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Mutational footprint of platinum chemotherapy in a secondary thyroid cancer

1,2,11 1,2,3,11

Julia Schiantarelli , Jake Conway'?>* Jett Crowdis'?, Brendan
Reardon!?, Felix Dietlein'?, Julian Huang®, Darren Stanizzi', Evan Carey!, Alice Bosma-
Moody!?, Alma Imamovic'?, Seunghun Han'®, Sabrina Camp'-, Eric Kofman’, Erin Shannon'-?,
Justine A. Barletta®, Meng Xiao He!>?, David Liu!*, Jihye Park!>!2, Jochen H. Lorch!!*!2 Eliezer

M. Van Allen!%!12

, Theodora Pappa

1 Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA

2 Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA

3 Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital,
Boston, MA, 02115, USA

4 Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA

5 Yale School of Medicine, New Haven, CT 06511, USA

6 Department of Biological and Biomedical Sciences, Harvard Medical School, Boston, MA
02115, USA

7 Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla,
CA 92093, USA

8 Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston,
MA, USA

9 Harvard Graduate Program in Biophysics, Boston, MA 02115, USA

10 Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611
11 These authors contributed equally

12 Co-senior authors

* Correspondence:

Jochen H. Lorch

Robert H. Lurie Comprehensive Cancer Center of Northwestern University
675 N St Clair St F1 21 Ste 100

Chicago, IL 60611

Jochen.lorch@nm.org

Eliezer M. Van Allen

Dana-Farber Cancer Institute 450 Brookline Ave
Boston, MA 02215
Eliezerm_vanallen@dfci.harvard.edu


https://doi.org/10.1101/2022.03.14.484002
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2022.03.14.484002
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2022.03.14.484002
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2022.03.14.484002
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2022.03.14.484002
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1101/2022.03.14.484002
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.14.484002; this version posted March 15, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Abstract

Although papillary thyroid carcinoma (PTC) is the most frequent endocrine tumor with a generally
excellent prognosis, a patient developed a clinically aggressive PTC eleven years after receiving
platinum chemotherapy for ovarian endometrioid adenocarcinoma. Germline and somatic analyses
of multi-temporal and multi-regional molecular profiles indicated that ovarian and thyroid tumors
did not share common genetic alterations. PTC tumors had driver events associated with
aggressive PTC behavior, an RBPMS-NTRK3 fusion and a TERT promoter mutation. Spatial and
temporal genomic heterogeneity analysis indicated a close link between anatomical locations and
molecular patterns of PTC. Mutational signature analyses demonstrated a molecular footprint of
platinum exposure, and that aggressive molecular drivers of PTC were linked to prior platinum-
associated mutagenesis. This case provides a direct association between platinum chemotherapy
exposure and secondary solid tumor evolution, in specific aggressive thyroid carcinoma, and
suggests that uniform clinical assessments for secondary PTC after platinum chemotherapy may

warrant further evaluation.

Main

Introduction

Many recent studies have discussed platinum mutagenesis that are observed in tumors being
directly treated with these agents as well as in hematologic secondary malignancies'~®. However,
data supporting a direct clinical association of platinum exposure leading to genetic drivers
promoting secondary solid tumorigenesis is currently lacking. A 70-year-old female was
diagnosed with ovarian endometrioid adenocarcinoma in 1999, treated with oophorectomy,

hysterectomy and chemotherapy (intravenous carboplatin, taxol and topotecan) in 1999, followed
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by intraperitoneal and intravenous cisplatin and gemcitabine in 1999-2002. In 2002, she
experienced a recurrence managed with radiation therapy (3850 cGy intracavitary brachytherapy).
Eight years later (2010), she was diagnosed with papillary thyroid carcinoma (PTC), for which she
underwent total thyroidectomy and central lymph node dissection. Histopathologic evaluation
revealed classic PTC with extensive vascular invasion, extrathyroidal extension and involvement
of 3 perithyroidal lymph nodes. Despite radioactive iodine ablation (150mCi in 2010) and long-
term thyroid stimulating hormone (TSH) suppression therapy with levothyroxine, she experienced
locoregional recurrence on the left lateral neck twice, 4 and 8 years later, treated surgically on both
occasions (Figure 1A). Tissue samples from ovarian tumor (n=1), primary PTC from initial
thyroidectomy (n=10), and two recurrent PTC excisions (n=1 each) were submitted for molecular
profiling (Methods). The locations of tissue samples from primary PTC thyroidectomy, as
documented in pathology reports and with approximate relative positions, are depicted in Figure

2A.

