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Abstract

Single-cell RNA-sequencing (ScRNA-seq) offers unprecedented insight into heterogenous biology,
allowing for the interrogation of cellular populations and gene expression programs at single-cell resolution.
Here, we introduce scPipeline, a single-cell analytic toolbox that offers modular workflows for multi-level
cellular annotation and user-friendly analysis reports. Novel methods that are introduced to facilitate
scRNA-seq annotation include: (i) co-dependency index (CDI)-based differential expression; (ii) cluster
resolution optimization using a marker-specificity criterion; (iii) marker-based cell-type annotation with
Miko scoring; and (iv) gene program discovery using scale-free shared nearest neighbor network (SSN)
analysis. Our unsupervised and supervised procedures were validated using a diverse collection of ScRNA-
seq datasets and we provide illustrative examples of cellular and transcriptomic annotation of
developmental and immunological scRNA-seq atlases. Overall, scPipeline provides a flexible

computational framework for in-depth sScRNA-seq analysis.

Introduction

Single-cell RNA-sequencing (scRNA-seq) has facilitated the characterization of diverse cellular
populations at an unprecedented resolution, with the evolution of high-throughput protocols now allowing
the profiling of millions of cells in a single experiment. While experimental protocols such as SMART-
seq2!, Drop-seg?, sci-RNA-seq3® and commercial 10X genomics vary in approach and scale, gene
expression matrices (gene-by-cell count) are ultimately generated and represent a common starting point

for most downstream analyses.

The development of computational toolboxes like Seurat*’, Scanpy® and Cell Ranger (10X
Genomics, commercial) facilitate SCRNA-seq analyses broadly across a diverse array of research topics.
These tools offer application-tailored functionalities, including data pre-processing, normalization, quality
control (QC) and clustering analysis. However, comprehensive analyses still require a degree of
computational expertise. With the more recent emergence of interactive and notebook-based analysis
platforms, scRNA-seq analysis has become more accessible to users lacking high-level computational
skills®1, Despite the user-friendly interface offered by these platforms, difficulties can arise with custom-
tailored analyses, or when data integration between different SSRNA-seq platforms is required. To address
these limitations, we have developed scPipeline, a report-based single-cell analytic toolbox. scPipeline is
offered as a series of Rmarkdown scripts that are organized into analysis modules that generate curated
reports. The modular framework is highly flexible and does not require complete reliance on a single

analysis platform. Additionally, the self-contained reports generated by each module provide a
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comprehensive analysis summary and log of analytic parameters and scripts, thereby ensuring reproducible
and shareable analysis workflows.

In tandem to scPipeline, we developed the scMiko R package that comprises a collection of
functions for application-specific SCRNA-seq analysis and generation of scPipeline analytic reports. We
describe and validate novel scRNA-seq methods implemented in scMiko that facilitate multi-level cellular
and functional annotation. Specifically, using eight reference sScCRNA-seq datasets (Table 1), we validate
the co-dependency index (CDI) as a differential expression (DE) method that identifies binary
differentially-expressed genes (bDEGS), propose a specificity-based resolution criterion to identify optimal
cluster configurations, describe the Miko scoring pipeline for cell-type annotation, and introduce scale-free
shared nearest neighbor network (SSN) analysis as a gene program discovery algorithm.

The scMiko R package (https://github.com/NMikolajewicz/scMiko) and scPipeline scripts
(https://github.com/NMikolajewicz/scPipeline) are available on GitHub. Step-by-step tutorials and

documentation are also provided at https://nmikolajewicz.github.io/scMiko/.

Results

1. Overview of scPipeline modules

Here we introduce scPipeline, a modular collection of R markdown scripts that generate curated analytic
reports for sScRNA-seq analyses (Fig 1). For a given gene expression matrix, the QC and preprocessing
module performs data filtering (based on mitochondrial content and gene recovery) and normalizes the
count matrix using the scTransform algorithm implemented in Seurat?. The module outputs a Seurat object
(for downstream analyses), and a corresponding standalone HTML report that summarizes the results®. In
the case of multiple scRNA-seq datasets (e.g., experimental replicates, multiple studies and/or public
datasets), we provide an integration module that leverages the canonical correlation analysis (CCA) and
reciprocal principal component analysis (rPCA) approaches implemented in Seurat to facilitate data
integration for downstream analyses®. Once data has been preprocessed, cells are clustered using the cluster
optimization module, where we introduce a novel specificity-based criterion for identifying the optimal
resolution for Louvain community-based clustering. For each candidate cluster resolution, we also report
DEGs identified using the Wilcox and CDI DE methods, for which we highlight specific and distinct
applications in our current work. Once the optimal cluster configuration has been identified, the annotation
modules facilitate cell type and cell state annotation using a priori cell-type markers, analysis of gene
expression and associations, and unsupervised gene program discovery and functional annotation. Notably,
the cell annotation module utilizes our novel gene set scoring method (i.e. the Miko score) to reliably

annotate cell clusters using cell-type-specific markers. The Miko score is distinct from existing gene set
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scoring methods in that it adjusts for inherent variations in gene set size, thereby enabling direct comparison
and ranking of gene set scores computed across gene sets of varying size. To facilitate gene expression
exploration, we also developed a gene expression and association module which enables users to explore
the expression pattern of query genes and predict gene function based on gene co-similarity profiles.
Similarity profiles can be constructed using various methods, including Spearman correlation, rho
proportionality, and CDI metrics'*. These profiles are then functionally annotated to identify putative
pathways correlated with the gene of interest. Finally, the gene program discovery module is used for gene
program detection and transcriptomic network visualization. In addition to providing validated gene
program discovery methods (e.g., ICA and NMF), we introduce the scale-free shared nearest neighbor
network (SSN) method, which we demonstrate has superior recovery of known gene ontologies (GO) and
enrichment of STRING-curated protein-protein interactions (PPI). Collectively, scPipeline offers a
streamlined and reproducible workflow with user-friendly and intuitive reports and contributes to the
current computational resources available for SSRNA-seq. Importantly, its modular framework provides a
foundation upon which future analysis modules can be developed to support additional scRNA-seq

analyses.

2. Co-dependency index identifies cell-type specific markers

Robust identification of DEGs between cell populations is critical in scRNA-seq analyses. DEGs can be
further subclassified into two different groups: graded DEGs (gDEG), in which genes are expressed in both
populations, but to varying degrees; and binary DEGs (bDEG), in which genes are exclusively expressed
in one population but not the other (Fig 2A). Popular scRNA-seq DE methods, such as the Wilcoxon
method®, identify DEGs indiscriminately and require additional downstream filters to parse out bDEGs.
Thus, a method tailored towards specifying bDEGs is needed.

