAergic interneurons via GLP-1R-mediated activation of CA3c 
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neurons and back projections to these DG hilar cell types, a process known to be particularly strong in the 

ventral hippocampus (Scharfman, 2007). To quantify the effects of GLP-1R activation on MC 

physiology, we performed whole-cell current-clamp recordings from ventral DG MCs to examine the 

effect of bath application of exendin-4 (200 nM) (Figure 5a), a dose used recently to characterize 

neuronal responses to GLP-1R activation ex vivo (Povysheva, Zheng, & Rinaman, 2021). We specifically 

examined ventral MCs because our expression data demonstrated that almost all ventral hilar neurons 

expressing Glp1r are MCs (Figure 3), which, in addition to our electrophysiological criteria (see 

methods), contributes to the likelihood that we were indeed recording from MCs. Bath application of 200 

nM exendin-4 significantly increased the rate of spontaneous action potential firing (Figure 5b-d) 

compared to baseline in all cells. This was associated with a small but significant membrane 

depolarization compared to baseline (Figure 5e,f) and is consistent with actions of GLP-1 agonists in 

other neuronal populations (Cork et al., 2015; Povysheva et al., 2021). 

 

DISCUSSION 

Identifying non-synaptic mechanisms that regulate MC activity is critically important to bridge our 

current understanding of MC function, primarily gleaned from activity manipulation studies, with MC 

function during specific physiological and behavioral states. In this study, we demonstrate that GLP-1 

signaling via GLP-1Rs on MCs may be an important neurohormonal mechanism regulating MC activity, 

as well as a cellular target for GLP-1 analogues already in clinical use. Using RNA-seq, ISH, and genetic 

reporter lines, we found that 1) ventral MCs strongly express Glp1r, 2) that GLP-1R agonist depolarizes 

MC membrane potential and increases action potential firing ex vivo, and 3) that peripheral administration 

of GLP-1R agonist increases ventral DG hilar neuron activity in vivo. Interestingly, dorsal MCs differed 

markedly from ventral MCs in their expression of Glp1r, where it is expressed in only about two-thirds of 

MCs, and only about 60% of Glp1r-positive hilar neurons were MCs. Glp1r expression as revealed by 

ISH in dorsal hilar neurons was substantially weaker than in ventral hilus, which may contribute to our 
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inability to detect cFos activation in the dorsal hilus by peripheral GLP-1R agonist. Alternatively, dorsal 

hilar Glp1r-positive neurons that were not MCs may play an active role in inhibiting local hilar neurons 

following GLP-1R agonist administration, also accounting for an absence of detectable cFos increase. 

 

As is the case for the hippocampal formation as a whole (Fanselow & Dong, 2010; Strange, Witter, Lein, 

& Moser, 2014), an appreciation of meaningful differences between dorsal and ventral DG MCs 

continues to evolve. These include marked differences in protein expression (Blasco-Ibanez & Freund, 

1997; Cembrowski et al., 2016; Fujise et al., 1998), activity (Bui et al., 2018; Fredes et al., 2021; Jinno et 

al., 2003), connectivity (Botterill, Gerencer, et al., 2021; Houser et al., 2020), and effects on cognitive and 

behavioral function (Bauer et al., 2021; Botterill, Vinod, et al., 2021; Yassa & Stark, 2011). For instance, 

relevant to our Glp1r expression findings, in mice the calcium binding protein calretinin is strongly and 

selectively expressed in MCs in the ventral and intermediate DG whereas most dorsal MCs are calretinin-

negative (Blasco-Ibanez & Freund, 1997; Fujise et al., 1998). Ventral MCs show markedly greater 

intrinsic bursting than dorsal MCs due to differential expression of persistent sodium currents (Jinno et 

al., 2003). Finally, ventral MCs are significantly more active in novel contexts and this novelty detection 

can gate contextual fear conditioning whereas dorsal MC activity plays a less specific role in this form of 

learning (Fredes & Shigemoto, 2021; Fredes et al., 2021). Thus, our findings that ventral MCs and the 

ventral DG are activated by GLP-1R agonist may have several behavioral consequences. Whether GLP-

1R signaling improves or degrades performance in DG-dependent cognition is likely task-dependent and 

difficult to predict. For example, either optogenetic inhibition (Bui et al., 2018) or chemogenetic 

excitation (Bauer et al., 2021) of ventral MCs impairs spatial encoding during an object location memory 

task, suggesting that disruption of distinct activity bidirectionally has a degradative effect on encoding. 