Results

Molecular origins and evolution of primary ovarian and secondary papillary thyroid cancers
Prior intratumoral heterogeneity (ITH) studies have revealed considerable variations in genetic
makeup in tumors across anatomic locations and disease stages’, which we hypothesized may
inform molecular origins and evolution of this secondary PTC given the aggressive course and
prior clinical context. We evaluated multi-regional and multi-temporal samples (total of 12 thyroid
samples and 1 ovarian sample) to interrogate genetic makeup of ovarian, primary and recurrent
PTC samples. Along with an ovarian cancer sample collected in 1999, 10 samples were collected

from different locations in 2010 thyroidectomy and 2 samples from surgeries for PTC recurrence
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in 2014 and 2018 (Figure 1A). Germline analysis did not identify any known pathogenic genetic
alteration associated with ovarian or thyroid cancer or cancer-related genetic syndrome.
Comparison of somatic genomic features, including mutations and copy number alterations
(CNAs) of the ovarian cancer and PTC samples, indicated that ovarian and thyroid tumor did not
share common genetic alterations and originated from genetically distinct tumorigenic events
(Figure 1B and S1). The ovarian cancer harbored canonical somatic mutations (e.g. PTEN,
SMARCA4 mutations), whereas PTC tumor harbored driver events including RBPMS-NTRK3
fusion and a TERT promoter mutation, both associated with aggressive PTC behavior (Figure 1B
and Table S2)%”.

To explore the evolutionary relationship between tumor foci in these multi-regional and
multi-temporal thyroid samples, we clustered mutations to subclones and built a phylogenetic tree
representing the relationships between those subclones (Figure 2A-B: Methods). All subclones in
PTC samples shared an 1q amplification and canonical driver events implicated in PTC
oncogenesis (RBPMS-NTRK3 fusion and a TERT promoter mutation) (Figure 2B and Table S3).
We observed four distinct phylogenetic groups across all PTC samples with varying degrees of
subclones. Eight samples fell into one of two phylogenetic branches based on their clonal
architecture: BIEJA, B1EJE, B1EJC, and B1EJ5 were dominated by the most recent common
ancestor of all PTC subclones and a closely related descendent (Figure 2A-B: blue branches);
B1EJ4, B1EJ9, B1EJB, and B1EJ6 samples were dominated by a different descendent of the most
recent common ancestor (Figure 2A-B: purple branches). Anatomically, these samples were
spatially near each other within same phylogenetically defined groups (Figure 2A-B: matching
color in pie chart and tree). One site (B1EJ7) had the most diverse subclones (Figure 2A-B: green

branches). The two samples that corresponded to loco-regional recurrences in 2014 and 2018
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(BIEJN and H4P3K, respectively) shared similar dominant subclones with the PTC sample
(B1EJS8) from 2010 thyroidectomy. Sample BIEJ8 was from an area of tumor that was present at
the thyroidectomy resection margin and was in closest spatial proximity to recurrences (Figure
2A-B: red branches), supporting the relationship between pathologic findings and molecular

spatial patterns of recurrent thyroid carcinoma.

Cisplatin mutational signature was present in primary and recurrent PTC two decades after
chemotherapy

To examine sources of mutagenesis underlying mutation patterns observed in this PTC, we
performed mutational signature analysis on the ovarian cancer and PTC samples (Methods). Both
ovarian and PTC tumors harbored the ubiquitous clock-like (SBS1 or SBS5) mutational signature
(Figure S2-S6 and Table S4). Only the PTC samples, obtained 11-19 years after exposure to
platinum chemotherapy, had evidence of platinum mutational signatures (SBS31 or SBS35; Figure
S2-S6 and Table S4).