Here we propose using the CDI to identify cluster-specific bDEGs within sScRNA-seq data. Using
eight diverse public sScRNA-seq datasets (Table 1), we identified significant DEGs using the CDI and
Wilcoxon methods, and evaluated each method’s relative performance and behavior. The CDI method
identified 66% fewer DEGs than the Wilcoxon method (1241 vs. 3653 genes, p = 0.017) (Fig 2B). These
results reflect that the Wilcoxon method has the tendency to indiscriminately identify both gDEGs and
bDEGs, whereas CDI selectively identifies bDEGs (Fig 2C, top). Among all the significant DEGs obtained
by either method, the median Jaccard similarity was 0.09; however, when only the top 50 DEGs [ranked
by -log10(p)] were considered, the Jaccard similarity increased to 0.266, suggesting a bias towards bDEGs
among top DEGs identified by Wilcoxon (Fig 2C, bottom). Consistent with prior reports, the Wilcoxon
method was systematically biased towards calling highly-expressed genes differentially-expressed. While

this bias was present for the CDI method, it was significantly lower in contrast to the Wilcoxon method
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(Fig 2D, p = 2.7e-3), and in the range of the best performing methods evaluated previously®®. Finally, we
evaluated the cluster-discriminating accuracy of the top 50 genes identified by each method (Fig 2E-I).
While the Wilcoxon method identified genes with higher cluster-discriminating sensitivity (0.90 vs. 0.56,
p = 9.8e-5; Fig 2F) and negative predictive value (NPV; 0.87 vs. 0.70, p = 1.2e-3; Fig 2I), the CDI method
had superior specificity (0.95 vs. 0.75, p = 5.4e-3; Fig 2E, G) and positive predictive value (PPV; 0.91 vs.
0.75, p = 7.6e-4, Fig 2H). As an illustrative example, we evaluated the top 50 DEGs in yolk-sac
mesoderm?®, where we observed a higher degree of specificity among the top markers identified by the CDI
method (Fig 2J). Together, these analyses establish the CDI method as an approach to specifically
identifying bDEGs.

3. Marker specificity-based criterion for identifying optimal cluster resolutions

scRNA-seg-based cell type identification relies on unsupervised clustering methods; however, resulting
cell clusters can vary drastically depending on what resolution is used to perform clustering. Many
approaches have been proposed to guide the selection of the optimal resolution, including silhouette index*’
and resampling-based methods (e.g., chooseR* and MultiK®). However, these methods are motivated by
theoretical rather than biological criterion. Having demonstrated that the CDI method yields cluster-specific
markers (Fig 2), we propose to define cell-types at a clustering resolution that maximizes the specificity of
markers obtained in each cluster. We proceed by first clustering over a range of candidate resolutions, and
the top specific marker in each cluster at each resolution is identified using the CDI method (Fig 3A, step
1). Subsequently, specificity curves are generated for each resolution and used to obtain aggregate
specificity metrics. The resolution at which maximal specificity is observed is taken as the optimal
resolution, Speqr (Fig 3A, step 2). However, acknowledging that there exist multiple levels of resolution
that are biologically relevant (e.g. cell types vs. cell subtypes)*®, we observed that the specificity curves in
many datasets exhibited “elbows”, which we hypothesize represent additional biologically relevant

clustering configurations, and we termed these S.;pow1 aNd Seipowz-

To evaluate the performance of our specificity-based resolution selection criteria (Speqk, Seipow1:
and Seipow2), We used eight public sScCRNA-seq datasets, and adopted author-curated cell-types as “ground-
truth” clusters. We showed that our specificity-based criteria favor clustering configurations that align with
manually curated cluster labels, as indicated by the lack of significant difference between the adjusted Rand
index (ARI; i.e., a measure of classification consistency) obtained at Speqx and ARIp,q, resolutions (Fig
3B). By comparison, chooseR (a resampling-based resolution selection criteria), Seipow1 aNd Seipow2
yielded clusters with significantly lower ARI, suggesting that these cluster configurations represent cell

subtypes, whereas clusters obtained at the S, resolution represent well-defined cell type clusters (Fig
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3B). In support of this, S,.4 Clusters were associated with significantly more specific markers (i.e., top
markers were more specific) than “ground truth” clusters (p = 0.045), whereas there was no significant
difference observed for the other cluster configurations compared to “ground truth” clusters. As a
representative example, we applied our specificity-based resolution selection approach to the human
gastrulation scRNA-seq data published by Tyser and colleagues (2021)* (Fig 3D). Compared to curated
clusters, S,.qi Clusters were associated with a higher specificity index (0.69 vs. 0.56) (Fig 3E) which was
verified by visual inspection (Fig 3F), and further, it was demonstrated that the top markers associated with
Speak Clusters were significantly more sensitive (i.e., high expression fraction; p = 0.02) than those obtained
in “ground truth” clusters (Fig 3G). Our results demonstrate that a specificity-based resolution selection

criterion reliably identifies cluster configurations that reflect biologically relevant cell types.

4. Marker-based cluster annotation with Miko score

Transcriptome-wide expression profiling has led to the generation and availability of gene sets for
cell-type identification. Nonetheless, the external validity of these genes sets is remarkably inconsistent,
largely stemming from the fact that many gene sets are derived using one-versus-all DE methods on genetic
backgrounds that lack population-level phenotypic diversity. While elucidating the exact conditions under
which a gene set reliably identifies a given cell type is beyond the scope of the current study, we argue that
cell-type specific gene sets obtained using one-versus-all DE methods are most valid when derived from
diverse cell atlases. To complement our marker-based cluster annotation efforts, we performed DE analysis
on the eight public sScRNA-seq datasets presented in Table 1, each comprising highly diverse cell types.
Together with cell type markers reported in Zhao 2019% and the PanglaoDB?, we provide a catalog of cell
type markers comprising 1043 (redundant) cell type-specific marker sets spanning 11748 unique genes.
Representating the cell-type marker catalog as a bipartite network revealed major cell type hubs including
epithelial, mesenchymal, endothelial, and lymphoid/hematopoietic cell types, in addition to tissue-specific

cell ontologies like cardiac, neural, and glial cells (Fig 4A).

Many marker-based cell annotation methods have been described??2?%; however, one limitation of
these methods is a lack of consideration for gene set size. As the number of genes in a gene set increases,
pooled signature scores become less sensitive to the influence of highly expressed individual genes. This
gene set size dependency leads to a bias, such that scores obtained from smaller gene sets tend to have more
spurious enrichments than those obtained from larger gene sets (Fig 4B), precluding unbiased comparison
of signature scores obtained over a range of unevenly sized gene sets. Motivated by this limitation, we
introduce the Miko score, a cell cluster scoring method that accounts for variations in gene set sizes. The
Miko score also provides a hypothesis-testing framework capable of rejecting non-significantly enriched

gene sets (Fig 4). For a given single-cell dataset, query and size-matched random gene sets are scored using
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a standardized implementation of AddModuleScore(...), and the difference between query and random
module scores is scaled using the size-adjusted standard deviation estimate obtained from a gene set size-
dependent null model (Fig 4B) to yield the Miko score (Fig 4C). The standardized implementation of
AddModuleScore(...) accounts for cell-to-cell variation in gene expression, while scaling by the size-
adjusted standard deviation estimate adjusts for size-related dependencies and results in a test statistic from

which a p-value can be derived.