However, GLP-1R signaling may enhance contextual fear conditioning in familiar environments (Fredes 

et al., 2021) and perhaps restore MC activity that is necessary for mnemonic function in pathological 

conditions in which MCs are lost, such as epilepsy (Blümcke et al., 2000; Bui et al., 2018). 
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It is important to note that MC protein expression may be highly species dependent, which has previously 

been appreciated in calretinin staining between mice, rats, and monkeys (Blasco-Ibanez & Freund, 1997; 

Gulyás, Miettinen, Jacobowitz, & Freund, 1992; Miettinen, Gulyás, Baimbridge, Jacobowitz, & Freund, 

1992; Seress, Nitsch, & Leranth, 1993). Along these lines, recent work in rats identified Glp1r expression 

in ventral CA1 neurons and showed that GLP-1R signaling through these neurons had functional effects 

on food intake and operant responding (Hsu, Hahn, Konanur, Lam, & Kanoski, 2015; Hsu et al., 2018). In 

contrast, murine RNA-seq, ISH, and a Glp1r-ires-Cre x Ai14D reporter line cross did not demonstrate 

appreciable ventral CA1 Glp1r expression (Figures 1 and 2). Even within species, different transgenic 

approaches to visualize neuronal Glp1r show notable differences. For example, the Glp1r-ires-Cre knock-

in line crossed with Ai14D mice shown in the present study exhibits similar dorsal and ventral DG hilar 

neuronal expression to a Glp1r-Cre BAC transgenic line (Cork et al., 2015; Richards et al., 2014) and a 

GLP-1R-mApple BAC transgenic line (Graham et al., 2020). However, these three lines differ in their 

reporter expression in other hippocampal cell types, including DG granule cells and pyramidal neurons in 

CA1 and CA3, which contrast with RNA-seq and ISH data. That three different transgenic lines 

demonstrate hilar neuronal expression adds confidence to the expression of Glp1r in MCs. However, 

variable expression elsewhere suggests a need for caution when making claims as to the degree of Glp1r 

expression in these other hippocampal fields.  

 

Our findings set the stage for several avenues of future study for understanding healthy brain function and 

for the development of therapeutic interventions. Basic motivational states, such as hunger or thirst, 

interact with cognitive processes to guide adaptive behavior. For instance, in a state of hunger, an 

adaptive response is to seek and consume food. This process is facilitated by pairing the hungry state with 

prioritized recall of food-paired contexts. Indeed, such fundamental motivational states are coded in 

hippocampal firing (P. J. Kennedy & Shapiro, 2004; Pamela J. Kennedy & Shapiro, 2009; Wood, 
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Dudchenko, Robitsek, & Eichenbaum, 2000), but how state is communicated to the hippocampus is not 

well understood. As a satiety signal (Hsu et al., 2018; Muller et al., 2019; Trapp & Richards, 2013), GLP-

1 signaling is one potential mechanism that might couple satiety or absence of satiety with distinct MC 

function. Indeed, because GLP-1Rs are G-protein-coupled receptors, even relatively short-lived prandial 

increases in central GLP-1 levels might be well situated to have long-lasting effects on MCs that far 

outlast the presence of the hormone itself. Supporting this notion, MCs were recently shown to be more 

active in the fed than fasted state (Azevedo et al., 2019). Finally, the unique vulnerability of MCs in 

disorders such as epilepsy and the cognitive consequences of their loss coupled with the current 

widespread clinical use of GLP-1R pharmacotherapies encourages translational investigation into whether 

targeting MC GLP-1Rs can preserve or enhance pattern separation function to facilitate episodic memory 

in neurological or psychiatric disease. 
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Figure legends 

Figure 1. Glp1r gene expression in the hippocampus. a,b) HippoSeq, a publicly available mouse 

hippocampal principal neuron RNA-seq gene expression database, demonstrates that expression of Glp1r, 

the gene encoding GLP-1R, is highly enriched in MCs (a). Data in (a) are represented as mean ± 95% 

confidence intervals. Gene expression of other feeding-relevant hormone receptors in the hippocampus is 

much weaker than Glp1r expression and not enriched in MCs (b). Lepr, leptin receptor; Ghsr, growth 

hormone secretagogue receptor (ghrelin receptor); Insr, insulin receptor. FPKM, Fragments Per Kilobase 

of Exon Per Million Reads Mapped. c,d) In situ hybridization for Glp1r from Allen Mouse Brain Atlas  

corroborates RNA-seq data demonstrating most Glp1r expression is in hilar neurons consistent with MC 

expression, with strongest expression in the ventral DG hilus. There is limited expression in CA1 or CA3 

pyramidal cell layers. From bregma, depicted dorsal DG is ~-1.9 mm and depicted ventral DG is ~-3.5 

mm. Magnification factor is the same for all colored boxes.  