We then calculated the likelihood of observing a mutation in the specific trinucleotide
context induced by a specific signature (Methods and Figure 3, S5-S6). An example of a missense
mutation mostly attributed to the clock-like (SBS1 or SBSS5) signature was an A[C>T]G alteration
in NOTCH1 (Figure 3A-B). Additional mutations related to the platinum chemotherapy signature
across the PTC samples were identified in genes such as EPHA3, SMAD4, and GATA3 (Figures
1B, 3A-B). The clonal c.-124C>T TERT promoter mutation is an established driver of aggressive
PTC® and was found in a mutational context, C[C>T]T, characteristic of the platinum

chemotherapy signature (Methods and Figure 3A-B, S5-S6). This mutation was present in all PTC
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tumor samples (Figure 1B and S7) and thus links an event driving the thyroid cancer pathogenesis

to treatment exposure that occurred decades previously!-2.

Discussion

Several recent studies discussed the chemotherapy mutational signatures that have been detected
in metastatic tumors or in secondary hematological malignancies'~®. However, molecular origins
and evolution of secondary solid tumors in patients previously exposed to platinum-based
chemotherapy remain to be elucidated, although there are paradigms of chemotherapy induced
mutagenesis leading to drug resistant clones and impacting clinical outcomes!-. Here, molecular
profiling of the PTC at different timepoints and locations revealed significant intratumoral
heterogeneity and genetic alterations distinct from ovarian cancer of the same patient (Figure 1
and S1). Thyroid cancer is typically considered largely homogeneous at the molecular level, with
the TCGA study proposing two major classifications: BRAF-like and RAS-like!?. Only a small
body of literature supports the presence of concomitant mutations, heterogeneous presence of
driver mutations (such as BRAF"5°E) and discordant profile of primary and metastatic PTC'!~14,
By exploring evolutionary relationships across multi-regional and multi-temporal samples from
the same patient, we illustrated the relationships between different subclones, and branches of
samples with distinct subclones that were associated with the anatomical locations of collected
samples (Figure 2 and Table S3). As the pathology report noted positive margins on excision of
patient’s tumor during 2010 thyroidectomy, it is possible that loco-regional recurrences arose by
remnant cancer cells escaping radioactive iodine ablation. No BRAF or RAS mutation was
identified in primary and recurrent PTC samples. Instead, all PTC samples harbored RBPMS-

NTRK3 fusion, TERT promoter c.-124C>T mutation and 1q amplification, which suggests that
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these genetic alterations are closely linked with this PTC’s pathogenesis and aggressive features
(Figure 1 and 2). NTRK altered PTC is rare, comprising under 2% of cases, and is characterized
by multinodular growth, prominent fibrosis, extensive lymphovascular spread and high risk of
recurrence and metastatic disease®, which is consistent with this patient’s tumor pathology and
behavior. Similarly, TERT promoter mutation, enriched in less well differentiated and anaplastic
thyroid carcinomas’, and 1q amplification are also associated with higher disease stage!®.

Platinum chemotherapy mutational signatures were observed in all PTC samples, a
footprint present 19 years after chemotherapy exposure (Figure S2-S6 and Table S4). Tumor
location and primary vs recurrent site did not impact the degree of platinum mutational signatures
observed; however, we demonstrated that c.-124C>T TERT promoter single base substitution in
C[C>T]T context was mostly attributed to platinum mutational signature (Figure 3 and S5-S6).
While ionizing radiation is a well-established risk factor for PTC, and gene fusions (in particular
RET-PTC rearrangements) and copy number alterations are enriched in radiation induced PTC!>-!6,
no such link has been recognized for chemotherapy. Yet, in a study of 12,547 childhood cancer
survivors, treatment with alkylating agents was associated with increased PTC risk, beyond the
relative risk that could be attributed to prior ionizing radiation therapy!”. This PTC case harbored
uncommon genetic patterns with N7RK fusion and 1q amplification. Taken together and with prior
knowledge of how chemotherapy may induce DNA damage and breakpoints!®!, these findings
provide a mechanistic hypothesis for how platinum mutagenesis might have induced a TERT
promoter mutation and contributed to aggressive histopathological and clinical course of this
patient’s PTC.

This study may offer a mechanistic explanation for elevated thyroid cancer risk in patients

after platinum chemotherapy exposure®!’, who may benefit from increased awareness and lower
y > y
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threshold to screen for secondary PTC. For those exposed to platinum chemotherapy who do later
develop thyroid cancers, looking for rare but prognostically significant driver events may be
informative. The American Thyroid Association guidelines®® do not specifically address thyroid
cancer screening in chemotherapy treated patients, and there is limited data on the impact of
chemotherapy on thyroid tumorigenesis. Future studies of a larger cohort of thyroid cancer patients
with exposure to chemotherapy for a previous cancer will be necessary to determine whether there
is a larger pattern of platinum chemotherapy induced driver mutations explaining increased

incidence of thyroid cancer seen in this population.