The performance of Miko score-based cell annotation was evaluated using cell-type-specific gene
sets derived for each cell type in the mouse gastrulation dataset reported by Pijuan-Sala and colleagues®.
To assess the robustness of the Miko score and account for inaccuracies in gene set definitions, each set
was permuted to varying extents, such that a subset of cell-type specific markers in each gene set were
replaced with an equal number of randomly sampled genes (Fig 4D). Using non-permuted gene sets, the
Miko score-based enrichments were 100% sensitive and 94% specific for cluster-specific gene sets (Fig
4E). When 25% of genes were permuted, we observed 93% sensitivity and 96% specificity. However, at
higher permutation rates, we observed a significant decline in sensitivity such that at 50% permutation there
was 54% sensitivity and 98% specificity. We also found that filtering enrichments using a coherence
criterion resulted in marginally improved specificity at the cost of sensitivity (Fig 4E). As an illustrative
example, we calculated Miko scores using our cell-type marker catalog (Fig 4A; Pijuan-Sala-derived
markers were omitted from the catalog) and demonstrated that author-curated endoderm and erythroid
populations were accurately annotated using our Miko score pipeline (Fig 4F). Collectively, our analyses
establish the Miko score as a marker-based scoring algorithm that is robust to gene set inaccuracies and

capable of facilitating unbiased comparison across a large collection of unevenly sized gene sets.

5. Gene program discovery using scale-free topology shared nearest network analysis
Unsupervised gene program discovery offers a complementary approach to annotating cell clusters
in scRNA-seq, which aim to group genes based on co-expression similarity profiles. Here we introduce the
scale-free topology shared nearest network (SSN) method to identify gene expression programs (Fig 5A).
In brief, the gene expression matrix is dimensionally reduced using principal component analysis (PCA).
Each gene’s K-nearest neighbors (KNN) is then determined by Euclidean distance in PCA space. The
resulting KNN graph is used to derive a shared nearest neighbor (SNN) graph by calculating the
neighborhood overlap between each gene using the Jaccard similarity index. Adopting the framework from
weighted gene correlation network analysis (WGCNA)?, an adjacency matrix that conforms to a scale-free
topology is then constructed by raising the SNN graph to an optimized soft-thresholding power, which
effectively accentuates the modularity of the network (Fig 5B). The resulting adjacency matrix is used to

construct the network UMAP embedding and to cluster genes into programs (or modules) by Louvain
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community detection. To reduce noise, genes with low connectivity (i.e., low network degree) are pruned

so that only hub-like genes are retained for downstream annotation and analysis.

Compared to independent component analysis (ICA) and non-negative matrix factorization (NMF),
SSN gene programs had significantly superior GO term recovery and STRING PPI enrichment (Fig 5C,
D). The importance of enforcing a scale-free topology was evident in the comparison between SN (shared
nearest neighbor network without scale-free topology) and SSN (shared nearest neighbor network with
scale-free topology) (Fig 5C, D). On average, the relative computational runtimes were 0.54, 1, and 3.9 for
NMF, SSN, and ICA methods, respectively, thereby establishing NMF as the fastest algorithm, but only by
a small margin over SSN which significantly outperformed ICA (Fig 5E).

We demonstrated the use of SSN gene program discovery and network visualization with two case
examples (Fig 5F-L). In the first case, we constructed an SSN network using SCRNA-seq data of the murine
immune compartment in brains engrafted with the syngeneic GL261 GBM cell line? (Fig 5F). Functional
annotation of each gene program revealed a diverse transcriptomic landscape (Fig 5G), including interferon
signaling and pro-inflammatory programs that were highly active in monocyte/macrophage and microglial
sub-populations, respectively (Fig 5H). In addition to facilitating further cellular characterization,
functionally annotated gene programs offer opportunities to predict the function of previously
uncharacterized genes using a “guilt-by-association” approach. For example, cross-referencing genes
belonging to the interferon-signaling gene program in the SSN graph with PubMed-indexed publications,
we find the gene Ms4adc had not been previously associated with “inflammation”, “macrophage” or
“interferon”. We predict that Msdadc, a previously uncharacterized gene, may have a role in the
inflammatory process (Fig 51). In our second example, we demonstrate how SSN gene program discovery
can identify and facilitate the refinement of robust gene signatures (Fig S2). Briefly, we constructed a SSN
network from scRNA-seq data derived from a murine developing brain?’ (Fig S2A-B) and show that the
expression of each gene belonging to the angiogenesis program is positively correlated with the aggregate
gene program score when examined in the developing murine brain data from which the signature was
derived (Fig S2C, left). Notably, in two other independent datasets (murine and human gastrulation), only
a subset (albeit majority) of genes were positively correlated with the program score (Fig S2C, middle,
right). By taking the 3-way intersection of coherent genes across these three relevant datasets, we find a
64-gene signature (Fig S2D) that was specifically enriched among the hematogenic endothelial populations
in all three scRNA-seq datasets (Fig S2E). Further supporting the validity of this gene signature refinement
strategy, we previously applied this approach in the context of glioblastoma, where we derived robust

prognostic signature panels that validated across multiple independent patient cohorts.?®
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Discussion

Overview. We have described a pair of computational resources, scMiko (R package) and scPipeline
(dashboard analysis reports), and propose new methods to facilitate multiple levels of cluster annotation in
ScCRNA-seq data. Our computational tools follow established scRNA-seq analytic practices, and offer
modular workflows that enable data preprocessing, normalization, integration, clustering, annotation, gene
program discovery and gene association analyses. Among the novel methods presented in this work, we
validated the CDI as a DE method that identifies binary DEGs. Given the inherent specificity of bDEGs,
we then adopted the CDI algorithm to derive a specificity-based resolution selection criterion for
determining optimal clustering configurations and benchmarked the performance of this approach against
ground truth annotations. Upon identifying the optimal cluster resolution(s), we demonstrate how to
annotate clusters using our Miko Scoring pipeline, which facilitates unbiased scoring of a diverse set of
variable-sized cell-type-specific gene sets and accepts or rejects candidate annotations using a hypothesis-
testing framework. Finally, we describe scale-free shared nearest neighbor network (SSN) analysis as an
approach to identify and functionally annotate gene sets in an unsupervised manner, providing an additional

layer of functional characterization of sScRNA-seq data.