 

Figure 2. Genetic reporter for Glp1r-ires-Cre expression in dorsal and ventral hippocampal 

formation. Confocal microscopy of dorsal and ventral hippocampal sections from Glp1r-ires-Cre mice 

crossed with Ai14D genetic reporter line (Glp1r-ires-Cre x Ai14D), in which the red fluorescent protein 

tdTomato is expressed in Cre-positive neurons. Imaging revealed hilar expression in both dorsal and 

ventral hippocampus, along with sparse ventral CA3 expression. There was also strong tdTomato 

expression in the DG inner molecular layer, consistent with MC terminals. Glp1r is also strongly 

expressed in the brain vasculature, exemplified by structures marked by asterisks. 

 

Figure 3. Hilar mossy cell Glp1r expression differs across the DG longitudinal axis. a) Glp1r-ires-

Cre mice crossed with Ai14D reporter mice (Glp1r-ires-Cre x Ai14D) express tdTomato in Cre-positive 

neurons. Representative images from the dorsal and ventral DG are shown in the top and bottom rows of 
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images, respectively, revealing tdTomato expression in hilar somata as well as a dense band of 

projections in the DG inner molecular layer. Sections were stained for GluR2/3, which in the hilus is a 

marker for MCs. Images on the far right are magnification of the boxed area. White arrowheads denote 

example Glp1r-positive/GluR2/3-negative neurons, black arrowheads denote example Glp1r-

negative/GluR2/3-positive neurons, and white arrows denote example Glp1r-positive/GluR2/3-positive 

neurons. b,c) In the ventral DG, almost all MCs were Glp1r-positive, and almost all Glp1r-positive 

neurons were MCs. However, in the dorsal DG, only about 61% MCs were Glp1r-positive and 66% of 

Glp1r-expressing neurons were MCs. N = 3 mice. Paired t test, dorsal versus ventral: % 

Glp1r+GluR23+/Glp1r+: t(2) = 3.53, p = 0.072; % Glp1r+GluR23+/GluR23+: t(2) = 4.31, p = 0.050.  

 

Figure 4. Peripheral administration of GLP-1R agonist increases ventral but not dorsal DG hilar 

cFos expression. Mice were administered the GLP-1R agonist exendin-4 (5 μg/kg) or vehicle and 

returned to their home cage. 90 mins later mice were sacrificed. Immunohistochemistry for the immediate 

early gene cFos revealed increased hilar cFos expression in ventral but not dorsal DG, quantified from 

horizontal and coronal sections, respectively. Two-way ANOVA: dorsoventral region x treatment 

interaction: F(1,17) = 6.154, p = 0.024; dorsoventral region: F(1,17) = 4.348, p = 0.052, treatment: 

F(1,17) = 4.999, p = 0.039. Pairwise comparison p values from Sidak’s multiple comparison tests are 

shown in the figure.  

 

Figure 5. GLP-1R agonist depolarizes hilar MCs and increases action potential firing. a) Image of 

recording electrode in the hilus from a horizontal ventral DG slice. b) Representative current clamp 

recording of hilar MC following bath application of GLP-1R agonist exendin-4 (200 nM) showing 

increase in action potential firing and membrane depolarization. c) Mean action potential (AP) firing 

following exendin-4 (200 nM) bath application reveals overall increase in firing. Data are normalized to 
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mean firing during the 2 min period prior to onset of bath application. One-way repeated measures 

ANOVA: F(11,66) = 2.194, p = 0.025. **p < 0.01 versus -1 min baseline (Sidak’s multiple comparison 

test). N = 7 cells from 6 mice. d) Maximal firing rate in the 9 min period following exendin-4 bath 

application is significantly increased from baseline. Paired t test versus -1 min baseline: t(6) = 2.62, p = 

0.039. e) Change in membrane potential (Vm) also increased significantly following exendin-4 bath 

application. One-way repeated measures ANOVA: F(11,66) = 3.112, p = 0.0020. *p < 0.05 versus -1 min 

baseline (Sidak’s multiple comparison test). N = 7 cells from 6 mice. f) Maximal Vm change in the 9 min 

period following Exendin-4 bath application is significantly increased from baseline. Paired t test versus -

1 min baseline: t(6) = 2.71, p = 0.035. 
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