Methods

Sample preparation and sequencing

Written informed consent was obtained by the patient for participation in the study under the Dana-
Farber Cancer Institute’s Institutional Review Board 09-472. DNA extraction, library preparation,
and WES/WGS were performed for samples as previously described?!. Slides were cut from FFPE
tissue blocks and microdissected for tumor-enriched tissue. DNA and RNA extraction were
performed using QIAGEN AllPrep FFPE DNA/RNA extraction kit. Germline DNA was obtained
from the peripheral blood sample. Libraries were constructed, hybridization and capture were
performed with Illumina’s Rapid Capture Exome Kit for WES, and then sequenced with Illumina
HiSeq as previously described??. cDNA library synthesis and capture were performed using the
[llumina TruSeq RNA Access Library Prep Kit. Flowcell cluster amplification and sequencing
were performed with Illumina sequencers. Each run was a 76bp paired-end and Broad Picard
Pipeline was used for de-multiplexing and data aggregation.

Germline analysis
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Germline WES data was analyzed using DeepVariant>>** to search for alterations with clinical
significance (pathogenic or likely pathogenic) and known variants associated with germline cancer
predisposition. DeepVariant is a deep convolutional neural network, based on the inception
framework, trained to identify inherited variants from read pileup pseudo-images. We ran
DeepVariant using recommended settings (https://github.com/google/deepvariant).

WES analysis

Variants were called from the WES data with the customized version of the CGA pipeline
(https://github.com/broadinstitute/CGA_Production Analysis Pipeline) (Table S1-S2). Quality
control was performed by estimating contamination with ContEST? and utilizing Picard Multiple
Sequence Metrics. Copy number alterations (Figure S1) were called with GATK CNV?2¢ and
Allelic CapSeg?’, while Mutect1?® and Strelka® were used to call SNVs and indels. Mutect2 was
used to confirm Strelka indel calls. Somatic mutation calls were filtered for FFPE and 8-OxoG
sequencing artifacts using GATK FilterByOrientationBias*® and further filtered against a panel of
normals of similarly prepared samples. Finally, we utilized ABSOLUTE?! to determine allelic
copy number, tumor purity and tumor ploidy. A union set of mutations from all samples was
generated and force calling was performed to assess the variant allele fraction of each mutation
within each sample. The cancer cell fraction (CCF) of mutations were calculated via
ABSOLUTE?!. To reconstruct the clonal architecture of each thyroid tumor, we used the
PhylogicNDT?? cluster module to determine the number of subclones and assigned mutations to
each subclone (Table S3). Then, we built the phylogenetic trees based on PhylogicNDT subclones,
using the BuildTree module. Multiple trees can be constructed for any given set of subclones, and
we used the maximum likelihood tree in our analyses.

Mutational signature analysis
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Mutational signatures were determined using deconstructSigs®® as well as SigProfiler** with
COSMIC v3 signatures®* as the reference. A signature cutoff was set 0.08 for deconstructSigs and
exome parameter was True and SBS96 context was used for SigProfiler (Table S4 and Figure S2-
S6). Both methods identified clock-like signature (SBS1 or SBSS5) and platinum chemotherapy
signature (SBS31 or SBS35) as the two dominant signatures contributing to our tumor samples.
Specifically, both methods identified platinum chemotherapy signature in all thyroid cancer
samples but not in the ovarian cancer sample (Figure 1B and S2-S4). We calculated the likelihood
of observing a mutation in the specific trinucleotide context induced by a specific signature?, and
identified the mutation candidates that are more likely to be induced by either clock-like signature
or platinum chemotherapy signature utilizing decomposed SigProfiler results (Figure 3A-B and
Figure S3-S5). Since the clock-like signature and platinum chemotherapy signature are two
dominant signatures decomposed from SigProfiler results, we also calculated the relative
contribution of either signature (clock-like vs platinum chemo) given the specific trinucleotide
context (Figure S6). The presence of a TERT promoter mutation (c.-124C>T), known to be
associated with more aggressive PTC*, was reported on review of the patient’s medical records
documenting the results of an independent genetic platform. While we mapped mutations induced
by a specific mutational signature, we also searched for the presence of TERT promoter mutations
(i.e. c. -124C > T (C228T) and c. -146C > T (C250T)). Manual inspection with Integrative
Genomics Viewer (IGV)* was performed on associated WGS samples from this patient and
confirmed the presence of the c.-124C>T TERT promoter mutation in all PTC samples (primary
and recurrent) but not in the ovarian cancer sample (Figure S7). As promoter regions do not overlap
with WES target regions, we used available low depth WGS instead of WES data to confidently