Annotation methods. The annotation methods presented here, namely finding bDEGs with CDI, cell-type
annotation with Miko Scoring, and gene program discovery and functional annotation with SSN analysis,
all complement and expand the extensive list of analytic methods for scRNA-seq?. It has become evident
from systematic benchmarking efforts that no single method is enough to probe single cell datasets in-
depth, and that several methods offer unique advantages with regards to biological accuracy,

interpretability, computational complexity, visualization, or accessibility4153L,

Cluster optimization. Reliable annotation begins with identifying the optimal clustering
configuration. Although there are many ways to cluster single-cell data, including K-means (SAIC%,
RacelD3%*), hierarchical (CIDR*, BackSPIN®®, SINCERA?®) and density-based (Monocle2®’, GiniClust®)
clustering, we used the community-detection based Louvain approach implemented in Seurat due to its low
run time and high performance index3%4° and focused on optimizing the resolution that controls the number
of resolved clusters. If cells are clustered at an inappropriately low resolution (i.e. under-clustered), there
is a risk of amalgamating distinct cell types into single populations, resulting in a loss of resolution in
cellular identity. In contrast, if the resolution is too high (i.e. over-clustered), multiple near-identical cellular
lineages emerge and obscure the true complexity of the dataset. At the same time, it is recognized that
clustering configurations at multiple different resolutions may be biologically relevant, and reflect different
layers of cellular identities, such as cell types at lower resolutions (e.g., macrophage), and cellular sub-

types (M1 vs. M2 polarized macrophage) at higher resolutions'®. There are different selection criteria for
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identifying the optimal resolution(s), including the silhouette index!’ and resampling-based methods (e.g.,
chooseR*, MultiK'®); however, these methods are motivated by theoretical rather than biological criterion.
The specificity-based resolution selection criterion described in our current work identifies cluster
configurations coinciding with maximal marker specificity. This is a desirable property for downstream
applications that require individual biomarkers to resolve cell types, such as flow cytometry or imaging.
Additionally, when evaluated over multiple candidate resolutions, more than one biologically relevant
resolution is often identified, manifesting as “elbows” on the specificity-resolution curve (akin to the elbow
method used for selecting the number of principal components on a Scree plot). We benchmarked the
performance of our specificity-based criterion against author-curated ‘“ground truth” annotations and
demonstrated that a specificity-based criterion outperforms the resampling-based approach used in
chooseR. We note that a limitation of our method relates to the stability and reproducibility of clusters,
especially in single-replicate data sets. Artifact genes (i.e., genes that are highly expressed exclusively in a
small subset of cells belonging to a single experimental replicate) have been shown to produce distinct
cellular clusters and in the absence of experimental replicates, and it is difficult to determine whether these
clusters represent technical artifacts or real biology*:. While this can be addressed through profiling
multiple experimental replicates*!, it may also be circumvented by expanding our specificity-based criterion
to consider the top 5-10 markers, rather than the top single cluster-specific marker, at each resolution.
Finally, although we evaluated our specificity-based criterion using the Louvain clustering approach, the
criterion may be applied to any clustering method that requires optimization of the number of resolved
clusters (e.g.,, K-means). We expect that our specificity-based criterion will complement existing

optimization methods to find meaningful cluster configurations.

CDI DE method. The CDI DE method offers an approach to identifying bDEGs, which have
applications distinct from gDEGs. Whereas gDEGs are useful for identifying differences that occur on a
spectrum (e.g., neural development), bDEGs have greater utility in identifying cell-type-specific markers
(e.g., FACS sorting of CD34"* for hematopoietic stem cells), diagnostic biomarkers, disease targets (e.g.,
CART-cell therapy), and artifact genes in scRNA-seq datasets**. A known limitation of existing DE
methods for sScRNA-seq is the failure to account for variation in biological replicates, and the CDI approach
is no exception®. Nonetheless, we expect that with appropriate biological replicates and external validation,

the CDI DE method will contribute to the identification of specific biomarkers.

Cell annotation. The Miko scoring cell-type annotation workflow described in this work
supplements the existing repertoire of marker-based annotation algorithms including scCatch*?, SCSA*,
SCINA*, and CellAssign®. The hypothesis testing framework implemented in the Miko scoring pipeline
enables the rejection of unlikely cell-type annotations, a property that is shared by SCINA and CellAssign.

10
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However, unlike its predecessors, Miko scoring explicitly corrects for gene set size biases, thereby enabling
unbiased comparison of scores over a large collection of various sized gene sets. This property enables
prioritization of the most likely annotation if multiple marker sets are significantly scored for a given
population. Coupled with our word cloud-based visualizations introduced in scMiko and scPipeline,
candidate cell-type annotations can be easily inspected and interpreted.

Cell-type marker database. To facilitate marker-based annotation of cell types, several reference
databases are available including CellMatch*?, CellMarker?°, PanglaoDB?, CancerSEA*, and MSigDB
(collection 8)*. We contribute to these resources by deriving marker sets from diverse single-cell atlases
(Table 1), and through network-based visualization we demonstrate the hierarchical complexity of cell
ontology (Figure 4A). While the network organization was generally coherent with the cell-type
annotations assigned to the marker sets, an inspection of select local neighborhoods in our cell-type marker
network revealed occasional co-similarities between marker sets from heterogeneous cell types, reflecting
either inaccuracies in marker curation or similarities in cellular processes across dissimilar cell types. Based
on these observations, we emphasize that marker-based annotations are only as good as the cell-type
prescribed to the original dataset. Thus, integrating a large collection of marker sets from multiple
independent sources to achieve consensus annotations, or alternatively, using a robustly validated collection

of marker sets can attain optimal results.

Gene program discovery. The SSN method for gene program discovery was inspired by the
established shared-nearest neighbor (SNN) framework used in single-cell analyses to reliably identify cell-
to-cell distances in a sparse dataset, as well as the scale-free topology transformation used under the
assumption that the frequency distribution of gene association in a transcriptomic network follows the
power law®484% A UMAP-embedded network, based on a SNN graph akin to that used in our SSN
procedure, has previously resolved gene modules corresponding to protein complexes and pathways, with
Euclidean distances in UMAP space out-performing correlation and PCA distances in predicting protein-
protein interactions 5. Consistent with these findings, we demonstrated that gene programs identified by
SSN vyielded superior GO term recovery and enrichment of STRING PPIs compared to ICA and NMF
methods, and that the scale-free topology transform was critical in driving this improvement in
performance. Taken together, the SSN gene program discovery method is robust to data sparsity, has a high
performance index, offers a network-based visualization, and has run-times that scale well for larger

datasets.

Concluding Remarks. Future plans for scPipeline and scMiko involve continual review and improvement
of existing workflows, and development of additional analysis modules that facilitate complementary

analyses such as characterization of ligand-receptor interactions®°?, regulon-based transcription factor
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inference®®, trajectory analyses®**% and differential-abundance analyses®®. As innovative approaches to
interrogate single cell data are proposed by us and others, we will adopt and implement these for all users
to benefit.
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Methods

Software. Figure preparation: CoreDRAW x8 (Corel); Bioinformatic analyses: R v 4.0.3 (R Foundation
for Statistical Computing).

The scMiko R package and scPipeline are freely available and documentation and tutorial vignettes

can be found here: https://nmikolajewicz.github.io/scMiko/.

Data sources. scRNA-seq data from Ochocka et al. (2021) was obtained from Gene Expression Omnibus
(GEO; accession number GSE136001)%; Cao et al. (2019) from GEO (accession number GSE119945)3,
Cao et al. 2020 from GEO (accession number GSE156793)%; Zeisel et al. (2018) from
http://mousebrain.org/downloads.htmI®; La Manno et al. (2021) from

http://mousebrain.org/downloads.html?’; Tabula Muris from FigShare®®; Tabula Sapiens from FigShare®;
Pijuan-Sala (2019) from the MouseGastrulationData R Package?; and Tyser et al. (2021) from

http://www.human-gastrula.net/2®.

Data preprocessing. scRNA-seq data sets were normalized, scaled, dimensionally reduced and visualized
on a UMAP using the Seurat (v 4.0.4) workflow*”. In brief, count matrices were loaded into a Seurat object
and normalized using NormalizeData(..., normalization.method = ‘LogNormalize’, scale.factor = 10000).
Variable features were identified using FindVariableFeatures (..., selection.method = ‘mvp’, mean.cutoff
= ¢(0.1,8), dispersion.cutoff = c(1,Inf)) and then data were scaled using ScaleData(...). Principal
component analysis, and UMAP embedding was performed using RunPCA(...) and RunUMAP(..., dims =
1:30), respectively. Metadata from original publications were used to annotate cell types.

Statistical analyses. All pairwise comparisons were performed using the signed Wilcoxon rank sum test,
and p values were adjusted for multiple comparisons using the Benjamini-Hochberg procedure, as
indicated. In cases where methods were compared across a common set of data, paired Wilcoxon tests were

performed.

Differential expression analysis. Differential expression analyses were performed using Wilcoxon rank
sum (Wilcox) and codependency index (CDI)%%2, The Wilcox method was implemented using the
wilcoxauc function (Presto R package, v 1.0.0)%. Alternatively, the CDI was adopted to calculate the
probability of cluster and gene co-occurrence under a binomial distribution. For a given gene g and cluster

k, the joint probability of observed non-zero g expression in k is formulated as:

P(g=1Lk=1)=P(@=DP(k=1)=myy
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The probability of observing a test statistic more extreme under the null hypothesis that gene g and cluster

k are independent is then:

Pe(mgx) = Z Bino(N,x,mg )

Hg,kSXSN

where Bino(N, x, ) represents the probability of observed x successes in N trials if the probability of

success is 1y, and Iz is the number of cells in which g and k are coincident. CDI is then defined as:

CDI = —logqp[pe (”g.k)]

We further normalized the CDI score using the CDI score corresponding to the probability of observed a

perfect co-dependency for cluster k:

CDI

nCDI =
—logyo[pe (”k,k)]

where my , = P(c, = 1,¢, = 1), under the assumption of independence. Possible values of nCDI range
between [0,1], such that nCDI = 1 represents perfect co-dependence between a gene and cluster, and
nCDI = 0 represents no co-dependence but is not equivalent to mutual exclusivity which has been

formulated elsewhere®?.

The CDI, by definition, only computes genes that are “up-regulated” relative to the comparison
group, so to ensure fair comparison to the Wilcox method, only gene subsets that had a positive log fold
change (LFC) were considered in Wilcox vs. CDI comparative analyses. Differentially expressed genes
(DEGs) were deemed significant at a 5% false discovery rate (FDR). The top 50 DEGs identified by each
method were subsequently characterized using sensitivity, specificity, positive predictive value (PPV) and

negative predictive value (NPV):

p;
S itivity =
NSty = 100% — P,,) + P,y
100% - Pout
oociFicity
PECIfICtY = 50% — Pyue) + Pons
P.
ppy = —"
Pin + Pout
NPV _ 100% - Pout

(100% — Pyye) + (100% — Piyy)

where P;, and P,,,; represent the expressing percentage of cells within and outside a cluster, respectively.

We also computed the Gini inequality index as a complementary surrogate for gene specificity:

14


https://doi.org/10.1101/2022.03.13.484162
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.13.484162; this version posted March 15, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Z']’{lclusters (1 — (Xg,k — maX(xg)))

Nclusters — 1

Gini Index =

where x , is the average expression of gene g for cluster k, and n,s¢ers is the number of unique clusters.

Cluster optimization. To identify the optimal cluster resolution, we first clustered samples over a range of
candidate resolutions (0.05 to 3) using FindClusters(..., algorithm = 1) in Seurat. At each resolution p, the
top cluster-specific marker for each cluster was identified using CDI-based DE analysis. Subsequently,
specificity curves were generated by plotting the proportion of clusters that exceed a threshold nCDI score,
for nCDI ranging [0,1]. The area under this curve (AUC) represents the aggregate specificity index S, and
possible values range between [0,1], with a score of 1 representing the ideal cluster configuration in which
each cluster has at least one marker satisfying nCDI = 1. Aggregate specificity indices were graphed over
the range of candidate resolutions, and resolutions at which a peak and subsequent elbow(s) were manually
observed were taken as optimal clustering resolutions for downstream analyses. Cluster resolutions were

also identified using chooseR algorithm with default parameters (https://github.com/rbpatt2019/chooseR)?*.

For each resolution, we computed the adjusted Rand index (ARI) between unsupervised sSCRNA-
seq clusters and author-curated cell-type clusters (i.e. ground truth) using the adj.rand.index (fossil R
package, v 0.4.0)%. ARI is a measure of similarity between two data clusterings, adjusted for chance
groupings. Across all the candidate resolutions evaluated, the maximal ARI between our unsupervised
clusters and ground truth clusters was ~0.8 and the resolutions at which the max ARI was observed was
denoted ARI,,,, (Fig 3B). The imperfect cluster similarity here reflects differences in computational
preprocessing across datasets and possible manual cluster refinement performed by authors of the original
datasets. Nonetheless, this represents the maximal ARI that is achievable using the current unsupervised

cluster approach and serves as a positive control to which all other cluster configurations were compared.

Cell-type marker catalog. To generate a cell-type marker reference catalog, cell-type-specific markers were
derived from eight diverse public scRNA-seq atlases (Tabula Muris®, Tabula Sapiens®, Cao 20193, Cao
20205, Pijuan Sala, Tysers, La Manno?” and Zeisels®) using the Wilcoxon DE method to identify DEGs
across author-curated cell types (Table 1). All markers satisfying logFC > 0.5, AUROC > 0.95 and FDR <
1% were included. If less than 15 markers were identified per a cell-type using these criteria, the top N
markers (ranked by logFC) with FDR < 1% were taken to ensure the minimum 15 markers per cell-type
requirement was satisfied. These markers were then consolidated with cell-type-specific markers from
PanglaoDB?! and CellMarkers® to yield a cell-type marker reference catalog. No additional filtering was
performed, resulting in many cell-types being represented by multiple gene sets from several independent

sources. We justified this redundancy as a strength of the catalog, as co-enrichment of independent and
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coherent cell-type terms leads to higher confidence cell-type annotations. To visualize the catalog using a
bipartite network, a gene x cell-type incidence matrix was generated using graph.incidence (igraph R
package, v 1.2.6) and the network was visualized using layout.auto (igraph). Both human and murine cell-
types are represented in this catalog. All cell-type markers used in this study have been made available in

our scMiko R package.

Cell-type annotation. The Miko score is a scaled cluster-level module score that adjusts for cell-to-cell

gene expression variation and gene set size. To compute the Miko score, standardized module scores Z; for
each cell j must first be calculated by subtracting the mean expression of control features Y; from the mean
expression of gene set features X;, and then scaling the difference by the pooled standard deviation of the

gene set and control features:

7 Xi—Y

- Jvar(x) +var(y)

Following the approach taken by Tirosh and colleagues® and implemented in AddModuleScore (Seurat),
all analyzed features are binned based on averaged expression and control features are randomly selected
from each bin. As a variance-corrected statistic, the standardized module score can be used as-is to compute
single-cell level significance [p = Pr(> |Z])]. However, in the absence of a gene set-size correction,

module score comparisons between gene sets are invalid.