detect the TERT promoter mutation.
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Formalin fixation and storage is known to cause DNA fragmentation and cytosine
deamination, and studies have shown “C:G > T:A” artifacts with low allelic frequency (<5%)37-8.
Platinum chemotherapy signatures also share “C:G > T:A” substitutions in specific trinucleotide
context, so we also performed mutational signature analysis with high allelic frequency (5%) and
low allelic frequency (<5%) mutations separately even after FFPE filtering steps that were already
performed in our WES analysis. We still detected platinum mutational signatures in all PTC
samples with high allelic frequency mutations, whereas in low allelic frequency mutation analysis
the platinum mutational signatures were not as strongly evident. (Figure S2-S6 and Table S4).
RNAseq analysis
We utilized STAR and RSEM to quantify gene and isoform abundances from RNA-seq data.
Probabilistically weighted alignments and gene abundance estimates were generated, and the
methods output an expected read count distribution. All RNA samples were sequenced together in
the same batch, and we set benchmarks for the maximum intergenic, intronic, and rRNA rates.
Based on this, we excluded samples that did not meet these criteria. We utilized three fusion
callers: STAR Fusion®’, ChimPipe*°, and FusionCatcher*'. These callers capture split-reads and

discordant paired-end reads, map them to reference, filter fusion predictions, and annotate the calls.

We looked for fusions identified in each sample by two or more of the three callers (Figure 1B).

Figure Legends

Figure 1. Genomic landscape of the patient’s ovarian and PTC. A) Timeline of sample
collection, the patient’s clinical course, and treatment history identified in ovarian (1999-2002)
and thyroid cancer (2010-2020). B) The CoMut* plot illustrates select single nucleotide and

insertion/deletion events, as well as CNA, RBPMS-NTRK3 RNA fusion and TERT promoter status.
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The plot also includes the mutation burden, presence of the platinum signature determined by
deconstructSigs and SigProfiler, and tumor purity as determined by ABSOLUTE. Each row
represents the mutation or copy number status for the indicated gene, and each column represents
aunique tumor sample (Ovarian or PTC samples). Two mutations in the same gene are represented
by triangles. CN-LOH indicates copy-neutral loss of heterozygosity.

Figure 2. The spatial and temporal tumor heterogeneity in PTC. A) A map of the PTC sample
locations collected during the initial 2010 thyroidectomy (3 orange boxes with 10 samples) and
subsequent surgeries for loco-regional recurrence in 2014 and 2018 (2 red boxes with 2 samples).
Three lymph nodes (green ovals with red borders) were positive for the spread of the tumor. Green
empty ovals represent 2 lymph nodes posterior to the thyroid. Pie charts represent the fraction of
each subclone found in each sample with a common ancestor existing in all PTC samples. B) A
phylogenetic tree of each subclone represented in the pie charts of Figure 2A. Number in the circle
indicates the number of variants assigned to each subclone. The clonal events shared by all PTC
samples were annotated in the tree.

Figure 3. Single base substitution attribution to platinum chemotherapy signature. A) The
y-axis indicates the likelihood of observing the single base substitution induced by a specific
signature utilizing SigProfiler. The x-axis indicates single base substitution in 96 trinucleotide
contexts. SBS1 and SBS5 were summarized as Clock-like signatures. SBS31 and SBS35 were
indicated as Platinum chemotherapy signatures. B) Nucleotide context with single base

substitution changes in NOTCH1, TERT promoter and EPHA3 genes.
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Figure S2. Mutational signatures detected by deconstructSigs. A) The y-axis indicates the weights of
signatures contributing to Ovarian (B1EJ3) and all PTC samples utilizing deconstructSigs. SBS1 and SBS5 were
summarized as Clock-like signatures. SBS31 and SBS35 were indicated as Platinum chemotherapy signatures.
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Figure S3. Mutational signatures decomposed by SigProfiler. A) Left top panel shows the original signature
and left bottom panel shows the reconstructed signature. Right panels show the decomposed signatures reference
to COSMIC v3. B) Signatures detected by all mutations >= 0.05 allelic fraction. C) Signatures detected by all
mutations < 0.05 allelic fraction.