To correct for gene set size-dependencies, cell-level null standardized module scores Zy,,;; ; are

computed for randomly sampled gene sets that span over a range of different sizes (2-100 genes per gene

set by default). Random gene set-specific Z,,,,;; ; scores are then aggregated for each cluster k to yield a

cluster-level null standardized module score Z,,,;; k-

Ncellk

1
Znuik = Z Znuil,j
j

Neellk

Where Zyqp ,c and Zy,,;, ; represent the null standardized module scores for a randomized gene set of a given
size for cluster k or cell j, respectively, and n.e; , represents the number of cells belonging to cluster k.

The relationship between gene set size and null standardized scores is then fit using a polynomial spline:

null_model,oqn = glm(Znu”~bs(size, degree = 3, family = gaussian))
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This null mean model is used to predict gene set size-adjusted null standardized scores Z27¢"

. In theory,

the expected value of ZP7¢%

nun 1S 0 and we approximate it as such in our computational implementation.

Separately, we calculate the observed variance in Z,,;; , denoted Var(Znu”,k), over a range of gene set

sizes, and fit the relationship between gene set size and Var(Znu”,k) using a gamma-family generalized

linear model:
null_model, g ignee = glmVar(Z,q4nq) ~size, family = Gamma)

This null variance model is used to predict gene set size-adjusted variance of standardized scores

Var(Zhg).

Finally, to derive the gene set-size corrected Miko score, we aggregate standardized module scores

Z; for each gene set into cluster-level means:

1
Zobs,k = n Zj
cell,k
red red

- - p - p -
and center and scale Z,,s . Using gene set-size matched null mean Z% 7" and variance Var(Z}, ;") to yield

the Miko score M, for cluster k:

pred

ZObS,k B Znull

Mk = —
pred

VaT(Znull )

The Miko score is a cluster-level module score that is adjusted for gene set size-related spurious effects and
cell-to-cell variability. This ensures the valid comparison of scores across differently sized gene sets,
making it a valuable tool in marker-based cell annotation. Another property of the Miko score is that it can
be handled as a Z statistic, thus facilitating p-value calculation and hypothesis testing:

p = Pr(> [Myl])
This facilitates cell cluster annotation based on which cell-type-specific gene sets are significantly active.

In addition to the Miko score, we propose two post-scoring filters which serve to fine tune which
gene sets are considered enriched. The first is a coherence filter in which a positive correlation between
component gene expression and the Miko score is enforced for a minimum fraction of component genes.
The second is a frequent flier filter, which flags gene sets that exceed a minimum significance rate and

represent gene sets that enrich across most cell clusters.
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Gene program discovery. Scale-free topology shared nearest neighbor network (SSN) analysis is a gene
program discovery algorithm that groups genes based on co-expression similarity profiles and visualizes
the network layout using a UMAP-based embedding. Features used for gene program discovery can be pre-
specified using a variety of criteria, including minimum expression thresholds, high variability or
deviance®®, however in the current study we select features using a minimal expression criteria (expressing
fraction > 0.5 within at least one cluster). The cell X gene expression matrix (transposed from the Seurat
object) is then subject to principal component analysis [RUnPCA(..., ndim = 50)] and the top components
explaining >90% of the variance are used to construct a K-nearest neighbor graph K [FindNeighbors(...,
k.param = 20)], from which a shared-nearest neighbor (SSN) graph G is constructed by calculating the
neighborhood overlap (Jaccard Index) between every gene and its K-nearest neighbors. Adopting the
framework from weighted gene correlation network analysis (WGCNA)?4, a scale-free topology
transform is then applied to the SNN graph by raising the SNN graph (gene x gene matrix) to an optimized
soft-threshold power:

G = Gsoft_power
where G represents a scale-free topology-conforming SNN graph and is the adjacency matrix that will be

used for downstream network construction. The optimal soft-threshold power used to derive G" is identified

by calculating the signed R? statistic for the following relationship:

log(p(W)) ~log(W)

where W represents connectivity w discretized into n bins (default 20), and p(W) represents the proportion

of nodes (i.e., genes) within the W bin. Connectivity w, for gene g is calculated as row-wise sum of G:

Wy = Z Gg,—g

where g and —g represent the row and column indices corresponding to gene g and all genes except gene
g, respectively. The soft threshold power is evaluated over a range of candidate values (default 1 to 5), and
the optimal power is taken as the smallest power for which signed R? < —0.9:

arg min (signed Rszoft power < —0.9)
soft power €[0.5,5]

To visualize the transcriptomic network, the scale-free SNN graph G" is embedded in a UMAP
using RUNUMAP(..., graph = G', umap.method = “umap-learn”). Network nodes represent individual

genes, whereas network linkages represent G" edges thresholded at a specified quantile (0.9 by default).
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To identify gene programs from the scale-free SNN graph G, Louvain clustering is performed. We
identify the optimal clustering resolution using a nearest neighbor purity criterion which seeks to optimize
the cluster consistency, or purity, within individual gene neighborhoods by maximizing the similarity of
genes within programs compared to other programs (analogous to silhouette score!’). For a candidate cluster
resolution p, the gene-level purity score is defined as the proportion of genes within gene g’s neighborhood

that belong to the most represented cluster within that neighborhood (Fig S1):

_ |kpg € mode(ky )| 7oy

Pog = Ky N,

where p,, 4 is the gene g’s purity at p resolution, the denominator N, represents the cardinality (||), or size,
of gene g’s K-nearest neighborhood K, (20 by default), the numerator n, , represents the number of genes
in gene g’s neighborhood that belong to the most represented cluster [i.e., majority cluster, mode(kp,g)]
and k,, 4 is a vector of cluster memberships for all genes belonging to gene g’s neighborhood. For each
candidate resolution, gene-level purity scores p,, , are then aggregated as means to yield the global purity

score Pp :

1
B = ﬁz Pp.g
g

where N is the number of genes in the SSN graph. Finally, the optimal cluster resolution is the maximal
resolution at which the target purity P4, g (0.8 by default) is satisfied:

arg max(lptarget - Ppl)
p €[0,00]

Possible purity scores range between 0 to 1. Neighborhoods in which genes belong to many different
clusters are considered “impure” (low purity score) whereas neighborhoods in which genes belong to a
single cluster are “pure” (high purity score). In general, higher cluster resolutions are associated with lower
the purity scores, however we recommend using a target purity between 0.7 (more gene programs) and 0.9

(fewer programs).

To minimize spurious gene program associations, genes with low connectivity (i.e., low network degree)
are pruned so that only hub-like genes are retained for downstream annotation and analysis. Here
connectivity for each gene g is calculated as described above for wy, however in this case we use the scale-
free SSN graph G’ instead of G. Connectivity scores w; are L2 normalized and those below a prespecified
threshold (0.1 by default) are pruned.
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SSN performance evaluation. To benchmark the performance of SSN, gene program discovery was
performed using SSN, independent component analysis (ICA) and non-negative matrix factorization
(NMF) on eight public scRNA-seq data sets (Table 1). For each dataset, a common subset of genes that
was expressed by >50% of cells in at least one cell cluster were used (typically ranging between 1000-4000
genes). ICA was performed using RunlCA(...) implemented in Seurat (default parameters), and NMF was
performed using nnmf(..., k = c¢(5, 10, 15), loss = “mse”, rel.tol = le-4, max.iter = 50) (NNLM R package,
v 0.4.4). For NMF analysis, scaled gene expression values were truncated at zero. Graph modularity was
compared between SSN graphs before (SN) and after (SSN) scale-free topology transformation using
modularity(...) (igraph R package, v 1.2.6). GO gene set recovery was evaluated following the approach
taken by Saelens and colleagues®, where the Jaccard similarity between observed (SSN, ICA, NMF) and
known (GO) gene programs was calculated to yield an observed x known gene program similarity matrix.
Then, for each known gene program (matrix column), the max column-wise Jaccard similarity score was
taken, representing the best recovery achieved by the unsupervised gene program detection algorithm for
that known gene program, and the best Jaccard indices averaged over all known programs yielded the
overall recovery score. The overall recovery score was compared across gene program detection methods.
To evaluate the extent of STRING protein-protein interaction enrichment in gene programs identified by
each method, within-program interaction enrichment was performed using get ppi_enrichment(...)
(STRINGdb R package, v 2.0.2) and enrichment ratios were compared across gene program discovery
methods®’. Finally, we used the murine gastrulation sScRNA-seq data set to benchmark the computing times
required to run each method. The data set was subsampled to 1000, 10000, 25000, 50000 and 100000 cells
and for each data subset, 500, 1000, 2500, 5000, and 10000 genes were used for gene program discovery.
The run times, relative to SSN, as well as the absolute run times for SSN across different cell/gene count

settings were reported.

Gene set enrichment analysis. To functionally-annotated gene programs identified by SSN, ICA and NMF,
we perform hypergeometric overrepresentation analysis using fora (fgsea R package, v 1.14.0)%. Annotated
gene sets used for enrichment analyses included GO ontology (biological processes, cellular components,

molecular function) and gene-set collections curated by the Bader Lab®.

Data visualization. Unless otherwise specified, the ggplot2 R package (v 3.3.5) was used for data
visualization. SCRNA-seq gene expression was visualized using FeaturePlot function (Seurat) or DotPlot
function (Seurat). Venn diagrams were generated using either ssvFeatureEuler (segsetvis R package, v

1.8.0) or ggVennDiagram (ggVennDiagram R package, v 1.1.4).
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Table
Table 1. Public scRNA-seq datasets used in the current study.
Dataset Description Species Method N Analyses
Cells (% subset)  Types
Tabula Muris® Pan-atlas Mm 10X 100,000 (99%) 100 A B, C
Tabula Sapiens® Pan-atlas Hs 10X 100,000 (21%) 158 A B,C
Cao 20193 Organogenesis Mm sci-RNAseg3 50,000 (100%) 37 A B,CE
Cao 20207 Fetus Hs sci-RNAseg3 100,000 (26%) 77 A B,CE
Pijuan-Sala 2019% Gastrulation Mm 10X 100,000 (77%) 38 A,B,CD,E
Tyser 202116 Gastrulation Hs SMART-seq2 1,195 (100%) 18 A B,CE
La Manno 202127 Developing brain Mm 10X 100,000 (39%) 16,136 A,B,C,E
Zeisel 201858 Adolescent brain Mm 10X 22,238 (100%) 39 A B,CE
Han 2022 (in review)  neural diff. Mm sci-RNAseq-3 26,117 (100%) - E
Ochocka 20212 immune cells Mm 10X 40,401 (100%) - E

Analyses in which the data sets were used are indicted as A: DE methods, B: cluster resolutions, C: cell

type gene sets, D: Miko scoring, E: gene program discovery.

Abbreviations: Hs; Homo sapiens (human), Mm; Mus musculus (mouse)

21


https://doi.org/10.1101/2022.03.13.484162
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.13.484162; this version posted March 15, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Figures
A
— Integration —
" cells \ —
= e - i
C @ & | @
? UMAP @— s = *7" (.\;;\
.+ 2 ) P &
8, g e ™17,
Tk v gk 8
under-clustered optimal over-clustered
QC & Preprocessing Cluster Optimization
Cell Annotation

gene Program Discovery

- Project
Analysis B o Summary
Reports

f ..Qe"'A Cell-A apor s Projects :
Ceu.Ace”'A C ) L
. -R celp
@" ____________ ??{“_’?“”‘I? = . @
> { Functional
5 Annotation
O

gene A
Gene Expression & Association

Cell Annotation

Gene Expression & Association

A e Sttt |

B  QC & Preprocessing

Figure 1. Schematic of scPipeline analysis modules. (A) scPipeline is a modular collection of
Rmarkdown scripts that generate reports for sSsRNA-seq analyses. The modular framework permits flexible
usage and facilitates i) QC & preprocessing, ii) integration, iii) cluster optimization, iv) cell annotation, v)
gene expression and association analyses, and vi) gene program discovery. Each standalone .HTML report
provides a comprehensive analysis summary that can be seamlessly shared without any dependencies.
Alternatively, online repositories (e.g., GitHub) can be used to host .HTML reports for public
dissemination. (B) Representative snapshots of scPipeline reports generated using the QC and
preprocessing (left), cell annotation (middle), and gene expression and association (right) modules. More

examples can be found here.

22


https://nmikolajewicz.github.io/scMiko/index.html
https://nmikolajewicz.github.io/scMiko/index.html
https://doi.org/10.1101/2022.03.13.484162
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.13.484162; this version posted March 15, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

N DEGs

A Binary vs. Graded DEGs J CDI
b eIt
O p<0.05 o <@
[] other DEG Type
avs.b graded $ e o
Al B Q. e &
c —p —p
avs.c binary |2’
N —
% bvs.c bina @
= ’ ry O ® o
=) F O
c $§(’° & 2
L [ LXK ] e
B ® Genes (50 top-ranked)
o Wilcox
6000 X »
CDI  CNW ¢ 6¢ o¢ ¢ LE®
4000 Wilcox C e - 0 Goe. Oo
g @ dall o ‘e Coo
2418 & miops0 0l%e €% 8% ¢
2000 €9 % (Y 8¢ [ 4
8 = . C_‘ <« &8 » oo
0 L. p = 0.029 L - “ » € ¢
00 04 08 Wilcox CDI ©
e Jaccard Index O "ty - e 4
1.0 . e
0.94 <3 k4B @S C
>038 >08 Genes (50 top-ranked)
2 k) > 0.8
go.s §0 6 z Scaled Expr. Expr. Fraction
» 2.4 | : 07 -2 0 2 0 50100
¥ / / B X )
0.4 p=9.8e-5\ | p=5.4e-3 06 / p=7.6e-4 0.61 p=‘1%9\; . - ¢
Wilcox CDI Wilcox CDI Wilcox CDI Wilcox CDI
e Cao 2019 Cao 2020 e La Manno 2021 e Pijuan-Sala 2019
e Tabula Muris © Tabula Sapiens @ Tyser 2021 ® Zeisel 2018