2001

Signatures
] . Clock-like
I I . Platinum chemo

B1EJ3 B1EJ7 B1EJ5 B1EJC B1EJE B1EJA B1EJ6 B1EJB B1EJ9 B1EJ4 B1EJ8 B1EJN H4P3K
Sample

-
jo)
o

Number of mutations
o
o

5

o

o

120
B

901
(2]
c
kel
= .
_g. Signatures
k] 601 . Clock-like
g . Platinum chemo
€
p=}
P4

307

o
B1EJ3 B1EJ7 B1EJ5 B1EJC B1EJE B1EJA B1EJ6 B1EJB B1EJ9 B1EJ4 B1EJ8 B1EJN H4P3K
Sample

Number of mutations
o

1007
Signatures
- Clock-like
- Platinum chemo
501
_II- II I o

B1EJ3 B1EJ7 B1EJ5 B1EJC B1EJE B1EJA B1EJ6 B1EJB B1EJ9 B1EJ4 B1EJ8 B1EJN H4P3K
Sample

o

Figure S4. Mutations for each signature detected by SigProfiler. A) The y-axis indicates the number of
mutations contributed to each signature in Ovarian (B1EJ3) and all PTC samples utilizing SigProfiler. SBS1 and
SBSS5 were summarized as Clock-like signatures. SBS31 and SBS35 were indicated as Platinum chemotherapy
signatures. B) Signatures detected by all mutations >= 0.05 allelic fraction. C) Signatures detected by all
mutations < 0.05 allelic fraction.



Clock-like
Platinum chemo

Signatures

L do<uL
L olo<uL
L olo<dy
L vlo<dL
L do<do
L olo<uo
L olo<lo
L vlo<lo
L do<1o
L olo<do
L olo<do
L vo<lo
L o<l
L olo<dy
L olo<dlv
L vlo<uv
L do<iy
L olo<dL
L olo<t
L vlo<uL
L do<do
L olo<lo
L olo<uo
L vio<uo
L Lo<do
L olo<do
L olo<ilo
L vlo<uo
L dlo<iv
L olo<uly
L olo<uv
L vio<iv
Lodlv<lr
L olv<dL
L olv<uy
L viv<ly
L dv<do
L olv<llo
L olv<ds
L vivedo
L Uv<do
L lv<llo
L olv<io
L viv<do
L Avedy
L olv<iv
L olv<llv
L vlvely
L <ol
L oli<alL
k. oli<olt
L vli<olL
L ui<dle

L oli<olo
L oli=olo
L vl1<olo
L dl<olv
L oli<oly
L oli<olv
L vii<olv
L lo<olL
L olo<olL
L olo<olL
L vlo<olL
L Uo<olo
L olo<olo
L ole<ole
L vlo<alo
L lo<alo
L olo<olo
L ole<alo
L vlo<olo
L Uo<olv
L olo<aly
L olo<aly
L vlo<alvy
L Av<ols
L olv<olL
L olv<olL
L viv<olL
L Uv<olo
L olv<olo
L olw<alo
L viv<olo
L dlv<olo
L olv<olo
L olv<alo
L vlv<olo
L dv<olv
L olv<oly
L olv<oly
L vlv<olv

<

0.091

)

.06 4

o
Jnyeudls 0] poo

0.03 1

YiMn

0.00 1

Clock-like
Platinum chemo

Signatures

L lo<iL
L olo<ly
L olo<uL

L vio<do
L do<dy

L olo<ily
| olo<uv
L vio<dy
| do<uL
L olo<lL
L olo<uy
L vio<dy
L lo<ulo
L olo<do
L olo<uo
L vlo<ue
L Lo<io
L olo<ilo
L olo<do
L vlo<do
L lo<uv
L olo<uv
| olo<dv
L vlo<iv
L dv<dy
| olvedL
L olv<dy
| viv<ds
L v<do
L olv<uo