Figure 2. Co-dependency index identifies cell-type specific markers. (A) Schematic illustrating binary
and graded DEGs in scRNA-seq analysis. (B-1) DEGs were identified by Wilcoxon and CDI methods
across eight public sScRNA-seq datasets and evaluated for number of significant DEGs (5% FDR, B), DEG

overlap (C), rank correlation of average gene expression with -log10(p) values (D), Gini inequality index
(E), sensitivity (F), specificity (G), positive predictive value (PPV, H), and negative predictive value (NPV,
1). For C, the top panel shows overlap between DEGs identified by Wilcoxon and CDI, whereas the bottom
panel shows the distribution of Jaccard similarities across all significant DEGs and top 50 DEGs. For E-I,
the top 50 DEGs identified by each method were considered. (J) Representative dot plot of top 50 DEGs
identified by CDI (top) and Wilcoxon (bottom) methods in yolk sac mesoderm cell population from Tyser

2021 scRNA-seq data (arrows indicate row corresponding to the yolk sac mesoderm population). For all

comparisons, p values were determined by paired Wilcoxon ranked sum test. CDI; co-dependency index,

DEGs; differentially-expressed genes, FDR; false discovery rate.
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Figure 3. ldentification of optimal clustering resolution using a specificity-based criterion. (A)
Schematic of specificity-based resolution-selection criteria. (B, C) Adjusted Rand index (B) and specificity
index differences (C) between ground truth (author-curated) clusters and observed Louvain clusters, using
resolutions determined by different optimization criteria [specificity criteria (Speqk, Setbow1, Setbowz) and
chooseR®]. ARI,,,, represents resolution at which maximal ARI was achieved, after considering all
candidate resolutions (0.5 to 3). For B, significance compared to ARI,,,, Was determined by paired
Wilcoxon test. For C, significance compared to zero (i.e., ground truth) was determined by one-sample
Wilcoxon test. (D-G) Optimal clustering resolution for Tyser 2021 human gastrulation scRNA-seq data’®.
(D) Relationship between resolution and specificity indices, and identification of S,.qk, Seipow1 and
Seivow2- (E) Specificity-curves. Grey curves: all candidate resolutions evaluated (0.5 to 3), blue curve: Spea,
red curve: ground truth (curated) clusters. (F) Dot plots of top markers for curated (left) and Sy,cqy (right)
clusters. (G) Comparison of cluster sensitivity (expressing fraction) of each top marker obtained for curated
and Speqp clusters. Significance determined by unpaired Wilcoxon test
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Figure 4. Cell-type annotation. (A) Cell-type-specific gene set catalog represented as bipartite network.
Edges between gene sets (red nodes) and genes (grey nodes) represent gene set membership. Major cell
ontologies are annotated, and the corresponding gene sets can be accessed using the scMiko R package.
(B) Representative null model relating gene set size and standardized module scores (SMS; for random
gene sets). Red curves: predicted mean SMS + 95% ClI; black points: observed cluster-level mean SMS;
grey points: observed cell-level SMS. (C) Relationship between cluster-level non-standardized module
score (AddModuleScore, Seurat R package) and Miko score. Clusters with significant module activity
(FDR < 0.05) are indicated. (D-E) Evaluation of Miko score performance. (D) Representative gene sets
with varying rates of permutation (i.e., substitution of cluster-specific gene with random gene; left) and
corresponding Miko scores (bar plot, right) with coherent fractions (dot plot, right). (E) Relationship
between degree of gene set permutation and fraction of cluster- and cluster-non-specific gene sets with
significant (FDR < 0.05) module activity. Coherent fraction (CF) filters were included to demonstrate
capacity to titrate score sensitivities and specificities. (F) Representative example of Miko score applied to
murine gastrulation data using cell-type gene set catalog (A). UMAPs illustrate cell population with curated
cell-types of interest (Extraembryonic endoderm; left, erythroid lineage; right), and word clouds represent

top cell types predicted by the Miko scoring algorithm.
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Figure 5. Gene program discovery using scale-free shared nearest neighbor network (SSN) analysis.
(A) Schematic illustrating network construction and annotation. (B) Network modularity with (SSN) and
without (SN) scale-free topology enforcement. (C-E) Comparison of GO term recovery (C), STRING PPI
enrichment (D) and computational run time (E) across different gene program discovery methods. ICA,;
independent component analysis, NMF; non-negative matrix factorization, SN; shared nearest neighbor
network, SSN; scale-free shared nearest neighbor network. (F-1) Representative transcriptional network
construction, annotation and applications using Ochocka 2021 scRNA-seq data?. (F) Optimal soft power
required for scale-free topology (left column; threshold = -0.9) and pruning of genes with low network
connectivity (right column; threshold = 0.1). (G) Functional annotation of gene programs. GO term
enrichment was performed using hypergeometric overrepresentation analysis. (H) Activity of “interferon
signaling” and “pro-inflammation” programs overlaid on cell UMAP. Macrophage and microglial
subpopulations can be subtyped by program activity status. (I) Novel marker discovery and functional
prediction using guilt-by-association. Genes belonging to “interferon signaling” program were cross-
referenced with PubMed articles queried using “inflammation”, “macrophage” and “interferon” search
strings to identify novel candidate genes (e.g., Msda4c) implicated in interferon signaling. Ms4a4c

expression was visualized on a UMARP to verify that expression is coherent with gene program activity.
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Supplemental Figure 1. Schematic of nearest neighbor purity criterion. The nearest neighbor purity
criterion seeks to optimize the cluster consistency, or purity, within individual gene neighborhoods by
maximizing the similarity of genes within gene programs compared to other programs. In step 1 (left), for
a given cluster resolution p, the gene-level purity score p, , is defined as the proportion of genes within
gene g’s neighborhood that belong to the most represented cluster within that neighborhood. The gene-level
purity scores p,, , are then aggregated as means to yield the global purity F,. In step 2 (right), the optimal
cluster resolution (vertical dashed line, right) is the maximal resolution at which the target purity Prg;ge¢

is satisfied (0.8 by default; horizontal dashed line, right).
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Supplemental Figure 2. Application of SSN to identify robust angiogenesis-associated gene program.
(A-E) Representative transcriptional network construction, annotation and applications using La Manno
2021 scRNA-seq data?’. (A) Optimal soft power required for scale-free topology (left column; threshold =
0.9) and pruning of genes with low network connectivity (right column; threshold = 0.1). (B) Functional
annotation of gene programs. (C-E) External validation and refinement of angiogenesis signature. (C)
Correlation between angiogenesis program activity and expression of individual gene program genes across
three independent sScRNA-seq datasets. Genes that exceeded the coherence threshold (Spearman correlation
> 0.1) were deemed coherent. (D) Venn diagram illustrating intersection between coherent gene sets
determined in each sScCRNA-seq dataset. 64/108 genes (59%) were coherent in all SCRNA-seq datasets. (E)
Gene program activity of coherent angiogenesis signature specifically highlights the (hematogenic)

endothelial population in all three SCRNA-seq datasets.
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