L il1<ol® @
L oli<dlo T5)
L olidlo
L vii<olo A
L 1li<olo «
L olu<olo
L oli=olo
L vii<olo
L l<olv
L oli<oly
| olu<alv
L vli<olv
L Uo<olL
| olo<olL
| olo<olL
L vio<olL
L Uo<alo
L elo<olo
L. olo<alo
L vio<olo
L do<olo
L. elo<olo
| olo<olo
L. vlo<olo
L uo<alv
L olo<alv
| olo<aly
| vio<oly
L dlv<olL
| olv<olL
| olv<olL
L vlv<olL
L dv<olo
L olv<olo
L olv<olo
L viv<olo
L Uv<alo
| elv<alo
| olv<olo
L viv<olo
L Av<olv
L olv<olv
L. oly<olv
L viv<oly

=<}

0.09 1
06 1

)

5 S
Jinyeubis 0} poo

T
oo}
Q
o

Yidn

0.00 1

Clock-like
Platinum chemo

Signatures

L lo<dL
L olo<iL
L olo<uy
L vio<dL
L o<uo
L olo<do
L dlo<do
L vlo<ilo
L Le<io
L olo<do
L olo<do
L vlo<do
L lo<iv
L olo<dy
L olo<dv
L vio<dv
L do<uL
L olo<dL
L olo<dy
L vio<uL
L Lo<do
L olo<Uo

k. elo<do
L olo<do
L vlo<lo
L o<uv
L olo<dy
L olo<iv
L vlo<uv
L o<y
L olv<dy
L olv<dt
L vivedy
L dv<do
L olv<lo
L olv<us
L vivedo
L Uv<do
L olv<ilo
L alv<ilo

L ii<alo
L oli<olo
L oli<alo

11<0lo
L oli<olo

L olo<olL
L olo<olL
L vlo<olL
L Uo<olo
L olo<olo
L. olo<alo
L vlo<alo
L uo<clo
L elo<olo
| ole<dlo
L vlo<alo
L uo<aly
L olo<olv
L dlo<aly
L vlo<aly
L Alv<ols
L olv<olL
L olv<olL
L viv<olL
L uv<olo
L olv<olo
L olv<olo
L vlv<olo
L Lv<olo
L olv<alo
L olv<olo
L vlv<olo
L dv<olv
L olv<oly
L olv<aly
L viv<olv

o

0.154

104

S
ainjeudls 0} poo

0.05 1

YiMin

0.00 1

L vl1<olo ¢

c
K]

=

()

Figure S5. Single base substitution attribution to signatures detected by SigProfiler A) The y-axis indicates

the likelihood of observing the single base substitution induced by a specific signature utilizing SigProfiler. The
x-axis indicates single base substitution in 96 trinucleotide contexts. Three trinucleotide contexts were highlighted

with red based on Figure 3 examples (A[C>T]G for NOTCHI, C[C>T]T for TERT promoter, and T[C>T]C for
EPHA3). SBS1 and SBS5 were summarized as Clock-like signatures. SBS31 and SBS35 were indicated as

Platinum chemotherapy signatures. B) Signatures detected by all mutations >= 0.05 allelic fraction. C) Signatures

detected by all mutations < 0.05 allelic fraction.
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indicates single base substitution in 96 trinucleotide contexts. Three trinucleotide contexts were highlighted with
red based on Figure 3 examples (A[C>T]G for NOTCHI, C[C>T]T for TERT promoter, and T[C>T]C for

EPHA3). SBS1 and SBS5 were summarized as Clock-like signatures. SBS31 and SBS35 were indicated as
Platinum chemotherapy signatures. B) Signatures detected by all mutations >= 0.05 allelic fraction. C) Signatures

detected by all mutations < 0.05 allelic fraction.
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Figure S7. Integrative Genomics Viewer (IGV) snapshot of ¢.-124C>T TERT promoter mutation. Reads are
summarized in a coverage plot for each WGS data from germline (Normal), ovarian (B1EJ3) and all PTC samples
(except H4P3K which only had WES data). Positions with a significant number of mismatches with respect to
the reference sequence at the bottom are highlighted with color bars indicative of both the presence of mismatches
(G > A) and the allele frequency (A: green, G: brown). Mutations are only observed in PTC samples not in
germline or ovarian samples (top two panels). The reads have been sorted and colored by base.
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